1
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNA mechanisms instructing Purkinje cell specification. Neuron 2025; 113:1629-1646.e15. [PMID: 40179877 DOI: 10.1016/j.neuron.2025.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/22/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025]
Abstract
MicroRNAs (miRNAs) are critical for brain development; however, if, when, and how miRNAs drive neuronal subtype specification remains poorly understood. To address this, we engineered technologies with vastly improved spatiotemporal resolution that allow the dissection of cell-type-specific miRNA-target networks. Fast and reversible miRNA loss of function showed that miRNAs are necessary for Purkinje cell (PC) differentiation, which previously appeared to be miRNA independent, and identified distinct critical miRNA windows for dendritogenesis and climbing fiber synaptogenesis, structural features defining PC identity. Using new mouse models that enable miRNA-target network mapping in rare cell types, we uncovered PC-specific post-transcriptional programs. Manipulation of these programs revealed that the PC-enriched miR-206 and targets Shank3, Prag1, En2, and Vash1, which are uniquely repressed in PCs, are critical regulators of PC-specific dendritogenesis and synaptogenesis, with miR-206 knockdown and target overexpression partially phenocopying miRNA loss of function. Our results suggest that gene expression regulation by miRNAs, beyond transcription, is critical for neuronal subtype specification.
Collapse
Affiliation(s)
- Norjin Zolboot
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yao Xiao
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jessica X Du
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marwan M Ghanem
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Su Yeun Choi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Miranda J Junn
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Federico Zampa
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zeyi Huang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Giordano Lippi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Ali ME, Al-Saeed FA, Ahmed AE, Gao M, Wang W, Lv H, Hua G, Yang L, Abdelrahman M. MicroRNA as Biomarkers for Physiological and Stress Processing in the Livestock. Reprod Domest Anim 2025; 60:e70034. [PMID: 40166888 DOI: 10.1111/rda.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025]
Abstract
Several microRNAs (miRNAs) have been identified as potential biomarkers widely dispersed in animals since 1993, and they have become a significant molecular biology research area. Because of their ability to activate extracellular molecules, stabilise bodily tissues, control cell-to-cell signals, and be easily extracted, miRNAs are outstandingly nominated as biomarkers. However, there is growing interest in targeting miRNAs to monitor physiological reproductive performance, including reproductive system development, embryo development, fertilisation, endocrinology, and animal welfare in stressful conditions. Moreover, miRNAs play significant roles in gene expression regulation; single miRNAs may have overlapping roles, and on a broader scale, multiple mRNAs govern a single function. Also, miRNAs serve as an intermediary messenger between the environment and reproductive performance, making them a vital component of miRNAs as performance biomarkers under environmental conditions like heat stress. This makes describing a unique miRNA's consequences and functions exceptionally challenging, which may confound many researchers. Also, enhancing our comprehension of miRNAs in response to testicular heat stress could potentially aid in preventing and treating spermatogenesis disorders. Therefore, the present review highlights miRNA's regulatory mechanisms on reproductive performance under heat stress to employ these findings in improving reproduction physiology research.
Collapse
Affiliation(s)
- Montaser Elsayed Ali
- Department of Animal Productions, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Fatimah A Al-Saeed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Min Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
- National Sheep Genetic Evaluation Center, Inner Mongolia University, Hohhot, China
| | - Wei Wang
- School of Life Sciences, Henan University, Henan, China
| | - Haimiao Lv
- School of Life Sciences, Henan University, Henan, China
| | - Guohua Hua
- School of Life Sciences, Henan University, Henan, China
| | - Liguo Yang
- School of Life Sciences, Henan University, Henan, China
| | - Mohamed Abdelrahman
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut, Egypt
| |
Collapse
|
3
|
Mohammadi-Pilehdarboni H, Shenagari M, Joukar F, Naziri H, Mansour-Ghanaei F. Alzheimer's disease and microorganisms: the non-coding RNAs crosstalk. Front Cell Neurosci 2024; 17:1256100. [PMID: 38249527 PMCID: PMC10796784 DOI: 10.3389/fncel.2023.1256100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/25/2023] [Indexed: 01/23/2024] Open
Abstract
Alzheimer's disease (AD) is a complex, multifactorial disorder, influenced by a multitude of variables ranging from genetic factors, age, and head injuries to vascular diseases, infections, and various other environmental and demographic determinants. Among the environmental factors, the role of the microbiome in the genesis of neurodegenerative disorders (NDs) is gaining increased recognition. This paradigm shift is substantiated by an extensive body of scientific literature, which underscores the significant contributions of microorganisms, encompassing viruses and gut-derived bacteria, to the pathogenesis of AD. The mechanism by which microbial infection exerts its influence on AD hinges primarily on inflammation. Neuroinflammation, activated in response to microbial infections, acts as a defense mechanism for the brain but can inadvertently lead to unexpected neuropathological perturbations, ultimately contributing to NDs. Given the ongoing uncertainty surrounding the genetic factors underpinning ND, comprehensive investigations into environmental factors, particularly the microbiome and viral agents, are imperative. Recent advances in neuroscientific research have unveiled the pivotal role of non-coding RNAs (ncRNAs) in orchestrating various pathways integral to neurodegenerative pathologies. While the upstream regulators governing the pathological manifestations of microorganisms remain elusive, an in-depth exploration of the nuanced role of ncRNAs holds promise for the development of prospective therapeutic interventions. This review aims to elucidate the pivotal role of ncRNAs as master modulators in the realm of neurodegenerative conditions, with a specific focus on Alzheimer's disease.
Collapse
Affiliation(s)
- Hanieh Mohammadi-Pilehdarboni
- Faculty of Medicine and Dentistry and the School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamed Naziri
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
4
|
Zolboot N, Xiao Y, Du JX, Ghanem MM, Choi SY, Junn MJ, Zampa F, Huang Z, MacRae IJ, Lippi G. MicroRNAs are necessary for the emergence of Purkinje cell identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.560023. [PMID: 37808721 PMCID: PMC10557743 DOI: 10.1101/2023.09.28.560023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Brain computations are dictated by the unique morphology and connectivity of neuronal subtypes, features established by closely timed developmental events. MicroRNAs (miRNAs) are critical for brain development, but current technologies lack the spatiotemporal resolution to determine how miRNAs instruct the steps leading to subtype identity. Here, we developed new tools to tackle this major gap. Fast and reversible miRNA loss-of-function revealed that miRNAs are necessary for cerebellar Purkinje cell (PC) differentiation, which previously appeared miRNA-independent, and resolved distinct miRNA critical windows in PC dendritogenesis and climbing fiber synaptogenesis, key determinants of PC identity. To identify underlying mechanisms, we generated a mouse model, which enables precise mapping of miRNAs and their targets in rare cell types. With PC-specific maps, we found that the PC-enriched miR-206 drives exuberant dendritogenesis and modulates synaptogenesis. Our results showcase vastly improved approaches for dissecting miRNA function and reveal that many critical miRNA mechanisms remain largely unexplored. Highlights Fast miRNA loss-of-function with T6B impairs postnatal Purkinje cell developmentReversible T6B reveals critical miRNA windows for dendritogenesis and synaptogenesisConditional Spy3-Ago2 mouse line enables miRNA-target network mapping in rare cellsPurkinje cell-enriched miR-206 regulates its unique dendritic and synaptic morphology.
Collapse
|
5
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Du X, He X, Liu Q, Liu Q, Di R, Chu M. Identification of photoperiod-induced specific miRNAs in the adrenal glands of Sunite sheep (Ovis aries). Front Vet Sci 2022; 9:888207. [PMID: 35937294 PMCID: PMC9354845 DOI: 10.3389/fvets.2022.888207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
In seasonal estrus, it is well known that melatonin-regulated biorhythm plays a key role. Some studies indicate that the adrenal gland plays an important role in reproduction in mammals, but the molecular mechanism is not clear. This study used an artificially controlled light photoperiod model, combined with RNA-seq technology and bioinformatics analysis, to analyze the messenger RNA (mRNA) and microRNA (miRNA) of ewe (Sunite) adrenal glands under different photoperiod treatments. After identification, the key candidate genes GRHL2, CENPF, FGF16 and SLC25A30 that photoperiod affects reproduction were confirmed. The miRNAs (oar-miR-544-3p, oar-miR-411b-5p, oar-miR-376e-3p, oar-miR-376d, oar-miR-376b-3p, oar-miR-376a-3p) were specifically expressed in the adrenal gland. The candidate mRNA-miRNA pairs (e.g., SLC25A30 coagulated by novel miRNA554, novel miRNA555 and novel miRNA559) may affect seasonal estrus. In summary, we constructed relation network of the mRNAs and miRNAs of sheep adrenal glands using RNA sequencing and bioinformatics analysis, thereby, providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.
Collapse
Affiliation(s)
- Xiaolong Du
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Mingxing Chu
| |
Collapse
|
7
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial-mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
8
|
Tomasello U, Klingler E, Niquille M, Mule N, Santinha AJ, de Vevey L, Prados J, Platt RJ, Borrell V, Jabaudon D, Dayer A. miR-137 and miR-122, two outer subventricular zone non-coding RNAs, regulate basal progenitor expansion and neuronal differentiation. Cell Rep 2022; 38:110381. [PMID: 35172154 PMCID: PMC8864305 DOI: 10.1016/j.celrep.2022.110381] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cortical expansion in primate brains relies on enlargement of germinal zones during a prolonged developmental period. Although most mammals have two cortical germinal zones, the ventricular zone (VZ) and subventricular zone (SVZ), gyrencephalic species display an additional germinal zone, the outer subventricular zone (oSVZ), which increases the number and diversity of neurons generated during corticogenesis. How the oSVZ emerged during evolution is poorly understood, but recent studies suggest a role for non-coding RNAs, which allow tight genetic program regulation during development. Here, using in vivo functional genetics, single-cell RNA sequencing, live imaging, and electrophysiology to assess progenitor and neuronal properties in mice, we identify two oSVZ-expressed microRNAs (miRNAs), miR-137 and miR-122, which regulate key cellular features of cortical expansion. miR-137 promotes basal progenitor self-replication and superficial layer neuron fate, whereas miR-122 decreases the pace of neuronal differentiation. These findings support a cell-type-specific role of miRNA-mediated gene expression in cortical expansion. oSVZ-expressed microRNAs 137 and 122 promote superficial layer identity of neurons miR-137 promotes basal progenitor proliferation and layer 2/3 neuron generation miR-122 slows down neuronal differentiation pace
Collapse
Affiliation(s)
- Ugo Tomasello
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Esther Klingler
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Mathieu Niquille
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Nandkishor Mule
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Antonio J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Laura de Vevey
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland
| | - Julien Prados
- Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Victor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d'Alacant, 03550 Alacant, Spain
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Clinic of Neurology, Geneva University Hospital, 1205 Geneva, Switzerland.
| | - Alexandre Dayer
- Department of Basic Neurosciences, University of Geneva, 1205 Geneva, Switzerland; Department of Psychiatry, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
9
|
Walker SE, Sabin KZ, Gearhart MD, Yamamoto K, Echeverri K. Regulation of stem cell identity by miR-200a during spinal cord regeneration. Development 2022; 149:274347. [PMID: 35156681 PMCID: PMC8918811 DOI: 10.1242/dev.200033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023]
Abstract
Axolotls are an important model organism for multiple types of regeneration, including functional spinal cord regeneration. Remarkably, axolotls can repair their spinal cord after a small lesion injury and can also regenerate their entire tail following amputation. Several classical signaling pathways that are used during development are reactivated during regeneration, but how this is regulated remains a mystery. We have previously identified miR-200a as a key factor that promotes successful spinal cord regeneration. Here, using RNA-seq analysis, we discovered that the inhibition of miR-200a results in an upregulation of the classical mesodermal marker brachyury in spinal cord cells after injury. However, these cells still express the neural stem cell marker sox2. In vivo cell tracking allowed us to determine that these cells can give rise to cells of both the neural and mesoderm lineage. Additionally, we found that miR-200a can directly regulate brachyury via a seed sequence in the 3′UTR of the gene. Our data indicate that miR-200a represses mesodermal cell fate after a small lesion injury in the spinal cord when only glial cells and neurons need to be replaced. Summary: Axolotl spinal cord cells have the potential to form cells of the ectoderm and mesoderm depending on the extent of the injury they are responding to.
Collapse
Affiliation(s)
- Sarah E Walker
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Keith Z Sabin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | - Karen Echeverri
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
10
|
Zhang M, Xian HC, Dai L, Tang YL, Liang XH. MicroRNAs: emerging driver of cancer perineural invasion. Cell Biosci 2021; 11:117. [PMID: 34187567 PMCID: PMC8243427 DOI: 10.1186/s13578-021-00630-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The perineural invasion (PNI), which refers to tumor cells encroaching on nerve, is a clinical feature frequently occurred in various malignant tumors, and responsible for postoperative recurrence, metastasis and decreased survival. The pathogenesis of PNI switches from 'low-resistance channel' hypothesis to 'mutual attraction' theory between peripheral nerves and tumor cells in perineural niche. Among various molecules in perineural niche, microRNA (miRNA) as an emerging modulator of PNI through generating RNA-induced silencing complex (RISC) to orchestrate oncogene and anti-oncogene has aroused a wide attention. This article systematically reviewed the role of microRNA in PNI, promising to identify new biomarkers and offer cancer therapeutic targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), No.14, Sec. 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
11
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
12
|
Katreddi RR, Forni PE. Mechanisms underlying pre- and postnatal development of the vomeronasal organ. Cell Mol Life Sci 2021; 78:5069-5082. [PMID: 33871676 PMCID: PMC8254721 DOI: 10.1007/s00018-021-03829-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
The vomeronasal organ (VNO) is sensory organ located in the ventral region of the nasal cavity in rodents. The VNO develops from the olfactory placode during the secondary invagination of olfactory pit. The embryonic vomeronasal structure appears as a neurogenic area where migratory neuronal populations like endocrine gonadotropin-releasing hormone-1 (GnRH-1) neurons form. Even though embryonic vomeronasal structures are conserved across most vertebrate species, many species including humans do not have a functional VNO after birth. The vomeronasal epithelium (VNE) of rodents is composed of two major types of vomeronasal sensory neurons (VSNs): (1) VSNs distributed in the apical VNE regions that express vomeronasal type-1 receptors (V1Rs) and the G protein subunit Gαi2, and (2) VSNs in the basal territories of the VNE that express vomeronasal type-2 receptors (V2Rs) and the G subunit Gαo. Recent studies identified a third subclass of Gαi2 and Gαo VSNs that express the formyl peptide receptor family. VSNs expressing V1Rs or V2Rs send their axons to distinct regions of the accessory olfactory bulb (AOB). Together, VNO and AOB form the accessory olfactory system (AOS), an olfactory subsystem that coordinates the social and sexual behaviors of many vertebrate species. In this review, we summarize our current understanding of cellular and molecular mechanisms that underlie VNO development. We also discuss open questions for study, which we suggest will further enhance our understanding of VNO morphogenesis at embryonic and postnatal stages.
Collapse
Affiliation(s)
- Raghu Ram Katreddi
- Department of Biological Sciences, Center for Neuroscience Research, The RNA Institute, University At Albany, State University of New York, Albany, NY, USA
| | - Paolo E Forni
- Department of Biological Sciences, Center for Neuroscience Research, The RNA Institute, University At Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
13
|
Chen J, Luo Y, Cao J, Xie L. Fluoride exposure changed the expression of microRNAs in gills of male zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105789. [PMID: 33667915 DOI: 10.1016/j.aquatox.2021.105789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Fluoride has been found to cause detrimental effects on fish gills. Despite essential roles in various metabolism activities, whether and how miRNAs participate in the course of toxicity caused by fluoride in gills is still unclear. In this study, male zebrafish were exposed to 0, 20, 40 mg/L fluoride for 60 days to study the underlying osmotic regulatory mechanism by determining the influences of fluoride on the miRNAs and regulated genes in gills. mRNAs were isolated from the gills and the expression profiles were analyzed by using Illumina Hiseq 2500 platforms. Expressions of 7 differentially miRNAs and some related-genes in gills were validated by qRT-PCR. The results showed that miRNAs expressions were notably altered by fluoride. A total of 584 and 327 miRNAs were remarkably changed after 20 and 40 mg/L fluoride exposure, of which 322 were increased and 262 were decreased in 20 mg/L fluoride group, whereas 219 were elevated and 108 were reduced in 40 mg/L fluoride group. The differentially expressive miRNAs confirmed by qRT-PCR were consistent with micro-assay data. Cluster of Orthologous Groups of proteins (COG) function classification showed that the target genes of differentially expressive miRNAs are mainly related to signal transduction mechanisms, replication, transcription, inorganic ion transport and metabolism, repair and recombination, and energy formation and transformation. In addition, fluoride disturbed the expressions of target genes involved in the osmoregulation of the gill in the fluoride-exposed zebrafish, such as the increased expressions of OSTF1 and the decreased expressions of Na+-K+-ATPase, CFTR, and AQP-3, which provides a possibility that miRNAs regulation induced by fluoride has an effects on osmotic regulation, providing new hints to the osmotic regulatory mechanism of the toxicity caused by fluoride in zebrafish, and distinguishes new biomarkers of miRNAs for fluoride toxicity.
Collapse
Affiliation(s)
- Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Mao Y, Chen W, Wu H, Liu C, Zhang J, Chen S. Mechanisms and Functions of MiR-200 Family in Hepatocellular Carcinoma. Onco Targets Ther 2021; 13:13479-13490. [PMID: 33447052 PMCID: PMC7801920 DOI: 10.2147/ott.s288791] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common clinically malignant tumors of the digestive system. It ranks the sixth most common malignant tumor in the world and ranks fourth among cancer-related death worldwide. At present, early diagnosis and prognosis monitoring of hepatocellular carcinoma mainly use alpha-fetoprotein combined with ultrasonography, which leads to clinical frequently missed diagnosis or even misdiagnosis. Therefore, seeking specific diagnostic and monitoring molecules of hepatocellular carcinoma are still hot topics in contemporary medical practice. MicroRNA is an endogenous non-coding small RNA that regulates the expression of the target molecule and participates in various biological processes in vivo. The miR-200 family, the most common celebrity family of microRNAs, is commonly lower expression in a variety of cancers and is closely associated with tumorigenesis and outcome, especially hepatocellular carcinoma. This review mainly discusses the expression changes, specific molecular mechanisms, biological functions and clinical values of miR-200 family in hepatocellular carcinoma. Moreover, we highlighted utilization of miR-200 family as molecular biomarkers for early diagnosis, prognostic monitoring and appropriate therapy in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yinqi Mao
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wei Chen
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Han Wu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chenbin Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jingjun Zhang
- Department of Rehabilitation, Huashan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Xu C, Bai Q, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Jia S, Zhang J, Xu J, Li J, Chen M, Wang F. miR-433 Inhibits Neuronal Growth and Promotes Autophagy in Mouse Hippocampal HT-22 Cell Line. Front Pharmacol 2020; 11:536913. [PMID: 33381022 PMCID: PMC7768889 DOI: 10.3389/fphar.2020.536913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 11/18/2022] Open
Abstract
Background: MicroRNAs (miRNAs) have an increasing functional role in some neurodegenerative diseases. Autophagy, the degradation of bulk protein in the cytoplasm, is the quality control function of protein and has a protective role in the survival of neural cells. miR-433 may play a regulatory role in neurodegenerative diseases. Many aspects underlying the mechanism of miR-433 in neural development and neurodegeneration are not clear. Methods: In this study, we established stable cell lines expressing miR-433 by infecting mouse hippocampal neural cell line (HT-22) cells with rLV-miR-433 and the control rLV-miR. Pre-miR-433 expression was analyzed using polymerase chain reaction (PCR). Mature miR-433 expression was measured using quantitative PCR (qPCR). The effect of miR-433 overexpression on cell proliferation was determined using a CCK-8 assay and flow cytometry. RNA interference was used to analyze the function of Cdk12 in mediating the effect of miR-433 on cell proliferation. The effect of miR-433 overexpression on cell apoptosis was determined by flow cytometry. Autophagy-related genes Atg4a, LC3B, and Beclin-1 were determined using qPCR, Western blot, or immunofluorescence. In addition, RNA interference was used to analyze the effect of Atg4a on the induction of autophagy. TargetScan 7.2 was used to predict the target genes of miR-433, and Smad9 was determined using qPCR. Results: Our results indicated that miR-433 increased the expression of Atg4a and induced autophagy by increasing the expression of LC3B-Ⅱ and Beclin-1 in an Atg4a-dependent manner. In addition, miR-433 upregulated the expression of Cdk12 and inhibited cell proliferation in a Cdk12-dependent manner and promoted apoptosis in HT-22 cells under the treatment of 10-hydroxycamptothecin. Conclusion: The results of our study suggest that miR-433 may regulate neuronal growth by promoting autophagy and attenuating cell proliferation. This might be a potential therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingke Bai
- Department of Neurology, Pudong People's Hospital, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Qiuyu Meng
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, China
| | - Junfang Zhang
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, Tongji University School of Medicine, Shanghai, China
| | - Miao Chen
- Department of Neurology, Shidong hospital, University of Shanghai for Science and Technology, Shanghai, China
| | - Feng Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
17
|
MicroRNAs are indispensable for the proliferation and differentiation of adult neural progenitor cells in mice. Biochem Biophys Res Commun 2020; 530:209-214. [PMID: 32828287 DOI: 10.1016/j.bbrc.2020.06.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 01/18/2023]
Abstract
More than two decades after the discovery of adult neurogenesis in humans, researchers still struggle to elucidate the underlying transcriptional and post-transcriptional mechanisms. RNA interference is a crucially important process in the central nervous system, and its role in adult neurogenesis is poorly understood. In this work, we address the role of Dicer-dependent microRNA biogenesis in neuronal differentiation of adult neural stem cells within the subventricular zone of the mouse brain. Loss of the Dicer1 gene in the tailless (Tlx)-positive cells did not cause the decline in their numbers, but severely affected differentiation. Thus, our findings identify yet another phenomenon associated with microRNA pathway deregulation in adult neural stem cells which might be of relevance both for neuroscience and clinical practice.
Collapse
|
18
|
Yang D, Wu X, Zhou Y, Wang W, Wang Z. The microRNA/TET3/REST axis is required for olfactory globose basal cell proliferation and male behavior. EMBO Rep 2020; 21:e49431. [PMID: 32677323 DOI: 10.15252/embr.201949431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 06/14/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
In the main olfactory epithelium (MOE), new olfactory sensory neurons (OSNs) are persistently generated to replace lost neurons throughout an organism's lifespan. This process predominantly depends on the proliferation of globose basal cells (GBCs), the actively dividing stem cells in the MOE. Here, by using CRISPR/Cas9 and RNAi coupled with adeno-associated virus (AAV) nose delivery approaches, we demonstrated that knockdown of miR-200b/a in the MOE resulted in supernumerary Mash1-marked GBCs and decreased numbers of differentiated OSNs, accompanied by abrogation of male behaviors. We further showed that in the MOE, miR-200b/a targets the ten-eleven translocation methylcytosine dioxygenase TET3, which cooperates with RE1-silencing transcription factor (REST) to exert their functions. Deficiencies including proliferation, differentiation, and behaviors illustrated in miR-200b/a knockdown mice were rescued by suppressing either TET3 or REST. Our work describes a mechanism of coordination of GBC proliferation and differentiation in the MOE and olfactory male behaviors through miR-200/TET3/REST signaling.
Collapse
Affiliation(s)
- Dong Yang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Xiangbo Wu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Yanfen Zhou
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Weina Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Zhenshan Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
19
|
Farahani RM, Rezaei-Lotfi S, Hunter N. Genomic competition for noise reduction shaped evolutionary landscape of mir-4673. NPJ Syst Biol Appl 2020; 6:12. [PMID: 32376854 PMCID: PMC7203229 DOI: 10.1038/s41540-020-0131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
The genomic platform that informs evolution of microRNA cascades remains unknown. Here we capitalised on the recent evolutionary trajectory of hominin-specific miRNA-4673, encoded in intron 4 of notch-1, to uncover the identity of one such precursor genomic element and the selective forces acting upon it. The miRNA targets genes that regulate Wnt/β-catenin signalling cascade. Primary sequence of the microRNA and its target region in Wnt modulating genes evolved from homologous signatures mapped to homotypic cis-clusters recognised by TCF3/4 and TFAP2A/B/C families. Integration of homologous TFAP2A/B/C cis-clusters (short range inhibitor of β-catenin) into the transcriptional landscape of Wnt cascade genes can reduce noise in gene expression. Probabilistic adoption of miRNA secondary structure by one such cis-signature in notch-1 reflected selection for superhelical curvature symmetry of precursor DNA to localise a nucleosome that overlapped the latter cis-cluster. By replicating the cis-cluster signature, non-random interactions of the miRNA with key Wnt modulator genes expanded the transcriptional noise buffering capacity via a coherent feed-forward loop mechanism. In consequence, an autonomous transcriptional noise dampener (the cis-cluster/nucleosome) evolved into a post-transcriptional one (the miRNA). The findings suggest a latent potential for remodelling of transcriptional landscape by miRNAs that capitalise on non-random distribution of genomic cis-signatures.
Collapse
Affiliation(s)
- Ramin M Farahani
- IDR/Westmead Institute for Medical Research and Westmead Centre for Oral Health, Sydney, NSW, Australia.
- Faculty of Medicine and Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Saba Rezaei-Lotfi
- Faculty of Medicine and Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research and Westmead Centre for Oral Health, Sydney, NSW, Australia
- Faculty of Medicine and Health Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
20
|
Formaldehyde Exposure and Epigenetic Effects: A Systematic Review. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Formaldehyde (FA) is a general living and occupational pollutant, classified as carcinogenic for humans. Although genotoxicity is recognized as a FA mechanism of action, a potential contribution of epigenetic effects cannot be excluded. Therefore, aim of this review is to comprehensively assess possible epigenetic alterations induced by FA exposure in humans, animals, and cellular models. A systematic review of Pubmed, Scopus, and Isi Web of Science databases was performed. DNA global methylation changes were demonstrated in workers exposed to FA, and also in human bronchial cells. Histone alterations, i.e., the reduction in acetylation of histone lysine residues, in human lung cells were induced by FA. Moreover, a dysregulation of microRNA expression in human lung adenocarcinoma cells as well as in the nose, olfactory bulb and white blood cells of rodents and nonhuman primates was reported. Although preliminary, these findings suggest the role of epigenetic modifications as possible FA mechanisms of action that need deeper qualitative and quantitative investigation. This may allow to define the role of such alterations as indicators of early biological effect and the opportunity to include such information in future risk assessment and management strategies for public and occupationally FA-exposed populations.
Collapse
|
21
|
Ng HM, Ho JCH, Nong W, Hui JHL, Lai KP, Wong CKC. Genome-wide analysis of MicroRNA-messenger RNA interactome in ex-vivo gill filaments, Anguilla japonica. BMC Genomics 2020; 21:208. [PMID: 32131732 PMCID: PMC7057501 DOI: 10.1186/s12864-020-6630-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Background Gills of euryhaline fishes possess great physiological and structural plasticity to adapt to large changes in external osmolality and to participate in ion uptake/excretion, which is essential for the re-establishment of fluid and electrolyte homeostasis. The osmoregulatory plasticity of gills provides an excellent model to study the role of microRNAs (miRs) in adaptive osmotic responses. The present study is to characterize an ex-vivo gill filament culture and using omics approach, to decipher the interaction between tonicity-responsive miRs and gene targets, in orchestrating the osmotic stress-induced responses. Results Ex-vivo gill filament culture was exposed to Leibovitz’s L-15 medium (300 mOsmol l− 1) or the medium with an adjusted osmolality of 600 mOsmol l− 1 for 4, 8 and 24 h. Hypertonic responsive genes, including osmotic stress transcriptional factor, Na+/Cl−-taurine transporter, Na+/H+ exchange regulatory cofactor, cystic fibrosis transmembrane regulator, inward rectifying K+ channel, Na+/K+-ATPase, and calcium-transporting ATPase were significantly upregulated, while the hypo-osmotic gene, V-type proton ATPase was downregulated. The data illustrated that the ex-vivo gill filament culture exhibited distinctive responses to hyperosmotic challenge. In the hyperosmotic treatment, four key factors (i.e. drosha RNase III endonuclease, exportin-5, dicer ribonuclease III and argonaute-2) involved in miR biogenesis were dysregulated (P < 0.05). Transcriptome and miR-sequencing of gill filament samples at 4 and 8 h were conducted and two downregulated miRs, miR-29b-3p and miR-200b-3p were identified. An inhibition of miR-29b-3p and miR-200b-3p in primary gill cell culture led to an upregulation of 100 and 93 gene transcripts, respectively. Commonly upregulated gene transcripts from the hyperosmotic experiments and miR-inhibition studies, were overlaid, in which two miR-29b-3p target-genes [Krueppel-like factor 4 (klf4), Homeobox protein Meis2] and one miR-200b-3p target-gene (slc17a5) were identified. Integrated miR-mRNA-omics analysis revealed the specific binding of miR-29b-3p on Klf4 and miR-200b-3p on slc17a5. The target-genes are known to regulate differentiation of gill ionocytes and cellular osmolality. Conclusions In this study, we have characterized the hypo-osmoregulatory responses and unraveled the modulation of miR-biogenesis factors/the dysregulation of miRs, using ex-vivo gill filament culture. MicroRNA-messenger RNA interactome analysis of miR-29b-3p and miR-200b-3p revealed the gene targets are essential for osmotic stress responses.
Collapse
Affiliation(s)
- Hoi Man Ng
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Jeff Cheuk Hin Ho
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, HKSAR, Hong Kong
| | - Keng Po Lai
- Guanxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Huan Cheng North 2nd Road 109, Guilin, 541004, People's Republic of China.
| | - Chris Kong Chu Wong
- Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong.
| |
Collapse
|
22
|
Hou PS, hAilín DÓ, Vogel T, Hanashima C. Transcription and Beyond: Delineating FOXG1 Function in Cortical Development and Disorders. Front Cell Neurosci 2020; 14:35. [PMID: 32158381 PMCID: PMC7052011 DOI: 10.3389/fncel.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Forkhead Box G1 (FOXG1) is a member of the Forkhead family of genes with non-redundant roles in brain development, where alteration of this gene's expression significantly affects the formation and function of the mammalian cerebral cortex. FOXG1 haploinsufficiency in humans is associated with prominent differences in brain size and impaired intellectual development noticeable in early childhood, while homozygous mutations are typically fatal. As such, FOXG1 has been implicated in a wide spectrum of congenital brain disorders, including the congenital variant of Rett syndrome, infantile spasms, microcephaly, autism spectrum disorder (ASD) and schizophrenia. Recent technological advances have yielded greater insight into phenotypic variations observed in FOXG1 syndrome, molecular mechanisms underlying pathogenesis of the disease, and multifaceted roles of FOXG1 expression. In this review, we explore the emerging mechanisms of FOXG1 in a range of transcriptional to posttranscriptional events in order to evolve our current view of how a single transcription factor governs the assembly of an elaborate cortical circuit responsible for higher cognitive functions and neurological disorders.
Collapse
Affiliation(s)
- Pei-Shan Hou
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Darren Ó hAilín
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModul Basics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carina Hanashima
- Laboratory for Developmental Biology, Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, Tokyo, Japan.,Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Waseda University Center for Advanced Biomedical Sciences, Tokyo, Japan
| |
Collapse
|
23
|
Zhong X, Cao W, Zhao H, Chen L, Cao J, Wei L, Tang Y, Zhong J, Xiao X, Zu X, Liu J. MicroRNA-32-5p knockout eliminates lipopolysaccharide-induced depressive-like behavior in mice through inhibition of astrocyte overactivity. Brain Behav Immun 2020; 84:10-22. [PMID: 31698013 DOI: 10.1016/j.bbi.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaolin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China; Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, School of Medicine, University of South China, 421001 Hengyang, Hunan, China
| | - Heng Zhao
- Department of Radiology, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China; Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Jingsong Cao
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China; Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Lanji Wei
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Yifei Tang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Jing Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Xinhua Xiao
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China
| | - Xuyu Zu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China.
| | - Jianghua Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China; Department of Endocrinology and Metabolism, the First Affiliated Hospital of University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
24
|
Zhang Z, Tang J, Di R, Liu Q, Wang X, Gan S, Zhang X, Zhang J, Chu M, Hu W. Integrated Hypothalamic Transcriptome Profiling Reveals the Reproductive Roles of mRNAs and miRNAs in Sheep. Front Genet 2020; 10:1296. [PMID: 32010181 PMCID: PMC6974689 DOI: 10.3389/fgene.2019.01296] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Early studies have provided a wealth of information on the functions of microRNAs (miRNAs). However, less is known regarding their functions in the hypothalamus involved in sheep reproduction. To explore the potential roles of hypothalamic messenger RNAs (mRNAs) and miRNAs in sheep without FecB mutation, in total, 172 and 235 differentially expressed genes (DEGs) and 42 and 79 differentially expressed miRNAs (DE miRNAs) were identified in polytocous sheep in the follicular phase versus monotocous sheep in the follicular phase (PF vs. MF) and polytocous sheep in the luteal phase versus monotocous sheep in the luteal phase (PL vs. ML), respectively, using RNA sequencing. We also identified several key mRNAs (e.g., POMC, GNRH1, PRL, GH, TRH, and TTR) and mRNA–miRNAs pairs (e.g., TRH co-regulated by oar-miR-379-5p, oar-miR-30b, oar-miR-152, oar-miR-495-3p, oar-miR-143, oar-miR-106b, oar-miR-218a, oar-miR-148a, and PRL regulated by oar-miR-432) through functional enrichment analysis, and the identified mRNAs and miRNAs may function, conceivably, by influencing gonadotropin-releasing hormone (GnRH) activities and nerve cell survival associated with reproductive hormone release via direct and indirect ways. This study represents an integral analysis between mRNAs and miRNAs in sheep hypothalamus and provides a valuable resource for elucidating sheep prolificacy.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
25
|
Chen J, Jiang C, Du J, Xie CL. MiR-142-5p Protects Against 6-OHDA-Induced SH-SY5Y Cell Injury by Downregulating BECN1 and Autophagy. Dose Response 2020; 18:1559325820907016. [PMID: 32127787 PMCID: PMC7036514 DOI: 10.1177/1559325820907016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MiR-142-5p has been demonstrated to hold significant implications in neurological diseases. However, the impact and underlying regulatory mechanism of miR-142-5p in Parkinson's disease (PD) are still ominous. METHODS To simulate the PD, 6-hydroxydopamine (6-OHDA)-treated SH-SY5Y cell model was used in this study. Levels of messenger RNA and protein were tested by quantitative real-time polymerase chain reaction and Western blot analyses, respectively. The direct interaction between miR-142-5p and Beclin 1 (BECN1) was assessed by luciferase reporter assay. Furthermore, Cell Counting Kit-8 assay was performed to assess cytotoxicity of SH-SY5Y cell. RESULTS In consequence, a significant decrease of miR-142-5p was observed in 6-OHDA-induced SH-SY5Y cells. Over-/Low-expressed miR-142-5p resulted in a significant enhancement/inhibition on cell vitalities of 6-OHDA-treated SH-SY5Y cells, which might be modulated by repressing cellular autophagy through inhibiting level of BECN1 and LC3 II/LC3 I and elevating P62 level. Luciferase reporter assay showed that the BECN1 was the target gene of miR-142-5p. Additionally, the loss/gain of BECN1 rescued/blocked the effects of miR-142-5p on the viability of 6-OHDA-induced SH-SY5Y cells. CONCLUSIONS These results highlight that miR-142-5p functions as a neuroprotective regulator in 6-OHDA-induced neuronal SH-SY5Y cells simulating PD model in vitro via regulating autophagy-related protein BECN1 and autophagy to influence cell viability.
Collapse
Affiliation(s)
- Jian Chen
- Department of Senile Neurology, Shandong Provincial Hospital
Affiliated to Shandong First Medical University, Jinan, People’s Republic of
China
| | - Chuan Jiang
- Department of Neurology, Shandong Provincial ENT Hospital, Shandong
Provincial ENT Hospital Affiliated to Shandong University, Jinan, People's Republic
of China
| | - Juan Du
- Department of Center Sterile Supply, Shandong Cancer Hospital
Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan,
People’s Republic of China
| | - Chun-Li Xie
- Department of Neurology, Fourth People’s Hospital of Jinan, Jinan,
People’s Republic of China
| |
Collapse
|
26
|
Balasubramanian S, Raghunath A, Perumal E. Role of epigenetics in zebrafish development. Gene 2019; 718:144049. [DOI: 10.1016/j.gene.2019.144049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
27
|
Raka F, Farr S, Kelly J, Stoianov A, Adeli K. Metabolic control via nutrient-sensing mechanisms: role of taste receptors and the gut-brain neuroendocrine axis. Am J Physiol Endocrinol Metab 2019; 317:E559-E572. [PMID: 31310579 DOI: 10.1152/ajpendo.00036.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nutrient sensing plays an important role in ensuring that appropriate digestive or hormonal responses are elicited following the ingestion of fuel substrates. Mechanisms of nutrient sensing in the oral cavity have been fairly well characterized and involve lingual taste receptors. These include heterodimers of G protein-coupled receptors (GPCRs) of the taste receptor type 1 (T1R) family for sensing sweet (T1R2-T1R3) and umami (T1R1-T1R3) stimuli, the T2R family for sensing bitter stimuli, and ion channels for conferring sour and salty tastes. In recent years, several studies have revealed the existence of additional nutrient-sensing mechanisms along the gastrointestinal tract. Glucose sensing is achieved by the T1R2-T1R3 heterodimer on enteroendocrine cells, which plays a role in triggering the secretion of incretin hormones for improved glycemic and lipemic control. Protein hydrolysates are detected by Ca2+-sensing receptor, the T1R1-T1R3 heterodimer, and G protein-coupled receptor 92/93 (GPR92/93), which leads to the release of the gut-derived satiety factor cholecystokinin. Furthermore, several GPCRs have been implicated in fatty acid sensing: GPR40 and GPR120 respond to medium- and long-chain fatty acids, GPR41 and GPR43 to short-chain fatty acids, and GPR119 to endogenous lipid derivatives. Aside from the recognition of fuel substrates, both the oral cavity and the gastrointestinal tract also possess T2R-mediated mechanisms of recognizing nonnutrients such as environmental contaminants, bacterial toxins, and secondary plant metabolites that evoke a bitter taste. These gastrointestinal sensing mechanisms result in the transmission of neuronal signals to the brain through the release of gastrointestinal hormones that act on vagal and enteric afferents to modulate the physiological response to nutrients, particularly satiety and energy homeostasis. Modulating these orally accessible nutrient-sensing pathways using particular foods, dietary supplements, or pharmaceutical compounds may have therapeutic potential for treating obesity and metabolic diseases.
Collapse
Affiliation(s)
- Fitore Raka
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sarah Farr
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jacalyn Kelly
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexandra Stoianov
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Khosrow Adeli
- Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Di Liegro CM, Schiera G, Proia P, Di Liegro I. Physical Activity and Brain Health. Genes (Basel) 2019; 10:genes10090720. [PMID: 31533339 PMCID: PMC6770965 DOI: 10.3390/genes10090720] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 12/16/2022] Open
Abstract
Physical activity (PA) has been central in the life of our species for most of its history, and thus shaped our physiology during evolution. However, only recently the health consequences of a sedentary lifestyle, and of highly energetic diets, are becoming clear. It has been also acknowledged that lifestyle and diet can induce epigenetic modifications which modify chromatin structure and gene expression, thus causing even heritable metabolic outcomes. Many studies have shown that PA can reverse at least some of the unwanted effects of sedentary lifestyle, and can also contribute in delaying brain aging and degenerative pathologies such as Alzheimer’s Disease, diabetes, and multiple sclerosis. Most importantly, PA improves cognitive processes and memory, has analgesic and antidepressant effects, and even induces a sense of wellbeing, giving strength to the ancient principle of “mens sana in corpore sano” (i.e., a sound mind in a sound body). In this review we will discuss the potential mechanisms underlying the effects of PA on brain health, focusing on hormones, neurotrophins, and neurotransmitters, the release of which is modulated by PA, as well as on the intra- and extra-cellular pathways that regulate the expression of some of the genes involved.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy.
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell'Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy.
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy.
| |
Collapse
|
29
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
30
|
Xu C, Wang C, Meng Q, Gu Y, Wang Q, Xu W, Han Y, Qin Y, Li J, Jia S, Xu J, Zhou Y. miR‑153 promotes neural differentiation in the mouse hippocampal HT‑22 cell line and increases the expression of neuron‑specific enolase. Mol Med Rep 2019; 20:1725-1735. [PMID: 31257504 PMCID: PMC6625396 DOI: 10.3892/mmr.2019.10421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/06/2019] [Indexed: 01/22/2023] Open
Abstract
MicroRNAs (miRNAs) have been found to play important regulatory roles in certain neurodegenerative diseases. The aim of the present study was to investigate the effect of miRNA-153 (miR-153) on the neural differentiation of HT-22 cells. Overexpression of miR-153 induced the differentiation of HT-22 cells, increasing the number of protrusions and branches, reducing the S phase distribution of the cell cycle, and attenuating the cell proliferation rate as determined using the Cell Counting Kit-8 assay. Furthermore, miR-153 increased the expression of neuron-specific γ-enolase (NSE), neuronal nuclei (NeuN), and N-ethylmaleimide-sensitive fusion attachment protein 23 (SNAP23) and SNAP25 at the transcriptional and protein level by PCR and western blot analysis. Moreover, miR-153 caused obvious upregulation of peroxiredoxin 5 (PRX5), which has been found to protect neural cells from death and apoptosis. miR-153 promoted neural differentiation and protected neural cells by upregulating the neuron markers γ-enolase, neuronal nuclei, and the functional proteins SNAP23, SNAP25 and PRX5. Therefore, miR-153 may be a potential target for the treatment of certain neurodegenerative diseases.
Collapse
Affiliation(s)
- Chunli Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Chen Wang
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Qiuyu Meng
- School of Life Science and Technology, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yuming Gu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Qiwei Wang
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wenjie Xu
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Ying Han
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yong Qin
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jiao Li
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Song Jia
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Jie Xu
- Teaching Laboratory Center of Medicine and Life Science, School of Medicine, Tongji University, Shanghai 200092, P.R. China
| | - Yixin Zhou
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
31
|
Iivonen AP, Känsäkoski J, Vaaralahti K, Raivio T. Screening for mutations in selected miRNA genes in hypogonadotropic hypogonadism patients. Endocr Connect 2019; 8:506-509. [PMID: 30999277 PMCID: PMC6479198 DOI: 10.1530/ec-19-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 11/17/2022]
Abstract
In approximately half of congenital hypogonadotropic hypogonadism (cHH) patients, the genetic cause remains unidentified. Since the lack of certain miRNAs in animal models has led to cHH, we sequenced human miRNAs predicted to regulate cHH-related genes (MIR7-3, MIR141, MIR429 and MIR200A-C) in 24 cHH patients with Sanger sequencing. A heterozygous variant in MIR200A (rs202051309; general population frequency of 0.02) was found in one patient. Our results suggest that mutations in the studied miRNAs are unlikely causes of cHH. However, the complex interplay between miRNAs and their target genes in these diseases requires further investigations.
Collapse
Affiliation(s)
- Anna-Pauliina Iivonen
- Institute of Biomedicine/Physiology, Biomedicum Helsinki and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Johanna Känsäkoski
- Institute of Biomedicine/Physiology, Biomedicum Helsinki and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Kirsi Vaaralahti
- Institute of Biomedicine/Physiology, Biomedicum Helsinki and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Taneli Raivio
- Institute of Biomedicine/Physiology, Biomedicum Helsinki and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- New Children’s Hospital, Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
- Correspondence should be addressed to T Raivio:
| |
Collapse
|
32
|
MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development. Neuromolecular Med 2019; 21:97-109. [DOI: 10.1007/s12017-019-08535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
|
33
|
Guan H, You Z, Wang C, Fang F, Peng R, Mao L, Xu B, Chen M. MicroRNA-200a suppresses prostate cancer progression through BRD4/AR signaling pathway. Cancer Med 2019; 8:1474-1485. [PMID: 30784214 PMCID: PMC6488151 DOI: 10.1002/cam4.2029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/06/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer is still considered a significant health care challenge worldwide due in part to the distinct transformation of androgen‐dependent prostate cancer (ADPC) into treatment‐refractory castration‐resistant prostate cancer (CRPC). Consequently, there is an urgent need to explore novel molecular mechanisms underlying treatment resistance in ADPC. Although numerous studies have alluded to the role of miR‐200a in several cancers, the biological significance of miR‐200a in prostate cancer remains unknown. After performing microarray analysis and reanalysis of the publicly available Memorial Sloan Kettering Cancer Center dataset, miR‐200a expression was found higher in ADPC tissues and its expression was positively associated with survival of CRPC patients. In vitro studies showed that miR‐200a overexpression in CRPC cells markedly suppressed cellular proliferation and facilitated apoptosis. In vivo studies indicated that overexpression of miR‐200a inhibited growth and metastasis of prostate cancer. The luciferase reporter assay demonstrated that BRD4 is a direct target gene of miR‐200a and it could reverse miR‐200a‐mediated biological effects in prostate cancer cells. Most importantly, our findings indicated that miR‐200a suppresses the progression of CRPC by inhibiting the activation of BRD4‐mediated AR signaling. This finding provides the foundation for the development of more personalized therapeutic approaches for CRPC patients.
Collapse
Affiliation(s)
- Han Guan
- Department of Urology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zonghao You
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Can Wang
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Fang Fang
- Department of Immunology, Bengbu Medical College, Bengbu, China
| | - Rui Peng
- Department of Graduate School, Bengbu Medical College, Bengbu, China
| | - Likai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Xu
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affliated Zhongda Hospital of Southeast University, Nanjing, China
| |
Collapse
|
34
|
Zhao Y, Zhang A, Wang Y, Hu S, Zhang R, Qian S. Genome-wide identification of brain miRNAs in response to high-intensity intermittent swimming training in Rattus norvegicus by deep sequencing. BMC Mol Biol 2019; 20:3. [PMID: 30646850 PMCID: PMC6334412 DOI: 10.1186/s12867-019-0120-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 01/10/2019] [Indexed: 11/20/2022] Open
Abstract
Background Physical exercise can improve brain function by altering brain gene expression. The expression mechanisms underlying the brain’s response to exercise still remain unknown. miRNAs as vital regulators of gene expression may be involved in regulation of brain genes in response to exercise. However, as yet, very little is known about exercise-responsive miRNAs in brain. Results We constructed two comparative small RNA libraries of rat brain from a high-intensity intermittent swimming training (HIST) group and a normal control (NC) group. Using deep sequencing and bioinformatics analysis, we identified 2109 (1700 from HIST, 1691 from NC) known and 55 (50 from HIST, 28 from NC) novel candidate miRNAs. Among them, 34 miRNAs were identified as significantly differentially expressed in response to HIST, 16 were up-regulated and 18 were down-regulated. The results showed that all members of mir-200 family were strongly up-regulated, implying mir-200 family may play very important roles in HIST response mechanisms of rat brain. A total of 955 potential target genes of these 34 exercise-responsive miRNAs were identified from rat genes. Most of them are directly involved in the development and regulatory function of brain or nerve. Many acknowledged exercise-responsive brain genes such as Bdnf, Igf-1, Vgf, Ngf c-Fos, and Ntf3 etc. could be targeted by exercise-responsive miRNAs. Moreover, qRT-PCR and SABC immunohistochemical analysis further confirm the reliability of the expression of miRNAs and their targets. Conclusions This study demonstrated that physical exercise could induce differential expression of rat brain miRNAs and 34 exercise-responsive miRNAs were identified in rat brain. Our results suggested that exercise-responsive miRNAs could play important roles in regulating gene expression of rat brain in response to exercise. Electronic supplementary material The online version of this article (10.1186/s12867-019-0120-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, China.
| | - Anmin Zhang
- College of Sports, Yantai University, Yantai, China. .,Institute of Health Sciences, Shanxi University of Finance & Economics, Taiyuan, China.
| | - Yanfang Wang
- College of Life Sciences, Ludong University, Yantai, China
| | - Shuping Hu
- Institute of Health Sciences, Shanxi University of Finance & Economics, Taiyuan, China
| | | | | |
Collapse
|
35
|
Lian N, Niu Q, Lei Y, Li X, Li Y, Song X. MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons. Cell Cycle 2018; 17:2745-2755. [PMID: 30589396 DOI: 10.1080/15384101.2018.1556060] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the mechanism of miR-221 in depression. METHODS The molecules expressions were measured by qRT-PCR and western blot. The sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST) were used to detect depressive-like symptoms. MTT assay and flow cytometric was used to measure the proliferation and apoptosis of hippocampal neuronal. RESULTS MiR-221 expression in the cerebrospinal fluid and serum of major depressive disorder patients and the hippocampus of chronic unpredictable mild stress (CUMS) mice were increased, while the expression of Wnt2, p-CREB and BDNF were decreased. Additionally, silence of miR-221 increased sucrose preference of CUMS mice and shortened the immobility time of CUMS mice in SPT and FST. MiR-221 could targeted regulate Wnt2, and knockdown of Wnt2 reversed the effect of miR-221 inhibitor on the proliferation and apoptosis of hippocampal neurons and countered the promoting effect of miR-221 inhibitor on the expression of Wnt2, p-CREB and BDNF. CONCLUSION MiR-221 could promote the development of depression by regulating Wnt2/CREB/BDNF axis.
Collapse
Affiliation(s)
- Nan Lian
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Qihui Niu
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Yang Lei
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Xue Li
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Youhui Li
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Xueqin Song
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| |
Collapse
|
36
|
FOXG1 Regulates PRKAR2B Transcriptionally and Posttranscriptionally via miR200 in the Adult Hippocampus. Mol Neurobiol 2018; 56:5188-5201. [PMID: 30539330 PMCID: PMC6647430 DOI: 10.1007/s12035-018-1444-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/30/2018] [Indexed: 02/04/2023]
Abstract
Rett syndrome is a complex neurodevelopmental disorder that is mainly caused by mutations in MECP2. However, mutations in FOXG1 cause a less frequent form of atypical Rett syndrome, called FOXG1 syndrome. FOXG1 is a key transcription factor crucial for forebrain development, where it maintains the balance between progenitor proliferation and neuronal differentiation. Using genome-wide small RNA sequencing and quantitative proteomics, we identified that FOXG1 affects the biogenesis of miR200b/a/429 and interacts with the ATP-dependent RNA helicase, DDX5/p68. Both FOXG1 and DDX5 associate with the microprocessor complex, whereby DDX5 recruits FOXG1 to DROSHA. RNA-Seq analyses of Foxg1cre/+ hippocampi and N2a cells overexpressing miR200 family members identified cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) as a target of miR200 in neural cells. PRKAR2B inhibits postsynaptic functions by attenuating protein kinase A (PKA) activity; thus, increased PRKAR2B levels may contribute to neuronal dysfunctions in FOXG1 syndrome. Our data suggest that FOXG1 regulates PRKAR2B expression both on transcriptional and posttranscriptional levels.
Collapse
|
37
|
An H, Wei D, Qian Y, Li N, Wang X. SQYZ granules, a traditional Chinese herbal, attenuate cognitive deficits in AD transgenic mice by modulating on multiple pathogenesis processes. Am J Transl Res 2018; 10:3857-3875. [PMID: 30662636 PMCID: PMC6291719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/14/2018] [Indexed: 06/09/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) involves multiple contributing factors, including amyloid β (Aβ) peptide aggregation, inflammation, oxidative stress, and others. Effective therapeutic drugs for treating AD are urgently needed. SQYZ granules (SQYZ), a Chinese herbal preparation, are mainly composed of the ginsenoside Rg1, astragaloside A and baicalin, and have been widely used to treat dementias for decades in China. In this study, we found the therapeutic effects of SQYZ on the cognitive impairments in an AD mouse model, the β-amyloid precursor protein (APP) and presenilin-1 (PS1) double-transgenic mouse, which co-expresses five familial AD mutations (5XFAD); next, we further explored the underlying mechanism and observed that after SQYZ treatment, the Aβ burden and inflammatory reactions in the brain were significantly attenuated. Through a proteomic approach, we found that SQYZ regulated the expression of 27 proteins, mainly those related to neuroinflammation, stress responses and energy metabolism. These results suggested that SQYZ has the ability to improve the cognitive impairment and ameliorate the neural pathological changes in AD, and the therapeutic mechanism may be related to the modulation of multiple processes related to AD pathogenesis, especially anti-neuroinflammation, promotion of stress recovery and improvement of energy metabolism.
Collapse
Affiliation(s)
- Haiting An
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical SciencesBeijing 100700, China
| | - Yanjing Qian
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Ning Li
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| | - Xiaomin Wang
- Department of Neurobiology, Capital Medical UniversityBeijing 100069, China
- Key Laboratory for The Neurodegenerative Disorders of The Chinese Ministry of EducationBeijing 100069, China
- Beijing Institute for Brain DisordersBeijing 100069, China
| |
Collapse
|
38
|
Soula A, Valere M, López-González MJ, Ury-Thiery V, Groppi A, Landry M, Nikolski M, Favereaux A. Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures. Life Sci Alliance 2018; 1:e201800018. [PMID: 30456375 PMCID: PMC6238413 DOI: 10.26508/lsa.201800018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
Small RNA-Seq of the rat central nervous system reveals known and novel miRNAs specifically regulated in brain structures and correlated with the expression of their predicted target genes, suggesting a critical role in the transcriptomic identity of brain structures. In the central nervous system (CNS), miRNAs are involved in key functions, such as neurogenesis and synaptic plasticity. Moreover, they are essential to define specific transcriptomes in tissues and cells. However, few studies were performed to determine the miRNome of the different structures of the rat CNS, although a major model in neuroscience. Here, we determined by small RNA-Seq, the miRNome of the olfactory bulb, the hippocampus, the cortex, the striatum, and the spinal cord and showed the expression of 365 known miRNAs and 90 novel miRNAs. Differential expression analysis showed that several miRNAs were specifically enriched/depleted in these CNS structures. Transcriptome analysis by mRNA-Seq and correlation based on miRNA target predictions suggest that the specifically enriched/depleted miRNAs have a strong impact on the transcriptomic identity of the CNS structures. Altogether, these results suggest the critical role played by these enriched/depleted miRNAs, in particular the novel miRNAs, in the functional identities of CNS structures.
Collapse
Affiliation(s)
- Anaïs Soula
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Mélissa Valere
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - María-José López-González
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Vicky Ury-Thiery
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Alexis Groppi
- Centre de Bioinformatique de Bordeaux, University of Bordeaux, Bordeaux, France
| | - Marc Landry
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| | - Macha Nikolski
- Centre de Bioinformatique de Bordeaux, University of Bordeaux, Bordeaux, France.,CNRS/Laboratoire Bordelais de Recherche en Informatique, University of Bordeaux, Talence, France
| | - Alexandre Favereaux
- University of Bordeaux, Bordeaux, France.,Centre Nationale de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 5297, Interdisciplinary Institute of Neuroscience, Bordeaux, France
| |
Collapse
|
39
|
Liu Z, Zhang C, Skamagki M, Khodadadi-Jamayran A, Zhang W, Kong D, Chang CW, Feng J, Han X, Townes TM, Li H, Kim K, Zhao R. Elevated p53 Activities Restrict Differentiation Potential of MicroRNA-Deficient Pluripotent Stem Cells. Stem Cell Reports 2018; 9:1604-1617. [PMID: 29141234 PMCID: PMC5688240 DOI: 10.1016/j.stemcr.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells (PSCs) deficient for microRNAs (miRNAs), such as Dgcr8−/− or Dicer−/– embryonic stem cells (ESCs), contain no mature miRNA and cannot differentiate into somatic cells. How miRNA deficiency causes differentiation defects remains poorly understood. Here, we report that miR-302 is sufficient to enable neural differentiation of differentiation-incompetent Dgcr8−/− ESCs. Our data showed that miR-302 directly suppresses the tumor suppressor p53, which is modestly upregulated in Dgcr8−/− ESCs and serves as a barrier restricting neural differentiation. We demonstrated that direct inactivation of p53 by SV40 large T antigen, a short hairpin RNA against Trp53, or genetic ablation of Trp53 in Dgcr8−/− PSCs enables neural differentiation, while activation of p53 by the MDM2 inhibitor nutlin-3a in wild-type ESCs inhibits neural differentiation. Together, we demonstrate that a major function of miRNAs in neural differentiation is suppression of p53 and that modest activation of p53 blocks neural differentiation of miRNA-deficient PSCs. miR-302 enables neural differentiation of differentiation-incompetent Dgcr8−/− ESCs miR-302 directly suppresses p53 expression p53 inhibits neural differentiation of Dgcr8−/− and wild-type PSCs p53 may eliminate genetically defective embryos to save maternal resources
Collapse
Affiliation(s)
- Zhong Liu
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Maria Skamagki
- Cancer Biology and Genetics Program, Center for Cell Engineering, Center for Stem Cell Biology, Sloan-Kettering Institute, Cell and Developmental Biology Program, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Alireza Khodadadi-Jamayran
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wei Zhang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Dexin Kong
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chia-Wei Chang
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jingyang Feng
- Cook County Health and Hospital System, John H. Stroger Hospital, Chicago, IL 60612, USA
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kitai Kim
- Cancer Biology and Genetics Program, Center for Cell Engineering, Center for Stem Cell Biology, Sloan-Kettering Institute, Cell and Developmental Biology Program, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
40
|
Higaki S, Muramatsu M, Matsuda A, Matsumoto K, Satoh JI, Michikawa M, Niida S. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer's disease models. PLoS One 2018; 13:e0196929. [PMID: 29738527 PMCID: PMC5940223 DOI: 10.1371/journal.pone.0196929] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/23/2018] [Indexed: 01/07/2023] Open
Abstract
MiRNA molecules are important post-transcriptional regulators of gene expression in the brain function. Altered miRNA profiles could represent a defensive response against the pathogenesis of neurodegenerative disorders, such as Alzheimer's disease (AD). Endogenous miRNAs have lower toxic effects than other gene silencing methods, thus enhancing the expression of defensive miRNA could be an effective therapy. However, little is known about the potential of targeting miRNAs for the treatment of AD. Here, we examined the function of the miR-200 family (miR-200a, -141, -429, -200b, -200c), identified using miRNA microarray analysis of cortical tissue from Tg2576 transgenic mice. In murine primary neurons, we found that upregulation of miR-200b or -200c was induced by the addition of amyloid beta (Aβ). Neurons transfected with miR-200b or -200c reduced secretion of Aβ in conditioned medium. Moreover, mice infused with miR-200b/c into the brain were relieved of memory impairments induced by intracerebroventricular injection of oligomeric Aβ, and demonstrated proper spatial learning in the Barnes maze. To gain further understanding of the relationship between miR-200b/c and Aβ, we identified target mRNAs via an RNA-binding protein immunoprecipitation-microarray assay. Western blot analysis showed that expression of ribosomal protein S6 kinase B1 (S6K1), a candidate target, was inhibited by miR-200c. S6K1, a downstream effector of mammalian target of rapamycin (mTOR), serves as a negative feedback mediator that phosphorylates insulin receptor substrate 1 at serine residues (IRS-1pSer). S6K1-dependent IRS-1pSer suppresses insulin signaling leading to insulin resistance, which is frequently observed in AD brains. Notably, miR-200b/c transfection of SH-SY5Y cells reduced the levels of IRS-1pSer. This finding indicates that miR-200b/c has the potential to alleviate insulin resistance via modulation of S6K1. Taken together, miR-200b/c may contribute to reduce Aβ secretion and Aβ-induced cognitive impairment by promoting insulin signaling.
Collapse
Affiliation(s)
- Sayuri Higaki
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masashi Muramatsu
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Division of Phenotype Disease Analysis, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | - Jun-ichi Satoh
- Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Shumpei Niida
- Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
41
|
Xiong S, Ma W, Jing J, Zhang J, Dan C, Gui JF, Mei J. An miR-200 Cluster on Chromosome 23 Regulates Sperm Motility in Zebrafish. Endocrinology 2018; 159:1982-1991. [PMID: 29579206 DOI: 10.1210/en.2018-00015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
Abstract
Besides its well-documented roles in cell proliferation, apoptosis, and carcinogenesis, the function of the p53-microRNA axis has been recently revealed in the reproductive system. Recent studies indicated that miR-200 family members are dysregulated in nonobstructive azoospermia patients, whereas their functions remain poorly documented. The aim of this study was to investigate the function of the miR-200 family on zebrafish testis development and sperm activity. There was no substantial difference in testis morphology and histology between wild-type (WT) and knockout zebrafish with deletion of miR-200 cluster on chromosome 6 (chr6-miR-200-KO) or on chromosome 23 (chr23-miR-200-KO). Interestingly, compared with WT zebrafish, the chr6-miR-200-KO zebrafish had no difference on sperm motility, whereas chr23-miR-200-KO zebrafish showed significantly improved sperm motility. Consistently, ectopic expression of miR-429a, miR-200a, and miR-200b, which are located in the miR-200 cluster on chromosome 23, significantly reduced motility traits of sperm. Several sperm motility-related genes, such as amh, wt1a, and srd5a2b have been confirmed as direct targets of miR-200s on chr23. 17α-ethynylestradiol (EE2) exposure resulted in upregulated expression of p53 and miR-429a in testis and impairment of sperm motility. Strikingly, in p53 mutant zebrafish testis, the expression levels of miR-200s on chr23 were significantly reduced and accompanied by a stimulation of sperm motility. Moreover, the upregulation of miR-429a associated with EE2 treatment was abolished in testis with p53 mutation. And the impairment of sperm activity by EE2 treatment was also eliminated when p53 was mutated. Together, our results reveal that miR-200 cluster on chromosome 23 controls sperm motility in a p53-dependent manner.
Collapse
Affiliation(s)
- Shuting Xiong
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Wenge Ma
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jing Jing
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jin Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Cheng Dan
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Jian-Fang Gui
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan, China
| | - Jie Mei
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Artigas F, Celada P, Bortolozzi A. Can we increase the speed and efficacy of antidepressant treatments? Part II. Glutamatergic and RNA interference strategies. Eur Neuropsychopharmacol 2018. [PMID: 29525411 DOI: 10.1016/j.euroneuro.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the second part we focus on two treatment strategies that may overcome the main limitations of current antidepressant drugs. First, we review the experimental and clinical evidence supporting the use of glutamatergic drugs as fast-acting antidepressants. Secondly, we review the involvement of microRNAs (miRNAs) in the pathophysiology of major depressive disorder (MDD) and the use of small RNAs (e.g.., small interfering RNAs or siRNAs) to knockdown genes in monoaminergic and non-monoaminergic neurons and induce antidepressant-like responses in experimental animals. The development of glutamatergic agents is a promising venue for antidepressant drug development, given the antidepressant properties of the non-competitive NMDA receptor antagonist ketamine. Its unique properties appear to result from the activation of AMPA receptors by a metabolite [(2S,6S;2R,6R)-hydroxynorketamine (HNK)] and mTOR signaling. These effects increase synaptogenesis in prefrontal cortical pyramidal neurons and enhance serotonergic neurotransmission via descending inputs to the raphe nuclei. This view is supported by the cancellation of ketamine's antidepressant-like effects by inhibition of serotonin synthesis. We also review existing evidence supporting the involvement of miRNAs in MDD and the preclinical use of RNA interference (RNAi) strategies to target genes involved in antidepressant response. Many miRNAs have been associated to MDD, some of which e.g., miR-135 targets genes involved in antidepressant actions. Likewise, SSRI-conjugated siRNA evokes faster and/or more effective antidepressant-like responses. Intranasal application of sertraline-conjugated siRNAs directed to 5-HT1A receptors and SERT evoked much faster changes of pre- and postsynaptic antidepressant markers than those produced by fluoxetine.
Collapse
Affiliation(s)
- F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain.
| | - P Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| | - A Bortolozzi
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Spain; CIBERSAM (Centro de Investigació Biomédica en Red de Salud Mental), Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain
| |
Collapse
|
43
|
Reproductive role of miRNA in the hypothalamic-pituitary axis. Mol Cell Neurosci 2018; 88:130-137. [DOI: 10.1016/j.mcn.2018.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 12/21/2022] Open
|
44
|
Benoit C, Doubi-Kadmiri S, Benigni X, Crepin D, Riffault L, Poizat G, Vacher CM, Taouis M, Baroin-Tourancheau A, Amar L. miRNA Long-Term Response to Early Metabolic Environmental Challenge in Hypothalamic Arcuate Nucleus. Front Mol Neurosci 2018; 11:90. [PMID: 29643765 PMCID: PMC5882837 DOI: 10.3389/fnmol.2018.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Epidemiological reports and studies using rodent models indicate that early exposure to nutrient and/or hormonal challenges can reprogram metabolism at adulthood. Hypothalamic arcuate nucleus (ARC) integrates peripheral and central signals to adequately regulate energy homeostasis. microRNAs (miRNAs) participate in the control of gene expression of large regulatory networks including many signaling pathways involved in epigenetics regulations. Here, we have characterized and compared the miRNA population of ARC of adult male rats continuously exposed to a balanced metabolic environment to the one of adult male rats exposed to an unbalanced high-fat/high-carbohydrate/moderate-protein metabolic environment during the perinatal period and/or at adulthood that consequently displayed hyperinsulinemia and/or hyperleptinemia. We identified more than 400 miRNA species in ARC of adult male rats. By comparing the miRNA content of six biological replicates in each of the four perinatal/adult environments/rat groups, we identified the 10 miRNAs specified by clusters miR-96/182/183, miR-141/200c, and miR-200a/200b/429 as miRNAs of systematic and uncommonly high variation of expression. This uncommon variation of expression may underlie high individual differences in aging disease susceptibilities. By comparing the miRNA content of the adult ARC between the rat groups, we showed that the miRNA population was not affected by the unbalanced adult environment while, in contrast, the expression of 11 miRNAs was repeatedly impacted by the perinatal unbalanced environment. Our data revealed a miRNA response of adult ARC to early metabolic environmental challenge.
Collapse
Affiliation(s)
- Charlotte Benoit
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Soraya Doubi-Kadmiri
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Xavier Benigni
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Delphine Crepin
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laure Riffault
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Ghislaine Poizat
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Claire-Marie Vacher
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Mohammed Taouis
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Anne Baroin-Tourancheau
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Laurence Amar
- Centre National de la Recherche Scientifique UMR 9197/Institut de Neurosciences, Université Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
45
|
Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T. Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development. Mol Neurobiol 2018. [PMID: 29532253 DOI: 10.1007/s12035-018-0987-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development. During OE development, stem/progenitor cells that will become olfactory sensory neurons and/or non-neuronal cell types display fine spatiotemporal expression of neuronal and non-neuronal genes that ensures their proper proliferation, differentiation, survival, and regeneration. Many factors, including transcription and epigenetic factors, have been identified as key regulators of the expression of such requisite genes to permit normal OE morphogenesis. Typically, specific interactive regulatory networks established between transcription and epigenetic factors/cofactors orchestrate histogenesis in the embryonic and adult OE. Hence, investigation of these regulatory networks critical for OE development promises to disclose strategies that may be employed in manipulating the stepwise transition of olfactory precursor cells to become fully differentiated and functional neuronal and non-neuronal cell types. Such strategies potentially offer formidable means of replacing injured or degenerated neural cells as therapeutics for nervous system perturbations. This review recapitulates the developmental cellular diversity of the olfactory neuroepithelium and discusses findings on how the precise and cooperative molecular control by transcriptional and epigenetic machinery is indispensable for OE ontogeny.
Collapse
Affiliation(s)
- Godwin Sokpor
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Eman Abbas
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Joachim Rosenbusch
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany
| | - Tran Tuoc
- Institute of Neuroanatomy, University Medical Center, Georg-August-University Goettingen, 37075, Goettingen, Germany. .,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37075, Goettingen, Germany.
| |
Collapse
|
46
|
De Gregorio R, Pulcrano S, De Sanctis C, Volpicelli F, Guatteo E, von Oerthel L, Latagliata EC, Esposito R, Piscitelli RM, Perrone-Capano C, Costa V, Greco D, Puglisi-Allegra S, Smidt MP, di Porzio U, Caiazzo M, Mercuri NB, Li M, Bellenchi GC. miR-34b/c Regulates Wnt1 and Enhances Mesencephalic Dopaminergic Neuron Differentiation. Stem Cell Reports 2018. [PMID: 29526736 PMCID: PMC5998209 DOI: 10.1016/j.stemcr.2018.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The differentiation of dopaminergic neurons requires concerted action of morphogens and transcription factors acting in a precise and well-defined time window. Very little is known about the potential role of microRNA in these events. By performing a microRNA-mRNA paired microarray screening, we identified miR-34b/c among the most upregulated microRNAs during dopaminergic differentiation. Interestingly, miR-34b/c modulates Wnt1 expression, promotes cell cycle exit, and induces dopaminergic differentiation. When combined with transcription factors ASCL1 and NURR1, miR-34b/c doubled the yield of transdifferentiated fibroblasts into dopaminergic neurons. Induced dopaminergic (iDA) cells synthesize dopamine and show spontaneous electrical activity, reversibly blocked by tetrodotoxin, consistent with the electrophysiological properties featured by brain dopaminergic neurons. Our findings point to a role for miR-34b/c in neuronal commitment and highlight the potential of exploiting its synergy with key transcription factors in enhancing in vitro generation of dopaminergic neurons. miR-34b/c is enriched in Pitx3-GFP+ mDA neurons miR-34b/c targets Wnt1-3′ UTR miR-34b/c is expressed during dopaminergic differentiation of mESCs miR-34b/c enhances fibroblast transdifferentiation into functional iDA neurons
Collapse
Affiliation(s)
- Roberto De Gregorio
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Deparment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia De Sanctis
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Neuromed IRCCS, 86077 Pozzilli (IS), Italy
| | - Floriana Volpicelli
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Deparment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ezia Guatteo
- Fondazione Santa Lucia IRCCS, 00143 Rome, Italy; Parthenope University, Department of Motor Science and Wellness, 80133 Naples, Italy
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | | | - Roberta Esposito
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Rosa Maria Piscitelli
- Fondazione Santa Lucia IRCCS, 00143 Rome, Italy; Parthenope University, Department of Motor Science and Wellness, 80133 Naples, Italy
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy; Deparment of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | | | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy
| | - Massimiliano Caiazzo
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, 3584 CG Utrecht, the Netherlands
| | - Nicola Biagio Mercuri
- Fondazione Santa Lucia IRCCS, 00143 Rome, Italy; University of Tor Vergata, Department of Systems Medicine, 00133 Rome, Italy
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine and School of Bioscience, Cardiff University, Cardiff CF24 4HQ, UK
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, "Adriano Buzzati Traverso", CNR, 80131 Naples, Italy.
| |
Collapse
|
47
|
Abstract
Antisense morpholino oligonucleotides have been commonly used in zebrafish to inhibit mRNA function, either by inhibiting pre-mRNA splicing or by blocking translation initiation. Even with the advent of genome editing by CRISP/Cas9 technology, morpholinos provide a useful and rapid tool to knockdown gene expression. This is especially true when dealing with multiple alleles and large gene families where genetic redundancy can complicate knockout of all family members. miRNAs are small noncoding RNAs that are often encoded in gene families and can display extensive genetic redundancy. This redundancy, plus their small size which can limit targeting by CRISPR/Cas9, makes morpholino-based strategies particularly attractive for inhibition of miRNA function. We provide the rationale, background, and methods to inhibit miRNA function with antisense morpholinos during early development and in the adult retina in zebrafish.
Collapse
Affiliation(s)
- Alex Sutton Flynt
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS, USA
| | - Mahesh Rao
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN, 37235, USA
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, 2325 Stevenson Center, Box 1820 Station B, Nashville, TN, 37235, USA.
| |
Collapse
|
48
|
Meares GP, Rajbhandari R, Gerigk M, Tien CL, Chang C, Fehling SC, Rowse A, Mulhern KC, Nair S, Gray GK, Berbari NF, Bredel M, Benveniste EN, Nozell SE. MicroRNA-31 is required for astrocyte specification. Glia 2018; 66:987-998. [PMID: 29380422 DOI: 10.1002/glia.23296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/30/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022]
Abstract
Previously, we determined microRNA-31 (miR-31) is a noncoding tumor suppressive gene frequently deleted in glioblastoma (GBM); miR-31 suppresses tumor growth, in part, by limiting the activity of NF-κB. Herein, we expand our previous studies by characterizing the role of miR-31 during neural precursor cell (NPC) to astrocyte differentiation. We demonstrate that miR-31 expression and activity is suppressed in NPCs by stem cell factors such as Lin28, c-Myc, SOX2 and Oct4. However, during astrocytogenesis, miR-31 is induced by STAT3 and SMAD1/5/8, which mediate astrocyte differentiation. We determined miR-31 is required for terminal astrocyte differentiation, and that the loss of miR-31 impairs this process and/or prevents astrocyte maturation. We demonstrate that miR-31 promotes astrocyte development, in part, by reducing the levels of Lin28, a stem cell factor implicated in NPC renewal. These data suggest that miR-31 deletions may disrupt astrocyte development and/or homeostasis.
Collapse
Affiliation(s)
- Gordon P Meares
- Departments of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, 26506
| | - Rajani Rajbhandari
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Magda Gerigk
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chih-Liang Tien
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Chenbei Chang
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Samuel C Fehling
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Amber Rowse
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Kayln C Mulhern
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Sindhu Nair
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - G Kenneth Gray
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Nicolas F Berbari
- Departments of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, 46202
| | - Markus Bredel
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Etty N Benveniste
- Departments of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Susan E Nozell
- Departments of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
49
|
Yan XT, Zhao Y, Cheng XL, He XH, Wang Y, Zheng WZ, Chen H, Wang YL. Inhibition of miR-200b/miR-429 contributes to neuropathic pain development through targeting zinc finger E box binding protein-1. J Cell Physiol 2018; 233:4815-4824. [PMID: 29150958 DOI: 10.1002/jcp.26284] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023]
Abstract
Many studies have reported that microRNAs participate in neuropathic pain development. Previously, miR-200b and miR-429 are reported to be involved in various diseases. In our current study, we focused on their roles in neuropathic pain and we found that miR-200b and miR-429 were significantly decreased in chronic constriction injury (CCI) rat spinal cords and isolated microglials. miR-200b and miR-429 overexpression were able to relieve neuropathic pain through modulating PWT and PWL in CCI rats. Meanwhile, we observed that both miR-200b and miR-429 upregulation could repress neuroinflammation via inhibiting inflammatory cytokines such as IL-6, IL-1β, and TNF-α in CCI rats. By carry out bioinformatics technology, Zinc finger E box binding protein-1 (ZEB1) was predicted as target of miR-200b, and miR-429 and dual-luciferase reporter assays confirmed the correlation between them. ZEB1 has been reported to regulate a lot of diseases. Here, we found that ZEB1 was greatly increased in CCI rats and miR-200b and miR-429 overexpression markedly suppressed ZEB1 mRNA expression in rat microglial cells. In addition, knockdown of ZEB1 can reduce neuropathic pain development and co-transfection of LV-anti-miR-200b/miR-429 reversed this phenomenon in vivo. Taken these together, our results suggested that miR-200b/miR-429 can serve as an important regulator of neuropathic pain development by targeting ZEB1.
Collapse
Affiliation(s)
- Xue-Tao Yan
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Ying Zhao
- Department of Neurology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Li Cheng
- Department of Pharmacy, Shenzhen Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Xiang-Hu He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Shiyan, Hubei, China
| | - Wen-Zhong Zheng
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Hu Chen
- Department of Anesthesiology, Bao'an Maternity and Child Health Hospital, Shenzhen, China
| | - Yan-Lin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
50
|
Svetoni F, De Paola E, La Rosa P, Mercatelli N, Caporossi D, Sette C, Paronetto MP. Post-transcriptional regulation of FUS and EWS protein expression by miR-141 during neural differentiation. Hum Mol Genet 2018; 26:2732-2746. [PMID: 28453628 DOI: 10.1093/hmg/ddx160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/21/2017] [Indexed: 12/31/2022] Open
Abstract
Brain development involves proliferation, migration and specification of neural progenitor cells, culminating in neuronal circuit formation. Mounting evidence indicates that improper regulation of RNA binding proteins (RBPs), including members of the FET (FUS, EWS, TAF15) family, results in defective cortical development and/or neurodegenerative disorders. However, in spite of their physiological relevance, the precise pattern of FET protein expression in developing neurons is largely unknown. Herein, we found that FUS, EWS and TAF15 expression is differentially regulated during brain development, both in time and in space. In particular, our study identifies a fine-tuned regulation of FUS and EWS during neuronal differentiation, whereas TAF15 appears to be more constitutively expressed. Mechanistically FUS and EWS protein expression is regulated at the post-transcriptional level during neuron differentiation and brain development. Moreover, we identified miR-141 as a key regulator of these FET proteins that modulate their expression levels in differentiating neuronal cells. Thus, our studies uncover a novel link between post-transcriptional regulation of FET proteins expression and neurogenesis.
Collapse
Affiliation(s)
- Francesca Svetoni
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.,Laboratories of Cellular and Molecular Neurobiology and of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Elisa De Paola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.,Laboratories of Cellular and Molecular Neurobiology and of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Piergiorgio La Rosa
- Laboratories of Cellular and Molecular Neurobiology and of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Neri Mercatelli
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.,Laboratories of Cellular and Molecular Neurobiology and of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Daniela Caporossi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Claudio Sette
- Laboratories of Cellular and Molecular Neurobiology and of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy.,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.,Laboratories of Cellular and Molecular Neurobiology and of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|