1
|
Marín O. Development of GABAergic Interneurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e70136. [PMID: 40356226 PMCID: PMC12069972 DOI: 10.1111/ejn.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
GABAergic interneurons are critical regulators of information processing in the cerebral cortex. They constitute a heterogeneous group of neurons with unique spatial and temporal capabilities to control information flow and influence neural network dynamics through inhibitory and disinhibitory mechanisms. Interneuron diversity is largely conserved between rodents and primates, which indicates that the addition of new types of GABAergic neurons is not the most critical innovation of the primate cortex. In contrast, interneurons are much more abundant and seem more widely interconnected in the cerebral cortex of primates than in rodents, suggesting selective evolutionary pressure in the mechanisms regulating the generation, survival and maturation of cortical interneurons. Recent studies are beginning to shed light on the cellular and molecular mechanisms controlling the development of cortical interneurons in humans, from their generation in the embryonic telencephalon to their early integration in cortical networks. These studies identified many features in the development of human cortical interneurons that are shared with other mammals, along with distinctive features that seem characteristic of the primate brain, such as a previously unrecognised protracted period of neurogenesis and migration that extends the earliest stages of interneuron development into the first months of postnatal life in humans.
Collapse
Affiliation(s)
- Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Medical Research Council Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| |
Collapse
|
2
|
Tsuboi A, Yoshihara S. Arx revisited: involved in the development of GABAergic interneurons. Front Cell Dev Biol 2025; 13:1563515. [PMID: 40226590 PMCID: PMC11985837 DOI: 10.3389/fcell.2025.1563515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
The aristaless-related homeobox (Arx) transcription factor, located on the X chromosome, has been implicated in a wide range of neurological disorders, including intellectual disability and epilepsy, as well as diabetes and pancreatic developmental disorders. In the mouse brain, Arx is expressed not only in the olfactory bulb (OB) and cerebral cortex progenitor cells but also in these gamma-aminobutyric acid (GABA)-releasing interneurons. In the initial study, constitutive Arx knockout (KO) mice showed aberrant migration and a reduction in GABAergic interneurons in the neonatal OB. However, constitutive Arx KO mice with perinatal lethality preclude further analysis in adolescent or adult mice. To overcome this, Arx-floxed mice have been crossed with Cre driver mice to generate conditional KO mice with selective Arx deletion in distinct interneuron progenitors. These studies have identified Arx as a key transcriptional regulator involved in the generation, fate determination, and migration of cortical interneurons. This review focuses on the critical role of Arx in the development of progenitor cells and the migration of interneurons in the mouse OB and cerebral cortex, and discusses differences in Arx mutant-based abnormality between mouse mutants and human patients.
Collapse
Affiliation(s)
- Akio Tsuboi
- Department of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Seiich Yoshihara
- Laboratory for Molecular Biology of Neural Systems, Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
3
|
Lu X, Keo V, Cheng I, Xie W, Gritsina G, Wang J, Jin Q, Jin P, Yue F, Sanda MG, Corces V, Altemose N, Zhao JC, Yu J. Epigenetic remodeling and 3D chromatin reorganization governed by NKX2-1 drive neuroendocrine prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626816. [PMID: 39677680 PMCID: PMC11643106 DOI: 10.1101/2024.12.04.626816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
A significant number of castration-resistant prostate cancer (CRPC) evolve into a neuroendocrine (NE) subtype termed NEPC, leading to resistance to androgen receptor (AR) pathway inhibitors and poor clinical outcomes. Through Hi-C analyses of a panel of patient-derived xenograft tumors, here we report drastically different 3D chromatin architectures between NEPC and CRPC samples. Such chromatin re-organization was faithfully recapitulated in vitro on isogenic cells undergoing NE transformation (NET). Mechanistically, neural transcription factor (TF) NKX2-1 is selectively and highly expressed in NEPC tumors and is indispensable for NET across various models. NKX2-1 preferentially binds to gene promoters, but it interacts with chromatin-pioneering factors such as FOXA2 at enhancer elements through chromatin looping, further strengthening FOXA2 binding at NE enhancers. Conversely, FOXA2 mediates regional DNA demethylation, attributing to NE enhancer priming and inducing NKX2-1 expression, forming a feed-forward loop. Single-cell multiome analyses of isogenic cells over time-course NET cells identify individual cells amid luminal-to-NE transformation, exhibiting intermediate epigenetic and transcriptome states. Lastly, NKX2-1/FOXA2 interacts with, and recruits CBP/p300 proteins to activate NE enhancers, and pharmacological inhibitors of CBP/p300 effectively blunted NE gene expression and abolished NEPC tumor growth. Thus, our study reports a hierarchical network of TFs governed by NKX2-1 in regulating the 2D and 3D chromatin re-organization during NET and uncovers a promising therapeutic approach to eradicate NEPC.
Collapse
|
4
|
Subramanian D, Eisenberg C, Huang A, Baek J, Naveed H, Komatireddy S, Shiflett MW, Tran TS, Santhakumar V. Dysregulation of neuropilin-2 expression in inhibitory neurons impairs hippocampal circuit development and enhances risk for autism-related behaviors and seizures. Mol Psychiatry 2024:10.1038/s41380-024-02839-4. [PMID: 39578518 DOI: 10.1038/s41380-024-02839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether selective dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and enhances the risk for seizures has not been evaluated. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.
Collapse
Affiliation(s)
- Deepak Subramanian
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Carol Eisenberg
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Andrew Huang
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Jiyeon Baek
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Haniya Naveed
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Samiksha Komatireddy
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | | | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA.
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
5
|
Xu L, Ding H, Wu S, Xiong N, Hong Y, Zhu W, Chen X, Han X, Tao M, Wang Y, Wang D, Xu M, Huo D, Gu Z, Liu Y. Artificial Meshed Vessel-Induced Dimensional Breaking Growth of Human Brain Organoids and Multiregional Assembloids. ACS NANO 2024; 18. [PMID: 39270300 PMCID: PMC11440649 DOI: 10.1021/acsnano.4c07844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Brain organoids are widely used to model brain development and diseases. However, a major challenge in their application is the insufficient supply of oxygen and nutrients to the core region, restricting the size and maturation of the organoids. In order to vascularize brain organoids and enhance the nutritional supply to their core areas, two-photon polymerization (TPP) 3D printing is employed to fabricate high-resolution meshed vessels in this study. These vessels made of photoresist with densely distributed micropores with a diameter of 20 μm on the sidewall, are cocultured with brain organoids to facilitate the diffusion of culture medium into the organoids. The vascularized organoids exhibit dimensional breaking growth and enhanced proliferation, reduced hypoxia and apoptosis, suggesting that the 3D-printed meshed vessels partially mimic vascular function to promote the culture of organoids. Furthermore, cortical, striatal and medial ganglionic eminence (MGE) organoids are respectively differentiated to generate Cortico-Striatal-MGE assembloids by 3D-printed vessels. The enhanced migration, projection and excitatory signaling transduction are observed between different brain regional organoids in the assembloids. This study presents an approach using TPP 3D printing to construct vascularized brain organoids and assembloids for enhancing the development and assembly, offering a research model and platform for neurological diseases.
Collapse
Affiliation(s)
- Lei Xu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haibo Ding
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Shanshan Wu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Nankun Xiong
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuan Hong
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wanying Zhu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xingyi Chen
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Mengdan Tao
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yuanhao Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Wang
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Da Huo
- Key
Laboratory of Cardiovascular and Cerebrovascular Medicine, Department
of Pharmaceutics, School of Pharmacy, Nanjing
Medical University, Nanjing 211166, China
| | - Zhongze Gu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
| | - Yan Liu
- State
Key Laboratory of Digital Medical Engineering, School of Biological
Science and Medical Engineering; Department of neurology, affiliated
Zhongda Hospital, Southeast University, Nanjing 210096, China
- State
Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 211166, China
- Institute
of Stem Cell and Neural Regeneration, School of pharmacy, Nanjing Medical University, Nanjing 211166, China
- Key
Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative
Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
6
|
Subramanian D, Eisenberg C, Huang A, Baek J, Naveed H, Komatireddy S, Shiflett MW, Tran TS, Santhakumar V. Dysregulation of Neuropilin-2 Expression in Inhibitory Neurons Impairs Hippocampal Circuit Development and Enhances Risk for Autism-Related Behaviors and Seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578976. [PMID: 38370800 PMCID: PMC10871171 DOI: 10.1101/2024.02.05.578976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether selective dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and enhances the risk for seizures has not been evaluated. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.
Collapse
Affiliation(s)
- Deepak Subramanian
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA
| | - Carol Eisenberg
- Department of Biological Sciences, Rutgers University, Newark, NJ
| | - Andrew Huang
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA
| | - Jiyeon Baek
- Department of Biological Sciences, Rutgers University, Newark, NJ
| | - Haniya Naveed
- Department of Biological Sciences, Rutgers University, Newark, NJ
| | - Samiksha Komatireddy
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA
| | | | - Tracy S. Tran
- Department of Biological Sciences, Rutgers University, Newark, NJ
| | - Vijayalakshmi Santhakumar
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA
| |
Collapse
|
7
|
Chapman G, Determan J, Jetter H, Kaushik K, Prakasam R, Kroll KL. Defining cis-regulatory elements and transcription factors that control human cortical interneuron development. iScience 2024; 27:109967. [PMID: 38827400 PMCID: PMC11140214 DOI: 10.1016/j.isci.2024.109967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Although human cortical interneurons (cINs) are a minority population in the cerebral cortex, disruption of interneuron development is a frequent contributor to neurodevelopmental disorders. Here, we utilized a model for deriving cINs from human embryonic stem cells to profile chromatin state changes and generate an atlas of cis-regulatory elements (CREs) controlling human cIN development. We used these data to define candidate transcription factors (TFs) that may bind these CREs to regulate interneuron progenitor specification. Among these were RFX3 and RFX4, risk genes for autism spectrum disorder (ASD) with uncharacterized roles in human neuronal development. Using RFX3 and RFX4 knockdown models, we demonstrated new requirements for both genes in interneuron progenitor specification, with RFX3 deficiency causing precocious neuronal differentiation while RFX4 deficiency instead resulted in cessation of progenitor cell proliferation. Together, this work both defined central features of cis-regulatory control and identified new TF requirements for human interneuron development.
Collapse
Affiliation(s)
- Gareth Chapman
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julianna Determan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Haley Jetter
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Komal Kaushik
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kristen L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Lim Y, Akula SK, Myers AK, Chen C, Rafael KA, Walsh CA, Golden JA, Cho G. ARX regulates cortical interneuron differentiation and migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578282. [PMID: 38895467 PMCID: PMC11185560 DOI: 10.1101/2024.01.31.578282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mutations in aristaless-related homeobox ( ARX ) are associated with neurodevelopmental disorders including developmental epilepsies, intellectual disabilities, and autism spectrum disorders, with or without brain malformations. Aspects of these disorders have been linked to abnormal cortical interneuron (cIN) development and function. To further understand ARX's role in cIN development, multiple Arx mutant mouse lines were interrogated. We found that ARX is critical for controlling cIN numbers and distribution, especially, in the developing marginal zone (MZ). Single cell transcriptomics and ChIP-seq, combined with functional studies, revealed ARX directly or indirectly regulates genes involved in proliferation and the cell cycle (e.g., Bub3 , Cspr3 ), fate specification (e.g., Nkx2.1 , Maf , Mef2c ), and migration (e.g., Nkx2.1 , Lmo1 , Cxcr4 , Nrg1 , ErbB4 ). Our data suggest that the MZ stream defects primarily result from disordered cell-cell communication. Together our findings provide new insights into the mechanisms underlying cIN development and migration and how they are disrupted in several disorders.
Collapse
|
9
|
Santhakumar V, Subramanian D, Eisenberg C, Huang A, Baek J, Naveed H, Komatireddy S, Shiflett M, Tran T. Dysregulation of Neuropilin-2 Expression in Inhibitory Neurons Impairs Hippocampal Circuit Development Leading to Autism-Epilepsy Phenotype. RESEARCH SQUARE 2024:rs.3.rs-3922129. [PMID: 38405865 PMCID: PMC10889061 DOI: 10.21203/rs.3.rs-3922129/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dysregulation of development, migration, and function of interneurons, collectively termed interneuronopathies, have been proposed as a shared mechanism for autism spectrum disorders (ASDs) and childhood epilepsy. Neuropilin-2 (Nrp2), a candidate ASD gene, is a critical regulator of interneuron migration from the median ganglionic eminence (MGE) to the pallium, including the hippocampus. While clinical studies have identified Nrp2 polymorphisms in patients with ASD, whether dysregulation of Nrp2-dependent interneuron migration contributes to pathogenesis of ASD and epilepsy has not been tested. We tested the hypothesis that the lack of Nrp2 in MGE-derived interneuron precursors disrupts the excitation/inhibition balance in hippocampal circuits, thus predisposing the network to seizures and behavioral patterns associated with ASD. Embryonic deletion of Nrp2 during the developmental period for migration of MGE derived interneuron precursors (iCKO) significantly reduced parvalbumin, neuropeptide Y, and somatostatin positive neurons in the hippocampal CA1. Consequently, when compared to controls, the frequency of inhibitory synaptic currents in CA1 pyramidal cells was reduced while frequency of excitatory synaptic currents was increased in iCKO mice. Although passive and active membrane properties of CA1 pyramidal cells were unchanged, iCKO mice showed enhanced susceptibility to chemically evoked seizures. Moreover, iCKO mice exhibited selective behavioral deficits in both preference for social novelty and goal-directed learning, which are consistent with ASD-like phenotype. Together, our findings show that disruption of developmental Nrp2 regulation of interneuron circuit establishment, produces ASD-like behaviors and enhanced risk for epilepsy. These results support the developmental interneuronopathy hypothesis of ASD epilepsy comorbidity.
Collapse
|
10
|
Chai YC, To SK, Simorgh S, Zaunz S, Zhu Y, Ahuja K, Lemaitre A, Ramezankhani R, van der Veer BK, Wierda K, Verhulst S, van Grunsven LA, Pasque V, Verfaillie C. Spatially Self-Organized Three-Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304421. [PMID: 38037510 PMCID: PMC10837345 DOI: 10.1002/advs.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Indexed: 12/02/2023]
Abstract
Although human pluripotent stem cell (PSC)-derived brain organoids have enabled researchers to gain insight into human brain development and disease, these organoids contain solely ectodermal cells and are not vascularized as occurs during brain development. Here it is created less complex and more homogenous large neural constructs starting from PSC-derived neuroprogenitor cells (NPC), by fusing small NPC spheroids into so-called concentroids. Such concentroids consisted of a pro-angiogenic core, containing neuronal and outer radial glia cells, surrounded by an astroglia-dense outer layer. Incorporating PSC-derived endothelial cells (EC) around and/or in the concentroids promoted vascularization, accompanied by differential outgrowth and differentiation of neuronal and astroglia cells, as well as the development of ectodermal-derived pericyte-like mural cells co-localizing with EC networks. Single nucleus transcriptomic analysis revealed an enhanced neural cell subtype maturation and diversity in EC-containing concentroids, which better resemble the fetal human brain compared to classical organoids or NPC-only concentroids. This PSC-derived "vascularized" concentroid brain model will facilitate the study of neurovascular/blood-brain barrier development, neural cell migration, and the development of effective in vitro vascularization strategies of brain mimics.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - San Kit To
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Susan Simorgh
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Samantha Zaunz
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - YingLi Zhu
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Karan Ahuja
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Alix Lemaitre
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Roya Ramezankhani
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Keimpe Wierda
- Electrophysiology Expert UnitVIB‐KU Leuven Center for Brain & Disease ResearchLeuven3000Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Vincent Pasque
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Catherine Verfaillie
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| |
Collapse
|
11
|
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
12
|
Munguba H, Nikouei K, Hochgerner H, Oberst P, Kouznetsova A, Ryge J, Muñoz-Manchado AB, Close J, Batista-Brito R, Linnarsson S, Hjerling-Leffler J. Transcriptional maintenance of cortical somatostatin interneuron subtype identity during migration. Neuron 2023; 111:3590-3603.e5. [PMID: 37625400 DOI: 10.1016/j.neuron.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Although cardinal cortical interneuron identity is established upon cell-cycle exit, it remains unclear whether specific interneuron subtypes are pre-established, and if so, how their identity is maintained prior to circuit integration. We conditionally removed Sox6 (Sox6-cKO) in migrating somatostatin (Sst+) interneurons and assessed the effects on their mature identity. In adolescent mice, five of eight molecular Sst+ subtypes were nearly absent in the Sox6-cKO cortex without a reduction in cell number. Sox6-cKO cells displayed electrophysiological maturity and expressed genes enriched within the broad class of Sst+ interneurons. Furthermore, we could infer subtype identity prior to cortical integration (embryonic day 18.5), suggesting that the loss in subtype was due to disrupted subtype maintenance. Conversely, Sox6 removal at postnatal day 7 did not disrupt marker expression in the mature cortex. Therefore, Sox6 is necessary during migration for maintenance of Sst+ subtype identity, indicating that subtype maintenance requires active transcriptional programs.
Collapse
Affiliation(s)
- Hermany Munguba
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kasra Nikouei
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Hochgerner
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Polina Oberst
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Kouznetsova
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Ryge
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ana Belén Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Departamento de Anatomía Patológica, Biología Celular, Histología, Historia de la Ciencia, Medicina Legal y Forense y Toxicología, Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Universidad de Cádiz, Cádiz, Spain
| | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Renata Batista-Brito
- Einstein College of Medicine, Dominick Purpura Department of Neuroscience, 1300 Morris Park Ave, The Bronx, NY 10461, USA; Einstein College of Medicine, Department of Psychiatry and Behavioral Sciences, 1300 Morris Park Ave, The Bronx, NY 10461, USA; Einstein College of Medicine, Department of Genetics, 1300 Morris Park Ave, The Bronx, NY 10461, USA
| | - Sten Linnarsson
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
13
|
Tibi M, Biton Hayun S, Hochgerner H, Lin Z, Givon S, Ophir O, Shay T, Mueller T, Segev R, Zeisel A. A telencephalon cell type atlas for goldfish reveals diversity in the evolution of spatial structure and cell types. SCIENCE ADVANCES 2023; 9:eadh7693. [PMID: 37910612 PMCID: PMC10619943 DOI: 10.1126/sciadv.adh7693] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Teleost fish form the largest group of vertebrates and show a tremendous variety of adaptive behaviors, making them critically important for the study of brain evolution and cognition. The neural basis mediating these behaviors remains elusive. We performed a systematic comparative survey of the goldfish telencephalon. We mapped cell types using single-cell RNA sequencing and spatial transcriptomics, resulting in de novo molecular neuroanatomy parcellation. Glial cells were highly conserved across 450 million years of evolution separating mouse and goldfish, while neurons showed diversity and modularity in gene expression. Specifically, somatostatin interneurons, famously interspersed in the mammalian isocortex for local inhibitory input, were curiously aggregated in a single goldfish telencephalon nucleus but molecularly conserved. Cerebral nuclei including the striatum, a hub for motivated behavior in amniotes, had molecularly conserved goldfish homologs. We suggest elements of a hippocampal formation across the goldfish pallium. Last, aiding study of the teleostan everted telencephalon, we describe substantial molecular similarities between goldfish and zebrafish neuronal taxonomies.
Collapse
Affiliation(s)
- Muhammad Tibi
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Stav Biton Hayun
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Zhige Lin
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Thomas Mueller
- Department of Biology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, USA
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
- The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, 8410501 Beer Sheva, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
14
|
Rodrigues T, Dib L, Bréthaut É, Matter MM, Matter-Sadzinski L, Matter JM. Increased neuron density in the midbrain of a foveate bird, pigeon, results from profound change in tissue morphogenesis. Dev Biol 2023; 502:77-98. [PMID: 37400051 DOI: 10.1016/j.ydbio.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
The increase of brain neuron number in relation with brain size is currently considered to be the major evolutionary path to high cognitive power in amniotes. However, how changes in neuron density did contribute to the evolution of the information-processing capacity of the brain remains unanswered. High neuron densities are seen as the main reason why the fovea located at the visual center of the retina is responsible for sharp vision in birds and primates. The emergence of foveal vision is considered as a breakthrough innovation in visual system evolution. We found that neuron densities in the largest visual center of the midbrain - i.e., the optic tectum - are two to four times higher in modern birds with one or two foveae compared to birds deprived of this specialty. Interspecies comparisons enabled us to identify elements of a hitherto unknown developmental process set up by foveate birds for increasing neuron density in the upper layers of their optic tectum. The late progenitor cells that generate these neurons proliferate in a ventricular zone that can expand only radially. In this particular context, the number of cells in ontogenetic columns increases, thereby setting the conditions for higher cell densities in the upper layers once neurons did migrate.
Collapse
Affiliation(s)
- Tania Rodrigues
- Department of Molecular Biology & Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, 4, Switzerland
| | - Linda Dib
- Swiss Institute of Bioinformatics, Le Génopode, 1015, Lausanne, Switzerland
| | | | - Michel M Matter
- HEPIA, HES-SO, University of Applied Sciences and Arts Western Switzerland, 1202, Geneva, Switzerland
| | - Lidia Matter-Sadzinski
- Department of Molecular Biology & Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, 4, Switzerland
| | - Jean-Marc Matter
- Department of Molecular Biology & Department of Biochemistry, Sciences III, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, 4, Switzerland.
| |
Collapse
|
15
|
Cheffer A, Garcia-Miralles M, Maier E, Akol I, Franz H, Srinivasan VSV, Vogel T. DOT1L deletion impairs the development of cortical parvalbumin-expressing interneurons. Cereb Cortex 2023; 33:10272-10285. [PMID: 37566909 PMCID: PMC10545437 DOI: 10.1093/cercor/bhad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023] Open
Abstract
The cortical plate (CP) is composed of excitatory and inhibitory neurons, the latter of which originate in the ganglionic eminences. From their origin in the ventral telencephalon, maturing postmitotic interneurons migrate during embryonic development over some distance to reach their final destination in the CP. The histone methyltransferase Disruptor of Telomeric Silencing 1-like (DOT1L) is necessary for proper CP development and layer distribution of glutamatergic neurons. However, its specific role on cortical interneuron development has not yet been explored. Here, we demonstrate that DOT1L affects interneuron development in a cell autonomous manner. Deletion of Dot1l in Nkx2.1-expressing interneuron precursor cells results in an overall reduction and altered distribution of GABAergic interneurons in the CP from postnatal day 0 onwards. We observed an altered proportion of GABAergic interneurons in the cortex, with a significant decrease in parvalbumin-expressing interneurons. Moreover, a decreased number of mitotic cells at the embryonic day E14.5 was observed upon Dot1l deletion. Altogether, our results indicate that reduced numbers of cortical interneurons upon DOT1L deletion result from premature cell cycle exit, but effects on postmitotic differentiation, maturation, and migration are likely at play as well.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Marta Garcia-Miralles
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Esther Maier
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Ipek Akol
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Henriette Franz
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Vandana Shree Vedartham Srinivasan
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Medical Faculty, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical Faculty, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| |
Collapse
|
16
|
Ni P, Fan L, Zinski A, Chung S. Generation of Homogeneous Populations of Cortical Interneurons from Human Pluripotent Stem Cells. Methods Mol Biol 2023; 2683:13-20. [PMID: 37300763 DOI: 10.1007/978-1-0716-3287-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cortical interneurons (cINs), especially those that are derived from the medial ganglionic eminence (MGE) during early development, are associated with various neuropsychiatric disorders. Human pluripotent stem cell (hPSC)-derived cINs can provide unlimited cell sources for studying disease mechanisms and developing novel therapeutics. Here, we describe an optimized method to generate homogeneous cIN populations based on three-dimensional (3D) cIN sphere generation. This optimized differentiation system could sustain generated cINs relatively long term without compromising their survival or phenotypes.
Collapse
Affiliation(s)
- Peiyan Ni
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyi Fan
- Psychiatric Laboratory and Mental Health Center, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Amy Zinski
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA
| | - Sangmi Chung
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
17
|
Nunnelly LF, Campbell M, Lee DI, Dummer P, Gu G, Menon V, Au E. St18 specifies globus pallidus projection neuron identity in MGE lineage. Nat Commun 2022; 13:7735. [PMID: 36517477 PMCID: PMC9751150 DOI: 10.1038/s41467-022-35518-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
The medial ganglionic eminence (MGE) produces both locally-projecting interneurons, which migrate long distances to structures such as the cortex as well as projection neurons that occupy subcortical nuclei. Little is known about what regulates the migratory behavior and axonal projections of these two broad classes of neurons. We find that St18 regulates the migration and morphology of MGE neurons in vitro. Further, genetic loss-of-function of St18 in mice reveals a reduction in projection neurons of the globus pallidus pars externa. St18 functions by influencing cell fate in MGE lineages as we observe a large expansion of nascent cortical interneurons at the expense of putative GPe neurons in St18 null embryos. Downstream of St18, we identified Cbx7, a component of Polycomb repressor complex 1, and find that it is essential for projection neuron-like migration but not morphology. Thus, we identify St18 as a key regulator of projection neuron vs. interneuron identity.
Collapse
Affiliation(s)
- Luke F Nunnelly
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Melissa Campbell
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dylan I Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Patrick Dummer
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Edmund Au
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Department of Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA.
- Columbia Translational Neuroscience Initiative Scholar, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
18
|
Dinh TT, Xiang M, Rajaraman A, Wang Y, Salazar N, Zhu Y, Roper W, Rhee S, Brulois K, O'Hara E, Kiefel H, Dinh TM, Bi Y, Gonzalez D, Bao EP, Red-Horse K, Balogh P, Gábris F, Gaszner B, Berta G, Pan J, Butcher EC. An NKX-COUP-TFII morphogenetic code directs mucosal endothelial addressin expression. Nat Commun 2022; 13:7448. [PMID: 36460642 PMCID: PMC9718832 DOI: 10.1038/s41467-022-34991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Immunoglobulin family and carbohydrate vascular addressins encoded by Madcam1 and St6gal1 control lymphocyte homing into intestinal tissues, regulating immunity and inflammation. The addressins are developmentally programmed to decorate endothelial cells lining gut post-capillary and high endothelial venules (HEV), providing a prototypical example of organ- and segment-specific endothelial specialization. We identify conserved NKX-COUP-TFII composite elements (NCCE) in regulatory regions of Madcam1 and St6gal1 that bind intestinal homeodomain protein NKX2-3 cooperatively with venous nuclear receptor COUP-TFII to activate transcription. The Madcam1 element also integrates repressive signals from arterial/capillary Notch effectors. Pan-endothelial COUP-TFII overexpression induces ectopic addressin expression in NKX2-3+ capillaries, while NKX2-3 deficiency abrogates expression by HEV. Phylogenetically conserved NCCE are enriched in genes involved in neuron migration and morphogenesis of the heart, kidney, pancreas and other organs. Our results define an NKX-COUP-TFII morphogenetic code that targets expression of mucosal vascular addressins.
Collapse
Affiliation(s)
- Thanh Theresa Dinh
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Menglan Xiang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Anusha Rajaraman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Yongzhi Wang
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Clinical Science Malmo, Section of Surgery, Lund University, Malmo, Sweden
| | - Nicole Salazar
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yu Zhu
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Walter Roper
- Columbia University Vagelos College of Physicians and Surgeons, New York City, NY, USA
| | - Siyeon Rhee
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Ed O'Hara
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Helena Kiefel
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Truc M Dinh
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Yuhan Bi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | | | - Evan P Bao
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Peter Balogh
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
- Lymphoid Organogenesis Research Team, Szentágothai Research Center, Pécs, Hungary
| | - Fanni Gábris
- Department of Immunology and Biotechnology, University of Pécs Medical School, Pécs, Hungary
- Lymphoid Organogenesis Research Team, Szentágothai Research Center, Pécs, Hungary
| | - Balázs Gaszner
- Department of Anatomy, University of Pécs Medical School, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopy Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
19
|
Brady MV, Mariani J, Koca Y, Szekely A, King RA, Bloch MH, Landeros-Weisenberger A, Leckman JF, Vaccarino FM. Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids. Mol Psychiatry 2022; 27:5007-5019. [PMID: 36447010 PMCID: PMC9949887 DOI: 10.1038/s41380-022-01880-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022]
Abstract
Tourette Syndrome (TS) is a neuropsychiatric disorder thought to involve a reduction of basal ganglia (BG) interneurons and malfunctioning of the BG circuitry. However, whether interneurons fail to develop or are lost postnatally remains unknown. To investigate the pathophysiology of early development in TS, induced pluripotent stem cell (iPSC)-derived BG organoids from TS patients and healthy controls were compared on multiple levels of measurement and analysis. BG organoids from TS individuals manifested an impaired medial ganglionic eminence fate and a decreased differentiation of cholinergic and GABAergic interneurons. Transcriptome analyses revealed organoid mispatterning in TS, with a preference for dorsolateral at the expense of ventromedial fates. Our results point to altered expression of GLI transcription factors downstream of the Sonic Hedgehog signaling pathway with cilia disruption at the earliest stages of BG organoid differentiation as a potential mechanism for the BG mispatterning in TS. This study uncovers early neurodevelopmental underpinnings of TS neuropathological deficits using organoids as a model system.
Collapse
Affiliation(s)
- Melanie V Brady
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Yildiz Koca
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Anna Szekely
- Department of Neurology, Yale University, New Haven, CT, 06520, USA
| | - Robert A King
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Michael H Bloch
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | | | - James F Leckman
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, 06520, USA.
- Kavli Institute for Neuroscience at Yale, New Haven, CT, 06520, USA.
| |
Collapse
|
20
|
Transcriptional Profile of the Developing Subthalamic Nucleus. eNeuro 2022; 9:9/5/ENEURO.0193-22.2022. [PMID: 36257692 PMCID: PMC9581575 DOI: 10.1523/eneuro.0193-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
The subthalamic nucleus (STN) is a small, excitatory nucleus that regulates the output of basal ganglia motor circuits. The functions of the STN and its role in the pathophysiology of Parkinson's disease are now well established. However, some basic characteristics like the developmental origin and molecular phenotype of neuronal subpopulations are still being debated. The classical model of forebrain development attributed the origin of STN within the diencephalon. Recent studies of gene expression patterns exposed shortcomings of the classical model. To accommodate these findings, the prosomeric model was developed. In this concept, STN develops within the hypothalamic primordium, which is no longer a part of the diencephalic primordium. This concept is further supported by the expression patterns of many transcription factors. It is interesting to note that many transcription factors involved in the development of the STN are also involved in the pathogenesis of neurodevelopmental disorders. Thus, the study of neurodevelopmental disorders could provide us with valuable information on the roles of these transcription factors in the development and maintenance of STN phenotype. In this review, we summarize historical theories about the developmental origin of the STN and interpret the gene expression data within the prosomeric conceptual framework. Finally, we discuss the importance of neurodevelopmental disorders for the development of the STN and its potential role in the pathophysiology of neurodevelopmental disorders.
Collapse
|
21
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
22
|
Leung RF, George AM, Roussel EM, Faux MC, Wigle JT, Eisenstat DD. Genetic Regulation of Vertebrate Forebrain Development by Homeobox Genes. Front Neurosci 2022; 16:843794. [PMID: 35546872 PMCID: PMC9081933 DOI: 10.3389/fnins.2022.843794] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 01/19/2023] Open
Abstract
Forebrain development in vertebrates is regulated by transcription factors encoded by homeobox, bHLH and forkhead gene families throughout the progressive and overlapping stages of neural induction and patterning, regional specification and generation of neurons and glia from central nervous system (CNS) progenitor cells. Moreover, cell fate decisions, differentiation and migration of these committed CNS progenitors are controlled by the gene regulatory networks that are regulated by various homeodomain-containing transcription factors, including but not limited to those of the Pax (paired), Nkx, Otx (orthodenticle), Gsx/Gsh (genetic screened), and Dlx (distal-less) homeobox gene families. This comprehensive review outlines the integral role of key homeobox transcription factors and their target genes on forebrain development, focused primarily on the telencephalon. Furthermore, links of these transcription factors to human diseases, such as neurodevelopmental disorders and brain tumors are provided.
Collapse
Affiliation(s)
- Ryan F. Leung
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Ankita M. George
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Enola M. Roussel
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
| | - Maree C. Faux
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey T. Wigle
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - David D. Eisenstat
- Murdoch Children’s Research Institute, The Royal Children’s Hospital Melbourne, Parkville, VIC, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Altered pituitary morphology as a sign of benign hereditary chorea caused by TITF1/NKX2.1 mutations. Neurogenetics 2022; 23:91-102. [PMID: 35079915 PMCID: PMC8960566 DOI: 10.1007/s10048-021-00680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
Benign hereditary chorea (BHC) is a rare genetically heterogeneous movement disorder, in which conventional neuroimaging has been reported as normal in most cases. Cystic pituitary abnormalities and features of empty sella have been described in only 7 patients with BHC to date. We present 4 patients from 2 families with a BHC phenotype, 3 of whom underwent targeted pituitary MR imaging and genetic testing. All four patients in the two families displayed a classic BHC phenotype. The targeted pituitary MR imaging demonstrated abnormal pituitary sella morphology. Genetic testing was performed in three patients, and showed mutations causing BHC in three of the patients, as well as identifying a novel nonsense mutation of the TITF1/NKX2-1 gene in one of the patients. The presence of the abnormal pituitary sella in two affected members of the same family supports the hypothesis that this sign is a distinct feature of the BHC phenotype spectrum due to mutations in the TITF1 gene. Interestingly, these abnormalities seem to develop in adult life and are progressive. They occur in at least 26% of patients affected with Brain-lung-thyroid syndrome. As a part of the management of these patients we recommend to perform follow-up MRI brain with dedicated pituitary imaging also in adult life as the abnormality can occur years after the onset of chorea.
Collapse
|
24
|
Cruz-Santos M, Cardo LF, Li M. A Novel LHX6 Reporter Cell Line for Tracking Human iPSC-Derived Cortical Interneurons. Cells 2022; 11:cells11050853. [PMID: 35269475 PMCID: PMC8909769 DOI: 10.3390/cells11050853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
GABAergic interneurons control the neural circuitry and network activity in the brain. The dysfunction of cortical interneurons, especially those derived from the medial ganglionic eminence, contributes to neurological disease states. Pluripotent stem cell-derived interneurons provide a powerful tool for understanding the etiology of neuropsychiatric disorders, as well as having the potential to be used as medicine in cell therapy for neurological conditions such as epilepsy. Although large numbers of interneuron progenitors can be readily induced in vitro, the generation of defined interneuron subtypes remains inefficient. Using CRISPR/Cas9-assisted homologous recombination in hPSCs, we inserted the coding sequence of mEmerald and mCherry fluorescence protein, respectively, downstream that of the LHX6, a gene required for, and a marker of medial ganglionic eminence (MGE)-derived cortical interneurons. Upon differentiation of the LHX6-mEmerald and LHX6-mCherry hPSCs towards the MGE fate, both reporters exhibited restricted expression in LHX6+ MGE derivatives of hPSCs. Moreover, the reporter expression responded to changes of interneuron inductive cues. Thus, the LHX6-reporter lines represent a valuable tool to identify molecules controlling human interneuron development and design better interneuron differentiation protocols as well as for studying risk genes associated with interneuronopathies.
Collapse
Affiliation(s)
- Maria Cruz-Santos
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.C.-S.); (L.F.C.)
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Lucia Fernandez Cardo
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.C.-S.); (L.F.C.)
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; (M.C.-S.); (L.F.C.)
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence:
| |
Collapse
|
25
|
Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, Larimer P, Chen J, Kang G, Gonzalez Granero S, Garcia E, Chu J, Delgado R, Cotter JA, Tang V, Spatazza J, Obernier K, Ferrer Lozano J, Vento M, Scott J, Studholme C, Nowakowski TJ, Kriegstein AR, Oldham MC, Hasenstaub A, Garcia-Verdugo JM, Alvarez-Buylla A, Huang EJ. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science 2022; 375:eabk2346. [PMID: 35084970 DOI: 10.1126/science.abk2346] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Ashley Del Dosso
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Phil Larimer
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Gugene Kang
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Susana Gonzalez Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Eric Garcia
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Ryan Delgado
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Cotter
- Department of Pathology, Children's Hospital Los Angeles, and Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | - Vivian Tang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Scott
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy and Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Andrea Hasenstaub
- Department of Otolaryngology, University of California, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
26
|
Lee GS, Graham DL, Noble BL, Trammell TS, McCarthy DM, Anderson LR, Rubinstein M, Bhide PG, Stanwood GD. Behavioral and Neuroanatomical Consequences of Cell-Type Specific Loss of Dopamine D2 Receptors in the Mouse Cerebral Cortex. Front Behav Neurosci 2022; 15:815713. [PMID: 35095443 PMCID: PMC8793809 DOI: 10.3389/fnbeh.2021.815713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022] Open
Abstract
Developmental dysregulation of dopamine D2 receptors (D2Rs) alters neuronal migration, differentiation, and behavior and contributes to the psychopathology of neurological and psychiatric disorders. The current study is aimed at identifying how cell-specific loss of D2Rs in the cerebral cortex may impact neurobehavioral and cellular development, in order to better understand the roles of this receptor in cortical circuit formation and brain disorders. We deleted D2R from developing cortical GABAergic interneurons (Nkx2.1-Cre) or from developing telencephalic glutamatergic neurons (Emx1-Cre). Conditional knockouts (cKO) from both lines, Drd2fl/fl, Nkx2.1-Cre+ (referred to as GABA-D2R-cKO mice) or Drd2fl/fl, Emx1-Cre+ (referred to as Glu-D2R-cKO mice), exhibited no differences in simple tests of anxiety-related or depression-related behaviors, or spatial or nonspatial working memory. Both GABA-D2R-cKO and Glu-D2R-cKO mice also had normal basal locomotor activity, but GABA-D2R-cKO mice expressed blunted locomotor responses to the psychotomimetic drug MK-801. GABA-D2R-cKO mice exhibited improved motor coordination on a rotarod whereas Glu-D2R-cKO mice were normal. GABA-D2R-cKO mice also exhibited spatial learning deficits without changes in reversal learning on a Barnes maze. At the cellular level, we observed an increase in PV+ cells in the frontal cortex of GABA-D2R-cKO mice and no noticeable changes in Glu-D2R-cKO mice. These data point toward unique and distinct roles for D2Rs within excitatory and inhibitory neurons in the regulation of behavior and interneuron development, and suggest that location-biased D2R pharmacology may be clinically advantageous to achieve higher efficacy and help avoid unwanted effects.
Collapse
Affiliation(s)
- Gloria S. Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Devon L. Graham
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Brenda L. Noble
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Taylor S. Trammell
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Deirdre M. McCarthy
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Lisa R. Anderson
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pradeep G. Bhide
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
| | - Gregg D. Stanwood
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, United States
- *Correspondence: Gregg D. Stanwood
| |
Collapse
|
27
|
Aerts T, Seuntjens E. Novel Perspectives on the Development of the Amygdala in Rodents. Front Neuroanat 2021; 15:786679. [PMID: 34955766 PMCID: PMC8696165 DOI: 10.3389/fnana.2021.786679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is a hyperspecialized brain region composed of strongly inter- and intraconnected nuclei involved in emotional learning and behavior. The cellular heterogeneity of the amygdalar nuclei has complicated straightforward conclusions on their developmental origin, and even resulted in contradictory data. Recently, the concentric ring theory of the pallium and the radial histogenetic model of the pallial amygdala have cleared up several uncertainties that plagued previous models of amygdalar development. Here, we provide an extensive overview on the developmental origin of the nuclei of the amygdaloid complex. Starting from older gene expression data, transplantation and lineage tracing studies, we systematically summarize and reinterpret previous findings in light of the novel perspectives on amygdalar development. In addition, migratory routes that these cells take on their way to the amygdala are explored, and known transcription factors and guidance cues that seemingly drive these cells toward the amygdala are emphasized. We propose some future directions for research on amygdalar development and highlight that a better understanding of its development could prove critical for the treatment of several neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Knowles R, Dehorter N, Ellender T. From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. J Neurosci 2021; 41:9483-9502. [PMID: 34789560 PMCID: PMC8612473 DOI: 10.1523/jneurosci.0620-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide insight into striatal function in health and disease. In this review, we summarize our current understanding of the development of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their location within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last, we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington's disease and autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for future research directions and the development of improved therapeutic options.SIGNIFICANCE STATEMENT This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal development from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a progenitor-centric perspective onto both Huntington's disease and autism spectrum disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful consideration of their great intrinsic diversity and neurogenic potential.
Collapse
Affiliation(s)
- Rhys Knowles
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
29
|
Reduced hippocampal inhibition and enhanced autism-epilepsy comorbidity in mice lacking neuropilin 2. Transl Psychiatry 2021; 11:537. [PMID: 34663783 PMCID: PMC8523694 DOI: 10.1038/s41398-021-01655-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 12/19/2022] Open
Abstract
The neuropilin receptors and their secreted semaphorin ligands play key roles in brain circuit development by regulating numerous crucial neuronal processes, including the maturation of synapses and migration of GABAergic interneurons. Consistent with its developmental roles, the neuropilin 2 (Nrp2) locus contains polymorphisms in patients with autism spectrum disorder (ASD). Nrp2-deficient mice show autism-like behavioral deficits and propensity to develop seizures. In order to determine the pathophysiology in Nrp2 deficiency, we examined the hippocampal numbers of interneuron subtypes and inhibitory regulation of hippocampal CA1 pyramidal neurons in mice lacking one or both copies of Nrp2. Immunostaining for interneuron subtypes revealed that Nrp2-/- mice have a reduced number of parvalbumin, somatostatin, and neuropeptide Y cells, mainly in CA1. Whole-cell recordings identified reduced firing and hyperpolarized shift in resting membrane potential in CA1 pyramidal neurons from Nrp2+/- and Nrp2-/- mice compared to age-matched wild-type controls indicating decrease in intrinsic excitability. Simultaneously, the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) are reduced in Nrp2-deficient mice. A convulsive dose of kainic acid evoked electrographic and behavioral seizures with significantly shorter latency, longer duration, and higher severity in Nrp2-/- compared to Nrp2+/+ animals. Finally, Nrp2+/- and Nrp2-/- but not Nrp2+/+, mice have impaired cognitive flexibility demonstrated by reward-based reversal learning, a task associated with hippocampal circuit function. Together these data demonstrate a broad reduction in interneuron subtypes and compromised inhibition in CA1 of Nrp2-/- mice, which could contribute to the heightened seizure susceptibility and behavioral deficits consistent with an ASD/epilepsy phenotype.
Collapse
|
30
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
31
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
32
|
Poppi LA, Ho-Nguyen KT, Shi A, Daut CT, Tischfield MA. Recurrent Implication of Striatal Cholinergic Interneurons in a Range of Neurodevelopmental, Neurodegenerative, and Neuropsychiatric Disorders. Cells 2021; 10:907. [PMID: 33920757 PMCID: PMC8071147 DOI: 10.3390/cells10040907] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cholinergic interneurons are "gatekeepers" for striatal circuitry and play pivotal roles in attention, goal-directed actions, habit formation, and behavioral flexibility. Accordingly, perturbations to striatal cholinergic interneurons have been associated with many neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. The role of acetylcholine in many of these disorders is well known, but the use of drugs targeting cholinergic systems fell out of favor due to adverse side effects and the introduction of other broadly acting compounds. However, in response to recent findings, re-examining the mechanisms of cholinergic interneuron dysfunction may reveal key insights into underlying pathogeneses. Here, we provide an update on striatal cholinergic interneuron function, connectivity, and their putative involvement in several disorders. In doing so, we aim to spotlight recurring physiological themes, circuits, and mechanisms that can be investigated in future studies using new tools and approaches.
Collapse
Affiliation(s)
- Lauren A. Poppi
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA;
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Khue Tu Ho-Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Anna Shi
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Cynthia T. Daut
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Max A. Tischfield
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA; (K.T.H.-N.); (A.S.); (C.T.D.)
- Tourette International Collaborative (TIC) Genetics Study, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
33
|
Er81 Transcription Factor Fine-Tunes Striatal Cholinergic Interneuron Activity and Drives Habit Formation. J Neurosci 2021; 41:4392-4409. [PMID: 33849945 DOI: 10.1523/jneurosci.0967-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms tuning cholinergic interneuron (CIN) activity, although crucial for striatal function and behavior, remain largely unexplored. Previous studies report that the Etv1/Er81 transcription factor is vital for regulating neuronal maturation and activity. While Er81 is known to be expressed in the striatum during development, its specific role in defining CIN properties and the resulting consequences on striatal function is unknown. We report here that Er81 is expressed in CINs and its specific ablation leads to prominent changes in their molecular, morphologic, and electrophysiological features. In particular, the lack of Er81 amplifies intrinsic delayed-rectifier and hyperpolarization-activated currents, which subsequently alters the tonic and phasic activity of CINs. We further reveal that Er81 expression is required for normal CIN pause and time-locked responses to sensorimotor inputs in awake mice. Overall, this study uncovers a new cell type-specific control of CIN function in the striatum which drives habit formation in adult male mice.SIGNIFICANCE STATEMENT Although previous studies have shown that cholinergic interneurons drive striatal activity and habit formation, the underlying molecular mechanisms controlling their function are unknown. Here we reveal that key cholinergic interneuron physiological properties are controlled by Er81, a transcription factor regulating neuronal activity and development in a cell-specific manner. Moreover, our findings uncover a link between the Er81-dependent molecular control of cholinergic interneuron function and habit formation in mice. These insights will contribute to the future enhancement of our understanding of disorders that involve behavioral inflexibility, such as autism and addiction.
Collapse
|
34
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
35
|
Limoni G, Niquille M. Semaphorins and Plexins in central nervous system patterning: the key to it all? Curr Opin Neurobiol 2021; 66:224-232. [PMID: 33513538 DOI: 10.1016/j.conb.2020.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022]
Abstract
Semaphorins and Plexins constitute one of the largest family of guidance molecules and receptors involved in setting critical biological steps for central nervous system development. The role of these molecules in axonal development has been extensively characterized but Semaphorins and Plexins are also involved in a variety of other developmental processes, spanning from cell polarization to migration, laminar segregation and neuronal maturation. In this review, we aim to gather discoveries carried in the field of neurodevelopment over the last decade, during which Semaphorin/Plexin complexes have emerged as key regulators of neurogenesis, neural cell migration and adult gliogenesis. As well, we report mechanisms that brought a better understanding of axonal midline crossing.
Collapse
Affiliation(s)
- Greta Limoni
- Department of Basic Neuroscience, University Medical Center, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland.
| | - Mathieu Niquille
- Department of Basic Neuroscience, University Medical Center, University of Geneva, Rue Michel-Servet 1, 1211 Genève 4, Switzerland.
| |
Collapse
|
36
|
Turrero García M, Stegmann SK, Lacey TE, Reid CM, Hrvatin S, Weinreb C, Adam MA, Nagy MA, Harwell CC. Transcriptional profiling of sequentially generated septal neuron fates. eLife 2021; 10:71545. [PMID: 34851821 PMCID: PMC8694698 DOI: 10.7554/elife.71545] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.
Collapse
Affiliation(s)
| | - Sarah K Stegmann
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Tiara E Lacey
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,Biological and Biomedical Sciences PhD program at Harvard UniversityCambridgeUnited States
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Sinisa Hrvatin
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Caleb Weinreb
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States,PhD Program in Systems Biology at Harvard UniversityCambridgeUnited States
| | - Manal A Adam
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - M Aurel Nagy
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States,PhD Program in Neuroscience at Harvard UniversityCambridgeUnited States
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
37
|
PlexinA4-Semaphorin3A-mediated crosstalk between main cortical interneuron classes is required for superficial interneuron lamination. Cell Rep 2021; 34:108644. [PMID: 33503438 DOI: 10.1016/j.celrep.2020.108644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 01/03/2023] Open
Abstract
In the mammalian cerebral cortex, the developmental events governing allocation of different classes of inhibitory interneurons (INs) to distinct cortical layers are poorly understood. Here we report that the guidance receptor PlexinA4 (PLXNA4) is upregulated in serotonin receptor 3a-expressing (HTR3A+) cortical INs (hINs) as they invade the cortical plate, and that it regulates their laminar allocation to superficial cortical layers. We find that the PLXNA4 ligand Semaphorin3A (SEMA3A) acts as a chemorepulsive factor on hINs migrating into the nascent cortex and demonstrate that SEMA3A specifically controls their laminar positioning through PLXNA4. We identify deep-layer INs as a major source of SEMA3A in the developing cortex and demonstrate that targeted genetic deletion of Sema3a in these INs specifically affects laminar allocation of hINs. These data show that, in the neocortex, deep-layer INs control laminar allocation of hINs into superficial layers.
Collapse
|
38
|
The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Sci Rep 2020; 10:21516. [PMID: 33299078 PMCID: PMC7726139 DOI: 10.1038/s41598-020-78608-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.
Collapse
|
39
|
Garcia-Forn M, Boitnott A, Akpinar Z, De Rubeis S. Linking Autism Risk Genes to Disruption of Cortical Development. Cells 2020; 9:cells9112500. [PMID: 33218123 PMCID: PMC7698947 DOI: 10.3390/cells9112500] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder characterized by impairments in social communication and social interaction, and the presence of repetitive behaviors and/or restricted interests. In the past few years, large-scale whole-exome sequencing and genome-wide association studies have made enormous progress in our understanding of the genetic risk architecture of ASD. While showing a complex and heterogeneous landscape, these studies have led to the identification of genetic loci associated with ASD risk. The intersection of genetic and transcriptomic analyses have also begun to shed light on functional convergences between risk genes, with the mid-fetal development of the cerebral cortex emerging as a critical nexus for ASD. In this review, we provide a concise summary of the latest genetic discoveries on ASD. We then discuss the studies in postmortem tissues, stem cell models, and rodent models that implicate recently identified ASD risk genes in cortical development.
Collapse
Affiliation(s)
- Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Boitnott
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychology, College of Arts and Sciences, New York University, New York, NY 10003, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.G.-F.); (A.B.); (Z.A.)
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: ; Tel.: +1-212-241-0179
| |
Collapse
|
40
|
Murcia-Ramón R, Company V, Juárez-Leal I, Andreu-Cervera A, Almagro-García F, Martínez S, Echevarría D, Puelles E. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct Funct 2020; 225:2857-2869. [PMID: 33145610 PMCID: PMC7674375 DOI: 10.1007/s00429-020-02163-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
During the development of the central nervous system, the immature neurons suffer different migration processes. It is well known that Nkx2.1-positive ventricular layer give rise to critical tangential migrations into different regions of the developing forebrain. Our aim was to study this phenomenon in the hypothalamic region. With this purpose, we used a transgenic mouse line that expresses the tdTomato reporter driven by the promotor of Nkx2.1. Analysing the Nkx2.1-positive derivatives at E18.5, we found neural contributions to the prethalamic region, mainly in the zona incerta and in the mes-diencephalic tegmental region. We studied the developing hypothalamus along the embryonic period. From E10.5 we detected that the Nkx2.1 expression domain was narrower than the reporter distribution. Therefore, the Nkx2.1 expression fades in a great number of the early-born neurons from the Nkx2.1-positive territory. At the most caudal positive part, we detected a thin stream of positive neurons migrating caudally into the mes-diencephalic tegmental region using time-lapse experiments on open neural tube explants. Late in development, we found a second migratory stream into the prethalamic territory. All these tangentially migrated neurons developed a gabaergic phenotype. In summary, we have described the contribution of interneurons from the Nkx2.1-positive hypothalamic territory into two different rostrocaudal territories: the mes-diencephalic reticular formation through a caudal tangential migration and the prethalamic zona incerta complex through a dorsocaudal tangential migration.
Collapse
Affiliation(s)
- Raquel Murcia-Ramón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Verónica Company
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Iris Juárez-Leal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Abraham Andreu-Cervera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Francisca Almagro-García
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Diego Echevarría
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
41
|
Krienen FM, Goldman M, Zhang Q, C H Del Rosario R, Florio M, Machold R, Saunders A, Levandowski K, Zaniewski H, Schuman B, Wu C, Lutservitz A, Mullally CD, Reed N, Bien E, Bortolin L, Fernandez-Otero M, Lin JD, Wysoker A, Nemesh J, Kulp D, Burns M, Tkachev V, Smith R, Walsh CA, Dimidschstein J, Rudy B, S Kean L, Berretta S, Fishell G, Feng G, McCarroll SA. Innovations present in the primate interneuron repertoire. Nature 2020; 586:262-269. [PMID: 32999462 PMCID: PMC7957574 DOI: 10.1038/s41586-020-2781-z] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.
Collapse
Affiliation(s)
- Fenna M Krienen
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marta Florio
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert Machold
- NYU Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kirsten Levandowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather Zaniewski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Schuman
- NYU Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Carolyn Wu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alyssa Lutservitz
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher D Mullally
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nora Reed
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Bortolin
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marian Fernandez-Otero
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica D Lin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Kulp
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monika Burns
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Richard Smith
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Leslie S Kean
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sabina Berretta
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Gord Fishell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
42
|
Subburaju S, Kaye S, Choi YK, Baruah J, Datta D, Ren J, Kumar AS, Szabo G, Fukumura D, Jain RK, Elkhal A, Vasudevan A. NAD +-mediated rescue of prenatal forebrain angiogenesis restores postnatal behavior. SCIENCE ADVANCES 2020; 6:6/41/eabb9766. [PMID: 33036972 PMCID: PMC7546698 DOI: 10.1126/sciadv.abb9766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Intrinsic defects within blood vessels from the earliest developmental time points can directly contribute to psychiatric disease origin. Here, we show that nicotinamide adenine dinucleotide (NAD+), administered during a critical window of prenatal development, in a mouse model with dysfunctional endothelial γ-aminobutyric acid type A (GABAA) receptors (Gabrb3 endothelial cell knockout mice), results in a synergistic repair of impaired angiogenesis and normalization of brain development, thus preventing the acquisition of abnormal behavioral symptoms. The prenatal NAD+ treatment stimulated extensive cellular and molecular changes in endothelial cells and restored blood vessel formation, GABAergic neuronal development, and forebrain morphology by recruiting an alternate pathway for cellular repair, via previously unknown transcriptional mechanisms and purinergic receptor signaling. Our findings illustrate a novel and powerful role for NAD+ in sculpting prenatal brain development that has profound implications for rescuing brain blood flow in a permanent and irreversible manner, with long-lasting consequences for mental health outcome.
Collapse
Affiliation(s)
- Sivan Subburaju
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Sarah Kaye
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Yong Kee Choi
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jugajyoti Baruah
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Debkanya Datta
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- Division of Basic Neuroscience, McLean Hospital, 115 Mill Street, Belmont, MA, 02478, USA
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ashwin Srinivasan Kumar
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabor Szabo
- Institute of Experimental Medicine, Medical Gene Technology Unit, 1083 Budapest, Hungary
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Abdallah Elkhal
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Division of Transplantation, Brigham and Women's Hospital, 221 Longwood Avenue, EBRC 309, Boston, MA 02115, USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Huntington Medical Research Institutes (HMRI), 686 S Fair Oaks Avenue, Pasadena, CA 91105, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
43
|
Liu Z, Zhang Z, Lindtner S, Li Z, Xu Z, Wei S, Liang Q, Wen Y, Tao G, You Y, Chen B, Wang Y, Rubenstein JL, Yang Z. Sp9 Regulates Medial Ganglionic Eminence-Derived Cortical Interneuron Development. Cereb Cortex 2020; 29:2653-2667. [PMID: 29878134 DOI: 10.1093/cercor/bhy133] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/06/2018] [Indexed: 11/12/2022] Open
Abstract
Immature neurons generated by the subpallial MGE tangentially migrate to the cortex where they become parvalbumin-expressing (PV+) and somatostatin (SST+) interneurons. Here, we show that the Sp9 transcription factor controls the development of MGE-derived cortical interneurons. SP9 is expressed in the MGE subventricular zone and in MGE-derived migrating interneurons. Sp9 null and conditional mutant mice have approximately 50% reduction of MGE-derived cortical interneurons, an ectopic aggregation of MGE-derived neurons in the embryonic ventral telencephalon, and an increased ratio of SST+/PV+ cortical interneurons. RNA-Seq and SP9 ChIP-Seq reveal that SP9 regulates MGE-derived cortical interneuron development through controlling the expression of key transcription factors Arx, Lhx6, Lhx8, Nkx2-1, and Zeb2 involved in interneuron development, as well as genes implicated in regulating interneuron migration Ackr3, Epha3, and St18. Thus, Sp9 has a central transcriptional role in MGE-derived cortical interneuron development.
Collapse
Affiliation(s)
- Zhidong Liu
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Susan Lindtner
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhenmeiyu Li
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Song Wei
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qifei Liang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Wen
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxu Tao
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan You
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Yanling Wang
- Department of Neurological Sciences, Rush University Medical Center, Rush University, Chicago, IL, USA
| | - John L Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology, Department of Neurology, Institutes of Brain Science, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020; 145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually starts during midlife with progressive alterations of motor and cognitive functions. The disease is caused by a CAG repeat expansion within the huntingtin gene leading to severe striatal neurodegeneration. Recent studies conducted on pre-HD children highlight early striatal developmental alterations starting as soon as 6 years old, the earliest age assessed. These findings, in line with data from mouse models of HD, raise the questions of when during development do the first disease-related striatal alterations emerge and whether they contribute to the later appearance of the neurodegenerative features of the disease. In this review we will describe the different stages of striatal network development and then discuss recent evidence for its alterations in rodent models of the disease. We argue that a better understanding of the striatum's development should help in assessing aberrant neurodevelopmental processes linked to the HD mutation.
Collapse
Affiliation(s)
- Margaux Lebouc
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Quentin Richard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Maurice Garret
- Université de Bordeaux, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
45
|
Fitzgerald M, Sotuyo N, Tischfield DJ, Anderson SA. Generation of cerebral cortical GABAergic interneurons from pluripotent stem cells. Stem Cells 2020; 38:1375-1386. [PMID: 32638460 DOI: 10.1002/stem.3252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 11/11/2022]
Abstract
The cerebral cortex functions by the complex interactions of intrinsic and extrinsic neuronal activities, glial actions, and the effects of humoral factors. The intrinsic neuronal influences are mediated by two major subclasses: excitatory glutamatergic neurons that generally have axonal projections extending beyond the neuron's locality and inhibitory GABAergic neurons that generally project locally. These interneurons can be grouped based on morphological, neurochemical, electrophysiological, axonal targeting, and circuit influence characteristics. Cortical interneurons (CIns) can also be grouped based on their origins within the subcortical telencephalon. Interneuron subtypes, of which a dozen or more are thought to exist, are characterized by combinations of these subgrouping features. Due to their well-documented relevance to the causes of and treatments for neuropsychiatric disorders, and to their remarkable capacity to migrate extensively following transplantation, there has been tremendous interest in generating cortical GABAergic interneurons from human pluripotent stem cells. In this concise review, we discuss recent progress in understanding how interneuron subtypes are generated in vivo, and how that progress is being applied to the generation of rodent and human CIns in vitro. In addition, we will discuss approaches for the rigorous designation of interneuron subgroups or subtypes in transplantation studies, and challenges to this field, including the protracted maturation of human interneurons.
Collapse
Affiliation(s)
- Megan Fitzgerald
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nathaniel Sotuyo
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Tischfield
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Stewart A Anderson
- The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Göngrich C, Krapacher FA, Munguba H, Fernández-Suárez D, Andersson A, Hjerling-Leffler J, Ibáñez CF. ALK4 coordinates extracellular and intrinsic signals to regulate development of cortical somatostatin interneurons. J Cell Biol 2020; 219:jcb.201905002. [PMID: 31676717 PMCID: PMC7039195 DOI: 10.1083/jcb.201905002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/03/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Göngrich et al. show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. They find that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification. Although the role of transcription factors in fate specification of cortical interneurons is well established, how these interact with extracellular signals to regulate interneuron development is poorly understood. Here we show that the activin receptor ALK4 is a key regulator of the specification of somatostatin interneurons. Mice lacking ALK4 in GABAergic neurons of the medial ganglionic eminence (MGE) showed marked deficits in distinct subpopulations of somatostatin interneurons from early postnatal stages of cortical development. Specific losses were observed among distinct subtypes of somatostatin+/Reelin+ double-positive cells, including Hpse+ layer IV cells targeting parvalbumin+ interneurons, leading to quantitative alterations in the inhibitory circuitry of this layer. Activin-mediated ALK4 signaling in MGE cells induced interaction of Smad2 with SATB1, a transcription factor critical for somatostatin interneuron development, and promoted SATB1 nuclear translocation and repositioning within the somatostatin gene promoter. These results indicate that intrinsic transcriptional programs interact with extracellular signals present in the environment of MGE cells to regulate cortical interneuron specification.
Collapse
Affiliation(s)
| | | | - Hermany Munguba
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | - Annika Andersson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Carlos F Ibáñez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Physiology, National University of Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore.,Stellenbosch Institute for Advanced Study, Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
47
|
Fazzari P, Mortimer N, Yabut O, Vogt D, Pla R. Cortical distribution of GABAergic interneurons is determined by migration time and brain size. Development 2020; 147:dev.185033. [PMID: 32586977 DOI: 10.1242/dev.185033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/15/2020] [Indexed: 11/20/2022]
Abstract
Cortical interneurons (CINs) originate in the ganglionic eminences (GEs) and migrate tangentially to the cortex guided by different attractive and repulsive cues. Once inside the cortex, the cellular and molecular mechanisms determining the migration of CINs along the rostrocaudal axis are less well understood. Here, we investigated the cortical distribution of CINs originating in the medial and caudal GEs at different time points. Using molecular and genetic labeling, we showed that, in the mouse, early- and late-born CINs (E12 versus E15) are differentially distributed along the rostrocaudal axis. Specifically, late-born CINs are preferentially enriched in cortical areas closer to their respective sites of origin in the medial or caudal GE. Surprisingly, our in vitro experiments failed to show a preferential migration pattern along the rostrocaudal axis for medial- or caudal-born CINs. Moreover, in utero transplantation experiments suggested that the rostrocaudal dispersion of CINs depends on the developmental stage of the host brain and is limited by the migration time and the increasing size of the developing brain. These data suggest that the embryonic expansion of the cortex contributes to the rostrocaudal distribution of CINs.
Collapse
Affiliation(s)
- Pietro Fazzari
- Laboratory of Cortical Circuits in Health and Disease, CIPF Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Niall Mortimer
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97070 Würzburg, Germany.,Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.,Department of Psychiatry, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain
| | - Odessa Yabut
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA.,Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Ramon Pla
- Department of Psychiatry, Neuroscience Program and the Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA 94158, USA .,Instituto de investigación en discapacidades neurológicas (IDINE), University of Castile-la-Mancha, 02006 Albacete, Spain
| |
Collapse
|
48
|
Mancia Leon WR, Spatazza J, Rakela B, Chatterjee A, Pande V, Maniatis T, Hasenstaub AR, Stryker MP, Alvarez-Buylla A. Clustered gamma-protocadherins regulate cortical interneuron programmed cell death. eLife 2020; 9:e55374. [PMID: 32633719 PMCID: PMC7373431 DOI: 10.7554/elife.55374] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/06/2020] [Indexed: 01/19/2023] Open
Abstract
Cortical function critically depends on inhibitory/excitatory balance. Cortical inhibitory interneurons (cINs) are born in the ventral forebrain and migrate into cortex, where their numbers are adjusted by programmed cell death. Here, we show that loss of clustered gamma protocadherins (Pcdhg), but not of genes in the alpha or beta clusters, increased dramatically cIN BAX-dependent cell death in mice. Surprisingly, electrophysiological and morphological properties of Pcdhg-deficient and wild-type cINs during the period of cIN cell death were indistinguishable. Co-transplantation of wild-type with Pcdhg-deficient interneuron precursors further reduced mutant cIN survival, but the proportion of mutant and wild-type cells undergoing cell death was not affected by their density. Transplantation also allowed us to test for the contribution of Pcdhg isoforms to the regulation of cIN cell death. We conclude that Pcdhg, specifically Pcdhgc3, Pcdhgc4, and Pcdhgc5, play a critical role in regulating cIN survival during the endogenous period of programmed cIN death.
Collapse
Affiliation(s)
- Walter R Mancia Leon
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Julien Spatazza
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Benjamin Rakela
- Department of Physiology and Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Ankita Chatterjee
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Viraj Pande
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia UniversityNew YorkUnited States
| | - Andrea R Hasenstaub
- Department of Otolaryngology-Head and Neck Surgery, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Michael P Stryker
- Department of Physiology and Center for Integrative Neuroscience, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
- Kavli Institute for Fundamental Neuroscience, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
49
|
Symmank J, Gölling V, Gerstmann K, Zimmer G. The Transcription Factor LHX1 Regulates the Survival and Directed Migration of POA-derived Cortical Interneurons. Cereb Cortex 2020; 29:1644-1658. [PMID: 29912395 DOI: 10.1093/cercor/bhy063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/17/2022] Open
Abstract
The delicate balance of excitation and inhibition is crucial for proper function of the cerebral cortex, relying on the accurate number and subtype composition of inhibitory gamma-aminobutyric (GABA)-expressing interneurons. Various intrinsic and extrinsic factors precisely orchestrate their multifaceted development including the long-range migration from the basal telencephalon to cortical targets as well as interneuron survival throughout the developmental period. Particularly expressed guidance receptors were described to channel the migration of cortical interneurons deriving from the medial ganglionic eminence (MGE) and the preoptic area (POA) along distinct routes. Hence, unveiling the regulatory genetic networks controlling subtype-specific gene expression profiles is key to understand interneuron-specific developmental programs and to reveal causes for associated disorders. In contrast to MGE-derived interneurons, little is known about the transcriptional networks in interneurons born in the POA. Here, we provide first evidence for the LIM-homeobox transcription factor LHX1 as a crucial key player in the post-mitotic development of POA-derived cortical interneurons. By transcriptional regulation of related genes, LHX1 modulates their survival as well as the subtype-specific expression of guidance receptors of the Eph/ephrin family, thereby affecting directional migration and layer distribution in the adult cortex.
Collapse
Affiliation(s)
- Judit Symmank
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Vanessa Gölling
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Katrin Gerstmann
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
| |
Collapse
|
50
|
Remesal L, Roger-Baynat I, Chirivella L, Maicas M, Brocal-Ruiz R, Pérez-Villalba A, Cucarella C, Casado M, Flames N. PBX1 acts as terminal selector for olfactory bulb dopaminergic neurons. Development 2020; 147:dev.186841. [PMID: 32156753 DOI: 10.1242/dev.186841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/24/2020] [Indexed: 02/03/2023]
Abstract
Neuronal specification is a protracted process that begins with the commitment of progenitor cells and culminates with the generation of mature neurons. Many transcription factors are continuously expressed during this process but it is presently unclear how these factors modify their targets as cells transition through different stages of specification. In olfactory bulb adult neurogenesis, the transcription factor PBX1 controls neurogenesis in progenitor cells and the survival of migrating neuroblasts. Here, we show that, at later differentiation stages, PBX1 also acts as a terminal selector for the dopaminergic neuron fate. PBX1 is also required for the morphological maturation of dopaminergic neurons and to repress alternative interneuron fates, findings that expand the known repertoire of terminal-selector actions. Finally, we reveal that the temporal diversification of PBX1 functions in neuronal specification is achieved, at least in part, through the dynamic regulation of alternative splicing. In Caenorhabditis elegans, PBX/CEH-20 also acts as a dopaminergic neuron terminal selector, which suggests an ancient role for PBX factors in the regulation of terminal differentiation of dopaminergic neurons.
Collapse
Affiliation(s)
- Laura Remesal
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Isabel Roger-Baynat
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Laura Chirivella
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Miren Maicas
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Rebeca Brocal-Ruiz
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Ana Pérez-Villalba
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), and Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Burjassot, Spain
| | - Carme Cucarella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III (ISCIII), Metabolic Experimental Pathology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia, IBV-CSIC, 46010 Valencia, Spain
| |
Collapse
|