1
|
Volkmann P, Geiger AEI, Hühne-Landgraf A, Miljanovic N, Bly J, Engl T, Potschka H, Rossner MJ, Landgraf D. Integrity of the circadian clock determines regularity of high-frequency and diurnal LFP rhythms within and between brain areas. Mol Psychiatry 2025; 30:1859-1875. [PMID: 39472662 PMCID: PMC12015176 DOI: 10.1038/s41380-024-02795-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 04/24/2025]
Abstract
Circadian clocks control most physiological processes of many species. We specifically wanted to investigate the influence of environmental and endogenous rhythms and their interplay on electrophysiological dynamics of neuronal populations. Therefore, we measured local field potential (LFP) time series in wild-type and Cryptochrome 1 and 2 deficient (Cry1/2-/-) mice in the suprachiasmatic nucleus and the nucleus accumbens under regular light conditions and constant darkness. Using refined descriptive and statistical analyses, we systematically profiled LFP time series activity. We show that both environmental and endogenous rhythms strongly influence the rhythmicity of LFP signals and their frequency components, but also shape neuronal patterns on much smaller time scales, as neuronal activity in Cry1/2-/- mice is significantly less regular but at each time more synchronous within and between brain areas than in wild-type mice. These results show that functional circadian rhythms are integral for both circadian and non-circadian coordination of neuronal ensemble dynamics.
Collapse
Affiliation(s)
- Paul Volkmann
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany.
- Molecular Neurobiology Group, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany.
- Centre for Neural Circuits and Behaviour, University of Oxford, OX1 3SR, Oxford, UK.
| | - Annika E I Geiger
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Anisja Hühne-Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, LMU, 80539, Munich, Germany
| | - Jessica Bly
- Molecular Neurobiology Group, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Tobias Engl
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, LMU, 80539, Munich, Germany
| | - Moritz J Rossner
- Molecular Neurobiology Group, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
- Systasy Bioscience GmbH, 81669, Munich, Germany
| | - Dominic Landgraf
- Circadian Biology Group, Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, 80336, Munich, Germany
| |
Collapse
|
2
|
Meyerolbersleben LS, Sirota A, Busse L. Anatomically resolved oscillatory bursts reveal dynamic motifs of thalamocortical activity during naturalistic stimulus viewing. Neuron 2025:S0896-6273(25)00250-8. [PMID: 40252643 DOI: 10.1016/j.neuron.2025.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/02/2025] [Accepted: 03/25/2025] [Indexed: 04/21/2025]
Abstract
Natural vision requires circuit mechanisms which process complex spatiotemporal stimulus features in parallel. In the mammalian forebrain, one signature of circuit activation is fast oscillatory dynamics, reflected in the local field potential (LFP). Using data from the Allen Neuropixels Visual Coding project, we show that local visual features in naturalistic stimuli induce in mouse primary visual cortex (V1) retinotopically specific oscillations in various frequency bands and V1 layers. Specifically, layer 4 (L4) narrowband gamma was linked to luminance, low-gamma to optic flow, and L4/L5 epsilon oscillations to contrast. These feature-specific oscillations were associated with distinct translaminar spike-phase coupling patterns, which were conserved across a range of stimuli containing the relevant visual features, suggesting that they might constitute feature-specific circuit motifs. Our findings highlight visually induced fast oscillations as markers of dynamic circuit motifs, which may support differential and multiplexed coding of complex visual input and thalamocortical information propagation.
Collapse
Affiliation(s)
- Lukas Sebastian Meyerolbersleben
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences (GSN), LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anton Sirota
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience, 82152 Planegg-Martinsried, Germany.
| | - Laura Busse
- Division of Neurobiology, Faculty of Biology, LMU Munich, 82152 Planegg-Martinsried, Germany; Bernstein Center for Computational Neuroscience, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
3
|
Aliramezani M, Singh B, Constantinidis C, Daliri MR. Low-frequency local field potentials reveal integration of spatial and non-spatial information in prefrontal cortex. Neuroimage 2025; 310:121172. [PMID: 40147602 DOI: 10.1016/j.neuroimage.2025.121172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025] Open
Abstract
The prefrontal cortex (PFC) is critical for various aspects of executive functions, particularly working memory. The debate over whether the dorsal and ventral PFC should be viewed as unitary or heterogeneous in working memory has been ongoing. This study explored the specialization of the posterior dorsal, medial dorsal, and posterior ventral subdivisions of the lateral PFC in two macaque monkeys, focusing on the processing of the location and shape of stimuli during working memory tasks. In contrast to previous studies that focused on spike activity analysis, this article employed local field potential (LFP) power analysis. Results revealed that during the working memory periods, both the dorsal and ventral PFC exhibited significantly higher LFP power for feature stimuli compared to spatial stimuli in the low-frequency bands (∼2-23 Hz). Additionally, the impact of matching versus non-matching stimuli was consistent with repetition suppression in the medial dorsal and posterior ventral regions during the working memory period within the same frequency range. The major modulation of LFP power linked to incorrect decisions made by the monkeys was a sharp reduction in low-frequency LFP power. The similar LFP power patterns in the PFC subdivisions for spatial and feature stimuli throughout the analysis suggested that spatial and non-spatial inputs are integrated by the PFC, revealed by the low-frequency components of the LFP.
Collapse
Affiliation(s)
- Mohammad Aliramezani
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Balbir Singh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Mohammad Reza Daliri
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Neuroscience & Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran, Iran; Lead Contact, Iran.
| |
Collapse
|
4
|
Cooray GK, Cooray V, Friston KJ. Cortical dynamics of neural-connectivity fields. J Comput Neurosci 2025:10.1007/s10827-025-00903-8. [PMID: 40208381 DOI: 10.1007/s10827-025-00903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Macroscopic studies of cortical tissue reveal a prevalence of oscillatory activity, that reflect a fine tuning of neural interactions. This research extends neural field theories by incorporating generalized oscillatory dynamics into previous work on conservative or semi-conservative neural field dynamics. Prior studies have largely assumed isotropic connections among neural units; however, this study demonstrates that a broad range of anisotropic and fluctuating connections can still sustain oscillations. Using Lagrangian field methods, we examine different types of connectivity, their dynamics, and potential interactions with neural fields. From this theoretical foundation, we derive a framework that incorporates Hebbian and non-Hebbian learning - i.e., plasticity - into the study of neural fields via the concept of a connectivity field.
Collapse
Affiliation(s)
- Gerald K Cooray
- Clinical Neuroscience, Karolinska Institutet, Eugeniav, 17177, Stockholm, Sweden.
| | - Vernon Cooray
- Angstrom Laboratory, Uppsala University, Lägerhyddsv 1, 752 37, Uppsala, Sweden
| | - Karl J Friston
- Functional Imaging Laboratory at Queens Square Institute of Neurology, University College London, 12 Queens Square, London, WC1N 3AR, UK
| |
Collapse
|
5
|
Yan S, Huang N, Tong Y, Shu Y, Le Q, Ta D, Xu K. Functional Ultrasound Imaging of Cocaine Induced Brain-Wide Neurovascular Response. Neuroimage 2025; 309:121085. [PMID: 39952487 DOI: 10.1016/j.neuroimage.2025.121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025] Open
Abstract
Extensive studies have reported that cocaine can lead to potent reduction in cerebral blood flow. However, the mechanisms of the cocaine's impact on the neural and vascular system of brain in temporal and spatial aspects remain elusive. Functional ultrasound (fUS) is a novel neurovascular imaging modality acclaimed for its deep penetration, superior spatiotemporal resolution, and high sensitivity to small blood flow dynamics. This study aims to use fUS technique to characterize the regional differences in hemodynamic responses to acute cocaine administration. The CBV responses revealed that the cortex and ventral tegmental area (VTA) were the regions most significantly affected by cocaine. In addition, electroencephalography (EEG) was also utilized to assess the neural activities in the cortex and VTA. In the cortex, the observed CBV changes responded more rapidly to cocaine than local field potential (LFP) activities, indicating that prior to acting on the central nervous system, cocaine may first affect the peripheral nervous system, accelerating heart rate and increasing cardiac output. Both hemodynamic and neural responses showed opposing patterns between cortical and VTA brain regions. Based on these observations, we proposed a two-stage hypothesis to explain acute cocaine's multifaceted impact on the brain. This study underscores the efficacy of fUS as a powerful and sensitive tool for tracking cocaine-induced hemodynamic changes and enhances our understanding of cocaine's effects on the neurovascular system.
Collapse
Affiliation(s)
- Shaoyuan Yan
- Department of Biomedical Engineering, Fudan University, Shanghai 200438, China
| | - Nan Huang
- School of Basic Medical Sciences, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yusheng Tong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yousheng Shu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Department of Neurology, Huashan Hospital, Institute for Translational Brain Research, Fudan University, Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medical Sciences, Institutes of Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Dean Ta
- Department of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| | - Kailiang Xu
- Department of Biomedical Engineering, Fudan University, Shanghai 200438, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China; Poda Medical Technology Co., Ltd., Shanghai 200433, China.
| |
Collapse
|
6
|
Vázquez Y, Ianni GR, Rassi E, Rouse AG, Schieber MH, Yazdani F, Prut Y, Freiwald WA. Neural Synchrony Links Sensorimotor Cortices in a Network for Facial Motor Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641458. [PMID: 40166314 PMCID: PMC11956989 DOI: 10.1101/2025.03.04.641458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Primate societies rely on the production and interpretation of social signals, in particular those displayed by the face. Facial movements are controlled, according to the dominant neuropsychological schema, by two separate circuits, one originating in medial frontal cortex controlling emotional expressions, and a second one originating in lateral motor and premotor areas controlling voluntary facial movements. Despite this functional dichotomy, cortical anatomy suggests that medial and lateral areas are directly connected and may thus operate as a single network. Here we test these contrasting hypotheses through structural and functional magnetic resonance imaging (fMRI) guided electrical stimulation and simultaneous multi-channel recordings from key face motor areas in the macaque monkey brain. These areas include medial face motor area M3 (located in the anterior cingulate cortex); two lateral face-related motor areas: M1 (primary motor) and PMv (ventrolateral premotor); and S1 (primary somatosensory cortex). Cortical responses evoked by intracortical stimulation revealed that medial and lateral areas can exert significant functional impact on each other. Simultaneous recordings of local field potentials in all face motor areas further confirm that during facial expressions, medial and lateral face motor areas significantly interact, primarily in the alpha and beta frequency ranges. These functional interactions varied across different types of facial movements. Thus, contrary to the dominant neuropsychological dogma, control of facial movements is not mediated through independent (medial/lateral) functional streams, but results from an extensive interacting sensorimotor network.
Collapse
Affiliation(s)
- Yuriria Vázquez
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY, USA
| | - Geena R. Ianni
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
- Hospital of the University of Pennsylvania, Department of Medicine, Philadelphia, PA, USA
| | - Elie Rassi
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychology and Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Adam G. Rouse
- Department of Neurosurgery, Department of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marc H. Schieber
- University of Rochester Medical Center, Rochester, New York, USA
| | - Faraz Yazdani
- Laboratory of Neural Systems, The Rockefeller University, New York, NY, USA
| | - Yifat Prut
- Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
7
|
Gabhart KM, Xiong YS, Bastos AM. Predictive coding: a more cognitive process than we thought? Trends Cogn Sci 2025:S1364-6613(25)00030-0. [PMID: 39984365 DOI: 10.1016/j.tics.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/23/2025]
Abstract
In predictive coding (PC), higher-order brain areas generate predictions that are sent to lower-order sensory areas. Top-down predictions are compared with bottom-up sensory data, and mismatches evoke prediction errors. In PC, the prediction errors are encoded in layer 2/3 pyramidal neurons of sensory cortex that feed forward. The PC model has been tested with multiple recording modalities using the global-local oddball paradigm. Consistent with PC, neuroimaging studies reported prediction error responses in sensory and higher-order areas. However, recent studies of neuronal spiking suggest that genuine prediction errors emerge in prefrontal cortex (PFC). This implies that predictive processing is a more cognitive than sensory-based mechanism - an observation that challenges PC and better aligns with a framework we call predictive routing (PR).
Collapse
Affiliation(s)
| | | | - André M Bastos
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
8
|
Valencia D, Mercier PP, Alimohammad A. An Efficient Brain-Switch for Asynchronous Brain-Computer Interfaces. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2025; 19:130-141. [PMID: 38700963 DOI: 10.1109/tbcas.2024.3396115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Intracortical brain computer interfaces (iBCIs) utilizing extracellular recordings mainly employ in vivo signal processing application-specific integrated circuits (ASICs) to detect action potentials (spikes). Conventionally, "brain-switches" based on spiking activity have been employed to realize asynchronous (self-paced) iBCIs, estimating when the user involves in the underlying BCI task. Several studies have demonstrated that local field potentials (LFPs) can effectively replace action potentials, drastically reducing the power consumption and processing requirements of in vivo ASICs. This article presents the first LFP-based brain-switch design and implementation using gated recurrent neural networks (RNNs). Compared to the previously reported brain-switches, our design requires no exhaustive learning phase for the estimation of optimal recording channels or frequency band selection, making it more applicable to practical asynchronous iBCIs. The synthesized ASIC of the designed in vivo LFP-based feature extraction unit, in a standard 180-nm CMOS process, occupies only 0.09 mm of silicon area, and the post place-and-route synthesis results indicate that it consumes 91.87 nW of power while operating at 2 kHz. Compared to the previously published ASICs, the proposed LFP-based brain-switch consumes the least power for in vivo digital signal processing and achieves comparable state estimation performance to that of spike-based brain-switches.
Collapse
|
9
|
Liao B, Gong Q, Sun X, Liu H, Deng H, Cui Y, Yu S, Yang X, Guo D, Xia Y, Yao D, Chen K. Context-dependent orientation discontinuity encoding by gamma rhythms in mouse primary visual cortex. J Physiol 2024; 602:6959-6972. [PMID: 39580710 DOI: 10.1113/jp286936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 11/26/2024] Open
Abstract
Through the modulation of its surround, an identical visual stimulus can be perceived as more or less salient, allowing it to either stand out or seamlessly integrate with the rest of the visual scene. Gamma rhythms are associated with processing stimulus features across extensive areas of the visual field. Consistent with this concept, the magnitude of visually induced gamma rhythm depends on how well stimulus features aligned both within and outside the classical receptive field (CRF) at the recording site. However, there still exists some uncertainty regarding the encoding of context-modulated orientation discontinuity by gamma rhythms. To address this concern, we conducted extracellular recordings in layers II/III and IV of area V1 using lightly anaesthetized mice to investigate the gamma tuning for stimuli with orientation discontinuity. Our study revealed that gamma rhythms exhibit a preference for stimuli with orientation discontinuity similar to the spiking responses observed in V1, which contradicts the findings of previous studies. Furthermore, the gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning and a positive correlation with the strength of surround suppression. Therefore, our study suggests a close association between gamma tuning and nearby spiking tuning; additionally, it highlights the connection between the encoding of visual features by gamma rhythms and functional architecture, as well as neural signal integration. KEY POINTS: Visual context modulates the gamma rhythms in the primary visual cortex. Discontinuous orientation elicits significantly enhanced gamma rhythms compared to the iso-orientation stimulus. The gamma tuning of discontinuous orientations exhibits a moderate correlation with spike tuning. Gamma tuning of orientation discontinuity exhibits a positive correlation with the strength of surround suppression.
Collapse
Affiliation(s)
- Baitao Liao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiang Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaxin Sun
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haolun Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Haoran Deng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Cui
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Shuang Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaotong Yang
- Department of Cardiology, Guizhou Provincial Peoples Hospital, Guiyang, China
| | - Daqing Guo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yang Xia
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences (2019RU035), University of Electronic Science and Technology of China, Chengdu, China
| | - Ke Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences (2019RU035), University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
10
|
Cattani A, Arnold DB, McCarthy M, Kopell N. Basolateral amygdala oscillations enable fear learning in a biophysical model. eLife 2024; 12:RP89519. [PMID: 39590510 PMCID: PMC11594530 DOI: 10.7554/elife.89519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3-6 Hz), high theta (~6-12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.
Collapse
Affiliation(s)
- Anna Cattani
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| | - Don B Arnold
- Department of Biology, University of Southern CaliforniaLos AngelesUnited States
| | - Michelle McCarthy
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| | - Nancy Kopell
- Department of Mathematics and Statistics, Boston UniversityBostonUnited States
| |
Collapse
|
11
|
Bai D, Hu J, Jülich S, Lei X. Impact of sleep deprivation on aperiodic activity: a resting-state EEG study. J Neurophysiol 2024; 132:1577-1588. [PMID: 39412560 DOI: 10.1152/jn.00304.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Sleep deprivation (SD) has been shown to have a negative impact on alertness, as evidenced by behavioral and electroencephalographic studies. Nevertheless, in prior studies utilizing conventional fixed-bandwidth spectral analysis the aperiodic and periodic components were often confused, and some important periodic parameters (i.e., center frequency, bandwidth) were ignored. Here, based on a large open-access dataset of SD, we employed a standardized process for multiple-electrode analysis and group inference. We found that, compared to the healthy sleep control state (SC), the aperiodic offset shifted overall after SD, primarily in the occipital region. This shift was associated with a reduction in subjective alertness. Regarding periodic components, we did not find any power change in the alpha rhythm, but there was an increase in bandwidth of alpha within different regions distributed in the occipital and temporal lobes. These findings highlight the potential significance and value of aperiodic parameters in behavioral and electrophysiological research.NEW & NOTEWORTHY Aperiodic and periodic components were separated in a large open-access EEG dataset of sleep deprivation. Aperiodic offsets increase after deprivation, particularly in the occipital region, reflecting a decline in self-reported vigilance. Parameterized alpha bandwidth, which was ignored in previous studies, is found to be relevant to sleep deprivation. Increase in bandwidth of alpha was focused in the occipital and temporal lobes.
Collapse
Affiliation(s)
- Duo Bai
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Jingyi Hu
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Simon Jülich
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China
| |
Collapse
|
12
|
Senk J, Hagen E, van Albada SJ, Diesmann M. Reconciliation of weak pairwise spike-train correlations and highly coherent local field potentials across space. Cereb Cortex 2024; 34:bhae405. [PMID: 39462814 PMCID: PMC11513197 DOI: 10.1093/cercor/bhae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
Multi-electrode arrays covering several square millimeters of neural tissue provide simultaneous access to population signals such as extracellular potentials and spiking activity of one hundred or more individual neurons. The interpretation of the recorded data calls for multiscale computational models with corresponding spatial dimensions and signal predictions. Multi-layer spiking neuron network models of local cortical circuits covering about $1\,{\text{mm}^{2}}$ have been developed, integrating experimentally obtained neuron-type-specific connectivity data and reproducing features of observed in-vivo spiking statistics. Local field potentials can be computed from the simulated spiking activity. We here extend a local network and local field potential model to an area of $4\times 4\,{\text{mm}^{2}}$, preserving the neuron density and introducing distance-dependent connection probabilities and conduction delays. We find that the upscaling procedure preserves the overall spiking statistics of the original model and reproduces asynchronous irregular spiking across populations and weak pairwise spike-train correlations in agreement with experimental recordings from sensory cortex. Also compatible with experimental observations, the correlation of local field potential signals is strong and decays over a distance of several hundred micrometers. Enhanced spatial coherence in the low-gamma band around $50\,\text{Hz}$ may explain the recent report of an apparent band-pass filter effect in the spatial reach of the local field potential.
Collapse
Affiliation(s)
- Johanna Senk
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Sussex AI, School of Engineering and Informatics, University of Sussex, Chichester, Falmer, Brighton BN1 9QJ, United Kingdom
| | - Espen Hagen
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, and Division of Mental Health and Addiction, Oslo University Hospital, Ullevål Hospital, 0424 Oslo, Norway
| | - Sacha J van Albada
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- Institute of Zoology, University of Cologne, Zülpicher Str., 50674 Cologne, Germany
| | - Markus Diesmann
- Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich, Germany
- JARA-Institute Brain Structure-Function Relationships (INM-10), Jülich Research Centre, Wilhelm-Johnen-Str., 52428 Jülich Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Pauwelsstr., 52074 Aachen, Germany
- Department of Physics, Faculty 1, RWTH Aachen University, Otto-Blumenthal-Str., 52074 Aachen, Germany
| |
Collapse
|
13
|
Davis ZW, Busch A, Steward C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. Cell Rep 2024; 43:114707. [PMID: 39243374 PMCID: PMC11485754 DOI: 10.1016/j.celrep.2024.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024] Open
Abstract
Intrinsic cortical activity forms traveling waves that modulate sensory-evoked responses and perceptual sensitivity. These intrinsic traveling waves (iTWs) may arise from the coordination of synaptic activity through long-range feature-dependent horizontal connectivity within cortical areas. In a spiking network model that incorporates feature-selective patchy connections, we observe iTW motifs that result from shifts in excitatory/inhibitory balance as action potentials traverse these patchy connections. To test whether feature-selective motifs occur in vivo, we examined data recorded in the middle temporal visual area (Area MT) of marmosets performing a visual detection task. We find that some iTWs form motifs that are feature selective, exhibiting direction-selective modulations in spiking activity. Further, motifs modulate the gain of target-evoked responses and perceptual sensitivity if the target matches the preference of the motif. These results suggest that iTWs are shaped by the patchy horizontal fiber projections in the cortex and can regulate neural and perceptual sensitivity in a feature-selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; John Moran Eye Center, Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84112, USA.
| | - Alexandra Busch
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Christopher Steward
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON N6A 3K7, Canada; Brain and Mind Institute, Western University, London, ON N6A 3K7, Canada
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Stangler LA, Chang SY, Kim I, Choi J, Kouzani AZ, Bennet KE, Burns TC, Van Gompel JJ, Worrell GA, Howe CL. Defining the Spatial Resolution of Analyte Recovery during Microperfusion-Based Sampling of Brain Parenchyma. ACS Chem Neurosci 2024; 15:3220-3227. [PMID: 39155540 PMCID: PMC11378288 DOI: 10.1021/acschemneuro.4c00410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
The unique architecture of the brain and the blood-brain barrier imposes challenges for the measurement of parenchyma-derived biomarkers that prevent sufficient understanding of transient neuropathogenic processes. One solution to this challenge is direct sampling of brain interstitial fluid via implanted microperfusion probes. Seeking to understand spatial limitations to microperfusion in the brain, we employed computational fluid dynamics modeling and empirical recovery of fluorescently labeled dextrans in an animal model. We found that dextrans were successfully recovered via microperfusion over a 6 h sampling period, especially at probes implanted 2 mm from the dextran infusion point relative to probes implanted 5 mm from the injection site. Experimental recovery was consistently around 1% of simulated, suggesting that this parameter can be used to set practical limits on the maximal tissue concentration of proteins measured in microperfusates and on the spatial domain sampled by our multimodal microperfusion probe.
Collapse
Affiliation(s)
- Luke A Stangler
- School
of Engineering, Deakin University, Geelong, Victoria 3216, Australia
- Division
of Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Su-Youne Chang
- Department
of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Inyong Kim
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jonghoon Choi
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Abbas Z Kouzani
- School
of Engineering, Deakin University, Geelong, Victoria 3216, Australia
| | - Kevin E. Bennet
- Division
of Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Terry C Burns
- Department
of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Jamie J Van Gompel
- Department
of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Gregory A Worrell
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Charles L Howe
- Department
of Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Division
of Experimental Neurology, Mayo Clinic, Rochester, Minnesota 55905, United States
| |
Collapse
|
15
|
Wang G, You C, Feng C, Yao W, Zhao Z, Xue N, Yao L. Modeling and Analysis of Environmental Electromagnetic Interference in Multiple-Channel Neural Recording Systems for High Common-Mode Interference Rejection Performance. BIOSENSORS 2024; 14:343. [PMID: 39056619 PMCID: PMC11275126 DOI: 10.3390/bios14070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Environmental electromagnetic interference (EMI) has always been a major interference source for multiple-channel neural recording systems, and little theoretical work has been attempted to address it. In this paper, equivalent circuit models are proposed to model both electromagnetic interference sources and neural signals in such systems, and analysis has been performed to generate the design guidelines for neural probes and the subsequent recording circuit towards higher common-mode interference (CMI) rejection performance while maintaining the recorded neural action potential (AP) signal quality. In vivo animal experiments with a configurable 32-channel neural recording system are carried out to validate the proposed models and design guidelines. The results show the power spectral density (PSD) of environmental 50 Hz EMI interference is reduced by three orders from 4.43 × 10-3 V2/Hz to 4.04 × 10-6 V2/Hz without affecting the recorded AP signal quality in an unshielded experiment environment.
Collapse
Affiliation(s)
- Gang Wang
- School of Microelectronics, Shanghai University, Shanghai 200444, China;
- Zhangjiang Laboratory, Shanghai 200031, China
| | - Changhua You
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences, Beijing 100190, China;
| | - Chengcong Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; (C.F.); (Z.Z.)
| | - Wenliang Yao
- Shanghai Mtrix Technology Co., Ltd., Shanghai 200031, China;
| | - Zhengtuo Zhao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; (C.F.); (Z.Z.)
| | - Ning Xue
- Lingang Laboratory, Shanghai 200031, China;
| | - Lei Yao
- Lingang Laboratory, Shanghai 200031, China;
| |
Collapse
|
16
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The primate cortical LFP exhibits multiple spectral and temporal gradients and widespread task dependence during visual short-term memory. J Neurophysiol 2024; 132:206-225. [PMID: 38842507 PMCID: PMC11383615 DOI: 10.1152/jn.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024] Open
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3 and 80 Hz that differ between the two monkeys. The LFP power in each band, as well as the sample entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in cortical pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task-dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread, and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.NEW & NOTEWORTHY We recorded extracellular electrophysiological signals from roughly the breadth and depth of a cortical hemisphere in nonhuman primates (NHPs) performing a visual memory task. Analyses of the band-limited local field potential (LFP) power displayed widespread, frequency-dependent cortical gradients in spectral power. Using a machine learning classifier, these features allowed robust cortical area decoding. Further task dependence in LFP power were found to be widespread, indicating large-scale gradients of LFP activity, and task-related activity.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, United States
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
- Salk Institute for Biological Studies, La Jolla, California, United States
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana, United States
| |
Collapse
|
17
|
Jungmann RM, Feliciano T, Aguiar LAA, Soares-Cunha C, Coimbra B, Rodrigues AJ, Copelli M, Matias FS, de Vasconcelos NAP, Carelli PV. State-dependent complexity of the local field potential in the primary visual cortex. Phys Rev E 2024; 110:014402. [PMID: 39160943 DOI: 10.1103/physreve.110.014402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/06/2024] [Indexed: 08/21/2024]
Abstract
The local field potential (LFP) is as a measure of the combined activity of neurons within a region of brain tissue. While biophysical modeling schemes for LFP in cortical circuits are well established, there is a paramount lack of understanding regarding the LFP properties along the states assumed in cortical circuits over long periods. Here we use a symbolic information approach to determine the statistical complexity based on Jensen disequilibrium measure and Shannon entropy of LFP data recorded from the primary visual cortex (V1) of urethane-anesthetized rats and freely moving mice. Using these information quantifiers, we find consistent relations between LFP recordings and measures of cortical states at the neuronal level. More specifically, we show that LFP's statistical complexity is sensitive to cortical state (characterized by spiking variability), as well as to cortical layer. In addition, we apply these quantifiers to characterize behavioral states of freely moving mice, where we find indirect relations between such states and spiking variability.
Collapse
Affiliation(s)
| | | | | | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | | | | | | | | |
Collapse
|
18
|
Guth TA, Brandt A, Reinacher PC, Schulze-Bonhage A, Jacobs J, Kunz L. Theta-phase locking of single neurons during human spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599841. [PMID: 38948829 PMCID: PMC11212943 DOI: 10.1101/2024.06.20.599841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The precise timing of single-neuron activity in relation to local field potentials may support various cognitive functions. Extensive research in rodents, along with some evidence in humans, suggests that single-neuron activity at specific phases of theta oscillations plays a crucial role in memory processes. Our fundamental understanding of such theta-phase locking in humans and its dependency on basic electrophysiological properties of the local field potential is still limited, however. Here, using single-neuron recordings in epilepsy patients performing a spatial memory task, we thus aimed at improving our understanding of factors modulating theta-phase locking in the human brain. Combining a generalized-phase approach for frequency-adaptive theta-phase estimation with time-resolved spectral parameterization, our results show that theta-phase locking is a strong and prevalent phenomenon across human medial temporal lobe regions, both during spatial memory encoding and retrieval. Neuronal theta-phase locking increased during periods of elevated theta power, when clear theta oscillations were present, and when aperiodic activity exhibited steeper slopes. Theta-phase locking was similarly strong during successful and unsuccessful memory, and most neurons activated at similar theta phases between encoding and retrieval. Some neurons changed their preferred theta phases between encoding and retrieval, in line with the idea that different memory processes are separated within the theta cycle. Together, these results help disentangle how different properties of local field potentials and memory states influence theta-phase locking of human single neurons. This contributes to a better understanding of how interactions between single neurons and local field potentials may support human spatial memory.
Collapse
Affiliation(s)
- Tim A. Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| | - Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
19
|
Valencia D, Mercier PP, Alimohammad A. Efficient in Vivo Neural Signal Compression Using an Autoencoder-Based Neural Network. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2024; 18:691-701. [PMID: 38285576 DOI: 10.1109/tbcas.2024.3359994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Conventional in vivo neural signal processing involves extracting spiking activity within the recorded signals from an ensemble of neurons and transmitting only spike counts over an adequate interval. However, for brain-computer interface (BCI) applications utilizing continuous local field potentials (LFPs) for cognitive decoding, the volume of neural data to be transmitted to a computer imposes relatively high data rate requirements. This is particularly true for BCIs employing high-density intracortical recordings with hundreds or thousands of electrodes. This article introduces the first autoencoder-based compression digital circuit for the efficient transmission of LFP neural signals. Various algorithmic and architectural-level optimizations are implemented to significantly reduce the computational complexity and memory requirements of the designed in vivo compression circuit. This circuit employs an autoencoder-based neural network, providing a robust signal reconstruction. The application-specific integrated circuit (ASIC) of the in vivo compression logic occupies the smallest silicon area and consumes the lowest power among the reported state-of-the-art compression ASICs. Additionally, it offers a higher compression rate and a superior signal-to-noise and distortion ratio.
Collapse
|
20
|
Deng H, Cui Y, Liu H, Zhang G, Chai X, Yang X, Gong Q, Yu S, Guo D, Xia Y, Yao D, Chen K. The influence of electrode types to the visually induced gamma oscillations in mouse primary visual cortex. Cereb Cortex 2024; 34:bhae191. [PMID: 38725292 DOI: 10.1093/cercor/bhae191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 01/28/2025] Open
Abstract
The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 μm), while the other had lower impedance (100 KΩ) but a thicker tip (200 μm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.
Collapse
Affiliation(s)
- Haoran Deng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yan Cui
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Haolun Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Guizhi Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaoqian Chai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaotong Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Nanming District, Guiyang, Guizhou, 550002, P.R. China
| | - Qiang Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Shuang Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Daqing Guo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yang Xia
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
| |
Collapse
|
21
|
Kang JU, Mooshagian E, Snyder LH. Functional organization of posterior parietal cortex circuitry based on inferred information flow. Cell Rep 2024; 43:114028. [PMID: 38581681 PMCID: PMC11090617 DOI: 10.1016/j.celrep.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 02/09/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024] Open
Abstract
Many studies infer the role of neurons by asking what information can be decoded from their activity or by observing the consequences of perturbing their activity. An alternative approach is to consider information flow between neurons. We applied this approach to the parietal reach region (PRR) and the lateral intraparietal area (LIP) in posterior parietal cortex. Two complementary methods imply that across a range of reaching tasks, information flows primarily from PRR to LIP. This indicates that during a coordinated reach task, LIP has minimal influence on PRR and rules out the idea that LIP forms a general purpose spatial processing hub for action and cognition. Instead, we conclude that PRR and LIP operate in parallel to plan arm and eye movements, respectively, with asymmetric interactions that likely support eye-hand coordination. Similar methods can be applied to other areas to infer their functional relationships based on inferred information flow.
Collapse
Affiliation(s)
- Jung Uk Kang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric Mooshagian
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lawrence H Snyder
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
22
|
Średniawa W, Borzymowska Z, Kondrakiewicz K, Jurgielewicz P, Mindur B, Hottowy P, Wójcik DK, Kublik E. Local contribution to the somatosensory evoked potentials in rat's thalamus. PLoS One 2024; 19:e0301713. [PMID: 38593141 PMCID: PMC11003638 DOI: 10.1371/journal.pone.0301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Local Field Potential (LFP), despite its name, often reflects remote activity. Depending on the orientation and synchrony of their sources, both oscillations and more complex waves may passively spread in brain tissue over long distances and be falsely interpreted as local activity at such distant recording sites. Here we show that the whisker-evoked potentials in the thalamic nuclei are of local origin up to around 6 ms post stimulus, but the later (7-15 ms) wave is overshadowed by a negative component reaching from cortex. This component can be analytically removed and local thalamic LFP can be recovered reliably using Current Source Density analysis. We used model-based kernel CSD (kCSD) method which allowed us to study the contribution of local and distant currents to LFP from rat thalamic nuclei and barrel cortex recorded with multiple, non-linear and non-regular multichannel probes. Importantly, we verified that concurrent recordings from the cortex are not essential for reliable thalamic CSD estimation. The proposed framework can be used to analyze LFP from other brain areas and has consequences for general LFP interpretation and analysis.
Collapse
Affiliation(s)
- Władysław Średniawa
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Zuzanna Borzymowska
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Kacper Kondrakiewicz
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Jurgielewicz
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Bartosz Mindur
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Paweł Hottowy
- AGH University of Science and Technology in Kraków, Faculty of Physics and Applied Computer Science, Krakow, Poland
| | - Daniel K. Wójcik
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Jagiellonian University, Faculty of Management and Social Communication, Jagiellonian University, Krakow, Poland
| | - Ewa Kublik
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
23
|
Sharma D, Lupkin SM, McGinty VB. Orbitofrontal high-gamma reflects spike-dissociable value and decision mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587758. [PMID: 38617349 PMCID: PMC11014579 DOI: 10.1101/2024.04.02.587758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The orbitofrontal cortex (OFC) plays a crucial role in value-based decision-making. While previous research has focused on spiking activity in OFC neurons, the role of OFC local field potentials (LFPs) in decision-making remains unclear. LFPs are important because they can reflect synaptic and subthreshold activity not directly coupled to spiking, and because they are potential targets for less invasive forms of brain-machine interface (BMI). We recorded LFPs and spiking activity using multi-channel vertical probes while monkeys performed a two-option value-based decision-making task. We compared the value- and decision-coding properties of high-gamma range LFPs (HG, 50-150 Hz) to the coding properties of spiking multi-unit activity (MUA) recorded concurrently on the same electrodes. Results show that HG and MUA both represent the values of decision targets, and that their representations have similar temporal profiles in a trial. However, we also identified value-coding properties of HG that were dissociable from the concurrently-measured MUA. On average across channels, HG amplitude increased monotonically with value, whereas the average value encoding in MUA was net neutral. HG also encoded a signal consistent with a comparison between the values of the two targets, a signal which was much weaker in MUA. In individual channels, HG was better able to predict choice outcomes than MUA; however, when simultaneously recorded channels were combined in population-based decoder, MUA provided more accurate predictions than HG. Interestingly, HG value representations were accentuated in channels in or near shallow cortical layers, suggesting a dissociation between neuronal sources of HG and MUA. In summary, we find that HG signals are dissociable from MUA with respect to cognitive variables encoded in prefrontal cortex, evident in the monotonic encoding of value, stronger encoding of value comparisons, and more accurate predictions about behavior. High-frequency LFPs may therefore be a viable - or even preferable - target for BMIs to assist cognitive function, opening the possibility for less invasive access to mental contents that would otherwise be observable only with spike-based measures.
Collapse
Affiliation(s)
- Dixit Sharma
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
- Graduate Program in Neuroscience, Rutgers University – Newark
| | - Shira M. Lupkin
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
- Graduate Program in Neuroscience, Rutgers University – Newark
| | - Vincent B. McGinty
- Center for Molecular and Behavioral Neuroscience, Rutgers University – Newark
| |
Collapse
|
24
|
Přibylová L, Ševčík J, Eclerová V, Klimeš P, Brázdil M, Meijer HGE. Weak coupling of neurons enables very high-frequency and ultra-fast oscillations through the interplay of synchronized phase shifts. Netw Neurosci 2024; 8:293-318. [PMID: 38562290 PMCID: PMC10954350 DOI: 10.1162/netn_a_00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/21/2023] [Indexed: 04/04/2024] Open
Abstract
Recently, in the past decade, high-frequency oscillations (HFOs), very high-frequency oscillations (VHFOs), and ultra-fast oscillations (UFOs) were reported in epileptic patients with drug-resistant epilepsy. However, to this day, the physiological origin of these events has yet to be understood. Our study establishes a mathematical framework based on bifurcation theory for investigating the occurrence of VHFOs and UFOs in depth EEG signals of patients with focal epilepsy, focusing on the potential role of reduced connection strength between neurons in an epileptic focus. We demonstrate that synchronization of a weakly coupled network can generate very and ultra high-frequency signals detectable by nearby microelectrodes. In particular, we show that a bistability region enables the persistence of phase-shift synchronized clusters of neurons. This phenomenon is observed for different hippocampal neuron models, including Morris-Lecar, Destexhe-Paré, and an interneuron model. The mechanism seems to be robust for small coupling, and it also persists with random noise affecting the external current. Our findings suggest that weakened neuronal connections could contribute to the production of oscillations with frequencies above 1000 Hz, which could advance our understanding of epilepsy pathology and potentially improve treatment strategies. However, further exploration of various coupling types and complex network models is needed.
Collapse
Affiliation(s)
- Lenka Přibylová
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Ševčík
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Veronika Eclerová
- Department of Mathematics and Statistics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Klimeš
- Institute of Scientific Instruments, The Czech Academy of Sciences, Brno, Czech Republic
| | - Milan Brázdil
- Brno Epilepsy Center, Dept. of Neurology, St. Anne’s Univ. Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic, member of the ERN EpiCARE
- Behavioral and Social Neuroscience Research Group, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Hil G. E. Meijer
- Department of Applied Mathematics, Techmed Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
25
|
Hoffman SJ, Dotson NM, Lima V, Gray CM. The Primate Cortical LFP Exhibits Multiple Spectral and Temporal Gradients and Widespread Task-Dependence During Visual Short-Term Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577843. [PMID: 38352585 PMCID: PMC10862751 DOI: 10.1101/2024.01.29.577843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Although cognitive functions are hypothesized to be mediated by synchronous neuronal interactions in multiple frequency bands among widely distributed cortical areas, we still lack a basic understanding of the distribution and task dependence of oscillatory activity across the cortical map. Here, we ask how the spectral and temporal properties of the local field potential (LFP) vary across the primate cerebral cortex, and how they are modulated during visual short-term memory. We measured the LFP from 55 cortical areas in two macaque monkeys while they performed a visual delayed match to sample task. Analysis of peak frequencies in the LFP power spectra reveals multiple discrete frequency bands between 3-80 Hz that differ between the two monkeys. The LFP power in each band, as well as the Sample Entropy, a measure of signal complexity, display distinct spatial gradients across the cortex, some of which correlate with reported spine counts in layer 3 pyramidal neurons. Cortical areas can be robustly decoded using a small number of spectral and temporal parameters, and significant task dependent increases and decreases in spectral power occur in all cortical areas. These findings reveal pronounced, widespread and spatially organized gradients in the spectral and temporal activity of cortical areas. Task-dependent changes in cortical activity are globally distributed, even for a simple cognitive task.
Collapse
Affiliation(s)
- Steven J Hoffman
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nicholas M Dotson
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
- Current address: Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Vinicius Lima
- Aix Marseille Université, INSERM, Systems Neuroscience Institute, Marseille, France
| | - Charles M Gray
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
26
|
Tai P, Ding P, Wang F, Gong A, Li T, Zhao L, Su L, Fu Y. Brain-computer interface paradigms and neural coding. Front Neurosci 2024; 17:1345961. [PMID: 38287988 PMCID: PMC10822902 DOI: 10.3389/fnins.2023.1345961] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Brain signal patterns generated in the central nervous system of brain-computer interface (BCI) users are closely related to BCI paradigms and neural coding. In BCI systems, BCI paradigms and neural coding are critical elements for BCI research. However, so far there have been few references that clearly and systematically elaborated on the definition and design principles of the BCI paradigm as well as the definition and modeling principles of BCI neural coding. Therefore, these contents are expounded and the existing main BCI paradigms and neural coding are introduced in the review. Finally, the challenges and future research directions of BCI paradigm and neural coding were discussed, including user-centered design and evaluation for BCI paradigms and neural coding, revolutionizing the traditional BCI paradigms, breaking through the existing techniques for collecting brain signals and combining BCI technology with advanced AI technology to improve brain signal decoding performance. It is expected that the review will inspire innovative research and development of the BCI paradigm and neural coding.
Collapse
Affiliation(s)
- Pengrui Tai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Peng Ding
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Fan Wang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Anmin Gong
- School of Information Engineering, Chinese People’s Armed Police Force Engineering University, Xi’an, China
| | - Tianwen Li
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Zhao
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
- Faculty of Science, Kunming University of Science and Technology, Kunming, China
| | - Lei Su
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| | - Yunfa Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
- Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
27
|
Sajedin A, Salehi S, Esteky H. Information content and temporal structure of face selective local field potentials frequency bands in IT cortex. Cereb Cortex 2024; 34:bhad411. [PMID: 38011118 DOI: 10.1093/cercor/bhad411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/29/2023] Open
Abstract
Sensory stimulation triggers synchronized bioelectrical activity in the brain across various frequencies. This study delves into network-level activities, specifically focusing on local field potentials as a neural signature of visual category representation. Specifically, we studied the role of different local field potential frequency oscillation bands in visual stimulus category representation by presenting images of faces and objects to three monkeys while recording local field potential from inferior temporal cortex. We found category selective local field potential responses mainly for animate, but not inanimate, objects. Notably, face-selective local field potential responses were evident across all tested frequency bands, manifesting in both enhanced (above mean baseline activity) and suppressed (below mean baseline activity) local field potential powers. We observed four different local field potential response profiles based on frequency bands and face selective excitatory and suppressive responses. Low-frequency local field potential bands (1-30 Hz) were more prodominstaly suppressed by face stimulation than the high-frequency (30-170 Hz) local field potential bands. Furthermore, the low-frequency local field potentials conveyed less face category informtion than the high-frequency local field potential in both enhansive and suppressive conditions. Furthermore, we observed a negative correlation between face/object d-prime values in all the tested local field potential frequency bands and the anterior-posterior position of the recording sites. In addition, the power of low-frequency local field potential systematically declined across inferior temporal anterior-posterior positions, whereas high-frequency local field potential did not exhibit such a pattern. In general, for most of the above-mentioned findings somewhat similar results were observed for body, but not, other stimulus categories. The observed findings suggest that a balance of face selective excitation and inhibition across time and cortical space shape face category selectivity in inferior temporal cortex.
Collapse
Affiliation(s)
- Atena Sajedin
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran 15875441, Iran
| | - Sina Salehi
- Department of Neurology, Johns Hopkins Medicine, Baltimore, MD 21218, United States
| | - Hossein Esteky
- Brain Science and Technology Group, Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
28
|
Das A, Nandi N, Ray S. Alpha and SSVEP power outperform gamma power in capturing attentional modulation in human EEG. Cereb Cortex 2024; 34:bhad412. [PMID: 37948668 DOI: 10.1093/cercor/bhad412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Attention typically reduces power in the alpha (8-12 Hz) band and increases power in gamma (>30 Hz) band in brain signals, as reported in macaque local field potential (LFP) and human electro/magneto-encephalogram (EEG/MEG) studies. In addition, EEG studies often use flickering stimuli that produce a specific measure called steady-state-visually-evoked-potential (SSVEP), whose power also increases with attention. However, effectiveness of these neural measures in capturing attentional modulation is unknown since stimuli and task paradigms vary widely across studies. In a recent macaque study, attentional modulation was more salient in the gamma band of the LFP, compared to alpha or SSVEP. To compare this with human EEG, we designed an orientation change detection task where we presented both static and counterphasing stimuli of matched difficulty levels to 26 subjects and compared attentional modulation of various measures under similar conditions. We report two main results. First, attentional modulation was comparable for SSVEP and alpha. Second, non-foveal stimuli produced weak gamma despite various stimulus optimizations and showed negligible attentional modulation although full-screen gratings showed robust gamma activity. Our results are useful for brain-machine-interfacing studies where suitable features are used for decoding attention, and also provide clues about spatial scales of neural mechanisms underlying attention.
Collapse
Affiliation(s)
- Aritra Das
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Nilanjana Nandi
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
29
|
Davis ZW, Busch A, Stewerd C, Muller L, Reynolds J. Horizontal cortical connections shape intrinsic traveling waves into feature-selective motifs that regulate perceptual sensitivity. RESEARCH SQUARE 2024:rs.3.rs-3830199. [PMID: 38260448 PMCID: PMC10802692 DOI: 10.21203/rs.3.rs-3830199/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intrinsic, ongoing fluctuations of cortical activity form traveling waves that modulate the gain of sensory-evoked responses and perceptual sensitivity. Several lines of evidence suggest that intrinsic traveling waves (iTWs) may arise, in part, from the coordination of synaptic activity through the recurrent horizontal connectivity within cortical areas, which include long range patchy connections that link neurons with shared feature preferences. In a spiking network model with anatomical topology that incorporates feature-selective patchy connections, which we call the Balanced Patchy Network (BPN), we observe repeated iTWs, which we refer to as motifs. In the model, motifs stem from fluctuations in the excitability of like-tuned neurons that result from shifts in E/I balance as action potentials traverse these patchy connections. To test if feature-selective motifs occur in vivo, we examined data previously recorded using multielectrode arrays in Area MT of marmosets trained to perform a threshold visual detection task. Using a newly developed method for comparing the similarity of wave patterns we found that some iTWs can be grouped into motifs. As predicted by the BPN, many of these motifs are feature selective, exhibiting direction-selective modulations in ongoing spiking activity. Further, motifs modulate the gain of the response evoked by a target and perceptual sensitivity to the target if the target matches the preference of the motif. These results provide evidence that iTWs are shaped by the patterns of horizontal fiber projections in the cortex and that patchy connections enable iTWs to regulate neural and perceptual sensitivity in a feature selective manner.
Collapse
Affiliation(s)
- Zachary W Davis
- The Salk Institute for Biological Studies, La Jolla, CA, USA. 92037
- Department of Ophthalmology and Visual Science, University of Utah, SLC, UT, USA 84112
| | - Alexandria Busch
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - Christopher Stewerd
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - Lyle Muller
- Department of Applied Mathematics, Western University, London, ON, Canada. N6A 3K7
- Brain and Mind Institute, Western University, London, ON, Canada. N6A 3K7
| | - John Reynolds
- The Salk Institute for Biological Studies, La Jolla, CA, USA. 92037
| |
Collapse
|
30
|
Mirmoosavi M, Aminitabar A, Mirfathollahi A, Shalchyan V. Exploring altered oscillatory activity in the anterior cingulate cortex after nerve injury: Insights into mechanisms of neuropathic allodynia. Neurobiol Dis 2024; 190:106381. [PMID: 38114049 DOI: 10.1016/j.nbd.2023.106381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023] Open
Abstract
While neural oscillations play a critical role in sensory perception, it remains unclear how these rhythms function under conditions of neuropathic allodynia. Recent studies demonstrated that the anterior cingulate cortex (ACC) is associated with the affective-aversive component of pain, and plasticity changes in this region are closely linked to abnormal allodynic sensations. Here, to study the mechanisms of allodynia, we recorded local field potentials (LFPs) in the bilateral ACC of awake-behaving rats and compared the spectral power and center frequency of brain oscillations between healthy and CCI (chronic constriction injury) induced neuropathic pain conditions. Our results indicated that activation of the ACC occurs bilaterally in the presence of neuropathic pain, similar to the healthy condition. Furthermore, CCI affects both spontaneous and stimulus-induced activity of ACC neurons. Specifically, we observed an increase in spontaneous beta activity after nerve injury compared to the healthy condition. By stimulating operated or unoperated paws, we found more intense event-related desynchronization (ERD) responses in the theta, alpha, and beta frequency bands and faster alpha center frequency after CCI compared to before CCI. Although the behavioral manifestation of allodynia was more pronounced in the operated paw than the unoperated paw following CCI, there was no significant difference in the center frequency and ERD responses observed in the ACC between stimulation of the operated and unoperated limbs. Our findings offer evidence supporting the notion that aberrancies in ACC oscillations may contribute to the maintenance and development of neuropathic allodynia.
Collapse
Affiliation(s)
- Mahnoosh Mirmoosavi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Amir Aminitabar
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Alavie Mirfathollahi
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran; Institute for Cognitive Science Studies (ICSS), Tehran 16583-44575, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab., Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| |
Collapse
|
31
|
Parto-Dezfouli M, Vezoli J, Bosman CA, Fries P. Enhanced behavioral performance through interareal gamma and beta synchronization. Cell Rep 2023; 42:113249. [PMID: 37837620 PMCID: PMC10679823 DOI: 10.1016/j.celrep.2023.113249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 10/16/2023] Open
Abstract
Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous electrocorticographic recordings from 15 areas of two macaque monkeys during performance of a selective attention task. Short behavioral reaction times (RTs), suggesting efficient interareal communication, occurred when occipital areas V1, V2, V4, and DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, and F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Conrado Arturo Bosman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands; Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, the Netherlands.
| |
Collapse
|
32
|
Zabeh E, Foley NC, Jacobs J, Gottlieb JP. Beta traveling waves in monkey frontal and parietal areas encode recent reward history. Nat Commun 2023; 14:5428. [PMID: 37669966 PMCID: PMC10480436 DOI: 10.1038/s41467-023-41125-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
Brain function depends on neural communication, but the mechanisms of this communication are not well understood. Recent studies suggest that one form of neural communication is through traveling waves (TWs)-patterns of neural oscillations that propagate within and between brain areas. We show that TWs are robust in microarray recordings in frontal and parietal cortex and encode recent reward history. Two adult male monkeys made saccades to obtain probabilistic rewards and were sensitive to the (statistically irrelevant) reward on the previous trial. TWs in frontal and parietal areas were stronger in trials that followed a prior reward versus a lack of reward and, in the frontal lobe, correlated with the monkeys' behavioral sensitivity to the prior reward. The findings suggest that neural communication mediated by TWs within the frontal and parietal lobes contribute to maintaining information about recent reward history and mediating the impact of this history on the monkeys' expectations.
Collapse
Affiliation(s)
- Erfan Zabeh
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Nicholas C Foley
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Department of Neurological Surgery, Columbia University, New York, NY, USA.
| | - Jacqueline P Gottlieb
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
33
|
Ladret HJ, Cortes N, Ikan L, Chavane F, Casanova C, Perrinet LU. Cortical recurrence supports resilience to sensory variance in the primary visual cortex. Commun Biol 2023; 6:667. [PMID: 37353519 PMCID: PMC10290066 DOI: 10.1038/s42003-023-05042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/13/2023] [Indexed: 06/25/2023] Open
Abstract
Our daily endeavors occur in a complex visual environment, whose intrinsic variability challenges the way we integrate information to make decisions. By processing myriads of parallel sensory inputs, our brain is theoretically able to compute the variance of its environment, a cue known to guide our behavior. Yet, the neurobiological and computational basis of such variance computations are still poorly understood. Here, we quantify the dynamics of sensory variance modulations of cat primary visual cortex neurons. We report two archetypal neuronal responses, one of which is resilient to changes in variance and co-encodes the sensory feature and its variance, improving the population encoding of orientation. The existence of these variance-specific responses can be accounted for by a model of intracortical recurrent connectivity. We thus propose that local recurrent circuits process uncertainty as a generic computation, advancing our understanding of how the brain handles naturalistic inputs.
Collapse
Affiliation(s)
- Hugo J Ladret
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France.
- School of Optometry, Université de Montréal, Montréal, Canada.
| | - Nelson Cortes
- School of Optometry, Université de Montréal, Montréal, Canada
| | - Lamyae Ikan
- School of Optometry, Université de Montréal, Montréal, Canada
| | - Frédéric Chavane
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | | | - Laurent U Perrinet
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| |
Collapse
|
34
|
Tovar DA, Westerberg JA, Cox MA, Dougherty K, Wallace MT, Bastos AM, Maier A. Near-field potentials index local neural computations more accurately than population spiking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540026. [PMID: 37214905 PMCID: PMC10197629 DOI: 10.1101/2023.05.11.540026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Local field potentials (LFP) are low-frequency extracellular voltage fluctuations thought to primarily arise from synaptic activity. However, unlike highly localized neuronal spiking, LFP is spatially less specific. LFP measured at one location is not entirely generated there due to far-field contributions that are passively conducted across volumes of neural tissue. We sought to quantify how much information within the locally generated, near-field low-frequency activity (nfLFP) is masked by volume-conducted far-field signals. To do so, we measured laminar neural activity in primary visual cortex (V1) of monkeys viewing sequences of multifeatured stimuli. We compared information content of regular LFP and nfLFP that was mathematically stripped of volume-conducted far-field contributions. Information content was estimated by decoding stimulus properties from neural responses via spatiotemporal multivariate pattern analysis. Volume-conducted information differed from locally generated information in two important ways: (1) for stimulus features relevant to V1 processing (orientation and eye-of-origin), nfLFP contained more information. (2) in contrast, the volume-conducted signal was more informative regarding temporal context (relative stimulus position in a sequence), a signal likely to be coming from elsewhere. Moreover, LFP and nfLFP differed both spectrally as well as spatially, urging caution regarding the interpretations of individual frequency bands and/or laminar patterns of LFP. Most importantly, we found that population spiking of local neurons was less informative than either the LFP or nfLFP, with nfLFP containing most of the relevant information regarding local stimulus processing. These findings suggest that the optimal way to read out local computational processing from neural activity is to decode the local contributions to LFP, with significant information loss hampering both regular LFP and local spiking. Author’s Contributions Conceptualization, D.A.T., J.A.W, and A.M.; Data Collection, J.A.W., M.A.C., K.D.; Formal Analysis, D.A.T. and J.A.W.; Data Visualization, D.A.T. and J.A.W.; Original Draft, D.A.T., J.A.W., and A.M.; Revisions and Final Draft, D.A.T., J.A.W., M.A.C., K.D., M.T.W., A.M.B., and A.M. Competing Interests The authors declare no conflicts of interest.
Collapse
|
35
|
Aminitabar A, Mirmoosavi M, Ghodrati MT, Shalchyan V. Interhemispheric neural characteristics of noxious mechano-nociceptive stimulation in the anterior cingulate cortex. Front Neural Circuits 2023; 17:1144979. [PMID: 37215504 PMCID: PMC10196115 DOI: 10.3389/fncir.2023.1144979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background Pain is an unpleasant sensory and emotional experience. One of the most critical regions of the brain for pain processing is the anterior cingulate cortex (ACC). Several studies have examined the role of this region in thermal nociceptive pain. However, studies on mechanical nociceptive pain have been very limited to date. Although several studies have investigated pain, the interactions between the two hemispheres are still not clear. This study aimed to investigate nociceptive mechanical pain in the ACC bilaterally. Methods Local field potential (LFP) signals were recorded from seven male Wistar rats' ACC regions of both hemispheres. Mechanical stimulations with two intensities, high-intensity noxious (HN) and non-noxious (NN) were applied to the left hind paw. At the same time, the LFP signals were recorded bilaterally from awake and freely moving rats. The recorded signals were analyzed from different perspectives, including spectral analysis, intensity classification, evoked potential (EP) analysis, and synchrony and similarity of two hemispheres. Results By using spectro-temporal features and support vector machine (SVM) classifier, HN vs. no-stimulation (NS), NN vs. NS, and HN vs. NN were classified with accuracies of 89.6, 71.1, and 84.7%, respectively. Analyses of the signals from the two hemispheres showed that the EPs in the two hemispheres were very similar and occurred simultaneously; however, the correlation and phase locking value (PLV) between the two hemispheres changed significantly after HN stimulation. These variations persisted for up to 4 s after the stimulation. In contrast, variations in the PLV and correlation for NN stimulation were not significant. Conclusions This study showed that the ACC area was able to distinguish the intensity of mechanical stimulation based on the power activities of neural responses. In addition, our results suggest that the ACC region is activated bilaterally due to nociceptive mechanical pain. Additionally, stimulations above the pain threshold (HN) significantly affect the synchronicity and correlation between the two hemispheres compared to non-noxious stimuli.
Collapse
|
36
|
Patel AM, Kawaguchi K, Seillier L, Nienborg H. Serotonergic modulation of local network processing in V1 mirrors previously reported signatures of local network modulation by spatial attention. Eur J Neurosci 2023; 57:1368-1382. [PMID: 36878879 PMCID: PMC11610500 DOI: 10.1111/ejn.15953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Sensory processing is influenced by neuromodulators such as serotonin, thought to relay behavioural state. Recent work has shown that the modulatory effect of serotonin itself differs with the animal's behavioural state. In primates, including humans, the serotonin system is anatomically important in the primary visual cortex (V1). We previously reported that in awake fixating macaques, serotonin reduces the spiking activity by decreasing response gain in V1. But the effect of serotonin on the local network is unknown. Here, we simultaneously recorded single-unit activity and local field potentials (LFPs) while iontophoretically applying serotonin in V1 of alert monkeys fixating on a video screen for juice rewards. The reduction in spiking response we observed previously is the opposite of the known increase of spiking activity with spatial attention. Conversely, in the local network (LFP), the application of serotonin resulted in changes mirroring the local network effects of previous reports in macaques directing spatial attention to the receptive field. It reduced the LFP power and the spike-field coherence, and the LFP became less predictive of spiking activity, consistent with reduced functional connectivity. We speculate that together, these effects may reflect the sensory side of a serotonergic contribution to quiet vigilance: The lower gain reduces the salience of stimuli to suppress an orienting reflex to novel stimuli, whereas at the network level, visual processing is in a state comparable to that of spatial attention.
Collapse
Affiliation(s)
- Aashay M. Patel
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Katsuhisa Kawaguchi
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Lenka Seillier
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| | - Hendrikje Nienborg
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD, 20894, USA
- University of Tuebingen, Werner Reichardt Centre for Integrative Neuroscience, Tuebingen, 72076, Germany
| |
Collapse
|
37
|
Herreras O, Torres D, Makarov VA, Makarova J. Theoretical considerations and supporting evidence for the primary role of source geometry on field potential amplitude and spatial extent. Front Cell Neurosci 2023; 17:1129097. [PMID: 37066073 PMCID: PMC10097999 DOI: 10.3389/fncel.2023.1129097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Field potential (FP) recording is an accessible means to capture the shifts in the activity of neuron populations. However, the spatial and composite nature of these signals has largely been ignored, at least until it became technically possible to separate activities from co-activated sources in different structures or those that overlap in a volume. The pathway-specificity of mesoscopic sources has provided an anatomical reference that facilitates transcending from theoretical analysis to the exploration of real brain structures. We review computational and experimental findings that indicate how prioritizing the spatial geometry and density of sources, as opposed to the distance to the recording site, better defines the amplitudes and spatial reach of FPs. The role of geometry is enhanced by considering that zones of the active populations that act as sources or sinks of current may arrange differently with respect to each other, and have different geometry and densities. Thus, observations that seem counterintuitive in the scheme of distance-based logic alone can now be explained. For example, geometric factors explain why some structures produce FPs and others do not, why different FP motifs generated in the same structure extend far while others remain local, why factors like the size of an active population or the strong synchronicity of its neurons may fail to affect FPs, or why the rate of FP decay varies in different directions. These considerations are exemplified in large structures like the cortex and hippocampus, in which the role of geometrical elements and regional activation in shaping well-known FP oscillations generally go unnoticed. Discovering the geometry of the sources in play will decrease the risk of population or pathway misassignments based solely on the FP amplitude or temporal pattern.
Collapse
Affiliation(s)
- Oscar Herreras
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- *Correspondence: Oscar Herreras,
| | - Daniel Torres
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
| | - Valeriy A. Makarov
- Institute for Interdisciplinary Mathematics, School of Mathematics, Universidad Complutense de Madrid, Madrid, Spain
| | - Julia Makarova
- Laboratory of Experimental and Computational Neurophysiology, Department of Translational Neuroscience, Cajal Institute, Spanish National Research Council, Madrid, Spain
- Julia Makarova,
| |
Collapse
|
38
|
Parto-Dezfouli M, Vezoli J, Bosman CA, Fries P. Enhanced Behavioral Performance through Interareal Gamma and Beta Synchronization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531093. [PMID: 36945499 PMCID: PMC10028832 DOI: 10.1101/2023.03.06.531093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive functioning requires coordination between brain areas. Between visual areas, feedforward gamma synchronization improves behavioral performance. Here, we investigate whether similar principles hold across brain regions and frequency bands, using simultaneous local field potential recordings from 15 areas during performance of a selective attention task. Short behavioral reaction times (RTs), an index of efficient interareal communication, occurred when occipital areas V1, V2, V4, DP showed gamma synchronization, and fronto-central areas S1, 5, F1, F2, F4 showed beta synchronization. For both area clusters and corresponding frequency bands, deviations from the typically observed phase relations increased RTs. Across clusters and frequency bands, good phase relations occurred in a correlated manner specifically when they processed the behaviorally relevant stimulus. Furthermore, the fronto-central cluster exerted a beta-band influence onto the occipital cluster whose strength predicted short RTs. These results suggest that local gamma and beta synchronization and their inter-regional coordination jointly improve behavioral performance.
Collapse
Affiliation(s)
- Mohsen Parto-Dezfouli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Julien Vezoli
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Conrado Arturo Bosman
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, Netherlands
| |
Collapse
|
39
|
Hu Z, Niu Q, Hsiao BS, Yao X, Zhang Y. Bioactive polymer-enabled conformal neural interface and its application strategies. MATERIALS HORIZONS 2023; 10:808-828. [PMID: 36597872 DOI: 10.1039/d2mh01125e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neural interface is a powerful tool to control the varying neuron activities in the brain, where the performance can directly affect the quality of recording neural signals and the reliability of in vivo connection between the brain and external equipment. Recent advances in bioelectronic innovation have provided promising pathways to fabricate flexible electrodes by integrating electrodes on bioactive polymer substrates. These bioactive polymer-based electrodes can enable the conformal contact with irregular tissue and result in low inflammation when compared to conventional rigid inorganic electrodes. In this review, we focus on the use of silk fibroin and cellulose biopolymers as well as certain synthetic polymers to offer the desired flexibility for constructing electrode substrates for a conformal neural interface. First, the development of a neural interface is reviewed, and the signal recording methods and tissue response features of the implanted electrodes are discussed in terms of biocompatibility and flexibility of corresponding neural interfaces. Following this, the material selection, structure design and integration of conformal neural interfaces accompanied by their effective applications are described. Finally, we offer our perspectives on the evolution of desired bioactive polymer-enabled neural interfaces, regarding the biocompatibility, electrical properties and mechanical softness.
Collapse
Affiliation(s)
- Zhanao Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Qianqian Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Benjamin S Hsiao
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794-3400, USA
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
40
|
Khodaei F, Sadati SH, Doost M, Lashgari R. LFP polarity changes across cortical and eccentricity in primary visual cortex. Front Neurosci 2023; 17:1138602. [PMID: 36922925 PMCID: PMC10008888 DOI: 10.3389/fnins.2023.1138602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Local field potentials (LFPs) can evaluate neural population activity in the cortex and their interaction with other cortical areas. Analyzing current source density (CSD) rather than LFPs is very significant due to the reduction of volume conduction effects. Current sinks are construed as net inward transmembrane currents, while current sources are net outward ones. Despite extensive studies of LFPs and CSDs, their morphology in different cortical layers and eccentricities are still largely unknown. Because LFP polarity changes provide a measure of neural activity, they can be useful in implanting brain-computer interface (BCI) chips and effectively communicating the BCI devices to the brain. We hypothesize that sinks and sources analyses could be a way to quantitatively achieve their characteristics in response to changes in stimulus size and layer-dependent differences with increasing eccentricities. In this study, we show that stimulus properties play a crucial role in determining the flow. The present work focusses on the primary visual cortex (V1). In this study, we investigate a map of the LFP-CSD in V1 area by presenting different stimulus properties (e.g., size and type) in the visual field area of Macaque monkeys. Our aim is to use the morphology of sinks and sources to measure the input and output information in different layers as well as different eccentricities. According to the value of CSDs, the results show that the stimuli smaller than RF's size had lower strength than the others and the larger RF's stimulus size showed smaller strength than the optimized stimulus size, which indicated the suppression phenomenon. Additionally, with the increased eccentricity, CSD's strengths were increased across cortical layers.
Collapse
Affiliation(s)
- Fereshteh Khodaei
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - S H Sadati
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mahyar Doost
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Reza Lashgari
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
41
|
Wu R, Yang PF, Wang F, Liu Q, Gore JC, Chen LM. Differential Recovery of Submodality Touch Neurons and Interareal Communication in Sensory Input-Deprived Area 3b and S2 Cortices. J Neurosci 2022; 42:9330-9342. [PMID: 36379707 PMCID: PMC9794378 DOI: 10.1523/jneurosci.0034-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 08/09/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cortical reactivation and regain of interareal functional connections have been linked to the recovery of hand grasping behavior after loss of sensory inputs in primates. We investigated contributions of neurons in two hierarchically organized somatosensory areas, 3b and S2, by characterizing local field potential (LFP) and multiunit spiking activity in five states (rest, stimulus-on, sustained, stimulus-off, and induced) and interareal communication after grasping behavior of dorsal column lesioned male squirrel monkeys had mostly recovered. Compared with normal cortex, fMRI, LFP, and spiking response magnitudes to step indentations were significantly weaker. The sustained component of the spiking recovered much better than the stimulus-off response. Correlation between overall spiking and γ LFP remained strong within each recovered areas 3b and S2. The interareal correlations of γ LFP were severely disrupted, except in the resting and stimulus-on periods. Interareal correlation of spiking was disrupted in the stimulus-off period only. In summary, submodality of low threshold mechanoreceptive neurons recovered differentially in input-deprived area 3b and S2 when impaired global hand grasping behavior returned. Slow-adapting-like neurons recovered, whereas rapid-adapting-like neurons did not. Interareal communications were also severely compromised. We propose that slow-adapting-like neurons and afferents in recovered area 3b and S2 mediate recovery of impaired grasping behavior after dorsal column tract lesion.SIGNIFICANCE STATEMENT Sensory feedback is essential for execution of hand grasping behavior in primates. Reactivations of somatosensory cortices have been attributed to recovery of such behavior after loss of sensory inputs via largely unknown mechanisms. In input-deprived area 3b and S2 cortex, after hand grasping behavior mostly recovered, we found slow-adapting-like neurons were greatly recovered, whereas rapid-adapting-like neurons did not. Communications between area 3b and S2 neurons were severely compromised. We suggest that recovery of slow-adapting-like neurons in input-deprived area 3b and S2 may mediate the recovery of hand grasping behavior.
Collapse
Affiliation(s)
- Ruiqi Wu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Qing Liu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
- Department of Biomedical Engineer, Vanderbilt University, Nashville, Tennessee 37232
| | - Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
42
|
Uguz I, Shepard KL. Spatially controlled, bipolar, cortical stimulation with high-capacitance, mechanically flexible subdural surface microelectrode arrays. SCIENCE ADVANCES 2022; 8:eabq6354. [PMID: 36260686 PMCID: PMC9581492 DOI: 10.1126/sciadv.abq6354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Most neuromodulation approaches rely on extracellular electrical stimulation with penetrating electrodes at the cost of cortical damage. Surface electrodes, in contrast, are much less invasive but are challenged by the lack of proximity to axonal processes, leading to poor resolution. Here, we demonstrate that high-density (40-μm pitch), high-capacitance (>1 nF), single neuronal resolution PEDOT:PSS electrodes can be programmed to shape the charge injection front selectively at depths approaching 300 micrometers with a lateral resolution better than 100 micrometers. These electrodes, patterned on thin-film parylene substrate, can be subdurally implanted and adhere to the pial surface in chronic settings. By leveraging surface arrays that are optically transparent with PEDOT:PSS local interconnects and integrated with depth electrodes, we are able to combine surface stimulation and recording with calcium imaging and depth recording to demonstrate these spatial limits of bidirectional communication with pyramidal neurons in mouse visual cortex both laterally and at depth from the surface.
Collapse
|
43
|
Prakash SS, Mayo JP, Ray S. Decoding of attentional state using local field potentials. Curr Opin Neurobiol 2022; 76:102589. [PMID: 35751949 PMCID: PMC9840850 DOI: 10.1016/j.conb.2022.102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 01/18/2023]
Abstract
We review recent efforts to decode visual spatial attention from different types of brain signals, such as spikes and local field potentials (LFPs). Combining signals from more electrodes improves decoding, but the pattern of improvement varies considerably depending on the signal as well as the task (for example, decoding of sensory stimulus/motor intention versus location of attention). We argue that this pattern of results conveys important information not only about the usefulness of a particular brain signal for decoding attention, but also about the spatial scale over which attention operates in the brain. The spatial scale, in turn, likely depends on the extent of underlying mechanisms such as normalization, gain control via excitation-inhibition interactions, and neuromodulatory regulation of attention.
Collapse
Affiliation(s)
- Surya S. Prakash
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - J. Patrick Mayo
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Supratim Ray
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
44
|
Chan RW, Cron GO, Asaad M, Edelman BJ, Lee HJ, Adesnik H, Feinberg D, Lee JH. Distinct local and brain-wide networks are activated by optogenetic stimulation of neurons specific to each layer of motor cortex. Neuroimage 2022; 263:119640. [PMID: 36176220 PMCID: PMC10025169 DOI: 10.1016/j.neuroimage.2022.119640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/20/2022] Open
Abstract
Primary motor cortex (M1) consists of a stack of interconnected but distinct layers (L1-L6) which affect motor control through large-scale networks. However, the brain-wide functional influence of each layer is poorly understood. We sought to expand our knowledge of these layers' circuitry by combining Cre-driver mouse lines, optogenetics, fMRI, and electrophysiology. Neuronal activities initiated in Drd3 neurons (within L2/3) were mainly confined within M1, while stimulation of Scnn1a, Rbp4, and Ntsr1 neurons (within L4, L5, and L6, respectively) evoked distinct responses in M1 and motor-related subcortical regions, including striatum and motor thalamus. We also found that fMRI responses from targeted stimulations correlated with both local field potentials (LFPs) and spike changes. This study represents a step forward in our understanding of how different layers of primary motor cortex are embedded in brain-wide circuitry.
Collapse
Affiliation(s)
- Russell W Chan
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Greg O Cron
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Mazen Asaad
- Department of Molecular and Cellular Physiology, Stanford University, CA 94305, USA
| | - Bradley J Edelman
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hyun Joo Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - David Feinberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jin Hyung Lee
- Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA; Department of Bioengineering, Stanford University, CA 94305, USA; Department of Neurosurgery, Stanford University, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
45
|
Hou B, Chen K, Jia A, Liu S, Bao X, Liao B, Zhao YL, Guo D, Xia Y, Yao D. Visually induced γ band rhythm in spatial summation beyond the receptive field in mouse primary visual cortex. Cereb Cortex 2022; 33:4350-4359. [PMID: 36124829 DOI: 10.1093/cercor/bhac347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent studies in many kinds of mammals have established the existence of multiple γ rhythms in the cerebral cortex subserving different functions. In the primary visual cortex (V1), visually induced γ rhythms are dependent on stimulus features. However, experimental findings of γ power induced by varying the size of the drifting grating are inconsistent. Here, we reinvestigated the spatial summation properties of visually induced spike and γ rhythm activities in mouse V1. Our results show that drifting sinusoidal grating stimuli mainly induce 2 γ band rhythms, including a low-frequency band (25-45 Hz) and a high-frequency band (55-75 Hz). Unlike previous findings, we discovered that visually induced γ power could also exhibit extrareceptive field (ERF) modulatory properties. The modulation by ERF stimulation could be either suppressive, countersuppressive, or nonsuppressive, mostly similar to the local spike activity. Moreover, further analysis of the neuron group exhibiting surround suppression in both spike and γ activity revealed that the strength of the surround suppression and the receptive field size showed moderate correlations between measurements by spike and γ rhythm activity. Our findings improve the understanding of the characteristics and neural mechanisms of induced γ rhythms in visual spatial summation.
Collapse
Affiliation(s)
- BoJun Hou
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ang Jia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shanshan Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiaojing Bao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Baitao Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yi Lei Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yang Xia
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Dezhong Yao
- Sichuan Provincial People's Hospital, Medical School, University of Electronic Science and Technology of China, Xiyuan road 2006, Chengdu 611731, China.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.,Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| |
Collapse
|
46
|
Herreras O, Torres D, Martín-Vázquez G, Hernández-Recio S, López-Madrona VJ, Benito N, Makarov VA, Makarova J. Site-dependent shaping of field potential waveforms. Cereb Cortex 2022; 33:3636-3650. [PMID: 35972425 PMCID: PMC10068269 DOI: 10.1093/cercor/bhac297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The activity of neuron populations gives rise to field potentials (FPs) that extend beyond the sources. Their mixing in the volume dilutes the original temporal motifs in a site-dependent manner, a fact that has received little attention. And yet, it potentially rids of physiological significance the time-frequency parameters of individual waves (amplitude, phase, duration). This is most likely to happen when a single source or a local origin is erroneously assumed. Recent studies using spatial treatment of these signals and anatomically realistic modeling of neuron aggregates provide convincing evidence for the multisource origin and site-dependent blend of FPs. Thus, FPs generated in primary structures like the neocortex and hippocampus reach far and cross-contaminate each other but also, they add and even impose their temporal traits on distant regions. Furthermore, both structures house neurons that act as spatially distinct (but overlapped) FP sources whose activation is state, region, and time dependent, making the composition of so-called local FPs highly volatile and strongly site dependent. Since the spatial reach cannot be predicted without source geometry, it is important to assess whether waveforms and temporal motifs arise from a single source; otherwise, those from each of the co-active sources should be sought.
Collapse
Affiliation(s)
- Oscar Herreras
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain
| | - Daniel Torres
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain
| | - Gonzalo Martín-Vázquez
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain
| | - Sara Hernández-Recio
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain
| | - Víctor J López-Madrona
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain
| | - Nuria Benito
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain
| | - Valeri A Makarov
- Department of Applied Mathematics, Institute for Interdisciplinary Mathematics, Universidad Complutense of Madrid, Av. Paraninfo s/n, Madrid 28040, Spain
| | - Julia Makarova
- Department of Translational Neuroscience, Cajal Institute, CSIC, Av. Doctor Arce 37, Madrid 28002, Spain.,Department of Applied Mathematics, Institute for Interdisciplinary Mathematics, Universidad Complutense of Madrid, Av. Paraninfo s/n, Madrid 28040, Spain
| |
Collapse
|
47
|
Myers JC, Smith EH, Leszczynski M, O'Sullivan J, Yates MJ, McKhann G, Mesgarani N, Schroeder C, Schevon C, Sheth SA. The Spatial Reach of Neuronal Coherence and Spike-Field Coupling across the Human Neocortex. J Neurosci 2022; 42:6285-6294. [PMID: 35790403 PMCID: PMC9374135 DOI: 10.1523/jneurosci.0050-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/21/2022] [Accepted: 05/25/2022] [Indexed: 11/21/2022] Open
Abstract
Neuronal coherence is thought to be a fundamental mechanism of communication in the brain, where synchronized field potentials coordinate synaptic and spiking events to support plasticity and learning. Although the spread of field potentials has garnered great interest, little is known about the spatial reach of phase synchronization, or neuronal coherence. Functional connectivity between different brain regions is known to occur across long distances, but the locality of synchronization across the neocortex is understudied. Here we used simultaneous recordings from electrocorticography (ECoG) grids and high-density microelectrode arrays to estimate the spatial reach of neuronal coherence and spike-field coherence (SFC) across frontal, temporal, and occipital cortices during cognitive tasks in humans. We observed the strongest coherence within a 2-3 cm distance from the microelectrode arrays, potentially defining an effective range for local communication. This range was relatively consistent across brain regions, spectral frequencies, and cognitive tasks. The magnitude of coherence showed power law decay with increasing distance from the microelectrode arrays, where the highest coherence occurred between ECoG contacts, followed by coherence between ECoG and deep cortical local field potential (LFP), and then SFC (i.e., ECoG > LFP > SFC). The spectral frequency of coherence also affected its magnitude. Alpha coherence (8-14 Hz) was generally higher than other frequencies for signals nearest the microelectrode arrays, whereas delta coherence (1-3 Hz) was higher for signals that were farther away. Action potentials in all brain regions were most coherent with the phase of alpha oscillations, which suggests that alpha waves could play a larger, more spatially local role in spike timing than other frequencies. These findings provide a deeper understanding of the spatial and spectral dynamics of neuronal synchronization, further advancing knowledge about how activity propagates across the human brain.SIGNIFICANCE STATEMENT Coherence is theorized to facilitate information transfer across cerebral space by providing a convenient electrophysiological mechanism to modulate membrane potentials in spatiotemporally complex patterns. Our work uses a multiscale approach to evaluate the spatial reach of phase coherence and spike-field coherence during cognitive tasks in humans. Locally, coherence can reach up to 3 cm around a given area of neocortex. The spectral properties of coherence revealed that alpha phase-field and spike-field coherence were higher within ranges <2 cm, whereas lower-frequency delta coherence was higher for contacts farther away. Spatiotemporally shared information (i.e., coherence) across neocortex seems to reach farther than field potentials alone.
Collapse
Affiliation(s)
- John C Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah 84132
- Department of Neurology, Columbia University, New York, New York 10032
| | | | - James O'Sullivan
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Mark J Yates
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Guy McKhann
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, New York, New York 10027
| | - Charles Schroeder
- Department of Psychiatry, Columbia University, New York, New York 10032
| | - Catherine Schevon
- Department of Neurology, Columbia University, New York, New York 10032
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
48
|
Mirfathollahi A, Ghodrati MT, Shalchyan V, Daliri MR. Decoding locomotion speed and slope from local field potentials of rat motor cortex. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106961. [PMID: 35759821 DOI: 10.1016/j.cmpb.2022.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Local Field Potentials (LFPs) recorded from the primary motor cortex (M1) have been shown to be very informative for decoding movement parameters, and these signals can be used to decode forelimb kinematic and kinetic parameters accurately. Although locomotion is one of the most basic and important motor abilities of humans and animals, the potential of LFPs in decoding abstract hindlimb locomotor parameters has not been investigated. This study investigates the feasibility of decoding speed and slope of locomotion, as two important abstract parameters of walking, using the LFP signals. METHODS Rats were trained to walk smoothly on a treadmill with different speeds and slopes. The brain signals were recorded using the microwire arrays chronically implanted in the hindlimb area of M1 while rats walked on the treadmill. LFP channels were spatially filtered using optimal common spatial patterns to increase the discriminability of speeds and slopes of locomotion. Logarithmic wavelet band powers were extracted as basic features, and the best features were selected using the statistical dependency criterion before classification. RESULTS Using 5 s LFP trials, the average classification accuracies of four different speeds and seven different slopes reached 90.8% and 86.82%, respectively. The high-frequency LFP band (250-500 Hz) was the most informative band about these parameters and contributed more than other frequency bands in the final decoder model. CONCLUSIONS Our results show that the LFP signals in M1 accurately decode locomotion speed and slope, which can be considered as abstract walking parameters needed for designing long-term brain-computer interfaces for hindlimb locomotion control.
Collapse
Affiliation(s)
- Alavie Mirfathollahi
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Pardis 16583-44575, Iran
| | - Mohammad Taghi Ghodrati
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| | - Vahid Shalchyan
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Lab, Biomedical Engineering Department, School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran
| |
Collapse
|
49
|
Price BH, Gavornik JP. Efficient Temporal Coding in the Early Visual System: Existing Evidence and Future Directions. Front Comput Neurosci 2022; 16:929348. [PMID: 35874317 PMCID: PMC9298461 DOI: 10.3389/fncom.2022.929348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/13/2022] [Indexed: 01/16/2023] Open
Abstract
While it is universally accepted that the brain makes predictions, there is little agreement about how this is accomplished and under which conditions. Accurate prediction requires neural circuits to learn and store spatiotemporal patterns observed in the natural environment, but it is not obvious how such information should be stored, or encoded. Information theory provides a mathematical formalism that can be used to measure the efficiency and utility of different coding schemes for data transfer and storage. This theory shows that codes become efficient when they remove predictable, redundant spatial and temporal information. Efficient coding has been used to understand retinal computations and may also be relevant to understanding more complicated temporal processing in visual cortex. However, the literature on efficient coding in cortex is varied and can be confusing since the same terms are used to mean different things in different experimental and theoretical contexts. In this work, we attempt to provide a clear summary of the theoretical relationship between efficient coding and temporal prediction, and review evidence that efficient coding principles explain computations in the retina. We then apply the same framework to computations occurring in early visuocortical areas, arguing that data from rodents is largely consistent with the predictions of this model. Finally, we review and respond to criticisms of efficient coding and suggest ways that this theory might be used to design future experiments, with particular focus on understanding the extent to which neural circuits make predictions from efficient representations of environmental statistics.
Collapse
Affiliation(s)
| | - Jeffrey P. Gavornik
- Center for Systems Neuroscience, Graduate Program in Neuroscience, Department of Biology, Boston University, Boston, MA, United States
| |
Collapse
|
50
|
Guest AC, O'Neill KJ, Graham D, Mirzadeh Z, Ponce FA, Greger B. Microscale electrophysiological functional connectivity in human cortico-basal ganglia network. Clin Neurophysiol 2022; 142:11-19. [DOI: 10.1016/j.clinph.2022.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|