1
|
Nguyen QH, Tran HN, Jeong Y. Regulation of neuronal fate specification and connectivity of the thalamic reticular nucleus by the Ascl1-Isl1 transcriptional cascade. Cell Mol Life Sci 2024; 81:478. [PMID: 39625482 PMCID: PMC11615174 DOI: 10.1007/s00018-024-05523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024]
Abstract
The thalamic reticular nucleus (TRN) is an anatomical and functional hub that modulates the flow of information between the cerebral cortex and thalamus, and its dysfunction has been linked to sensory disturbance and multiple behavioral disorders. Therefore, understanding how TRN neurons differentiate and establish connectivity is crucial to clarify the basics of TRN functions. Here, we showed that the regulatory cascade of the transcription factors Ascl1 and Isl1 promotes the fate of TRN neurons and concomitantly represses the fate of non-TRN prethalamic neurons. Furthermore, we found that this cascade is necessary for the correct development of the two main axonal connections, thalamo-cortical projections and prethalamo-thalamic projections. Notably, the disruption of prethalamo-thalamic axons can cause the pathfinding defects of thalamo-cortical axons in the thalamus. Finally, forced Isl1 expression can rescue disruption of cell fate specification and prethalamo-thalamic projections in in vitro primary cultures of Ascl1-deficient TRN neurons, indicating that Isl1 is an essential mediator of Ascl1 function in TRN development. Together, our findings provide insights into the molecular mechanisms for TRN neuron differentiation and circuit formation.
Collapse
Affiliation(s)
- Quy-Hoai Nguyen
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hong-Nhung Tran
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yongsu Jeong
- Department of Genetics and Biotechnology, College of Life Sciences, Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
2
|
Tian Y, Wu X, Luo S, Xiong D, Liu R, Hu L, Yuan Y, Shi G, Yao J, Huang Z, Fu F, Yang X, Tang Z, Zhang J, Hu K. A multi-omic single-cell landscape of cellular diversification in the developing human cerebral cortex. Comput Struct Biotechnol J 2024; 23:2173-2189. [PMID: 38827229 PMCID: PMC11141146 DOI: 10.1016/j.csbj.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The vast neuronal diversity in the human neocortex is vital for high-order brain functions, necessitating elucidation of the regulatory mechanisms underlying such unparalleled diversity. However, recent studies have yet to comprehensively reveal the diversity of neurons and the molecular logic of neocortical origin in humans at single-cell resolution through profiling transcriptomic or epigenomic landscapes, owing to the application of unimodal data alone to depict exceedingly heterogeneous populations of neurons. In this study, we generated a comprehensive compendium of the developing human neocortex by simultaneously profiling gene expression and open chromatin from the same cell. We computationally reconstructed the differentiation trajectories of excitatory projection neurons of cortical origin and inferred the regulatory logic governing lineage bifurcation decisions for neuronal diversification. We demonstrated that neuronal diversity arises from progenitor cell lineage specificity and postmitotic differentiation at distinct stages. Our data paves the way for understanding the primarily coordinated regulatory logic for neuronal diversification in the neocortex.
Collapse
Affiliation(s)
- Yuhan Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Xia Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Songhao Luo
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Dan Xiong
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Rong Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Lanqi Hu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuchen Yuan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Shi
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjie Yao
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiwei Huang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Fu
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Xin Yang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Kunhua Hu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Public Platform Laboratory, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
3
|
Zhang D, Rodríguez-Kirby LAR, Lin Y, Song M, Wang L, Wang L, Kanatani S, Jimenez-Beristain T, Dang Y, Zhong M, Kukanja P, Wang S, Chen XL, Gao F, Wang D, Xu H, Lou X, Liu Y, Chen J, Sestan N, Uhlén P, Kriegstein A, Zhao H, Castelo-Branco G, Fan R. Spatial dynamics of mammalian brain development and neuroinflammation by multimodal tri-omics mapping. RESEARCH SQUARE 2024:rs.3.rs-4814866. [PMID: 39184075 PMCID: PMC11343178 DOI: 10.21203/rs.3.rs-4814866/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The ability to spatially map multiple layers of the omics information over different time points allows for exploring the mechanisms driving brain development, differentiation, arealization, and alterations in disease. Herein we developed and applied spatial tri-omic sequencing technologies, DBiT ARP-seq (spatial ATAC-RNA-Protein-seq) and DBiT CTRP-seq (spatial CUT&Tag-RNA-Protein-seq) together with multiplexed immunofluorescence imaging (CODEX) to map spatial dynamic remodeling in brain development and neuroinflammation. A spatiotemporal tri-omic atlas of the mouse brain was obtained at different stages from postnatal day P0 to P21, and compared to the regions of interest in the human developing brains. Specifically, in the cortical area, we discovered temporal persistence and spatial spreading of chromatin accessibility for the layer-defining transcription factors. In corpus callosum, we observed dynamic chromatin priming of myelin genes across the subregions. Together, it suggests a role for layer specific projection neurons to coordinate axonogenesis and myelination. We further mapped the brain of a lysolecithin (LPC) neuroinflammation mouse model and observed common molecular programs in development and neuroinflammation. Microglia, exhibiting both conserved and distinct programs for inflammation and resolution, are transiently activated not only at the core of the LPC lesion, but also at distal locations presumably through neuronal circuitry. Thus, this work unveiled common and differential mechanisms in brain development and neuroinflammation, resulting in a valuable data resource to investigate brain development, function and disease.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- These authors contributed equally
| | - Leslie A Rubio Rodríguez-Kirby
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
| | - Yingxin Lin
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mengyi Song
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Lijun Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shigeaki Kanatani
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tony Jimenez-Beristain
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yonglong Dang
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mei Zhong
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Xinyi Lisa Chen
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Fu Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dejiang Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hang Xu
- Binformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xing Lou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jinmiao Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Binformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Per Uhlén
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arnold Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Zhang D, Rubio Rodríguez-Kirby LA, Lin Y, Song M, Wang L, Wang L, Kanatani S, Jimenez-Beristain T, Dang Y, Zhong M, Kukanja P, Wang S, Chen XL, Gao F, Wang D, Xu H, Lou X, Liu Y, Chen J, Sestan N, Uhlén P, Kriegstein A, Zhao H, Castelo-Branco G, Fan R. Spatial dynamics of mammalian brain development and neuroinflammation by multimodal tri-omics mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.28.605493. [PMID: 39091821 PMCID: PMC11291146 DOI: 10.1101/2024.07.28.605493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The ability to spatially map multiple layers of the omics information over different time points allows for exploring the mechanisms driving brain development, differentiation, arealization, and alterations in disease. Herein we developed and applied spatial tri-omic sequencing technologies, DBiT ARP-seq (spatial ATAC-RNA-Protein-seq) and DBiT CTRP-seq (spatial CUT&Tag-RNA-Protein-seq) together with multiplexed immunofluorescence imaging (CODEX) to map spatial dynamic remodeling in brain development and neuroinflammation. A spatiotemporal tri-omic atlas of the mouse brain was obtained at different stages from postnatal day P0 to P21, and compared to the regions of interest in the human developing brains. Specifically, in the cortical area, we discovered temporal persistence and spatial spreading of chromatin accessibility for the layer-defining transcription factors. In corpus callosum, we observed dynamic chromatin priming of myelin genes across the subregions. Together, it suggests a role for layer specific projection neurons to coordinate axonogenesis and myelination. We further mapped the brain of a lysolecithin (LPC) neuroinflammation mouse model and observed common molecular programs in development and neuroinflammation. Microglia, exhibiting both conserved and distinct programs for inflammation and resolution, are transiently activated not only at the core of the LPC lesion, but also at distal locations presumably through neuronal circuitry. Thus, this work unveiled common and differential mechanisms in brain development and neuroinflammation, resulting in a valuable data resource to investigate brain development, function and disease.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- These authors contributed equally
| | - Leslie A Rubio Rodríguez-Kirby
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- These authors contributed equally
| | - Yingxin Lin
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mengyi Song
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Li Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Lijun Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Shigeaki Kanatani
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tony Jimenez-Beristain
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yonglong Dang
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mei Zhong
- Yale Stem Cell Center and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Shaohui Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Xinyi Lisa Chen
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Fu Gao
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Dejiang Wang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Hang Xu
- Binformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xing Lou
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Yang Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jinmiao Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Binformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Per Uhlén
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Arnold Kriegstein
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco; San Francisco, CA 94143, USA
- Department of Neurology, University of California San Francisco; San Francisco, CA 94143, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Osaki T, Duenki T, Chow SYA, Ikegami Y, Beaubois R, Levi T, Nakagawa-Tamagawa N, Hirano Y, Ikeuchi Y. Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons. Nat Commun 2024; 15:2945. [PMID: 38600094 PMCID: PMC11006899 DOI: 10.1038/s41467-024-46787-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.
Collapse
Affiliation(s)
- Tatsuya Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Tomoya Duenki
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Siu Yu A Chow
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yasuhiro Ikegami
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan
| | - Romain Beaubois
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- IMS Laboratory, UMR5218, University of Bordeaux, Talence, France
| | - Timothée Levi
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- IMS Laboratory, UMR5218, University of Bordeaux, Talence, France
| | - Nao Nakagawa-Tamagawa
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yoji Hirano
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro, Tokyo, 153-8505, Japan.
- Institute for AI and Beyond, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan.
- Department of Chemistry and Biotechnology, The University of Tokyo, Bunkyo, Tokyo, 113-8655, Japan.
- LIMMS/CNRS, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Lawrence AR, Canzi A, Bridlance C, Olivié N, Lansonneur C, Catale C, Pizzamiglio L, Kloeckner B, Silvin A, Munro DAD, Fortoul A, Boido D, Zehani F, Cartonnet H, Viguier S, Oller G, Squarzoni P, Candat A, Helft J, Allet C, Watrin F, Manent JB, Paoletti P, Thieffry D, Cantini L, Pridans C, Priller J, Gélot A, Giacobini P, Ciobanu L, Ginhoux F, Thion MS, Lokmane L, Garel S. Microglia maintain structural integrity during fetal brain morphogenesis. Cell 2024; 187:962-980.e19. [PMID: 38309258 PMCID: PMC10869139 DOI: 10.1016/j.cell.2024.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/30/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Microglia (MG), the brain-resident macrophages, play major roles in health and disease via a diversity of cellular states. While embryonic MG display a large heterogeneity of cellular distribution and transcriptomic states, their functions remain poorly characterized. Here, we uncovered a role for MG in the maintenance of structural integrity at two fetal cortical boundaries. At these boundaries between structures that grow in distinct directions, embryonic MG accumulate, display a state resembling post-natal axon-tract-associated microglia (ATM) and prevent the progression of microcavities into large cavitary lesions, in part via a mechanism involving the ATM-factor Spp1. MG and Spp1 furthermore contribute to the rapid repair of lesions, collectively highlighting protective functions that preserve the fetal brain from physiological morphogenetic stress and injury. Our study thus highlights key major roles for embryonic MG and Spp1 in maintaining structural integrity during morphogenesis, with major implications for our understanding of MG functions and brain development.
Collapse
Affiliation(s)
- Akindé René Lawrence
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Alice Canzi
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Cécile Bridlance
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Nicolas Olivié
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Claire Lansonneur
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clarissa Catale
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Lara Pizzamiglio
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Benoit Kloeckner
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France
| | - David A D Munro
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aurélien Fortoul
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Davide Boido
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Feriel Zehani
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Hugues Cartonnet
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sarah Viguier
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Guillaume Oller
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Paola Squarzoni
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Adrien Candat
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Electron Microscopy Facility, 75005 Paris, France
| | - Julie Helft
- Institut Cochin, INSERM, CNRS, Université Paris Cité, Team Phagocytes and Tumor Immunology, 75014 Paris, France
| | - Cécile Allet
- UMR-S 1172, JPArc - Centre de Recherche Neurosciences et Cancer, University of Lille, Lille, France
| | - Francoise Watrin
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Jean-Bernard Manent
- INMED, INSERM, Aix-Marseille University, Turing Centre for Living Systems, Marseille, France
| | - Pierre Paoletti
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Glutamate Receptors and Excitatory Synapses, 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Laura Cantini
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational Systems Biology, 75005 Paris, France
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, Edinburgh EH16 4TJ, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Josef Priller
- UK Dementia Research Institute at the University of Edinburgh, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK; Department of Psychiatry and Psychotherapy, School of Medicine, Technical University Munich, 81675 Munich, Germany; Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin and DZNE Berlin, 10117 Berlin, Germany
| | - Antoinette Gélot
- Service d'anatomie Pathologique, Hôpital Trousseau APHP, 75571 Paris Cedex 12, France
| | - Paolo Giacobini
- University of Lille, CHU Lille, Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, 59000 Lille, France
| | - Luisa Ciobanu
- NeuroSpin, CEA, Paris-Saclay University, Gif-sur-Yvette, Saclay, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, 94800 Villejuif, France; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore 138648, Singapore
| | - Morgane Sonia Thion
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, Team Brain Development and Plasticity, 75005 Paris, France; Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France; Collège de France, Université PSL, 75005 Paris, France.
| |
Collapse
|
7
|
Sawada M, Hamaguchi A, Mano N, Yoshida Y, Uemura A, Sawamoto K. PlexinD1 signaling controls domain-specific dendritic development in newborn neurons in the postnatal olfactory bulb. Front Neurosci 2023; 17:1143130. [PMID: 37534039 PMCID: PMC10393276 DOI: 10.3389/fnins.2023.1143130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/29/2023] [Indexed: 08/04/2023] Open
Abstract
Newborn neurons show immature bipolar morphology and continue to migrate toward their destinations. After the termination of migration, newborn neurons undergo spatially controlled dendrite formation and change into a complex morphology. The mechanisms of dendritic development of newborn neurons have not been fully understood. Here, we show that in the postnatal olfactory bulb (OB), the Sema3E-PlexinD1 signaling, which maintains bipolar morphology of newborn neurons, also regulates their dendritic development after the termination of migration in a dendritic domain-specific manner. Genetic ablation of Sema3E or PlexinD1 enhanced dendritic branching in the proximal domain of the apical dendrites of OB newborn granule cells, whereas PlexinD1 overexpression suppressed it in a Rho binding domain (RBD)-dependent manner. Furthermore, RhoJ, a small GTPase that directly binds to PlexinD1RBD in vascular endothelial cells, is expressed in migrating and differentiating newborn granule cells in the OB and is also involved in the suppression of proximal branching of their apical dendrites. These results suggest that the Sema3E-PlexinD1-RhoJ axis regulates domain-specific dendrite formation of newborn neurons in the postnatal OB.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Japan
| | - Ayato Hamaguchi
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naomichi Mano
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Burke Neurological Institute, White Plains, NY, United States
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
- Neural Circuit Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute of Physiological Sciences, Okazaki, Japan
| |
Collapse
|
8
|
Reynolds LM, Hernandez G, MacGowan D, Popescu C, Nouel D, Cuesta S, Burke S, Savell KE, Zhao J, Restrepo-Lozano JM, Giroux M, Israel S, Orsini T, He S, Wodzinski M, Avramescu RG, Pokinko M, Epelbaum JG, Niu Z, Pantoja-Urbán AH, Trudeau LÉ, Kolb B, Day JJ, Flores C. Amphetamine disrupts dopamine axon growth in adolescence by a sex-specific mechanism in mice. Nat Commun 2023; 14:4035. [PMID: 37419977 PMCID: PMC10329029 DOI: 10.1038/s41467-023-39665-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/21/2023] [Indexed: 07/09/2023] Open
Abstract
Initiating drug use during adolescence increases the risk of developing addiction or other psychopathologies later in life, with long-term outcomes varying according to sex and exact timing of use. The cellular and molecular underpinnings explaining this differential sensitivity to detrimental drug effects remain unexplained. The Netrin-1/DCC guidance cue system segregates cortical and limbic dopamine pathways in adolescence. Here we show that amphetamine, by dysregulating Netrin-1/DCC signaling, triggers ectopic growth of mesolimbic dopamine axons to the prefrontal cortex, only in early-adolescent male mice, underlying a male-specific vulnerability to enduring cognitive deficits. In adolescent females, compensatory changes in Netrin-1 protect against the deleterious consequences of amphetamine on dopamine connectivity and cognitive outcomes. Netrin-1/DCC signaling functions as a molecular switch which can be differentially regulated by the same drug experience as function of an individual's sex and adolescent age, and lead to divergent long-term outcomes associated with vulnerable or resilient phenotypes.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France
| | | | - Del MacGowan
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Christina Popescu
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Dominique Nouel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Santiago Cuesta
- Douglas Mental Health University Institute, Montréal, QC, Canada
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Samuel Burke
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Katherine E Savell
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janet Zhao
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Jose Maria Restrepo-Lozano
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Michel Giroux
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Sonia Israel
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Taylor Orsini
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Susan He
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | | | - Radu G Avramescu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Julia G Epelbaum
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Zhipeng Niu
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Andrea Harée Pantoja-Urbán
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Louis-Éric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montréal, QC, Canada.
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
| |
Collapse
|
9
|
Huerga-Gómez I, Martini FJ, López-Bendito G. Building thalamic neuronal networks during mouse development. Front Neural Circuits 2023; 17:1098913. [PMID: 36817644 PMCID: PMC9936079 DOI: 10.3389/fncir.2023.1098913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
The thalamic nuclear complex contains excitatory projection neurons and inhibitory local neurons, the two cell types driving the main circuits in sensory nuclei. While excitatory neurons are born from progenitors that reside in the proliferative zone of the developing thalamus, inhibitory local neurons are born outside the thalamus and they migrate there during development. In addition to these cell types, which occupy most of the thalamus, there are two small thalamic regions where inhibitory neurons target extra-thalamic regions rather than neighboring neurons, the intergeniculate leaflet and the parahabenular nucleus. Like excitatory thalamic neurons, these inhibitory neurons are derived from progenitors residing in the developing thalamus. The assembly of these circuits follows fine-tuned genetic programs and it is coordinated by extrinsic factors that help the cells find their location, associate with thalamic partners, and establish connections with their corresponding extra-thalamic inputs and outputs. In this review, we bring together what is currently known about the development of the excitatory and inhibitory components of the thalamocortical sensory system, in particular focusing on the visual pathway and thalamic interneurons in mice.
Collapse
Affiliation(s)
- Irene Huerga-Gómez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, Spain
| | | | | |
Collapse
|
10
|
Dumoulin A, Stoeckli ET. Looking for Guidance - Models and Methods to Study Axonal Navigation. Neuroscience 2023; 508:30-39. [PMID: 35940454 DOI: 10.1016/j.neuroscience.2022.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 01/17/2023]
Abstract
The molecular mechanisms of neural circuit formation have been of interest to Santiago Ramón y Cajal and thousands of neuroscientists sharing his passion for neural circuits ever since. Cajal was a brilliant observer and taught us about the connections and the morphology of neurons in the adult and developing nervous system. Clearly, we will not learn about molecular mechanisms by just looking at brain sections or cells in culture. Technically, we had to come a long way to today's possibilities that allow us to perturb target gene expression and watch the consequences of our manipulations on navigating axons in situ. In this review, we summarize landmark steps towards modern live-imaging approaches used to study the molecular basis of axon guidance.
Collapse
Affiliation(s)
- Alexandre Dumoulin
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Esther T Stoeckli
- Department of Molecular Life Sciences and Neuroscience Center Zurich, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
11
|
Anatomical Development of the Cerebellothalamic Tract in Embryonic Mice. Cells 2022; 11:cells11233800. [PMID: 36497060 PMCID: PMC9738252 DOI: 10.3390/cells11233800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
The main connection from cerebellum to cerebrum is formed by cerebellar nuclei axons that synapse in the thalamus. Apart from its role in coordinating sensorimotor integration in the adult brain, the cerebello-thalamic tract (CbT) has also been implicated in developmental disorders, such as autism spectrum disorders. Although the development of the cerebellum, thalamus and cerebral cortex have been studied, there is no detailed description of the ontogeny of the mammalian CbT. Here we investigated the development of the CbT at embryonic stages using transgenic Ntsr1-Cre/Ai14 mice and in utero electroporation of wild type mice. Wide-field, confocal and 3D light-sheet microscopy of immunohistochemical stainings showed that CbT fibers arrive in the prethalamus between E14.5 and E15.5, but only invade the thalamus after E16.5. We quantified the spread of CbT fibers throughout the various thalamic nuclei and found that at E17.5 and E18.5 the ventrolateral, ventromedial and parafascicular nuclei, but also the mediodorsal and posterior complex, become increasingly innervated. Several CbT fiber varicosities express vesicular glutamate transporter type 2 at E18.5, indicating cerebello-thalamic synapses. Our results provide the first quantitative data on the developing murine CbT, which provides guidance for future investigations of the impact that cerebellum has on thalamo-cortical networks during development.
Collapse
|
12
|
Nano PR, Bhaduri A. Evaluation of advances in cortical development using model systems. Dev Neurobiol 2022; 82:408-427. [PMID: 35644985 PMCID: PMC10924780 DOI: 10.1002/dneu.22879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022]
Abstract
Compared with that of even the closest primates, the human cortex displays a high degree of specialization and expansion that largely emerges developmentally. Although decades of research in the mouse and other model systems has revealed core tenets of cortical development that are well preserved across mammalian species, small deviations in transcription factor expression, novel cell types in primates and/or humans, and unique cortical architecture distinguish the human cortex. Importantly, many of the genes and signaling pathways thought to drive human-specific cortical expansion also leave the brain vulnerable to disease, as the misregulation of these factors is highly correlated with neurodevelopmental and neuropsychiatric disorders. However, creating a comprehensive understanding of human-specific cognition and disease remains challenging. Here, we review key stages of cortical development and highlight known or possible differences between model systems and the developing human brain. By identifying the developmental trajectories that may facilitate uniquely human traits, we highlight open questions in need of approaches to examine these processes in a human context and reveal translatable insights into human developmental disorders.
Collapse
Affiliation(s)
- Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Paganoni AJJ, Amoruso F, Porta Pelayo J, Calleja-Pérez B, Vezzoli V, Duminuco P, Caramello A, Oleari R, Fernández-Jaén A, Cariboni A. A Novel Loss-of-Function SEMA3E Mutation in a Patient with Severe Intellectual Disability and Cognitive Regression. Int J Mol Sci 2022; 23:5632. [PMID: 35628442 PMCID: PMC9143429 DOI: 10.3390/ijms23105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Intellectual disability (ID) is a neurological disorder arising from early neurodevelopmental defects. The underlying genetic and molecular mechanisms are complex, but are thought to involve, among others, alterations in genes implicated in axon guidance and/or neural circuit formation as demonstrated by studies on mouse models. Here, by combining exome sequencing with in silico analyses, we identified a patient affected by severe ID and cognitive regression, carrying a novel loss-of-function variant in the semaphorin 3E (SEMA3E) gene, which encodes for a key secreted cue that controls mouse brain development. By performing ad hoc in vitro and ex vivo experiments, we found that the identified variant impairs protein secretion and hampers the binding to both embryonic mouse neuronal cells and tissues. Further, we revealed SEMA3E expression during human brain development. Overall, our findings demonstrate the pathogenic impact of the identified SEMA3E variant and provide evidence that clinical neurological features of the patient might be due to a defective SEMA3E signaling in the brain.
Collapse
Affiliation(s)
- Alyssa J. J. Paganoni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (F.A.); (R.O.)
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (F.A.); (R.O.)
| | | | | | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy; (V.V.); (P.D.)
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases and Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20145 Milan, Italy; (V.V.); (P.D.)
| | - Alessia Caramello
- UK Dementia Research Institute, Imperial College London, London SW7 2AZ, UK;
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (F.A.); (R.O.)
| | - Alberto Fernández-Jaén
- Neuropediatric Department, Hospital Universitario Quirónsalud, School of Medicine, Universidad Europea de Madrid, 28670 Madrid, Spain
- Department of Pediatric Neurology, Hospital Universitario Quirónsalud, 28223 Madrid, Spain
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.J.J.P.); (F.A.); (R.O.)
| |
Collapse
|
14
|
Giasafaki C, Grant E, Hoerder‐Suabedissen A, Hayashi S, Lee S, Molnár Z. Cross-hierarchical plasticity of corticofugal projections to dLGN after neonatal monocular enucleation. J Comp Neurol 2022; 530:978-997. [PMID: 35078267 PMCID: PMC9305932 DOI: 10.1002/cne.25304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/10/2022]
Abstract
Perception is the result of interactions between the sensory periphery, thalamus, and cerebral cortex. Inputs from the retina project to the first-order dorsal lateral geniculate nucleus (dLGN), which projects to the primary visual cortex (V1). In return, the cortex innervates the thalamus. While layer 6 projections innervate all thalamic nuclei, cortical layer 5 neurons selectively project to the higher order lateral posterior nucleus (LP) and not to dLGN. It has been demonstrated that a subpopulation of layer 5 (Rbp4-Cre+) projections rewires to dLGN after monocular or binocular enucleation in young postnatal mice. However, the exact cortical regional origin of these projections was not fully determined, and it remained unclear whether these changes persisted into adulthood. In this study, we report gene expression changes observed in the dLGN after monocular enucleation at birth using microarray, qPCR at P6, and in situ hybridization at P8. We report that genes that are normally enriched in dLGN, but not LP during development are preferentially downregulated in dLGN following monocular enucleation. Comparisons with developmental gene expression patters in dLGN suggest more immature and delayed gene expression in enucleated dLGN. Combined tracing and immuno-histochemical analysis revealed that the induced layer 5 fibers that innervate enucleated dLGN originate from putative primary visual cortex and they retain increased VGluT1+ synapse formation into adulthood. Our results indicate a new form of plasticity when layer 5 driver input takes over the innervation of an originally first-order thalamic nucleus after early sensory deficit.
Collapse
Affiliation(s)
- Chrysoula Giasafaki
- Department of PhysiologyAnatomy and GeneticsOxfordUK,Instituto de Neurociencias de AlicanteCSIC‐UMH, Av. Ramon y Cajals/n 03550 San Juan de AlicanteAlicanteSpain
| | - Eleanor Grant
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| | | | - Shuichi Hayashi
- Department of PhysiologyAnatomy and GeneticsOxfordUK,Department of AnatomyKawasaki Medical SchoolKurashikiOkayama701‐0192Japan
| | - Sheena Lee
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| | - Zoltán Molnár
- Department of PhysiologyAnatomy and GeneticsOxfordUK
| |
Collapse
|
15
|
Formation of the Mouse Internal Capsule and Cerebral Peduncle: A Pioneering Role for Striatonigral Axons as Revealed in Isl1 Conditional Mutants. J Neurosci 2022; 42:3344-3364. [PMID: 35273083 PMCID: PMC9034787 DOI: 10.1523/jneurosci.2291-21.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 01/05/2023] Open
Abstract
The projection neurons of the striatum, the principal nucleus of the basal ganglia, belong to one of the following two major pathways: the striatopallidal (indirect) pathway or the striatonigral (direct) pathway. Striatonigral axons project long distances and encounter ascending tracts (thalamocortical) while coursing alongside descending tracts (corticofugal) as they extend through the internal capsule and cerebral peduncle. These observations suggest that striatal circuitry may help to guide their trajectories. To investigate the developmental contributions of striatonigral axons to internal capsule formation, we have made use of Sox8-EGFP (striatal direct pathway) and Fezf2-TdTomato (corticofugal pathway) BAC transgenic reporter mice in combination with immunohistochemical markers to trace these axonal pathways throughout development. We show that striatonigral axons pioneer the internal capsule and cerebral peduncle and are temporally and spatially well positioned to provide guidance for corticofugal and thalamocortical axons. Using Isl1 conditional knock-out (cKO) mice, which exhibit disrupted striatonigral axon outgrowth, we observe both corticofugal and thalamocortical axon defects with either ventral forebrain- or telencephalon-specific Isl1 inactivation, despite Isl1 not being expressed in either cortical or thalamic projection neurons. Striatonigral axon defects can thus disrupt internal capsule formation. Our genome-wide transcriptomic analysis in Isl1 cKOs reveals changes in gene expression relevant to cell adhesion, growth cone dynamics, and extracellular matrix composition, suggesting potential mechanisms by which the striatonigral pathway exerts this guidance role. Together, our data support a novel pioneering role for the striatal direct pathway in the correct assembly of the ascending and descending axon tracts within the internal capsule and cerebral peduncle.SIGNIFICANCE STATEMENT The basal ganglia are a group of subcortical nuclei with established roles in the coordination of voluntary motor programs, aspects of cognition, and the selection of appropriate social behaviors. Hence, disruptions in basal ganglia connectivity have been implicated in the motor, cognitive, and social dysfunction characterizing common neurodevelopmental disorders such as attention-deficit/hyperactivity disorder, autism spectrum disorder, obsessive-compulsive disorder, and tic disorder. Here, we identified a novel role for the striatonigral (direct) pathway in pioneering the internal capsule and cerebral peduncle, and in guiding axons extending to and from the cortex. Our findings suggest that the abnormal development of basal ganglia circuits can drive secondary internal capsule defects and thereby may contribute to the pathology of these disorders.
Collapse
|
16
|
Cossart R, Garel S. Step by step: cells with multiple functions in cortical circuit assembly. Nat Rev Neurosci 2022; 23:395-410. [DOI: 10.1038/s41583-022-00585-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 12/23/2022]
|
17
|
Gao L, Liu S, Gou L, Hu Y, Liu Y, Deng L, Ma D, Wang H, Yang Q, Chen Z, Liu D, Qiu S, Wang X, Wang D, Wang X, Ren B, Liu Q, Chen T, Shi X, Yao H, Xu C, Li CT, Sun Y, Li A, Luo Q, Gong H, Xu N, Yan J. Single-neuron projectome of mouse prefrontal cortex. Nat Neurosci 2022; 25:515-529. [PMID: 35361973 DOI: 10.1038/s41593-022-01041-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Prefrontal cortex (PFC) is the cognitive center that integrates and regulates global brain activity. However, the whole-brain organization of PFC axon projections remains poorly understood. Using single-neuron reconstruction of 6,357 mouse PFC projection neurons, we identified 64 projectome-defined subtypes. Each of four previously known major cortico-cortical subnetworks was targeted by a distinct group of PFC subtypes defined by their first-order axon collaterals. Further analysis unraveled topographic rules of soma distribution within PFC, first-order collateral branch point-dependent target selection and terminal arbor distribution-dependent target subdivision. Furthermore, we obtained a high-precision hierarchical map within PFC and three distinct functionally related PFC modules, each enriched with internal recurrent connectivity. Finally, we showed that each transcriptome subtype corresponds to multiple projectome subtypes found in different PFC subregions. Thus, whole-brain single-neuron projectome analysis reveals organization principles of axon projections within and outside PFC and provides the essential basis for elucidating neuronal connectivity underlying diverse PFC functions.
Collapse
Affiliation(s)
- Le Gao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Sang Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Lingfeng Gou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yachuang Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yanhe Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Li Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danyi Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qiaoqiao Yang
- Department of Neurosurgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dechen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shou Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaofei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Danying Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Biyu Ren
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qingxu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzhi Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chun Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yangang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China
| | - Qingming Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.,School of Biomedical Engineering, Hainan University, Haikou, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China. .,HUST-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, China.
| | - Ninglong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
18
|
Roque M, de Souza DAR, Rangel-Sosa MM, Altounian M, Hocine M, Deloulme JC, Barbier EL, Mann F, Chauvet S. VPS35 deficiency in the embryonic cortex leads to prenatal cell loss and abnormal development of axonal connectivity. Mol Cell Neurosci 2022; 120:103726. [DOI: 10.1016/j.mcn.2022.103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022] Open
|
19
|
Cobia D, Rich C, Smith MJ, Engel Gonzalez P, Cronenwett W, Csernansky JG, Wang L. Thalamic Shape Abnormalities Differentially Relate to Cognitive Performance in Early-Onset and Adult-Onset Schizophrenia. Front Psychiatry 2022; 13:803234. [PMID: 35479490 PMCID: PMC9035552 DOI: 10.3389/fpsyt.2022.803234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Early-onset schizophrenia (EOS) shares many biological and clinical features with adult-onset schizophrenia (AOS), but may represent a unique subgroup with greater susceptibility for disease onset and worsened symptomatology and progression, which could potentially derive from exaggerated neurodevelopmental abnormalities. Neurobiological explanations of schizophrenia have emphasized the involvement of deep-brain structures, particularly alterations of the thalamus, which have been linked to core features of the disorder. The aim of this study was to compare thalamic shape abnormalities between EOS and AOS subjects and determine whether unique behavioral profiles related to these differences. It was hypothesized abnormal thalamic shape would be observed in anterior, mediodorsal and pulvinar regions in both schizophrenia groups relative to control subjects, but exacerbated in EOS. Magnetic resonance T1-weighted images were collected from adult individuals with EOS (n = 28), AOS (n = 33), and healthy control subjects (n = 60), as well as collection of clinical and cognitive measures. Large deformation high-dimensional brain mapping was used to obtain three-dimensional surfaces of the thalamus. General linear models were used to compare groups on surface shape features, and Pearson correlations were used to examine relationships between thalamic shape and behavioral measures. Results revealed both EOS and AOS groups demonstrated significant abnormal shape of anterior, lateral and pulvinar thalamic regions relative to CON (all p < 0.007). Relative to AOS, EOS exhibited exacerbated abnormalities in posterior lateral, mediodorsal and lateral geniculate thalamic regions (p = 0.003). Thalamic abnormalities related to worse episodic memory in EOS (p = 0.03) and worse working memory (p = 0.047) and executive functioning (p = 0003) in AOS. Overall, findings suggest thalamic abnormalities are a prominent feature in both early- and late-onset schizophrenia, but exaggerated in EOS and have different brain-behavior profiles for each. The persistence of these abnormalities in adult EOS patients suggests they may represent markers of disrupted neurodevelopment that uniquely relate to the clinical and cognitive aspects of the illness.
Collapse
Affiliation(s)
- Derin Cobia
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States.,Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Chaz Rich
- Department of Psychology, University of Notre Dame, Notre Dame, IN, United States
| | - Matthew J Smith
- School of Social Work, University of Michigan, Ann Arbor, MI, United States
| | - Pedro Engel Gonzalez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Will Cronenwett
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - John G Csernansky
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
20
|
Ahmed G, Shinmyo Y. Multiple Functions of Draxin/Netrin-1 Signaling in the Development of Neural Circuits in the Spinal Cord and the Brain. Front Neuroanat 2021; 15:766911. [PMID: 34899198 PMCID: PMC8655782 DOI: 10.3389/fnana.2021.766911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Axon guidance proteins play key roles in the formation of neural circuits during development. We previously identified an axon guidance cue, named draxin, that has no homology with other axon guidance proteins. Draxin is essential for the development of various neural circuits including the spinal cord commissure, corpus callosum, and thalamocortical projections. Draxin has been shown to not only control axon guidance through netrin-1 receptors, deleted in colorectal cancer (Dcc), and neogenin (Neo1) but also modulate netrin-1-mediated axon guidance and fasciculation. In this review, we summarize the multifaceted functions of draxin and netrin-1 signaling in neural circuit formation in the central nervous system. Furthermore, because recent studies suggest that the distributions and functions of axon guidance cues are highly regulated by glycoproteins such as Dystroglycan and Heparan sulfate proteoglycans, we discuss a possible function of glycoproteins in draxin/netrin-1-mediated axon guidance.
Collapse
Affiliation(s)
- Giasuddin Ahmed
- Department of Neuroscience and Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
21
|
Oka Y, Doi M, Taniguchi M, Tiong SYX, Akiyama H, Yamamoto T, Iguchi T, Sato M. Interstitial Axon Collaterals of Callosal Neurons Form Association Projections from the Primary Somatosensory to Motor Cortex in Mice. Cereb Cortex 2021; 31:5225-5238. [PMID: 34228058 PMCID: PMC8491696 DOI: 10.1093/cercor/bhab153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Association projections from cortical pyramidal neurons connect disparate intrahemispheric cortical areas, which are implicated in higher cortical functions. The underlying developmental processes of these association projections, especially the initial phase before reaching the target areas, remain unknown. To visualize developing axons of individual neurons with association projections in the mouse neocortex, we devised a sparse labeling method that combined in utero electroporation and confocal imaging of flattened and optically cleared cortices. Using the promoter of an established callosal neuron marker gene that was expressed in over 80% of L2/3 neurons in the primary somatosensory cortex (S1) that project to the primary motor cortex (M1), we found that an association projection of a single neuron was the longest among the interstitial collaterals that branched out in L5 from the earlier-extended callosal projection. Collaterals to M1 elongated primarily within the cortical gray matter with little branching before reaching the target. Our results suggest that dual-projection neurons in S1 make a significant fraction of the association projections to M1, supporting the directed guidance mechanism in long-range corticocortical circuit formation over random projections followed by specific pruning.
Collapse
Affiliation(s)
- Yuichiro Oka
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Miyuki Doi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Manabu Taniguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sheena Y X Tiong
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Hisanori Akiyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuto Yamamoto
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tokuichi Iguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Department of Nursing, Faculty of Health Science, Fukui Health Science University, Fukui, Fukui 910-3190, Japan
| | - Makoto Sato
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Molecular Brain Science, Division of Developmental Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui (UGSCD), Osaka University, Suita, Osaka 565-0871, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.,Division of Cell Biology and Neuroscience, Department of Morphological and Physiological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan.,Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| |
Collapse
|
22
|
Development of Auditory Cortex Circuits. J Assoc Res Otolaryngol 2021; 22:237-259. [PMID: 33909161 DOI: 10.1007/s10162-021-00794-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/03/2021] [Indexed: 02/03/2023] Open
Abstract
The ability to process and perceive sensory stimuli is an essential function for animals. Among the sensory modalities, audition is crucial for communication, pleasure, care for the young, and perceiving threats. The auditory cortex (ACtx) is a key sound processing region that combines ascending signals from the auditory periphery and inputs from other sensory and non-sensory regions. The development of ACtx is a protracted process starting prenatally and requires the complex interplay of molecular programs, spontaneous activity, and sensory experience. Here, we review the development of thalamic and cortical auditory circuits during pre- and early post-natal periods.
Collapse
|
23
|
Marfull-Oromí P, Fleitas C, Zammou B, Rocandio D, Ballester-Lurbe B, Terrado J, Perez-Roger I, Espinet C, Egea J. Genetic ablation of the Rho GTPase Rnd3 triggers developmental defects in internal capsule and the globus pallidus formation. J Neurochem 2021; 158:197-216. [PMID: 33576044 DOI: 10.1111/jnc.15322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/20/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022]
Abstract
The forebrain includes the cerebral cortex, the thalamus, and the striatum and globus pallidus (GP) in the subpallium. The formation of these structures and their interconnections by specific axonal tracts take place in a precise and orchestrated time and spatial-dependent manner during development. However, the knowledge of the molecular and cellular mechanisms that are involved is rather limited. Moreover, while many extracellular cues and specific receptors have been shown to play a role in different aspects of nervous system development, including neuron migration and axon guidance, examples of intracellular signaling effectors involved in these processes are sparse. In the present work, we have shown that the atypical RhoGTPase, Rnd3, is expressed very early during brain development and keeps a dynamic expression in several brain regions including the cortex, the thalamus, and the subpallium. By using a gene-trap allele (Rnd3gt ) and immunological techniques, we have shown that Rnd3gt/gt embryos display severe defects in striatal and thalamocortical axonal projections (SAs and TCAs, respectively) and defects in GP formation already at early stages. Surprisingly, the corridor, an important intermediate target for TCAs is still present in these mutants. Mechanistically, a conditional genetic deletion approach revealed that Rnd3 is primarily required for the normal development of Medial Ganglionic Eminence-derived structures, such as the GP, and therefore acts non-cell autonomously in SAs and TCAs. In conclusion, we have demonstrated the important role of Rnd3 as an early regulator of subpallium development in vivo and revealed new insights about SAs and TCAs development.
Collapse
Affiliation(s)
| | | | | | | | - Begoña Ballester-Lurbe
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Jose Terrado
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain
| | - Ignacio Perez-Roger
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain
| | | | - Joaquim Egea
- IRBLLEIDA/Universitat de Lleida, Serra Húnter associate professor, Lleida, Spain
| |
Collapse
|
24
|
Trans-Axonal Signaling in Neural Circuit Wiring. Int J Mol Sci 2020; 21:ijms21145170. [PMID: 32708320 PMCID: PMC7404203 DOI: 10.3390/ijms21145170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
The development of neural circuits is a complex process that relies on the proper navigation of axons through their environment to their appropriate targets. While axon–environment and axon–target interactions have long been known as essential for circuit formation, communication between axons themselves has only more recently emerged as another crucial mechanism. Trans-axonal signaling governs many axonal behaviors, including fasciculation for proper guidance to targets, defasciculation for pathfinding at important choice points, repulsion along and within tracts for pre-target sorting and target selection, repulsion at the target for precise synaptic connectivity, and potentially selective degeneration for circuit refinement. This review outlines the recent advances in identifying the molecular mechanisms of trans-axonal signaling and discusses the role of axon–axon interactions during the different steps of neural circuit formation.
Collapse
|
25
|
Soleilhavoup C, Travaglio M, Patrick K, Garção P, Boobalan E, Adolfs Y, Spriggs RV, Moles-Garcia E, Dhiraj D, Oosterveen T, Ferri SL, Abel T, Brodkin ES, Pasterkamp RJ, Brooks BP, Panman L. Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nat Commun 2020; 11:3111. [PMID: 32561725 PMCID: PMC7305235 DOI: 10.1038/s41467-020-16947-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/29/2020] [Indexed: 11/24/2022] Open
Abstract
Midbrain dopaminergic (DA) axons make long longitudinal projections towards the striatum. Despite the importance of DA striatal innervation, processes involved in establishment of DA axonal connectivity remain largely unknown. Here we demonstrate a striatal-specific requirement of transcriptional regulator Nolz1 in establishing DA circuitry formation. DA projections are misguided and fail to innervate the striatum in both constitutive and striatal-specific Nolz1 mutant embryos. The lack of striatal Nolz1 expression results in nigral to pallidal lineage conversion of striatal projection neuron subtypes. This lineage switch alters the composition of secreted factors influencing DA axonal tract formation and renders the striatum non-permissive for dopaminergic and other forebrain tracts. Furthermore, transcriptomic analysis of wild-type and Nolz1-/- mutant striatal tissue led to the identification of several secreted factors that underlie the observed guidance defects and proteins that promote DA axonal outgrowth. Together, our data demonstrate the involvement of the striatum in orchestrating dopaminergic circuitry formation.
Collapse
Affiliation(s)
- Clement Soleilhavoup
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Marco Travaglio
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Kieran Patrick
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Pedro Garção
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Elangovan Boobalan
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ruth V Spriggs
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Emma Moles-Garcia
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Dalbir Dhiraj
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Tony Oosterveen
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK
| | - Sarah L Ferri
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, 52242, USA
| | - Edward S Brodkin
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104-3403, USA
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Brian P Brooks
- Ophthalmic Genetics & Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lia Panman
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN, UK.
| |
Collapse
|
26
|
Kastriti ME, Stratigi A, Mariatos D, Theodosiou M, Savvaki M, Kavkova M, Theodorakis K, Vidaki M, Zikmund T, Kaiser J, Adameyko I, Karagogeos D. Ablation of CNTN2+ Pyramidal Neurons During Development Results in Defects in Neocortical Size and Axonal Tract Formation. Front Cell Neurosci 2019; 13:454. [PMID: 31749685 PMCID: PMC6844266 DOI: 10.3389/fncel.2019.00454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023] Open
Abstract
Corticothalamic axons express Contactin-2 (CNTN2/TAG-1), a neuronal recognition molecule of the immunoglobulin superfamily involved in neurogenesis, neurite outgrowth, and fasciculation. TAG-1, which is expressed transiently by cortical pyramidal neurons during embryonic development, has been shown to be fundamental for axonal recognition, cellular migration, and neuronal proliferation in the developing cortex. Although Tag-1−/− mice do not exhibit any obvious defects in the corticofugal system, the role of TAG-1+ neurons during the development of the cortex remains elusive. We have generated a mouse model expressing EGFP under the Tag-1 promoter and encompassing the coding sequence of Diptheria Toxin subunit A (DTA) under quiescence with no effect on the expression of endogenous Tag-1. We show that while the line recapitulates the expression pattern of the molecule, it highlights an extended expression in the forebrain, including multiple axonal tracts and neuronal populations, both spatially and temporally. Crossing these mice to the Emx1-Cre strain, we ablated the vast majority of TAG-1+ cortical neurons. Among the observed defects were a significantly smaller cortex, a reduction of corticothalamic axons as well as callosal and commissural defects. Such defects are common in neurodevelopmental disorders, thus this mouse could serve as a useful model to study physiological and pathophysiological cortical development.
Collapse
Affiliation(s)
- Maria Eleni Kastriti
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Aikaterini Stratigi
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Laboratory of Neurophysiology, Université Libre de Bruxelles, UNI, Brussels, Belgium
| | - Dimitris Mariatos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Marina Theodosiou
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Savvaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Michaela Kavkova
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Kostas Theodorakis
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Marina Vidaki
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece.,The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tomas Zikmund
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jozef Kaiser
- CEITEC-Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Center for Brain Research, Medical University Vienna, Vienna, Austria
| | - Domna Karagogeos
- Department of Basic Science, Faculty of Medicine, University of Crete, Heraklion, Greece.,Foundation for Research and Technology, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| |
Collapse
|
27
|
Velona T, Altounian M, Roque M, Hocine M, Bellon A, Briz CG, Salin P, Nieto M, Chauvet S, Mann F. PlexinD1 and Sema3E determine laminar positioning of heterotopically projecting callosal neurons. Mol Cell Neurosci 2019; 100:103397. [DOI: 10.1016/j.mcn.2019.103397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
|
28
|
Tosches MA, Laurent G. Evolution of neuronal identity in the cerebral cortex. Curr Opin Neurobiol 2019; 56:199-208. [PMID: 31103814 DOI: 10.1016/j.conb.2019.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/04/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
Abstract
To understand neocortex evolution, we must define a theory for the elaboration of cell types, circuits, and architectonics from an ancestral structure that is consistent with developmental, molecular, and genetic data. To this end, cross-species comparison of cortical cell types emerges as a very informative approach. We review recent results that illustrate the contribution of molecular and transcriptomic data to the construction of plausible models of cortical cell-type evolution.
Collapse
Affiliation(s)
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Abstract
At the end of the target article, Keven & Akins (K&A) put forward a challenge to the developmental psychology community to consider the development of complex psychological processes - in particular, intermodal infant perception - across different levels of analysis. We take up that challenge and consider the possibility that early emerging stereotypies might help explain the foundations of the link between speech perception and speech production.
Collapse
|
30
|
Fazel Darbandi S, Robinson Schwartz SE, Qi Q, Catta-Preta R, Pai ELL, Mandell JD, Everitt A, Rubin A, Krasnoff RA, Katzman S, Tastad D, Nord AS, Willsey AJ, Chen B, State MW, Sohal VS, Rubenstein JLR. Neonatal Tbr1 Dosage Controls Cortical Layer 6 Connectivity. Neuron 2018; 100:831-845.e7. [PMID: 30318412 PMCID: PMC6250594 DOI: 10.1016/j.neuron.2018.09.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 12/27/2022]
Abstract
An understanding of how heterozygous loss-of-function mutations in autism spectrum disorder (ASD) risk genes, such as TBR1, contribute to ASD remains elusive. Conditional Tbr1 deletion during late mouse gestation in cortical layer 6 neurons (Tbr1layer6 mutants) provides novel insights into its function, including dendritic patterning, synaptogenesis, and cell-intrinsic physiology. These phenotypes occur in heterozygotes, providing insights into mechanisms that may underlie ASD pathophysiology. Restoring expression of Wnt7b largely rescues the synaptic deficit in Tbr1layer6 mutant neurons. Furthermore, Tbr1layer6 heterozygotes have increased anxiety-like behavior, a phenotype seen ASD. Integrating TBR1 chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) data from layer 6 neurons and activity of TBR1-bound candidate enhancers provides evidence for how TBR1 regulates layer 6 properties. Moreover, several putative TBR1 targets are ASD risk genes, placing TBR1 in a central position both for ASD risk and for regulating transcriptional circuits that control multiple steps in layer 6 development essential for the assembly of neural circuits.
Collapse
Affiliation(s)
- Siavash Fazel Darbandi
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sarah E Robinson Schwartz
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Qihao Qi
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rinaldo Catta-Preta
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey D Mandell
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amanda Everitt
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Anna Rubin
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Rebecca A Krasnoff
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sol Katzman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - David Tastad
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Alex S Nord
- Department of Neurobiology, Physiology, and Behavior and Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
| | - A Jeremy Willsey
- Institute for Neurodegenerative Diseases, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matthew W State
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Vikaas S Sohal
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Kavli Institute for Fundamental Neuroscience and Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
31
|
Backer S, Lokmane L, Landragin C, Deck M, Garel S, Bloch-Gallego E. Trio GEF mediates RhoA activation downstream of Slit2 and coordinates telencephalic wiring. Development 2018; 145:dev.153692. [PMID: 30177526 DOI: 10.1242/dev.153692] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/24/2018] [Indexed: 01/01/2023]
Abstract
Trio, a member of the Dbl family of guanine nucleotide exchange factors, activates Rac1 downstream of netrin 1/DCC signalling in axon outgrowth and guidance. Although it has been proposed that Trio also activates RhoA, the putative upstream factors remain unknown. Here, we show that Slit2 induces Trio-dependent RhoA activation, revealing a crosstalk between Slit and Trio/RhoA signalling. Consistently, we found that RhoA activity is hindered in vivo in T rio mutant mouse embryos. We next studied the development of the ventral telencephalon and thalamocortical axons, which have been previously shown to be controlled by Slit2. Remarkably, this analysis revealed that Trio knockout (KO) mice show phenotypes that bear strong similarities to the ones that have been reported in Slit2 KO mice in both guidepost corridor cells and thalamocortical axon pathfinding in the ventral telencephalon. Taken together, our results show that Trio induces RhoA activation downstream of Slit2, and support a functional role in ensuring the proper positioning of both guidepost cells and a major axonal tract. Our study indicates a novel role for Trio in Slit2 signalling and forebrain wiring, highlighting its role in multiple guidance pathways as well as in biological functions of importance for a factor involved in human brain disorders.
Collapse
Affiliation(s)
- Stéphanie Backer
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France.,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Ludmilla Lokmane
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Camille Landragin
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France.,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| | - Marie Deck
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Sonia Garel
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, PSL research University, 75005 Paris, France
| | - Evelyne Bloch-Gallego
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, 75014 Paris, France .,INSERM, U1016, Department of Development, Reproduction and Cancer, 24 rue du Faubourg Saint-Jacques, 75014 Paris, France
| |
Collapse
|
32
|
López-Bendito G. Development of the Thalamocortical Interactions: Past, Present and Future. Neuroscience 2018; 385:67-74. [PMID: 29932982 DOI: 10.1016/j.neuroscience.2018.06.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 01/11/2023]
Abstract
For the past two decades, we have advanced in our understanding of the mechanisms implicated in the formation of brain circuits. The connection between the cortex and thalamus has deserved much attention, as thalamocortical connectivity is crucial for sensory processing and motor learning. Classical dye tracing studies in wild-type and knockout mice initially helped to characterize the developmental progression of this connectivity and revealed key transcription factors involved. With the recent advances in technical tools to specifically label subsets of projecting neurons, knock-down genes individually and/or modify their activity, the field has gained further understanding on the rules operating in thalamocortical circuit formation and plasticity. In this review, I will summarize the most relevant discoveries that have been made in this field, from development to early plasticity processes covering three major aspects: axon guidance, thalamic influence on sensory cortical specification, and the role of spontaneous thalamic activity. I will emphasize how the implementation of new tools has helped the field to progress and what I consider to be open questions and the perspective for the future.
Collapse
Affiliation(s)
- Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
33
|
Zhou YF, Li PC, Wu JH, Haslam JA, Mao L, Xia YP, He QW, Wang XX, Lei H, Lan XL, Miao QR, Yue ZY, Li YN, Hu B. Sema3E/PlexinD1 inhibition is a therapeutic strategy for improving cerebral perfusion and restoring functional loss after stroke in aged rats. Neurobiol Aging 2018; 70:102-116. [PMID: 30007159 DOI: 10.1016/j.neurobiolaging.2018.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/21/2018] [Accepted: 06/04/2018] [Indexed: 01/19/2023]
Abstract
Brain tissue survival and functional recovery after ischemic stroke greatly depend on cerebral vessel perfusion and functional collateral circulation in the ischemic area. Semaphorin 3E (Sema3E), one of the class 3 secreted semaphorins, has been demonstrated to be a critical regulator in embryonic and postnatal vascular formation via binding to its receptor PlexinD1. However, whether Sema3E/PlexinD1 signaling is involved in poststroke neovascularization remains unknown. To determine the contribution of Sema3E/PlexinD1 signaling to poststroke recovery, aged rats (18 months) were subjected to a transient middle cerebral artery occlusion. We found that depletion of Sema3E/PlexinD1 signaling with lentivirus-mediated PlexinD1-specific-shRNA improves tissue survival and functional outcome. Sema3E/PlexinD1 inhibition not only increases cortical perfusion but also ameliorates blood-brain barrier damage, as determined by positron emission tomography and magnetic resonance imaging. Mechanistically, we demonstrated that Sema3E suppresses endothelial cell proliferation and angiogenic capacity. More importantly, Sema3E/PlexinD1 signaling inhibits recruitment of pericytes by decreasing production of platelet derived growth factor-BB in endothelial cells. Overall, our study revealed that inhibition of Sema3E/PlexinD1 signaling in the ischemic penumbra, which increases both endothelial angiogenic capacity and recruitment of pericytes, contributed to functional neovascularization and blood-brain barrier integrity in the aged rats. Our findings imply that Sema3E/PlexinD1 signaling is a novel therapeutic target for improving brain tissue survival and functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yi-Fan Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng-Cheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie-Hong Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Andrew Haslam
- Swansea College of Medicine, Swansea University, Singleton Park, Swansea, UK
| | - Ling Mao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Peng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan-Wei He
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu-Xia Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Li Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Divisions of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Zhen-Yu Yue
- Department of Neurology, Department of Neuroscience, The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ya-Nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
34
|
Mire E, Hocine M, Bazellières E, Jungas T, Davy A, Chauvet S, Mann F. Developmental Upregulation of Ephrin-B1 Silences Sema3C/Neuropilin-1 Signaling during Post-crossing Navigation of Corpus Callosum Axons. Curr Biol 2018; 28:1768-1782.e4. [PMID: 29779877 DOI: 10.1016/j.cub.2018.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 04/06/2018] [Indexed: 01/09/2023]
Abstract
The corpus callosum is the largest commissure in the brain, whose main function is to ensure communication between homotopic regions of the cerebral cortex. During fetal development, corpus callosum axons (CCAs) grow toward and across the brain midline and then away on the contralateral hemisphere to their targets. A particular feature of this circuit, which raises a key developmental question, is that the outgoing trajectory of post-crossing CCAs is mirror-symmetric with the incoming trajectory of pre-crossing axons. Here, we show that post-crossing CCAs switch off their response to axon guidance cues, among which the secreted Semaphorin-3C (Sema3C), that act as attractants for pre-crossing axons on their way to the midline. This change is concomitant with an upregulation of the surface protein Ephrin-B1, which acts in CCAs to inhibit Sema3C signaling via interaction with the Neuropilin-1 (Nrp1) receptor. This silencing activity is independent of Eph receptors and involves a N-glycosylation site (N-139) in the extracellular domain of Ephrin-B1. Together, our results reveal a molecular mechanism, involving interaction between the two unrelated guidance receptors Ephrin-B1 and Nrp1, that is used to control the navigation of post-crossing axons in the corpus callosum.
Collapse
Affiliation(s)
- Erik Mire
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| | | | | | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 Route de Narbonne, 31062 Toulouse, France
| | | | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, 13288 Marseille, France.
| |
Collapse
|
35
|
Antón-Bolaños N, Espinosa A, López-Bendito G. Developmental interactions between thalamus and cortex: a true love reciprocal story. Curr Opin Neurobiol 2018; 52:33-41. [PMID: 29704748 DOI: 10.1016/j.conb.2018.04.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/08/2023]
Abstract
The developmental programs that control the specification of cortical and thalamic territories are maintained largely as independent processes. However, bulk of evidence demonstrates the requirement of the reciprocal interactions between cortical and thalamic neurons as key for the correct development of functional thalamocortical circuits. This reciprocal loop of connections is essential for sensory processing as well as for the execution of complex sensory-motor tasks. Here, we review recent advances in our understanding of how mutual collaborations between both brain regions define area patterning and cell differentiation in the thalamus and cortex.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Ana Espinosa
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
36
|
Diao Y, Cui L, Chen Y, Burbridge TJ, Han W, Wirth B, Sestan N, Crair MC, Zhang J. Reciprocal Connections Between Cortex and Thalamus Contribute to Retinal Axon Targeting to Dorsal Lateral Geniculate Nucleus. Cereb Cortex 2018; 28:1168-1182. [PMID: 28334242 PMCID: PMC6059179 DOI: 10.1093/cercor/bhx028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/30/2016] [Accepted: 01/19/2017] [Indexed: 12/24/2022] Open
Abstract
The dorsal Lateral Geniculate Nucleus (dLGN) is the primary image-forming target of the retina and shares a reciprocal connection with primary visual cortex (V1). Previous studies showed that corticothalamic input is essential for the development of thalamocortical projections, but less is known about the potential role of this reciprocal connection in the development of retinal projections. Here, we show a deficit of retinal innervation in the dLGN around E18.5 in Tra2β conditional knockout (cKO) "cortexless" mice, an age when apoptosis occurs along the thalamocortical tract and in some dLGN neurons. In vivo electrophysiology experiments in the dLGN further confirmed the loss of functional retinal input. Experiments with N-methyl-d-aspartic acid-induced V1 lesion as well as Fezf2 cKO mice confirmed that the disruption of connections between the dLGN and V1 lead to abnormal retinal projections to the dLGN. Interestingly, retinal projections to the ventral Lateral Geniculate Nucleus (vLGN) and Superior Colliculus (SC) were normal in all 3 mice models. Finally, we show that the cortexless mice had worse performance than control mice in a go-no go task with visual cues. Our results provide evidence that the wiring of visual circuit from the retina to the dLGN and V1 thereafter is coordinated at a surprisingly early stage of circuit development.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | | | - Wenqi Han
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Institute for Genetics, Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Michael C Crair
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Hornix BE, Havekes R, Kas MJH. Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neurosci Biobehav Rev 2018; 97:138-151. [PMID: 29496479 DOI: 10.1016/j.neubiorev.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022]
Abstract
Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner. During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, disturbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to exaggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit development will be described and related to some example risk gene mutations that are found in neuropsychiatric disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic plasticity will be described. Research focusing on the combined analyses of neural circuit development and functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are relevant across the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Betty E Hornix
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
38
|
Mata A, Gil V, Pérez-Clausell J, Dasilva M, González-Calixto MC, Soriano E, García-Verdugo JM, Sanchez-Vives MV, Del Río JA. New functions of Semaphorin 3E and its receptor PlexinD1 during developing and adult hippocampal formation. Sci Rep 2018; 8:1381. [PMID: 29358640 PMCID: PMC5777998 DOI: 10.1038/s41598-018-19794-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022] Open
Abstract
The development and maturation of cortical circuits relies on the coordinated actions of long and short range axonal guidance cues. In this regard, the class 3 semaphorins and their receptors have been seen to be involved in the development and maturation of the hippocampal connections. However, although the role of most of their family members have been described, very few data about the participation of Semaphorin 3E (Sema3E) and its receptor PlexinD1 during the development and maturation of the entorhino-hippocampal (EH) connection are available. In the present study, we focused on determining their roles both during development and in adulthood. We determined a relevant role for Sema3E/PlexinD1 in the layer-specific development of the EH connection. Indeed, mice lacking Sema3E/PlexinD1 signalling showed aberrant layering of entorhinal axons in the hippocampus during embryonic and perinatal stages. In addition, absence of Sema3E/PlexinD1 signalling results in further changes in postnatal and adult hippocampal formation, such as numerous misrouted ectopic mossy fibers. More relevantly, we describe how subgranular cells express PlexinD1 and how the absence of Sema3E induces a dysregulation of the proliferation of dentate gyrus progenitors leading to the presence of ectopic cells in the molecular layer. Lastly, Sema3E mutant mice displayed increased network excitability both in the dentate gyrus and the hippocampus proper.
Collapse
Affiliation(s)
- Agata Mata
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain
| | - Jeús Pérez-Clausell
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain
| | - Miguel Dasilva
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mari Carmen González-Calixto
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Barcelona, Spain.,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain.,Vall d'Hebrón Institut de Recerca (VHIR), Barcelona, Spain
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
| | - Maria V Sanchez-Vives
- Systems Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Parc Científic de Barcelona, Barcelona, Spain. .,Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Barcelona, Spain. .,Institut de Neurociències de la Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
39
|
Sawada M, Ohno N, Kawaguchi M, Huang SH, Hikita T, Sakurai Y, Bang Nguyen H, Quynh Thai T, Ishido Y, Yoshida Y, Nakagawa H, Uemura A, Sawamoto K. PlexinD1 signaling controls morphological changes and migration termination in newborn neurons. EMBO J 2018; 37:embj.201797404. [PMID: 29348324 DOI: 10.15252/embj.201797404] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 10/28/2017] [Accepted: 12/15/2017] [Indexed: 12/22/2022] Open
Abstract
Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.
Collapse
Affiliation(s)
- Masato Sawada
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuhiko Ohno
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, School of Medicine, Shimotsuke, Japan
| | - Mitsuyasu Kawaguchi
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Shih-Hui Huang
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takao Hikita
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Youmei Sakurai
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Huy Bang Nguyen
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Truc Quynh Thai
- Division of Neurobiology and Bioinformatics, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yuri Ishido
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yutaka Yoshida
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidehiko Nakagawa
- Department of Organic and Medicinal Chemistry, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan .,Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
40
|
Reynolds LM, Pokinko M, Torres Berrío A, Cuesta S, Lambert LC, Del Cid Pellitero E, Wodzinski M, Manitt C, Krimpenfort P, Kolb B, Flores C. DCC Receptors Drive Prefrontal Cortex Maturation by Determining Dopamine Axon Targeting in Adolescence. Biol Psychiatry 2018; 83:181-192. [PMID: 28720317 PMCID: PMC5723533 DOI: 10.1016/j.biopsych.2017.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/12/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Dopaminergic input to the prefrontal cortex (PFC) increases throughout adolescence and, by establishing precisely localized synapses, calibrates cognitive function. However, why and how mesocortical dopamine axon density increases across adolescence remains unknown. METHODS We used a developmental application of axon-initiated recombination to label and track the growth of dopamine axons across adolescence in mice. We then paired this recombination with cell-specific knockdown of the netrin-1 receptor DCC to determine its role in adolescent dopamine axon growth. We then assessed how altering adolescent PFC dopamine axon growth changes the structural and functional development of the PFC by quantifying pyramidal neuron morphology and cognitive performance. RESULTS We show, for the first time, that dopamine axons continue to grow from the striatum to the PFC during adolescence. Importantly, we discover that DCC, a guidance cue receptor, controls the extent of this protracted growth by determining where and when dopamine axons recognize their final target. When DCC-dependent adolescent targeting events are disrupted, dopamine axons continue to grow ectopically from the nucleus accumbens to the PFC and profoundly change PFC structural and functional development. This leads to alterations in cognitive processes known to be impaired across psychiatric conditions. CONCLUSIONS The prolonged growth of dopamine axons represents an extraordinary period for experience to influence their adolescent trajectory and predispose to or protect against psychopathology. DCC receptor signaling in dopamine neurons is a molecular link where genetic and environmental factors may interact in adolescence to influence the development and function of the prefrontal cortex.
Collapse
Affiliation(s)
- Lauren M. Reynolds
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Angélica Torres Berrío
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada,Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Santiago Cuesta
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Laura C. Lambert
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Esther Del Cid Pellitero
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Michael Wodzinski
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Colleen Manitt
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada H4H 1R3
| | - Paul Krimpenfort
- Division of Molecular Genetics, Centre for Biomedical Genetics, Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands 1066 CX
| | - Bryan Kolb
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Cecilia Flores
- Departments of Psychiatry and Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, Québec, Canada.
| |
Collapse
|
41
|
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell 2017; 9:909-929. [PMID: 29181831 PMCID: PMC6208478 DOI: 10.1007/s13238-017-0490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023] Open
Abstract
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Kaplan ES, Ramos-Laguna KA, Mihalas AB, Daza RAM, Hevner RF. Neocortical Sox9+ radial glia generate glutamatergic neurons for all layers, but lack discernible evidence of early laminar fate restriction. Neural Dev 2017; 12:14. [PMID: 28814327 DOI: 10.1186/s13064-017-0091-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/07/2017] [Indexed: 11/10/2022] Open
Abstract
Glutamatergic neurons in the cerebral cortex are derived from embryonic neural stem cells known as radial glial progenitors (RGPs). Early RGPs, present at the onset of cortical neurogenesis, are classically thought to produce columnar clones of glutamatergic neurons spanning the cortical layers. Recently, however, it has been reported that a subset of early RGPs may undergo early commitment to upper layer neuron fates, thus bypassing genesis of deep layer neurons. However, the latter mode of early RGP differentiation was not confirmed in some other studies, and remains controversial. To further investigate the clonal output from early RGPs, we employed genetic lineage tracing driven by Sox9, a transcription factor gene that is expressed in all early RGPs. We found that early RGPs produced columnar clones spanning all cortical layers, with no evidence of significant laminar fate restriction. These data support the classic progressive restriction model of cortical neurogenesis, and suggest that early RGPs do not undergo early commitment to only upper or lower layer fates.
Collapse
Affiliation(s)
- E S Kaplan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - K A Ramos-Laguna
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - A B Mihalas
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - R A M Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA
| | - R F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, 98101, USA. .,Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, 98104, USA.
| |
Collapse
|
43
|
Teoh JJ, Iwano T, Kunii M, Atik N, Avriyanti E, Yoshimura SI, Moriwaki K, Harada A. BIG1 is required for the survival of deep layer neurons, neuronal polarity, and the formation of axonal tracts between the thalamus and neocortex in developing brain. PLoS One 2017; 12:e0175888. [PMID: 28414797 PMCID: PMC5393877 DOI: 10.1371/journal.pone.0175888] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/02/2017] [Indexed: 12/17/2022] Open
Abstract
BIG1, an activator protein of the small GTPase, Arf, and encoded by the Arfgef1 gene, is one of candidate genes for epileptic encephalopathy. To know the involvement of BIG1 in epileptic encephalopathy, we analyzed BIG1-deficient mice and found that BIG1 regulates neurite outgrowth and brain development in vitro and in vivo. The loss of BIG1 decreased the size of the neocortex and hippocampus. In BIG1-deficient mice, the neuronal progenitor cells (NPCs) and the interneurons were unaffected. However, Tbr1+ and Ctip2+ deep layer (DL) neurons showed spatial-temporal dependent apoptosis. This apoptosis gradually progressed from the piriform cortex (PIR), peaked in the neocortex, and then progressed into the hippocampus from embryonic day 13.5 (E13.5) to E17.5. The upper layer (UL) and DL order in the neocortex was maintained in BIG1-deficient mice, but the excitatory neurons tended to accumulate before their destination layers. Further pulse-chase migration assay showed that the migration defect was non-cell autonomous and secondary to the progression of apoptosis into the BIG1-deficient neocortex after E15.5. In BIG1-deficient mice, we observed an ectopic projection of corticothalamic axons from the primary somatosensory cortex (S1) into the dorsal lateral geniculate nucleus (dLGN). The thalamocortical axons were unable to cross the diencephalon-telencephalon boundary (DTB). In vitro, BIG1-deficient neurons showed a delay in neuronal polarization. BIG1-deficient neurons were also hypersensitive to low dose glutamate (5 μM), and died via apoptosis. This study showed the role of BIG1 in the survival of DL neurons in developing embryonic brain and in the generation of neuronal polarity.
Collapse
Affiliation(s)
- Jia-Jie Teoh
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masataka Kunii
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nur Atik
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Anatomy and Cell Biology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Erda Avriyanti
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Dermatology and Venereology, Faculty of Medicine, Padjadjaran University, Bandung, Indonesia
| | - Shin-ichiro Yoshimura
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kenta Moriwaki
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
44
|
Martini FJ, Moreno-Juan V, Filipchuk A, Valdeolmillos M, López-Bendito G. Impact of thalamocortical input on barrel cortex development. Neuroscience 2017; 368:246-255. [PMID: 28412498 DOI: 10.1016/j.neuroscience.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/31/2017] [Accepted: 04/03/2017] [Indexed: 01/22/2023]
Abstract
The development of cortical maps requires the balanced interaction between genetically determined programs and input/activity-dependent signals generated spontaneously or triggered from the environment. The somatosensory pathway of mice provides an excellent scenario to study cortical map development because of its highly organized cytoarchitecture, known as the barrel field. This precise organization makes evident even small alterations in the cortical map layout. In this review, we will specially focus on the thalamic factors that control barrel field development. We will summarize the role of thalamic input integration and identity, neurotransmission and spontaneous activity in cortical map formation and early cross-modal plasticity.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Anton Filipchuk
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
45
|
Post-endocytic sorting of Plexin-D1 controls signal transduction and development of axonal and vascular circuits. Nat Commun 2017; 8:14508. [PMID: 28224988 PMCID: PMC5322531 DOI: 10.1038/ncomms14508] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/06/2017] [Indexed: 12/19/2022] Open
Abstract
Local endocytic events involving receptors for axon guidance cues play a central role in controlling growth cone behaviour. Yet, little is known about the fate of internalized receptors, and whether the sorting events directing them to distinct endosomal pathways control guidance decisions. Here, we show that the receptor Plexin-D1 contains a sorting motif that interacts with the adaptor protein GIPC1 to facilitate transport to recycling endosomes. This sorting process promotes colocalization of Plexin-D1 with vesicular pools of active R-ras, leading to its inactivation. In the absence of interaction with GIPC1, missorting of Plexin-D1 results in loss of signalling activity. Consequently, Gipc1 mutant mice show specific defects in axonal projections, as well as vascular structures, that rely on Plexin-D1 signalling for their development. Thus, intracellular sorting steps that occur after receptor internalization by endocytosis provide a critical level of control of cellular responses to guidance signals. Molecular mechanisms controlling axonal growth cone behaviour are only partially understood. Here the authors reveal a role of an adaptor protein GIPC1 in Plexin-D1 receptor recycling, and show that this process is required for axon track formation and vascular patterning in mice.
Collapse
|
46
|
Early Commissural Diencephalic Neurons Control Habenular Axon Extension and Targeting. Curr Biol 2017; 27:270-278. [PMID: 28065605 DOI: 10.1016/j.cub.2016.11.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/07/2016] [Accepted: 11/16/2016] [Indexed: 01/19/2023]
Abstract
Most neuronal populations form on both the left and right sides of the brain. Their efferent axons appear to grow synchronously along similar pathways on each side, although the neurons or their environment often differ between the two hemispheres [1-4]. How this coordination is controlled has received little attention. Frequently, neurons establish interhemispheric connections, which can function to integrate information between brain hemispheres (e.g., [5]). Such commissures form very early, suggesting their potential developmental role in coordinating ipsilateral axon navigation during embryonic development [4]. To address the temporal-spatial control of bilateral axon growth, we applied long-term time-lapse imaging to visualize the formation of the conserved left-right asymmetric habenular neural circuit in the developing zebrafish embryo [6]. Although habenular neurons are born at different times across brain hemispheres [7], we found that elongation of habenular axons occurs synchronously. The initiation of axon extension is not controlled within the habenular network itself but through an early developing proximal diencephalic network. The commissural neurons of this network influence habenular axons both ipsilaterally and contralaterally. Their unilateral absence impairs commissure formation and coordinated habenular axon elongation and causes their subsequent arrest on both sides of the brain. Thus, habenular neural circuit formation depends on a second intersecting commissural network, which facilitates the exchange of information between hemispheres required for ipsilaterally projecting habenular axons. This mechanism of network formation may well apply to other circuits, and has only remained undiscovered due to technical limitations.
Collapse
|
47
|
Abstract
Semaphorin guidance molecules act through different receptor complexes to activate multiple signaling cascades leading to changes in axonal growth cone behavior and morphology. We describe here approaches for studying the effect of individual Semaphorins on isolated forebrain neurons from mouse embryos and dissecting downstream signaling pathways. These approaches include the production of recombinant Semaphorin ligands, the culture of dissociated primary neurons, the manipulation of gene expression by electroporation in primary neurons, and functional assays to assess axon outgrowth and growth cone collapse.
Collapse
Affiliation(s)
| | - Erik Mire
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - Fanny Mann
- Aix Marseille Univ, CNRS, IBDM, Marseille, France.
| |
Collapse
|
48
|
Jadhav AD, Wei L, Shi P. Compartmentalized Platforms for Neuro-Pharmacological Research. Curr Neuropharmacol 2016; 14:72-86. [PMID: 26813122 PMCID: PMC4787287 DOI: 10.2174/1570159x13666150516000957] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023] Open
Abstract
Dissociated primary neuronal cell culture remains an indispensable approach for neurobiology research in order to investigate basic mechanisms underlying diverse neuronal functions, drug screening and pharmacological investigation. Compartmentalization, a widely adopted technique since its emergence in 1970s enables spatial segregation of neuronal segments and detailed investigation that is otherwise limited with traditional culture methods. Although these compartmental chambers (e.g. Campenot chamber) have been proven valuable for the investigation of Peripheral Nervous System (PNS) neurons and to some extent within Central Nervous System (CNS) neurons, their utility has remained limited given the arduous manufacturing process, incompatibility with high-resolution optical imaging and limited throughput. The development in the area of microfabrication and microfluidics has enabled creation of next generation compartmentalized devices that are cheap, easy to manufacture, require reduced sample volumes, enable precise control over the cellular microenvironment both spatially as well as temporally, and permit highthroughput testing. In this review we briefly evaluate the various compartmentalization tools used for neurobiological research, and highlight application of the emerging microfluidic platforms towards in vitro single cell neurobiology.
Collapse
Affiliation(s)
| | | | - Peng Shi
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
| |
Collapse
|
49
|
Abstract
AbstractMore than 35 years ago, Meltzoff and Moore (1977) published their famous article, “Imitation of facial and manual gestures by human neonates.” Their central conclusion, that neonates can imitate, was and continues to be controversial. Here, we focus on an often-neglected aspect of this debate, namely, neonatal spontaneous behaviors themselves. We present a case study of a paradigmatic orofacial “gesture,” namely tongue protrusion and retraction (TP/R). Against the background of new research on mammalian aerodigestive development, we ask: How does the human aerodigestive system develop, and what role does TP/R play in the neonate's emerging system of aerodigestion? We show that mammalian aerodigestion develops in two phases: (1) from the onset of isolated orofacial movementsin uteroto the postnatal mastery of suckling at 4 months after birth; and (2) thereafter, from preparation to the mastery of mastication and deglutition of solid foods. Like other orofacial stereotypies, TP/R emerges in the first phase and vanishes prior to the second. Based upon recent advances in activity-driven early neural development, we suggest a sequence of three developmental events in which TP/R might participate: the acquisition of tongue control, the integration of the central pattern generator (CPG) for TP/R with other aerodigestive CPGs, and the formation of connections within the cortical maps of S1 and M1. If correct, orofacial stereotypies are crucial to the maturation of aerodigestion in the neonatal period but also unlikely to co-occur with imitative behavior.
Collapse
|
50
|
Feng J, Xian Q, Guan T, Hu J, Wang M, Huang Y, So KF, Evans SM, Chai G, Goffinet AM, Qu Y, Zhou L. Celsr3 and Fzd3 Organize a Pioneer Neuron Scaffold to Steer Growing Thalamocortical Axons. Cereb Cortex 2016; 26:3323-34. [PMID: 27170656 PMCID: PMC4898681 DOI: 10.1093/cercor/bhw132] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Celsr3 and Fzd3 regulate the development of reciprocal thalamocortical projections independently of their expression in cortical or thalamic neurons. To understand this cell non autonomous mechanism further, we tested whether Celsr3 and Fzd3 could act via Isl1-positive guidepost cells. Isl1-positive cells appear in the forebrain at embryonic day (E) 9.5-E10.5 and, from E12.5, they form 2 contingents in ventral telencephalon and prethalamus. In control mice, corticothalamic axons run in the ventral telencephalic corridor in close contact with Isl1-positive cells. When Celsr3 or Fzd3 is inactivated in Isl1-expressing cells, corticofugal fibers stall and loop in the ventral telencephalic corridor of high Isl1 expression, and thalamic axons fail to cross the diencephalon–telencephalon junction (DTJ). At E12.5, before thalamic and cortical axons emerge, pioneer projections from Isl1-positive cells cross the DTJ from both sides in control but not mutant embryos. These early projections appear to act like a bridge to guide later growing thalamic axons through the DTJ. Our data suggest that Celsr3 and Fzd3 orchestrate the formation of a scaffold of pioneer neurons and their axons. This scaffold extends from prethalamus to ventral telencephalon and subcortex, and steers reciprocal corticothalamic fibers.
Collapse
Affiliation(s)
- Jia Feng
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Quanxiang Xian
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Tingting Guan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Jing Hu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Meizhi Wang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Yuhua Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China Department of Anatomy, The University of Hong Kong Pokfulam, Hong Kong SAR, PR China
| | - Sylvia M Evans
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Guoliang Chai
- Institute of Neuroscience, Université catholique de Louvain, Brussels B1200, Belgium
| | - Andre M Goffinet
- Institute of Neuroscience, Université catholique de Louvain, Brussels B1200, Belgium
| | - Yibo Qu
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China Co-innovation Center of Neuroregeneration, Jiangsu, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory Guangdong key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, PR China Co-innovation Center of Neuroregeneration, Jiangsu, China
| |
Collapse
|