1
|
Palese F, Rakotobe M, Zurzolo C. Transforming the concept of connectivity: unveiling tunneling nanotube biology and their roles in brain development and neurodegeneration. Physiol Rev 2025; 105:1823-1865. [PMID: 40067081 DOI: 10.1152/physrev.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 02/03/2025] [Indexed: 05/08/2025] Open
Abstract
Tunneling nanotubes (TNTs) are thin tubular membrane protrusions that connect distant cells, generating a complex cellular network. Over the past few decades, research on TNTs has provided important insights into their biology, including structural composition, formation mechanisms, modulators, and functionality. It has been discovered that TNTs allow cytoplasmic continuity between connected cells, facilitating fast intercellular communication via both passive and active exchange of materials. These features are pivotal in the nervous system, where rapid processing of inputs is physiologically required. TNTs have been implicated in the progression of neurodegenerative diseases and cancer in various in vitro models, and TNT-like structures have also been observed in the developing brain and in vivo. This highlights their significant role in pathophysiological processes. In this comprehensive review we aim to provide an extensive overview of TNTs, starting from key structural features and mechanisms of formation and describing the main experimental techniques used to detect these structures both in vitro and in vivo. We focus primarily on the nervous system, where the discovery of TNTs could prompt a reconsideration of the brain functioning as individual units (the neuronal theory of Cajal) versus neurons being physically connected, as Golgi believed. We illustrate the involvement of TNTs in brain development and neurodegenerative states and highlight the limitations and future research needs in this field.
Collapse
Affiliation(s)
- Francesca Palese
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Malalaniaina Rakotobe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Mossa A, Dierdorff L, Lukin J, Garcia-Forn M, Wang W, Mamashli F, Park Y, Fiorenzani C, Akpinar Z, Kamps J, Tatzelt J, Wu Z, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. Nat Commun 2025; 16:4512. [PMID: 40374608 PMCID: PMC12081640 DOI: 10.1038/s41467-025-59680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 04/29/2025] [Indexed: 05/17/2025] Open
Abstract
DDX3X is an X-linked RNA helicase that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females (DDX3X syndrome). Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA metabolism. Compared to male neurons, female neurons display larger nucleoli, higher expression of a set of ribosomal proteins, and a higher cytoplasm-to-nucleus ratio of ribosomal RNA. All these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic arborization complexity in a sex- and dose-dependent manner in both female and male neurons. Ddx3x modulates the development of dendritic spines but only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
Affiliation(s)
- Adele Mossa
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lauren Dierdorff
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jeronimo Lukin
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wei Wang
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021, USA
| | - Fatemeh Mamashli
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Yeaji Park
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chiara Fiorenzani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zeynep Akpinar
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, New York University, College of Arts and Science, New York, NY, 10003, USA
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY10021, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Alper Center for Neural Development and Regeneration Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Joseph D. The Unified Theory of Neurodegeneration Pathogenesis Based on Axon Deamidation. Int J Mol Sci 2025; 26:4143. [PMID: 40362380 PMCID: PMC12071446 DOI: 10.3390/ijms26094143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Until now, neurodegenerative diseases like Alzheimer's and Parkinson's have been studied separately in biochemistry and therapeutic drug development, and no causal link has ever been established between them. This study has developed a Unified Theory, which establishes that the regulation of axon and dendrite-specific 4E-BP2 deamidation rates controls the occurrence and progression of neurodegenerative diseases. This is based on identifying axon-specific 4E-BP2 deamidation as a universal denominator for the biochemical processes of deamidation, translational control, oxidative stress, and neurodegeneration. This was achieved by conducting a thorough and critical review of 224 scientific publications regarding (a) deamidation, (b) translational control in protein synthesis initiation, (c) neurodegeneration and (d) oxidative stress, and by applying my discovery of the fundamental neurobiological mechanism behind neuron-specific 4E-BP2 deamidation to practical applications in medicine. Based on this newly developed Unified Theory and my critical review of the scientific literature, I also designed three biochemical flowsheets of (1) in-vivo deamidation, (2) protein synthesis initiation and translational control, and (3) 4E-BP2 deamidation as a control system of the four biochemical processes. The Unified Theory of Neurodegeneration Pathogenesis based on axon deamidation, developed in this work, paves the way to controlling the occurrence and progression of neurodegenerative diseases such as Alzheimer's and Parkinson's through a unique, neuron-specific regulatory system that is 4E-BP2 deamidation, caused by the proteasome-poor environment in neuronal projections, consisting mainly of axons.
Collapse
Affiliation(s)
- Davis Joseph
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada;
- Flogen Technologies Inc., Mount Royal, QC H3P 2T1, Canada
| |
Collapse
|
4
|
Grebenik E, Zaichick S, Caraveo G. Calcineurin-mediated regulation of growth-associated protein 43 is essential for neurite and synapse formation and protects against α-synuclein-induced degeneration. Front Aging Neurosci 2025; 17:1566465. [PMID: 40259946 PMCID: PMC12009912 DOI: 10.3389/fnagi.2025.1566465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/19/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Elevated calcium (Ca2+) levels and hyperactivation of the Ca2+-dependent phosphatase calcineurin are key factors in α-synuclein (α-syn) pathobiology in Dementia with Lewy Bodies and Parkinson's Disease (PD). Calcineurin activity can be inhibited by FK506, an FDA-approved compound. Our previous work demonstrated that sub-saturating doses of FK506 provide neuroprotection against α-syn pathology in a rat model of α-syn neurodegeneration, an effect associated with the phosphorylation of growth-associated protein 43 (GAP-43). Methods To investigate the role of GAP-43 phosphorylation, we generated phosphomutants at the calcineurin-sensitive sites and expressed them in PC12 cells and primary rat cortical neuronal cultures to assess their effects on neurite morphology and synapse formation. Additionally, we performed immunoprecipitation mass spectrometry in HeLa cells to identify binding partners of these phosphorylation sites. Finally, we evaluated the ability of these phosphomutants to modulate α-syn toxicity. Results In this study, we demonstrate that calcineurin-regulated phosphorylation at S86 and T172 of GAP-43 is a crucial determinant of neurite branching and synapse formation. A phosphomimetic GAP-43 mutant at these sites enhances both processes and provides protection against α-syn-induced neurodegeneration. Conversely, the phosphoablative mutant prevents neurite branching and synapse formation while exhibiting increased interactions with ribosomal proteins. Discussion Our findings reveal a novel mechanism by which GAP-43 activity is regulated through phosphorylation at calcineurin-sensitive sites. These findings suggest that FK506's neuroprotective effects may be partially mediated through GAP-43 phosphorylation, providing a potential target for therapeutic intervention in synucleinopathies.
Collapse
Affiliation(s)
| | | | - Gabriela Caraveo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
5
|
Lin Z, Wu Z, He Y, Li X, Luo W. CYFIP1 coordinate with RNMT to induce osteosarcoma cuproptosis via AURKAIP1 m7G modification. Mol Med 2025; 31:74. [PMID: 39984834 PMCID: PMC11846196 DOI: 10.1186/s10020-025-01127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Osteosarcoma (OS) presents challenges due to its genomic instability and complexity, necessitating investigation into its oncogenesis and progression mechanisms. Recent studies have implicated m7G, a post-transcriptional modification, in the development of various cancers. However, research on m7G modification in OS remains limited. This study aimed to explore the impact of m7G modification in OS, focusing on the role and mechanism of CYFIP1, a member of m7G cap binding complexes. Our findings demonstrated prominent anti-OS effects of CYFIP1 in vitro and vivo. Mechanistically, CYFIP1 collaborated with RNMT to induce the m7G methylation of AURKAIP1 mRNA, which resulted in the stability and the increasing translation of AURKAIP1 mRNA. AURKAIP1, a kind of mitochondrial small ribosomal subunit protein, exhibited increased expression, leading to the dysregulation of mitochondrial translation. This, in turn, caused an increase in the expression of FDX1, eventually triggering cuproptosis in OS cells and repressing OS occurrence and progression. In summary, our study identified the CYFIP1/RNMT/AURKAIP1/FDX1 axis as a potential therapeutic target for OS. These insights contribute to OS research and may guide the development of novel treatments for this challenging disease.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P.R. China
| | - Yizhe He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xiangyao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, P.R. China.
| |
Collapse
|
6
|
Ma R, Kim US, Chung Y, Kang HR, Zhang Y, Han K. Recent advances in CYFIP2-associated neurodevelopmental disorders: From human genetics to molecular mechanisms and mouse models. Brain Dev 2025; 47:104302. [PMID: 39603202 DOI: 10.1016/j.braindev.2024.104302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Cytoplasmic FMR1-interacting protein 2 (CYFIP2) is an evolutionarily conserved protein with a critical role in brain development and function. As a key component of the WAVE regulatory complex, CYFIP2 regulates actin cytoskeleton dynamics, essential for maintaining proper neuronal morphology and circuit formation. Recent studies have also shown that CYFIP2 interacts with various RNA-binding proteins, suggesting its involvement in mRNA processing and translation in neurons. Since 2018, de novo CYFIP2 variants have been identified in patients with neurodevelopmental disorders, particularly developmental and epileptic encephalopathy and West syndrome, characterized by early-onset intractable seizures, intellectual disability, microcephaly, and developmental delay. This review summarizes these CYFIP2 variants and examines their potential impact on the molecular functions of CYFIP2, focusing on its roles in regulating actin dynamics and mRNA processing/translation. Additionally, we review various Cyfip2 mouse models, highlighting the insights they offer into CYFIP2 function, dysfunction, and clinical relevance. Finally, we discuss future research directions aimed at better understanding CYFIP2-associated neurodevelopmental disorders and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - U Suk Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yousun Chung
- Department of Laboratory Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea; BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Ferrini L, Bartolini E, Mancini A, Tancredi R, Ferrari AR, Calderoni S. EEG Abnormalities and Phenotypic Correlates in Preschoolers with Autism Spectrum Disorder: A Single-Center Study. J Clin Med 2025; 14:529. [PMID: 39860535 PMCID: PMC11766335 DOI: 10.3390/jcm14020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background: The literature suggests the existence of an association between autism spectrum disorders (ASDs) and subclinical electroencephalographic abnormalities (SEAs), which show a heterogeneous prevalence rate (12.5-60.7%) within the pediatric ASD population. The aim of this study was to investigate the EEG findings in a cohort of ASD preschoolers and their correlation with the phenotypic characteristics. Methods: We retrospectively reviewed data on 141 ASD preschoolers evaluated in a tertiary care university hospital over the period 2008-2018. All participants underwent at least one standard polygraphic electroencephalogram (EEG) and a clinical multidisciplinary assessment with standardized instruments. Results: 77 patients (55%) showed SEAs, which were mainly represented by epileptiform discharges (p < 0.00001), especially focal and multifocal (p = 0.010). Abnormal EEG (p = 0.035) and epileptiform discharges (p = 0.014) were associated with seizure onset and were predominant in sleep (p < 0.00001). Patients with abnormal tracing (p = 0.031) and slow abnormalities (p < 0.001) were significantly younger. ASD severity was not found to be correlated with EEG results, which showed a potential, albeit non-significant, association with some psychometric parameters. Very similar results were found when patients were divided according to sex. Conclusions: EEG abnormalities appear to correlate more with ASD internalizing, externalizing and emotional comorbidities, rather than with ASD core symptoms; larger samples are needed to further investigate this association.
Collapse
Affiliation(s)
- Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, NEUROFARBA Deparment, University of Florence, Viale Pieraccini, 6, 50139 Firenze, Italy
| | - Alice Mancini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
| | - Raffaella Tancredi
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (L.F.); (A.M.); (R.T.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
Xie S, Zuo K, De Rubeis S, Ruggerone P, Carloni P. Molecular basis of the CYFIP2 and NCKAP1 autism-linked variants in the WAVE regulatory complex. Protein Sci 2025; 34:e5238. [PMID: 39660913 PMCID: PMC11632847 DOI: 10.1002/pro.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
The WAVE regulatory pentameric complex regulates actin remodeling. Two components of it (CYFIP2 and NCKAP1) are encoded by genes whose genetic mutations increase the risk for autism spectrum disorder (ASD) and related neurodevelopmental disorders. Here, we use a newly developed computational protocol and hotspot analysis to uncover the functional impact of these mutations at the interface of the correct isoforms of the two proteins into the complex. The mutations turn out to be located on the surfaces involving the largest number of hotspots of the complex. Most of them decrease the affinity of the proteins for the rest of the complex, but some have the opposite effect. The results are fully consistent with the available experimental data. The observed changes in the WAVE regulatory complex stability might impact on complex activation and ultimately play a role in the aberrant pathway of the complex, leading to the cell derangement associated with the disease.
Collapse
Affiliation(s)
- Song Xie
- Computational BiomedicineInstitute of Advanced Simulation IAS‐5 and Institute of Neuroscience and Medicine INM‐9, Forschungszentrum Jülich GmbHJülichGermany
- Department of PhysicsRWTH Aachen UniversityAachenGermany
| | - Ke Zuo
- Computational BiomedicineInstitute of Advanced Simulation IAS‐5 and Institute of Neuroscience and Medicine INM‐9, Forschungszentrum Jülich GmbHJülichGermany
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative MedicineCollege of Pharmacy (International Academy of Targeted Therapeutics and Innovation), Chongqing University of Arts and SciencesChongqingChina
- Department of PhysicsUniversity of CagliariMonserratoCagliariItaly
| | - Silvia De Rubeis
- Seaver Autism Center for Research and TreatmentIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- The Mindich Child Health and Development InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Paolo Ruggerone
- Department of PhysicsUniversity of CagliariMonserratoCagliariItaly
| | - Paolo Carloni
- Computational BiomedicineInstitute of Advanced Simulation IAS‐5 and Institute of Neuroscience and Medicine INM‐9, Forschungszentrum Jülich GmbHJülichGermany
- Department of PhysicsRWTH Aachen UniversityAachenGermany
- JARA Institute: Molecular Neuroscience and ImagingInstitute of Neuroscience and Medicine INM‐11, Forschungszentrum Jülich GmbHJülichGermany
| |
Collapse
|
10
|
Gui J, Chen J, Wan K, Liu Y, Huang K, Zhu X. Identification of Brain Cell Type-Specific Therapeutic Targets for Glioma From Genetics. CNS Neurosci Ther 2024; 30:e70185. [PMID: 39722126 DOI: 10.1111/cns.70185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Previous research has demonstrated correlations between the complex types and functions of brain cells and the etiology of glioma. However, the causal relationship between gene expression regulation in specific brain cell types and glioma risk, along with its therapeutic implications, remains underexplored. METHODS Utilizing brain cell type-specific cis-expression quantitative trait loci (cis-eQTLs) and glioma genome-wide association study (GWAS) datasets in conjunction with Mendelian randomization (MR) and colocalization analyses, we conducted a systematic investigation to determine whether an association exists between the gene expression of specific brain cell types and the susceptibility to glioma, including its subtypes. Additionally, the potential pathogenicity was explored utilizing mediation and bioinformatics analyses. This exploration ultimately led to the identification of a series of brain cell-specific therapeutic targets. RESULTS A total of 110 statistically significant and robust associations were identified through MR analysis, with most genes exhibiting causal effects exclusively in specific brain cell types or glioma subtypes. Bayesian colocalization analysis validated 36 associations involving 26 genes as potential brain cell-specific therapeutic targets. Mediation analysis revealed genes indirectly influencing glioma risk via telomere length. Bioinformatics analysis highlighted the involvement of these genes in glioma pathogenesis pathways and supported their enrichment in specific brain cell types. CONCLUSIONS This study, employing an integrated approach, demonstrated the genetic susceptibility between brain cell-specific gene expression and the risk of glioma and its subtypes. Its findings offer novel insights into glioma etiology and underscore potential therapeutic targets specific to brain cell types.
Collapse
Affiliation(s)
- Jiawei Gui
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- HuanKui Academy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiali Chen
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Keqi Wan
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kai Huang
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xingen Zhu
- The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
- Institute of Neuroscience, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
11
|
Chen LL, Naesström M, Halvorsen M, Fytagoridis A, Crowley SB, Mataix-Cols D, Rück C, Crowley JJ, Pascal D. Genomics of severe and treatment-resistant obsessive-compulsive disorder treated with deep brain stimulation: A preliminary investigation. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32983. [PMID: 38650085 PMCID: PMC11493841 DOI: 10.1002/ajmg.b.32983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Individuals with severe and treatment-resistant obsessive-compulsive disorder (trOCD) represent a small but severely disabled group of patients. Since trOCD cases eligible for deep brain stimulation (DBS) probably comprise the most severe end of the OCD spectrum, we hypothesize that they may be more likely to have a strong genetic contribution to their disorder. Therefore, while the worldwide population of DBS-treated cases may be small (~300), screening these individuals with modern genomic methods may accelerate gene discovery in OCD. As such, we have begun to collect DNA from trOCD cases who qualify for DBS, and here we report results from whole exome sequencing and microarray genotyping of our first five cases. All participants had previously received DBS in the bed nucleus of stria terminalis (BNST), with two patients responding to the surgery and one showing a partial response. Our analyses focused on gene-disruptive rare variants (GDRVs; rare, predicted-deleterious single-nucleotide variants or copy number variants overlapping protein-coding genes). Three of the five cases carried a GDRV, including a missense variant in the ion transporter domain of KCNB1, a deletion at 15q11.2, and a duplication at 15q26.1. The KCNB1 variant (hg19 chr20-47991077-C-T, NM_004975.3:c.1020G>A, p.Met340Ile) causes substitution of methionine for isoleucine in the trans-membrane region of neuronal potassium voltage-gated ion channel KV2.1. This KCNB1 substitution (Met340Ile) is located in a highly constrained region of the protein where other rare missense variants have previously been associated with neurodevelopmental disorders. The patient carrying the Met340Ile variant responded to DBS, which suggests that genetic factors could potentially be predictors of treatment response in DBS for OCD. In sum, we have established a protocol for recruiting and genomically characterizing trOCD cases. Preliminary results suggest that this will be an informative strategy for finding risk genes in OCD.
Collapse
Affiliation(s)
- Long Long Chen
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Matilda Naesström
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden
| | - Matthew Halvorsen
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Anders Fytagoridis
- Department of Neurosurgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | | | - David Mataix-Cols
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - Christian Rück
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| | - James J. Crowley
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Diana Pascal
- Department of Clinical Neuroscience, Centre for Psychiatry Research Karolinska Institutet, & Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
12
|
Mossa A, Dierdorff L, Lukin J, Park Y, Fiorenzani C, Akpinar Z, Garcia-Forn M, De Rubeis S. Sex-specific perturbations of neuronal development caused by mutations in the autism risk gene DDX3X. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624865. [PMID: 39605424 PMCID: PMC11601590 DOI: 10.1101/2024.11.22.624865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
DDX3X is an X-linked RNA helicases that escapes X chromosome inactivation and is expressed at higher levels in female brains. Mutations in DDX3X are associated with intellectual disability (ID) and autism spectrum disorder (ASD) and are predominantly identified in females. Using cellular and mouse models, we show that Ddx3x mediates sexual dimorphisms in brain development at a molecular, cellular, and behavioral level. During cortical neuronal development, Ddx3x sustains a female-biased signature of enhanced ribosomal biogenesis and mRNA translation. Female neurons display higher levels of ribosomal proteins and larger nucleoli, and these sex dimorphisms are obliterated by Ddx3x loss. Ddx3x regulates dendritic outgrowth in a sex- and dose-dependent manner in both female and male neurons, and dendritic spine development only in female neurons. Further, ablating Ddx3x conditionally in forebrain neurons is sufficient to yield sex-specific changes in developmental outcomes and motor function. Together, these findings pose Ddx3x as a mediator of sexual differentiation during neurodevelopment and open new avenues to understand sex differences in health and disease.
Collapse
|
13
|
Payen SH, Andrada K, Tara E, Petereit J, Verma SC, Rossetto CC. The cellular paraspeckle component SFPQ associates with the viral processivity factor ORF59 during lytic replication of Kaposi's Sarcoma-associated herpesvirus (KSHV). Virus Res 2024; 349:199456. [PMID: 39214388 PMCID: PMC11406446 DOI: 10.1016/j.virusres.2024.199456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) relies on many cellular proteins to complete replication and generate new virions. Paraspeckle nuclear bodies consisting of core ribonucleoproteins splicing factor proline/glutamine-rich (SFPQ), Non-POU domain-containing octamer-binding protein (NONO), and paraspeckle protein component 1 (PSPC1) along with the long non-coding RNA NEAT1, form a complex that has been speculated to play an important role in viral replication. Paraspeckle bodies are multifunctional and involved in various processes including gene expression, mRNA splicing, and anti-viral defenses. To better understand the role of SFPQ during KSHV replication, we performed SFPQ immunoprecipitation followed by mass spectrometry from KSHV-infected cells. Proteomic analysis showed that during lytic reactivation, SFPQ associates with viral proteins, including ORF10, ORF59, and ORF61. These results are consistent with a previously reported ORF59 proteomics assay identifying SFPQ. To test if the association between ORF59 and SFPQ is important for replication, we first identified the region of ORF59 that associates with SFPQ using a series of 50 amino acid deletion mutants of ORF59 in the KSHV BACmid system. By performing co-immunoprecipitations, we identified the region spanning amino acids 101-150 of ORF59 as the association domain with SFPQ. Using this information, we generated a dominant negative polypeptide of ORF59 encompassing amino acids 101-150, that disrupted the association between SFPQ and full-length ORF59, and decreased virus production. Interestingly, when we tested other human herpesvirus processivity factors (EBV BMRF1, HSV-1 UL42, and HCMV UL44) by transfection of each expression plasmid followed by co-immunoprecipitation, we found a conserved association with SFPQ. These are limited studies that remain to be done in the context of infection but suggest a potential association of SFPQ with processivity factors across multiple herpesviruses.
Collapse
Affiliation(s)
- Shannon Harger Payen
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Kayla Andrada
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Evelyn Tara
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Juli Petereit
- University of Nevada, Reno, Nevada Bioinformatics Center (RRID: SCR_017802), Reno, NV 89557, USA
| | - Subhash C Verma
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | - Cyprian C Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA.
| |
Collapse
|
14
|
Habela CW, Liu S, Taga A, Dastgheyb R, Haughey N, Bergles D, Song H, Ming GL, Maragakis NJ. Altered development and network connectivity in a human neuronal model of 15q11.2 deletion-related neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613912. [PMID: 39345567 PMCID: PMC11429947 DOI: 10.1101/2024.09.19.613912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The chromosome 15q11.2 locus is deleted in 1.5% of patients with genetic epilepsy and confers a risk for intellectual disability and schizophrenia. Individuals with this deletion demonstrate increased cortical thickness, decreased cortical surface area and white matter abnormalities. Human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPC) from 15q11.2 deletion individuals exhibit early adhesion junction and migration abnormalities, but later neuronal development and function have not been fully assessed. Imaging studies indicating altered structure and network connectivity in the anterior brain regions and the cingulum suggest that in addition to alterations in progenitor dynamics, there may also be structural and functional changes within discrete networks of mature neurons. To explore this, we generated human forebrain cortical neurons from iPSCs derived from individuals with or without 15q11.2 deletion and used longitudinal imaging and multielectrode array analysis to evaluate neuronal development over time. 15q11.2 deleted neurons exhibited fewer connections and an increase in inhibitory neurons. Individual neurons had decreased neurite complexity and overall decreased neurite length. These structural changes were associated with a reduction in multiunit action potential generation, bursting and synchronization. The 15q11.2 deleted neurons also demonstrated specific functional deficits in glutamate and GABA mediated network activity and synchronization with a delay in the maturation of the inhibitory response to GABA. These data indicate that deletion of the 15q11.2 region is sufficient to impair the structural and functional maturation of cortical neuron networks which likely underlies the pathologic changes in humans with the 15q11.2 deletion.
Collapse
|
15
|
Shohayeb B, Sempert K, Wallis TP, Meunier FA, Durisic N, O'Brien EA, Flores C, Cooper HM. BDNF-dependent nano-organization of Neogenin and the WAVE regulatory complex promotes actin remodeling in dendritic spines. iScience 2024; 27:110621. [PMID: 39228790 PMCID: PMC11369513 DOI: 10.1016/j.isci.2024.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/01/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Synaptic structural plasticity, the expansion of dendritic spines in response to synaptic stimulation, is essential for experience-dependent plasticity and is driven by branched actin polymerization. The WAVE regulatory complex (WRC) is confined to nanodomains at the postsynaptic membrane where it catalyzes actin polymerization. As the netrin/RGM receptor Neogenin is a critical regulator of the WRC, its nanoscale organization may be an important determinant of WRC nanoarchitecture and function. Using super-resolution microscopy, we reveal that Neogenin is highly organized on the spine membrane at the nanoscale level. We show that Neogenin binding to the WRC promotes co-clustering into nanodomains in response to brain-derived neurotrophic factor (BDNF), indicating that nanoclustering occurs in response to synaptic stimulation. Disruption of Neogenin/WRC binding not only prevents BDNF-mediated actin remodeling but also inhibits BDNF-induced calcium signaling. We conclude that the assembly of Neogenin/WRC nanodomains is a prerequisite for BDNF-mediated structural and synaptic plasticity.
Collapse
Affiliation(s)
- Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tristan P. Wallis
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Frédéric A. Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A. O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
- Douglas Mental Health University Institute, Montréal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montréal, Canada
| | - Helen M. Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
16
|
Zhang Y, Kang HR, Jun Y, Kang H, Bang G, Ma R, Ju S, Yoon DE, Kim Y, Kim K, Kim JY, Han K. Neurodevelopmental disorder-associated CYFIP2 regulates membraneless organelles and eIF2α phosphorylation via protein interactors and actin cytoskeleton. Hum Mol Genet 2024; 33:1671-1687. [PMID: 38981622 DOI: 10.1093/hmg/ddae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/10/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
De novo variants in the Cytoplasmic FMR1-interacting protein 2 (CYFIP2) have been repeatedly associated with neurodevelopmental disorders and epilepsy, underscoring its critical role in brain development and function. While CYFIP2's role in regulating actin polymerization as part of the WAVE regulatory complex (WRC) is well-established, its additional molecular functions remain relatively unexplored. In this study, we performed unbiased quantitative proteomic analysis, revealing 278 differentially expressed proteins (DEPs) in the forebrain of Cyfip2 knock-out embryonic mice compared to wild-type mice. Unexpectedly, these DEPs, in conjunction with previously identified CYFIP2 brain interactors, included not only other WRC components but also numerous proteins associated with membraneless organelles (MLOs) involved in mRNA processing and translation within cells, including the nucleolus, stress granules, and processing bodies. Additionally, single-cell transcriptomic analysis of the Cyfip2 knock-out forebrain revealed gene expression changes linked to cellular stress responses and MLOs. We also observed morphological changes in MLOs in Cyfip2 knock-out brains and CYFIP2 knock-down cells under basal and stress conditions. Lastly, we demonstrated that CYFIP2 knock-down in cells, potentially through WRC-dependent actin regulation, suppressed the phosphorylation levels of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α), thereby enhancing protein synthesis. These results suggest a physical and functional connection between CYFIP2 and various MLO proteins and also extend CYFIP2's role within the WRC from actin regulation to influencing eIF2α phosphorylation and protein synthesis. With these dual functions, CYFIP2 may fine-tune the balance between MLO formation/dynamics and protein synthesis, a crucial aspect of proper mRNA processing and translation.
Collapse
Affiliation(s)
- Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yukyung Jun
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), 245, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Geul Bang
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jin Young Kim
- Digital Omics Research Center, Korea Basic Science Institute (KBSI), 162, Yeongudanji-ro, Cheongwon-gu, Ochang 28119, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125, Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
von Mueffling A, Garcia-Forn M, De Rubeis S. DDX3X syndrome: From clinical phenotypes to biological insights. J Neurochem 2024; 168:2147-2154. [PMID: 38976626 PMCID: PMC11449660 DOI: 10.1111/jnc.16174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024]
Abstract
DDX3X syndrome is a neurodevelopmental disorder accounting for up to 3% of cases of intellectual disability (ID) and affecting primarily females. Individuals diagnosed with DDX3X syndrome can also present with behavioral challenges, motor delays and movement disorders, epilepsy, and congenital malformations. DDX3X syndrome is caused by mutations in the X-linked gene DDX3X, which encodes a DEAD-box RNA helicase with critical roles in RNA metabolism, including mRNA translation. Emerging discoveries from animal models are unveiling a fundamental role of DDX3X in neuronal differentiation and development, especially in the neocortex. Here, we review the current knowledge of genetic and neurobiological mechanisms underlying DDX3X syndrome and their relationship with clinical phenotypes.
Collapse
Affiliation(s)
- Alexa von Mueffling
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Barnard College, Columbia University, New York, NY 10027, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Liang X, Hong A, Shen R, Zhu M, Tian W. NCKAP1 as a prognostic and immunological biomarker: pan-cancer analysis and validation in renal clear cell carcinoma. Am J Transl Res 2024; 16:4083-4100. [PMID: 39262720 PMCID: PMC11384366 DOI: 10.62347/ukqb2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/14/2024] [Indexed: 09/13/2024]
Abstract
OBJECTIVES To systematically investigate the expression, prognostic value, genetic alterations, immune infiltration, and molecular function of Nck-associated protein 1 (NCKAP1) in a pan-cancer analysis, with a specific focus on its association with kidney renal cell carcinoma (KIRC). METHODS We analyzed the role of NCKAP1 across various tumor types using data from The Cancer Genome Atlas (TCGA). The Gene Expression Profiling Interactive Analysis version 2 (GEPIA2) database was used to assess the correlation between NCKAP1 expression levels and overall survival (OS) and disease-free survival (DFS) across different cancers, as well as its association with cancer stage. Genetic alterations of NCKAP1 were explored using CBioPortal, and their prognostic implications were assessed. NCKAP1 was further analyzed through Gene Ontology and protein interaction network analyses. Immunohistochemistry (IHC) staining from the Human Protein Atlas (HPA) database evaluated NCKAP1 levels in KIRC tissues. Functional assays, including Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays, were conducted to determine the effects of NCKAP1 overexpression on cell growth rate and their ability to invade, proliferate, migrate in a KIRC (786-O) cell line. The relationship between NCKAP1 expression and immune infiltration in KIRC was systematically examined using the Tumor Immune Estimation Resource. RESULTS NCKAP1 expression was significantly altered in most tumor types compared to corresponding non-tumor tissues. Survival analysis indicated that low NCKAP1 expression was associated with poor OS, DFS, and advanced cancer stage (P < 0.05) specifically in KIRC. Genetic alterations in NCKAP1 were linked to clinical outcome in cancer patients, and a positive correlation was observed between NCKAP1 expression and cancer-associated fibroblast infiltration (P < 0.05). Gene Ontology analysis revealed that NCKAP1 regulates the actin cytoskeleton and interacts with proteins such as CYFIP1, ABI2, WASF2, and BRK1. IHC staining showed significantly lower NCKAP1 levels in KIRC tissues compared to normal tissues. Overexpression of NCKAP1 in KIRC cell lines reduced cell proliferation, invasion, and migration (P < 0.05). NCKAP1 was also positively correlated with macrophage, neutrophil, and CD4+ T cell infiltration (P < 0.001). CONCLUSION NCKAP1 may serve as a prognostic and immunological marker and may be a therapeutic target for KIRC.
Collapse
Affiliation(s)
- Xiao Liang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine Nanjing 210000, Jiangsu, China
| | - Aonan Hong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine Nanjing 210000, Jiangsu, China
| | - Ruizhi Shen
- Department of Oncology, Jiangnan University Medical Center Wuxi 214002, Jiangsu, China
| | - Minmin Zhu
- Department of Anesthesiology, Jiangnan University Medical Center Wuxi 214002, Jiangsu, China
| | - Weiqian Tian
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine Nanjing 210000, Jiangsu, China
| |
Collapse
|
19
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the fragile X protein, FMRP. J Biol Chem 2024; 300:107540. [PMID: 38971316 PMCID: PMC11338112 DOI: 10.1016/j.jbc.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/22/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal noncanonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not poly(A)-binding protein, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of four putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes but only stimulates NGD of a small select set of transcripts, revealing a minor role of FMRP that would be misregulated in fragile X syndrome.
Collapse
Affiliation(s)
- MaKenzie R Scarpitti
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Pastore
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Wen Tang
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Michael G Kearse
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
20
|
Haddon JE, Titherage D, Heckenast JR, Carter J, Owen MJ, Hall J, Wilkinson LS, Jones MW. Linking haploinsufficiency of the autism- and schizophrenia-associated gene Cyfip1 with striatal-limbic-cortical network dysfunction and cognitive inflexibility. Transl Psychiatry 2024; 14:256. [PMID: 38876996 PMCID: PMC11178837 DOI: 10.1038/s41398-024-02969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Impaired behavioural flexibility is a core feature of neuropsychiatric disorders and is associated with underlying dysfunction of fronto-striatal circuitry. Reduced dosage of Cyfip1 is a risk factor for neuropsychiatric disorder, as evidenced by its involvement in the 15q11.2 (BP1-BP2) copy number variant: deletion carriers are haploinsufficient for CYFIP1 and exhibit a two- to four-fold increased risk of schizophrenia, autism and/or intellectual disability. Here, we model the contributions of Cyfip1 to behavioural flexibility and related fronto-striatal neural network function using a recently developed haploinsufficient, heterozygous knockout rat line. Using multi-site local field potential (LFP) recordings during resting state, we show that Cyfip1 heterozygous rats (Cyfip1+/-) harbor disrupted network activity spanning medial prefrontal cortex, hippocampal CA1 and ventral striatum. In particular, Cyfip1+/- rats showed reduced influence of nucleus accumbens and increased dominance of prefrontal and hippocampal inputs, compared to wildtype controls. Adult Cyfip1+/- rats were able to learn a single cue-response association, yet unable to learn a conditional discrimination task that engages fronto-striatal interactions during flexible pairing of different levers and cue combinations. Together, these results implicate Cyfip1 in development or maintenance of cortico-limbic-striatal network integrity, further supporting the hypothesis that alterations in this circuitry contribute to behavioural inflexibility observed in neuropsychiatric diseases including schizophrenia and autism.
Collapse
Affiliation(s)
- Josephine E Haddon
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK.
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK.
| | - Daniel Titherage
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
- Centre for Academic Mental Health, Population Health sciences, University of Bristol, Bristol, UK
| | - Julia R Heckenast
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Jennifer Carter
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Lawrence S Wilkinson
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences (DPMCN), School of Medicine, Cardiff University, Cardiff, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- School of Psychology, Cardiff University, Cardiff, UK
| | - Matthew W Jones
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Kaizuka T, Takumi T. Alteration of synaptic protein composition during developmental synapse maturation. Eur J Neurosci 2024; 59:2894-2914. [PMID: 38571321 DOI: 10.1111/ejn.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 01/02/2024] [Accepted: 02/07/2024] [Indexed: 04/05/2024]
Abstract
The postsynaptic density (PSD) is a collection of specialized proteins assembled beneath the postsynaptic membrane of dendritic spines. The PSD proteome comprises ~1000 proteins, including neurotransmitter receptors, scaffolding proteins and signalling enzymes. Many of these proteins have essential roles in synaptic function and plasticity. During brain development, changes are observed in synapse density and in the stability and shape of spines, reflecting the underlying molecular maturation of synapses. Synaptic protein composition changes in terms of protein abundance and the assembly of protein complexes, supercomplexes and the physical organization of the PSD. Here, we summarize the developmental alterations of postsynaptic protein composition during synapse maturation. We describe major PSD proteins involved in postsynaptic signalling that regulates synaptic plasticity and discuss the effect of altered expression of these proteins during development. We consider the abnormality of synaptic profiles and synaptic protein composition in the brain in neurodevelopmental disorders such as autism spectrum disorders. We also explain differences in synapse development between rodents and primates in terms of synaptic profiles and protein composition. Finally, we introduce recent findings related to synaptic diversity and nanoarchitecture and discuss their impact on future research. Synaptic protein composition can be considered a major determinant and marker of synapse maturation in normality and disease.
Collapse
Affiliation(s)
- Takeshi Kaizuka
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
22
|
Kim Y, Ma R, Zhang Y, Kang HR, Kim US, Han K. Cell-autonomous reduction of CYFIP2 changes dendrite length, dendritic protrusion morphology, and inhibitory synapse density in the hippocampal CA1 pyramidal neurons of 17-month-old mice. Anim Cells Syst (Seoul) 2024; 28:294-302. [PMID: 38832126 PMCID: PMC11146249 DOI: 10.1080/19768354.2024.2360740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The cytoplasmic FMR1-interacting protein 2 (CYFIP2) have diverse molecular functions in neurons, including the regulation of actin polymerization, mRNA translation, and mitochondrial morphology and function. Mutations in the CYFIP2 gene are associated with early-onset epilepsy and neurodevelopmental disorders, while decreases in its protein levels are linked to Alzheimer's disease (AD). Notably, previous research has revealed AD-like phenotypes, such as dendritic spine loss, in the hippocampal CA1 pyramidal neurons of 12-month-old Cyfip2 heterozygous mice but not of age-matched CA1 pyramidal neuron-specific Cyfip2 conditional knock-out (cKO) mice. This study aims to investigate whether dendritic spine loss in Cyfip2 cKO mice is merely delayed compared to Cyfip2 heterozygous mice, and to explore further neuronal phenotypes regulated by CYFIP2 in aged mice. We characterized dendrite and dendritic protrusion morphologies, along with excitatory/inhibitory synapse densities in CA1 pyramidal neurons of 17-month-old Cyfip2 cKO mice. Overall dendritic branching was normal, with a reduction in the length of basal, not apical, dendrites in CA1 pyramidal neurons of Cyfip2 cKO mice. Furthermore, while dendritic protrusion density remained normal, alterations were observed in the length of mushroom spines and the head volume of stubby spines in basal, not apical, dendrites of Cyfip2 cKO mice. Although excitatory synapse density remained unchanged, inhibitory synapse density increased in apical, not basal, dendrites of Cyfip2 cKO mice. Consequently, a cell-autonomous reduction of CYFIP2 appears insufficient to induce dendritic spine loss in CA1 pyramidal neurons of aged mice. However, CYFIP2 is required to maintain normal dendritic length, dendritic protrusion morphology, and inhibitory synapse density.
Collapse
Affiliation(s)
- Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - U Suk Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
23
|
Sheridan SD, Horng JE, Yeh H, McCrea L, Wang J, Fu T, Perlis RH. Loss of Function in the Neurodevelopmental Disease and Schizophrenia-Associated Gene CYFIP1 in Human Microglia-like Cells Supports a Functional Role in Synaptic Engulfment. Biol Psychiatry 2024; 95:676-686. [PMID: 37573007 PMCID: PMC10874584 DOI: 10.1016/j.biopsych.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 07/18/2023] [Accepted: 07/23/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND The CYFIP1 gene, located in the neurodevelopmental risk locus 15q11.2, is highly expressed in microglia, but its role in human microglial function as it relates to neurodevelopment is not well understood. METHODS We generated multiple CRISPR (clustered regularly interspaced short palindromic repeat) knockouts of CYFIP1 in patient-derived models of microglia to characterize function and phenotype. Using microglia-like cells reprogrammed from peripheral blood mononuclear cells, we quantified phagocytosis of synaptosomes (isolated and purified synaptic vesicles) from human induced pluripotent stem cell (iPSC)-derived neuronal cultures as an in vitro model of synaptic pruning. We repeated these analyses in human iPSC-derived microglia-like cells derived from 3 isogenic wild-type/knockout line pairs derived from 2 donors and further characterized microglial development and function through morphology and motility. RESULTS CYFIP1 knockout using orthogonal CRISPR constructs in multiple patient-derived cell lines was associated with a statistically significant decrease in synaptic vesicle phagocytosis in microglia-like cell models derived from both peripheral blood mononuclear cells and iPSCs. Morphology was also shifted toward a more ramified profile, and motility was significantly reduced. However, iPSC-CYFIP1 knockout lines retained the ability to differentiate to functional microglia. CONCLUSIONS The changes in microglial phenotype and function due to the loss of function of CYFIP1 observed in this study implicate a potential impact on processes such as synaptic pruning that may contribute to CYFIP1-related neurodevelopmental disorders. Investigating risk genes in a range of central nervous system cell types, not solely neurons, may be required to fully understand the way in which common and rare variants intersect to yield neuropsychiatric disorders.
Collapse
Affiliation(s)
- Steven D Sheridan
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Joy E Horng
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Hana Yeh
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Liam McCrea
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer Wang
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Ting Fu
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Roy H Perlis
- Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
24
|
Ehrhart F, Silva A, Amelsvoort TV, von Scheibler E, Evelo C, Linden DEJ. Copy number variant risk loci for schizophrenia converge on the BDNF pathway. World J Biol Psychiatry 2024; 25:222-232. [PMID: 38493363 DOI: 10.1080/15622975.2024.2327027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVES Schizophrenia genetics is intricate, with common and rare variants' contributions not fully understood. Certain copy number variations (CNVs) elevate risk, pivotal for understanding mental disorder models. Despite CNVs' genome-wide distribution and variable gene and protein effects, we must explore beyond affected genes to interaction partners and molecular pathways. METHODS In this study, we developed machine-readable interactive pathways to enable analysis of functional effects of genes within CNV loci and identify ten common pathways across CNVs with high schizophrenia risk using the WikiPathways database, schizophrenia risk gene collections from GWAS studies, and a gene-disease association database. RESULTS For CNVs that are pathogenic for schizophrenia, we found overlapping pathways, including BDNF signalling, cytoskeleton, and inflammation. Common schizophrenia risk genes identified by different studies are found in all CNV pathways, but not enriched. CONCLUSIONS Our findings suggest that specific pathways - BDNF signalling - are critical contributors to schizophrenia risk conferred by rare CNVs. Our approach highlights the importance of not only investigating deleted or duplicated genes within pathogenic CNV loci, but also study their direct interaction partners, which may explain pleiotropic effects of CNVs on schizophrenia risk and offer a broader field for interventions.
Collapse
Affiliation(s)
- Friederike Ehrhart
- Department of Bioinformatics, NUTRIM/MHeNS, Maastricht University, Maastricht, The Netherlands
| | - Ana Silva
- Psychiatry & Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands
| | | | - Emma von Scheibler
- Psychiatry & Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands
- Advisium, 's Heeren Loo, Amersfoort, The Netherlands
| | - Chris Evelo
- Department of Bioinformatics, NUTRIM/MHeNS, Maastricht University, Maastricht, The Netherlands
| | - David E J Linden
- Psychiatry & Neuropsychology, MHeNs, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
25
|
Correa-da-Silva F, Carter J, Wang XY, Sun R, Pathak E, Kuhn JMM, Schriever SC, Maya-Monteiro CM, Jiao H, Kalsbeek MJ, Moraes-Vieira PMM, Gille JJP, Sinnema M, Stumpel CTRM, Curfs LMG, Stenvers DJ, Pfluger PT, Lutter D, Pereira AM, Kalsbeek A, Fliers E, Swaab DF, Wilkinson L, Gao Y, Yi CX. Microglial phagolysosome dysfunction and altered neural communication amplify phenotypic severity in Prader-Willi Syndrome with larger deletion. Acta Neuropathol 2024; 147:64. [PMID: 38556574 PMCID: PMC10982101 DOI: 10.1007/s00401-024-02714-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Prader-Willi Syndrome (PWS) is a rare neurodevelopmental disorder of genetic etiology, characterized by paternal deletion of genes located at chromosome 15 in 70% of cases. Two distinct genetic subtypes of PWS deletions are characterized, where type I (PWS T1) carries four extra haploinsufficient genes compared to type II (PWS T2). PWS T1 individuals display more pronounced physiological and cognitive abnormalities than PWS T2, yet the exact neuropathological mechanisms behind these differences remain unclear. Our study employed postmortem hypothalamic tissues from PWS T1 and T2 individuals, conducting transcriptomic analyses and cell-specific protein profiling in white matter, neurons, and glial cells to unravel the cellular and molecular basis of phenotypic severity in PWS sub-genotypes. In PWS T1, key pathways for cell structure, integrity, and neuronal communication are notably diminished, while glymphatic system activity is heightened compared to PWS T2. The microglial defect in PWS T1 appears to stem from gene haploinsufficiency, as global and myeloid-specific Cyfip1 haploinsufficiency in murine models demonstrated. Our findings emphasize microglial phagolysosome dysfunction and altered neural communication as crucial contributors to the severity of PWS T1's phenotype.
Collapse
Affiliation(s)
- Felipe Correa-da-Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Jenny Carter
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Xin-Yuan Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Rui Sun
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ekta Pathak
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - José Manuel Monroy Kuhn
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sonja C Schriever
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clarissa M Maya-Monteiro
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Han Jiao
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Martin J Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Pedro M M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Johan J P Gille
- Department of Clinical Genetics, Amsterdam University Medical Centers, location VUMC. University of Amsterdam, Amsterdam, The Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Constance T R M Stumpel
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Leopold M G Curfs
- Governor Kremers Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Paul T Pfluger
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Research Unit NeuroBiology of Diabetes, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- Division of Neurobiology of Diabetes, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Dominik Lutter
- Computational Discovery Unit, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alberto M Pereira
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Lawrence Wilkinson
- Neuroscience and Mental Health Innovation Institute, MRC Centre for Neuropsychiatric Genetic and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Yuanqing Gao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, Location AMC. University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology and Metabolism, Amsterdam, The Netherlands.
- Endocrine Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
26
|
Borreca A, Mantovani C, Desiato G, Corradini I, Filipello F, Elia CA, D'Autilia F, Santamaria G, Garlanda C, Morini R, Pozzi D, Matteoli M. Loss of interleukin 1 signaling causes impairment of microglia- mediated synapse elimination and autistic-like behaviour in mice. Brain Behav Immun 2024; 117:493-509. [PMID: 38307446 DOI: 10.1016/j.bbi.2024.01.221] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.
Collapse
Affiliation(s)
- Antonella Borreca
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cristina Mantovani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Irene Corradini
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Chiara Adriana Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca D'Autilia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giulia Santamaria
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| | - Michela Matteoli
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
27
|
Mengzhen Z, Xinwei H, Zeheng T, Nan L, Yang Y, Huirong Y, Kaisi F, Xiaoting D, Liucheng Y, Kai W. Integrated machine learning-driven disulfidptosis profiling: CYFIP1 and EMILIN1 as therapeutic nodes in neuroblastoma. J Cancer Res Clin Oncol 2024; 150:109. [PMID: 38427078 PMCID: PMC10907485 DOI: 10.1007/s00432-024-05630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Neuroblastoma (NB), a prevalent pediatric solid tumor, presents formidable challenges due to its high malignancy and intricate pathogenesis. The role of disulfidptosis, a novel form of programmed cell death, remains poorly understood in the context of NB. METHODS Gaussian mixture model (GMM)-identified disulfidptosis-related molecular subtypes in NB, differential gene analysis, survival analysis, and gene set variation analysis were conducted subsequently. Weighted gene co-expression network analysis (WGCNA) selected modular genes most relevant to the disulfidptosis core pathways. Integration of machine learning approaches revealed the combination of the Least absolute shrinkage and selection operator (LASSO) and Random Survival Forest (RSF) provided optimal dimensionality reduction of the modular genes. The resulting model was validated, and a nomogram assessed disulfidptosis characteristics in NB. Core genes were filtered and subjected to tumor phenotype and disulfidptosis-related experiments. RESULTS GMM clustering revealed three distinct subtypes with diverse prognoses, showing significant variations in glucose metabolism, cytoskeletal structure, and tumor-related pathways. WGCNA highlighted the red module of genes highly correlated with disulfide isomerase activity, cytoskeleton formation, and glucose metabolism. The LASSO and RSF combination yielded the most accurate and stable prognostic model, with a significantly worse prognosis for high-scoring patients. Cytological experiments targeting core genes (CYFIP1, EMILIN1) revealed decreased cell proliferation, migration, invasion abilities, and evident cytoskeletal deformation upon core gene knockdown. CONCLUSIONS This study showcases the utility of disulfidptosis-related gene scores for predicting prognosis and molecular subtypes of NB. The identified core genes, CYFIP1 and EMILIN1, hold promise as potential therapeutic targets and diagnostic markers for NB.
Collapse
Affiliation(s)
- Zhang Mengzhen
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Hou Xinwei
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Tan Zeheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Li Nan
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Yang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Huirong
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Fan Kaisi
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ding Xiaoting
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yang Liucheng
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Wu Kai
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
28
|
Oliveira MM, Mohamed M, Elder MK, Banegas-Morales K, Mamcarz M, Lu EH, Golhan EAN, Navrange N, Chatterjee S, Abel T, Klann E. The integrated stress response effector GADD34 is repurposed by neurons to promote stimulus-induced translation. Cell Rep 2024; 43:113670. [PMID: 38219147 PMCID: PMC10964249 DOI: 10.1016/j.celrep.2023.113670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
Neuronal protein synthesis is required for long-lasting plasticity and long-term memory consolidation. Dephosphorylation of eukaryotic initiation factor 2α is one of the key translational control events that is required to increase de novo protein synthesis that underlies long-lasting plasticity and memory consolidation. Here, we interrogate the molecular pathways of translational control that are triggered by neuronal stimulation with brain-derived neurotrophic factor (BDNF), which results in eukaryotic initiation factor 2α (eIF2α) dephosphorylation and increases in de novo protein synthesis. Primary rodent neurons exposed to BDNF display elevated translation of GADD34, which facilitates eIF2α dephosphorylation and subsequent de novo protein synthesis. Furthermore, GADD34 requires G-actin generated by cofilin to dephosphorylate eIF2α and enhance protein synthesis. Finally, GADD34 is required for BDNF-induced translation of synaptic plasticity-related proteins. Overall, we provide evidence that neurons repurpose GADD34, an effector of the integrated stress response, as an orchestrator of rapid increases in eIF2-dependent translation in response to plasticity-inducing stimuli.
Collapse
Affiliation(s)
| | - Muhaned Mohamed
- Center for Neural Science, New York University, New York, NY, USA
| | - Megan K Elder
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Maggie Mamcarz
- Center for Neural Science, New York University, New York, NY, USA
| | - Emily H Lu
- Center for Neural Science, New York University, New York, NY, USA
| | - Ela A N Golhan
- Center for Neural Science, New York University, New York, NY, USA
| | - Nishika Navrange
- Center for Neural Science, New York University, New York, NY, USA
| | - Snehajyoti Chatterjee
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ted Abel
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, USA; NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
29
|
Deslauriers JC, Ghotkar RP, Russ LA, Jarman JA, Martin RM, Tippett RG, Sumathipala SH, Burton DF, Cole DC, Marsden KC. Cyfip2 controls the acoustic startle threshold through FMRP, actin polymerization, and GABA B receptor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573054. [PMID: 38187577 PMCID: PMC10769380 DOI: 10.1101/2023.12.22.573054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Animals process a constant stream of sensory input, and to survive they must detect and respond to dangerous stimuli while ignoring innocuous or irrelevant ones. Behavioral responses are elicited when certain properties of a stimulus such as its intensity or size reach a critical value, and such behavioral thresholds can be a simple and effective mechanism to filter sensory information. For example, the acoustic startle response is a conserved and stereotyped defensive behavior induced by sudden loud sounds, but dysregulation of the threshold to initiate this behavior can result in startle hypersensitivity that is associated with sensory processing disorders including schizophrenia and autism. Through a previous forward genetic screen for regulators of the startle threshold a nonsense mutation in Cytoplasmic Fragile X Messenger Ribonucleoprotein (FMRP)-interacting protein 2 (cyfip2) was found that causes startle hypersensitivity in zebrafish larvae, but the molecular mechanisms by which Cyfip2 establishes the acoustic startle threshold are unknown. Here we used conditional transgenic rescue and CRISPR/Cas9 to determine that Cyfip2 acts though both Rac1 and FMRP pathways, but not the closely related FXR1 or FXR2, to establish the acoustic startle threshold during early neurodevelopment. To identify proteins and pathways that may be downstream effectors of Rac1 and FMRP, we performed a candidate-based drug screen that indicated that Cyfip2 can also act acutely to maintain the startle threshold branched actin polymerization and N-methyl D-aspartate receptors (NMDARs). To complement this approach, we used unbiased discovery proteomics to determine that loss of Cyfip2 alters cytoskeletal and extracellular matrix components while also disrupting oxidative phosphorylation and GABA receptor signaling. Finally, we functionally validated our proteomics findings by showing that activating GABAB receptors, which like NMDARs are also FMRP targets, restores normal startle sensitivity in cyfip2 mutants. Together, these data reveal multiple mechanisms by which Cyfip2 regulates excitatory/inhibitory balance in the startle circuit to control the processing of acoustic information.
Collapse
Affiliation(s)
- Jacob C. Deslauriers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rohit P. Ghotkar
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Putnam Associates, Boston, Massachusetts, USA
| | - Lindsey A. Russ
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Department of Pharmacology & Physiology, Georgetown University, Washington D.C., USA
| | - Jordan A. Jarman
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - Rubia M. Martin
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Current address: U.S. Environmental Protection Agency, Raleigh-Durham-Chapel Hill, North Carolina, USA
| | - Rachel G. Tippett
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Sureni H. Sumathipala
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Derek F. Burton
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - D. Chris Cole
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kurt C. Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the Environment (CHHE), North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
30
|
Scarpitti MR, Pastore B, Tang W, Kearse MG. Characterization of ribosome stalling and no-go mRNA decay stimulated by the Fragile X protein, FMRP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.577121. [PMID: 38352534 PMCID: PMC10862907 DOI: 10.1101/2024.02.02.577121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Loss of functional fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS) and is the leading monogenic cause of autism spectrum disorders and intellectual disability. FMRP is most notably a translational repressor and is thought to inhibit translation elongation by stalling ribosomes as FMRP-bound polyribosomes from brain tissue are resistant to puromycin and nuclease treatment. Here, we present data showing that the C-terminal non-canonical RNA-binding domain of FMRP is essential and sufficient to induce puromycin-resistant mRNA•ribosome complexes. Given that stalled ribosomes can stimulate ribosome collisions and no-go mRNA decay (NGD), we tested the ability of FMRP to drive NGD of its target transcripts in neuroblastoma cells. Indeed, FMRP and ribosomal proteins, but not PABPC1, were enriched in isolated nuclease-resistant disomes compared to controls. Using siRNA knockdown and RNA-seq, we identified 16 putative FMRP-mediated NGD substrates, many of which encode proteins involved in neuronal development and function. Increased mRNA stability of the putative substrates was also observed when either FMRP was depleted or NGD was prevented via RNAi. Taken together, these data support that FMRP stalls ribosomes and can stimulate NGD of a select set of transcripts in cells, revealing an unappreciated role of FMRP that would be misregulated in FXS.
Collapse
|
31
|
Mariano V, Kanellopoulos AK, Ricci C, Di Marino D, Borrie SC, Dupraz S, Bradke F, Achsel T, Legius E, Odent S, Billuart P, Bienvenu T, Bagni C. Intellectual Disability and Behavioral Deficits Linked to CYFIP1 Missense Variants Disrupting Actin Polymerization. Biol Psychiatry 2024; 95:161-174. [PMID: 37704042 DOI: 10.1016/j.biopsych.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND 15q11.2 deletions and duplications have been linked to autism spectrum disorder, schizophrenia, and intellectual disability. Recent evidence suggests that dysfunctional CYFIP1 (cytoplasmic FMR1 interacting protein 1) contributes to the clinical phenotypes observed in individuals with 15q11.2 deletion/duplication syndrome. CYFIP1 plays crucial roles in neuronal development and brain connectivity, promoting actin polymerization and regulating local protein synthesis. However, information about the impact of single nucleotide variants in CYFIP1 on neurodevelopmental disorders is limited. METHODS Here, we report a family with 2 probands exhibiting intellectual disability, autism spectrum disorder, spastic tetraparesis, and brain morphology defects and who carry biallelic missense point mutations in the CYFIP1 gene. We used skin fibroblasts from one of the probands, the parents, and typically developing individuals to investigate the effect of the variants on the functionality of CYFIP1. In addition, we generated Drosophila knockin mutants to address the effect of the variants in vivo and gain insight into the molecular mechanism that underlies the clinical phenotype. RESULTS Our study revealed that the 2 missense variants are in protein domains responsible for maintaining the interaction within the wave regulatory complex. Molecular and cellular analyses in skin fibroblasts from one proband showed deficits in actin polymerization. The fly model for these mutations exhibited abnormal brain morphology and F-actin loss and recapitulated the core behavioral symptoms, such as deficits in social interaction and motor coordination. CONCLUSIONS Our findings suggest that the 2 CYFIP1 variants contribute to the clinical phenotype in the probands that reflects deficits in actin-mediated brain development processes.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Human Genetics, KU Leuven, Belgium
| | | | - Carlotta Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center, Polytechnic University of Marche, Ancona, Italy; Department of Neuroscience, Neuronal Death and Neuroprotection Unit, Mario Negri Institute for Pharmacological Research-IRCCS, Milan, Italy
| | | | - Sebastian Dupraz
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Frank Bradke
- Axonal Growth and Regeneration Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Belgium
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Labellisé pour les Anomalies du Développement Ouest, Centre Hospitalier Universitaire de Rennes, Rennes, France; Institut de Génétique et Développement de Rennes, CNRS, UMR 6290, Université de Rennes, ERN-ITHACA, France
| | - Pierre Billuart
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris, Institut National de la Santé et de la Recherche Médicale U1266, Université de Paris Cité (UPC), Paris, France
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
32
|
Boen R, Kaufmann T, van der Meer D, Frei O, Agartz I, Ames D, Andersson M, Armstrong NJ, Artiges E, Atkins JR, Bauer J, Benedetti F, Boomsma DI, Brodaty H, Brosch K, Buckner RL, Cairns MJ, Calhoun V, Caspers S, Cichon S, Corvin AP, Crespo-Facorro B, Dannlowski U, David FS, de Geus EJC, de Zubicaray GI, Desrivières S, Doherty JL, Donohoe G, Ehrlich S, Eising E, Espeseth T, Fisher SE, Forstner AJ, Fortaner-Uyà L, Frouin V, Fukunaga M, Ge T, Glahn DC, Goltermann J, Grabe HJ, Green MJ, Groenewold NA, Grotegerd D, Grøntvedt GR, Hahn T, Hashimoto R, Hehir-Kwa JY, Henskens FA, Holmes AJ, Håberg AK, Haavik J, Jacquemont S, Jansen A, Jockwitz C, Jönsson EG, Kikuchi M, Kircher T, Kumar K, Le Hellard S, Leu C, Linden DE, Liu J, Loughnan R, Mather KA, McMahon KL, McRae AF, Medland SE, Meinert S, Moreau CA, Morris DW, Mowry BJ, Mühleisen TW, Nenadić I, Nöthen MM, Nyberg L, Ophoff RA, Owen MJ, Pantelis C, Paolini M, Paus T, Pausova Z, Persson K, Quidé Y, Marques TR, Sachdev PS, Sando SB, Schall U, Scott RJ, Selbæk G, Shumskaya E, Silva AI, Sisodiya SM, Stein F, Stein DJ, Straube B, Streit F, Strike LT, Teumer A, Teutenberg L, et alBoen R, Kaufmann T, van der Meer D, Frei O, Agartz I, Ames D, Andersson M, Armstrong NJ, Artiges E, Atkins JR, Bauer J, Benedetti F, Boomsma DI, Brodaty H, Brosch K, Buckner RL, Cairns MJ, Calhoun V, Caspers S, Cichon S, Corvin AP, Crespo-Facorro B, Dannlowski U, David FS, de Geus EJC, de Zubicaray GI, Desrivières S, Doherty JL, Donohoe G, Ehrlich S, Eising E, Espeseth T, Fisher SE, Forstner AJ, Fortaner-Uyà L, Frouin V, Fukunaga M, Ge T, Glahn DC, Goltermann J, Grabe HJ, Green MJ, Groenewold NA, Grotegerd D, Grøntvedt GR, Hahn T, Hashimoto R, Hehir-Kwa JY, Henskens FA, Holmes AJ, Håberg AK, Haavik J, Jacquemont S, Jansen A, Jockwitz C, Jönsson EG, Kikuchi M, Kircher T, Kumar K, Le Hellard S, Leu C, Linden DE, Liu J, Loughnan R, Mather KA, McMahon KL, McRae AF, Medland SE, Meinert S, Moreau CA, Morris DW, Mowry BJ, Mühleisen TW, Nenadić I, Nöthen MM, Nyberg L, Ophoff RA, Owen MJ, Pantelis C, Paolini M, Paus T, Pausova Z, Persson K, Quidé Y, Marques TR, Sachdev PS, Sando SB, Schall U, Scott RJ, Selbæk G, Shumskaya E, Silva AI, Sisodiya SM, Stein F, Stein DJ, Straube B, Streit F, Strike LT, Teumer A, Teutenberg L, Thalamuthu A, Tooney PA, Tordesillas-Gutierrez D, Trollor JN, van 't Ent D, van den Bree MBM, van Haren NEM, Vázquez-Bourgon J, Völzke H, Wen W, Wittfeld K, Ching CRK, Westlye LT, Thompson PM, Bearden CE, Selmer KK, Alnæs D, Andreassen OA, Sønderby IE. Beyond the Global Brain Differences: Intraindividual Variability Differences in 1q21.1 Distal and 15q11.2 BP1-BP2 Deletion Carriers. Biol Psychiatry 2024; 95:147-160. [PMID: 37661008 PMCID: PMC7615370 DOI: 10.1016/j.biopsych.2023.08.018] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/25/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Carriers of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants exhibit regional and global brain differences compared with noncarriers. However, interpreting regional differences is challenging if a global difference drives the regional brain differences. Intraindividual variability measures can be used to test for regional differences beyond global differences in brain structure. METHODS Magnetic resonance imaging data were used to obtain regional brain values for 1q21.1 distal deletion (n = 30) and duplication (n = 27) and 15q11.2 BP1-BP2 deletion (n = 170) and duplication (n = 243) carriers and matched noncarriers (n = 2350). Regional intra-deviation scores, i.e., the standardized difference between an individual's regional difference and global difference, were used to test for regional differences that diverge from the global difference. RESULTS For the 1q21.1 distal deletion carriers, cortical surface area for regions in the medial visual cortex, posterior cingulate, and temporal pole differed less and regions in the prefrontal and superior temporal cortex differed more than the global difference in cortical surface area. For the 15q11.2 BP1-BP2 deletion carriers, cortical thickness in regions in the medial visual cortex, auditory cortex, and temporal pole differed less and the prefrontal and somatosensory cortex differed more than the global difference in cortical thickness. CONCLUSIONS We find evidence for regional effects beyond differences in global brain measures in 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants. The results provide new insight into brain profiling of the 1q21.1 distal and 15q11.2 BP1-BP2 copy number variants, with the potential to increase understanding of the mechanisms involved in altered neurodevelopment.
Collapse
Affiliation(s)
- Rune Boen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, Germany
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Oleksandr Frei
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| | - David Ames
- University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Kew, Victoria, Australia; National Ageing Research Institute, Parkville, Victoria, Australia
| | - Micael Andersson
- Department of Integrative Medical Biology and Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Nicola J Armstrong
- Department of Mathematics and Statistics, Curtin University, Perth, Western Australia, Australia
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale U1299, École Normale Supérieure Paris-Saclay, Université Paris Saclay, Gif-sur-Yvette, France; Établissement public de santé (EPS) Barthélemy Durand, Etampes, France
| | - Joshua R Atkins
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Francesco Benedetti
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Randy L Buckner
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University/Georgia Institute of Technology/Emory University, Atlanta, Georgia
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; University Hospital Basel, Institute of Medical Genetics and Pathology, Basel, Switzerland
| | - Aiden P Corvin
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Centro superior de investigaciones científicas (CSIC), Sevilla, Spain; Centro de Investigación Biomédica en Red Salud Mental, Sevilla, Spain; Department of Psychiatry, University of Sevilla, Sevilla, Spain
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Friederike S David
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Greig I de Zubicaray
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sylvane Desrivières
- Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Joanne L Doherty
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Gary Donohoe
- School of Psychology and Center for Neuroimaging, Cognition and Genomics, University of Galway, Galway, Ireland
| | - Stefan Ehrlich
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Else Eising
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Thomas Espeseth
- Department of Psychology, University of Oslo, Oslo, Norway; Department of Psychology, Oslo New University College, Oslo, Norway
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Andreas J Forstner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Lidia Fortaner-Uyà
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Vincent Frouin
- Neurospin, Commissariat a l'Energie Atomique (CEA), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Masaki Fukunaga
- Section of Brain Function Information, National Institute for Physiological Sciences, Okazaki, Japan
| | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Glahn
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Melissa J Green
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Gøril Rolfseng Grøntvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Jayne Y Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Frans A Henskens
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia; Priority Research Centre for Health Behaviour, University of Newcastle, Newcastle, New South Wales, Australia
| | - Avram J Holmes
- Department of Psychiatry, Rutgers University, New Brunswick, New Jersey; Brain Health Institute, Rutgers University, Piscataway, New Jersey
| | - Asta K Håberg
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Radiology and Nuclear Medicine, St. Olav's Hospital, Trondheim, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway; Division of Psychiatry, Haukeland University Hospital, Bergen, Norway
| | - Sebastien Jacquemont
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada; Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany; Core-Facility Brainimaging and Department of Psychiatry, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Masataka Kikuchi
- Department of Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Kuldeep Kumar
- Sainte Justine Hospital Research Center, Montreal, Quebec, Canada
| | - Stephanie Le Hellard
- Norwegian Centre for Mental Disorders Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Costin Leu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, Texas
| | - David E Linden
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom; School for Mental Health and Neuroscience, Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Jingyu Liu
- Department of Computer Science and Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, Georgia
| | - Robert Loughnan
- Department of Cognitive Science and Population Neuroscience and Genetics Lab, University of California San Diego, La Jolla, California
| | - Karen A Mather
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarah E Medland
- Psychiatric Genetics, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia; University of Queensland, Brisbane, Queensland, Australia; Queensland University of Technology, Brisbane, Queensland, Australia
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Clara A Moreau
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | - Bryan J Mowry
- Queensland Brain Institute and Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine and University Hospital Bonn, Bonn, Germany
| | - Lars Nyberg
- Departments of Radiation Sciences, Integrative Medical Biology and Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Roel A Ophoff
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, the Netherlands; Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California Los Angeles, Los Angeles, California
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Carlton South, Victoria, Australia; Western Centre for Health Research and Education, Sunshine Hospital, St Albans, Victoria, Australia
| | - Marco Paolini
- Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy; Division of Neuroscience, Psychiatry and Clinical Psychobiology Unit, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, Italy
| | - Tomas Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Sainte Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada; Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Zdenka Pausova
- The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karin Persson
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Yann Quidé
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Tiago Reis Marques
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia; Neuropsychiatric Institute, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway
| | - Ulrich Schall
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia; Division of Molecular Medicine, New South Wales Health Pathology, Newcastle, New South Wales, Australia
| | - Geir Selbæk
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway; Norwegian National Centre for Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elena Shumskaya
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ana I Silva
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, United Kingdom
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Chalfont Centre for Epilepsy, Chalfont St Peter, United Kingdom
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Dan J Stein
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lachlan T Strike
- Psychiatric Genetics, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - Alexander Teumer
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany; Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; German Centre for Cardiovascular Research, Greifswald, Germany
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, College of Medicine, Health and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Diana Tordesillas-Gutierrez
- Instituto de Física de Cantabria UC-CSIC, Santander, Spain; Department of Radiology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain
| | - Julian N Trollor
- Department of Developmental Disability Neuropsychiatry and Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Dennis van 't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marianne B M van den Bree
- Institute of Psychological Medicine and Clinical Neurosciences and Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, United Kingdom; Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Neeltje E M van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Rotterdam, the Netherlands; Department of Psychiatry, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Javier Vázquez-Bourgon
- Centro de Investigación Biomédica en Red Salud Mental, Sevilla, Spain; Department of Psychiatry, University Hospital Maqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla, Santander, Spain; Departamento de Medicina y Psiquiatría, Universidad de Cantabria, Santander, Spain
| | - Henry Völzke
- German Centre for Cardiovascular Research, Greifswald, Germany; Greifswald University Hospital, Greifswald, Germany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Institute for Neuroimaging and Informatics, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California Los Angeles, Los Angeles, California
| | - Kaja K Selmer
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital and the University of Oslo, Oslo, Norway
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Kristiania University College, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ida E Sønderby
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
33
|
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J Clin Med 2024; 13:279. [PMID: 38202286 PMCID: PMC10779511 DOI: 10.3390/jcm13010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last decade, the comorbidity between Autism Spectrum Disorder (ASD) and epilepsy has been widely demonstrated, and many hypotheses regarding the common neurobiological bases of these disorders have been put forward. A variable, but significant, prevalence of abnormalities on electroencephalogram (EEG) has been documented in non-epileptic children with ASD; therefore, several scientific studies have recently tried to demonstrate the role of these abnormalities as a possible biomarker of altered neural connectivity in ASD individuals. This narrative review intends to summarize the main findings of the recent scientific literature regarding abnormalities detected with standard EEG in children/adolescents with idiopathic ASD. Research using three different databases (PubMed, Scopus and Google Scholar) was conducted, resulting in the selection of 10 original articles. Despite an important lack of studies on preschoolers and a deep heterogeneity in results, some authors speculated on a possible association between EEG abnormalities and ASD characteristics, in particular, the severity of symptoms. Although this correlation needs to be more strongly elucidated, these findings may encourage future studies aimed at demonstrating the role of electrical brain abnormalities as an early biomarker of neural circuit alterations in ASD, highlighting the potential diagnostic, prognostic and therapeutic value of EEG in this field.
Collapse
Affiliation(s)
- Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
34
|
Kaul N, Pradhan SJ, Boin NG, Mason MM, Rosales J, Starke EL, Wilkinson EC, Chapman EG, Barbee SA. FMRP cooperates with miRISC components to repress translation and regulate neurite morphogenesis in Drosophila. RNA Biol 2024; 21:11-22. [PMID: 39190491 PMCID: PMC11352701 DOI: 10.1080/15476286.2024.2392304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fragile X Syndrome (FXS) is the most common inherited form of intellectual disability and is caused by mutations in the gene encoding the Fragile X messenger ribonucleoprotein (FMRP). FMRP is an evolutionarily conserved and neuronally enriched RNA-binding protein (RBP) with functions in RNA editing, RNA transport, and protein translation. Specific target RNAs play critical roles in neurodevelopment, including the regulation of neurite morphogenesis, synaptic plasticity, and cognitive function. The different biological functions of FMRP are modulated by its cooperative interaction with distinct sets of neuronal RNA and protein-binding partners. Here, we focus on interactions between FMRP and components of the microRNA (miRNA) pathway. Using the Drosophila S2 cell model system, we show that the Drosophila ortholog of FMRP (dFMRP) can repress translation when directly tethered to a reporter mRNA. This repression requires the activity of AGO1, GW182, and MOV10/Armitage, conserved proteins associated with the miRNA-containing RNA-induced silencing complex (miRISC). Additionally, we find that untagged dFMRP can interact with a short stem-loop sequence in the translational reporter, a prerequisite for repression by exogenous miR-958. Finally, we demonstrate that dFmr1 interacts genetically with GW182 to control neurite morphogenesis. These data suggest that dFMRP may recruit the miRISC to nearby miRNA binding sites and repress translation via its cooperative interactions with evolutionarily conserved components of the miRNA pathway.
Collapse
Affiliation(s)
- Navneeta Kaul
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Sarala J. Pradhan
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Nathan G. Boin
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Madeleine M. Mason
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Julian Rosales
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Emily L. Starke
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Emily C. Wilkinson
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Erich G. Chapman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| | - Scott A. Barbee
- Department of Biological Sciences, University of Denver, Denver, CO, USA
- Molecular and Cellular Biophysics Program, University of Denver, Denver, CO, USA
| |
Collapse
|
35
|
Pasquetti D, Gazzellone A, Rossi S, Orteschi D, L’Erario FF, Concolino P, Minucci A, Dionisi-Vici C, Genuardi M, Silvestri G, Chiurazzi P. Triple Genetic Diagnosis in a Patient with Late-Onset Leukodystrophy and Mild Intellectual Disability. Int J Mol Sci 2023; 25:495. [PMID: 38203665 PMCID: PMC10778870 DOI: 10.3390/ijms25010495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
We describe the complex case of a 44-year-old man with polycystic kidney disease, mild cognitive impairment, and tremors in the upper limbs. Brain MRI showed lesions compatible with leukodystrophy. The diagnostic process, which included clinical exome sequencing (CES) and chromosomal microarray analysis (CMA), revealed a triple diagnosis: autosomal dominant polycystic kidney disease (ADPKD) due to a pathogenic variant, c.2152C>T-p.(Gln718Ter), in the PKD1 gene; late-onset phenylketonuria due to the presence of two missense variants, c.842C>T-p.(Pro281Leu) and c.143T>C-p.(Leu48Ser) in the PAH gene; and a 915 Kb duplication on chromosome 15. Few patients with multiple concurrent genetic diagnoses are reported in the literature; in this ADPKD patient, genome-wide analysis allowed for the diagnosis of adult-onset phenylketonuria (which would have otherwise gone unnoticed) and a 15q11.2 duplication responsible for cognitive and behavioral impairment with incomplete penetrance. This case underlines the importance of clinical genetics for interpreting complex results obtained by genome-wide techniques, and for diagnosing concurrent late-onset monogenic conditions.
Collapse
Affiliation(s)
- Domizia Pasquetti
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Annalisa Gazzellone
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Salvatore Rossi
- Department of Neurosciences, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Daniela Orteschi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Federica Francesca L’Erario
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Paola Concolino
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | - Maurizio Genuardi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Gabriella Silvestri
- Department of Neurosciences, Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Pietro Chiurazzi
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
36
|
Tian Y, Shi H, Zhang D, Wang C, Zhao F, Li L, Xu Z, Jiang J, Li J. Nebulized inhalation of LPAE-HDAC10 inhibits acetylation-mediated ROS/NF-κB pathway for silicosis treatment. J Control Release 2023; 364:618-631. [PMID: 37848136 DOI: 10.1016/j.jconrel.2023.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
Silicosis is a serious silica-induced respiratory disease for which there is currently no effective treatment. Irreversible pulmonary fibrosis caused by persistent inflammation is the main feature of silicosis. As an underlying mechanism, acetylation regulated by histone deacetylases (HDACs) are believed to be closely associated with persistent inflammation and pulmonary fibrosis. However, details of the mechanisms associated with the regulation of acetylated modification in silicosis have yet to be sufficiently established. Furthermore, studies on the efficient delivery of DNA to lung tissues by nebulized inhalation for the treatment of silicosis are limited. In this study, we established a mouse model of silicosis successfully. Differentially expressed genes (DEGs) between the lung tissues of silicosis and control mice were identified based on transcriptomic analysis, and HDAC10 was the only DEG among the HDACs. Acetylomic and combined acetylomic/proteomic analysis were performed and found that the differentially expressed acetylated proteins have diverse biological functions, among which 12 proteins were identified as the main targets of HDAC10. Subsequently, HDAC10 expression levels were confirmed to increase following nebulized inhalation of linear poly(β-amino ester) (LPAE)-HDAC10 nanocomplexes. The levels of oxidative stress, the phosphorylation of IKKβ, IκBα and p65, as well as inflammation were inhibited by HDAC10. Pulmonary fibrosis, and lung function in silicosis showed significant improvements in response to the upregulation of HDAC10. Similar results were obtained for the silica-treated macrophages in vitro. In conclusion, HDAC10 was identified as the main mediator of acetylation in silicosis. Nebulized inhalation of LPAE-HDAC10 nanocomplexes was confirmed to be a promising treatment option for silicosis. The ROS/NF-κB pathway was identified as an essential signaling pathway through which HDAC10 attenuates oxidative stress, inflammation, and pulmonary fibrosis in silicosis. This study provides a new theoretical basis for the treatment of silicosis.
Collapse
Affiliation(s)
- Yunze Tian
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Hongyang Shi
- Department of Respiratory Medicine, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Danjie Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Chenfei Wang
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Feng Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Zhengshui Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi Province 710004, China.
| |
Collapse
|
37
|
Madugalle SU, Liau WS, Zhao Q, Li X, Gong H, Marshall PR, Periyakaruppiah A, Zajaczkowski EL, Leighton LJ, Ren H, Musgrove MRB, Davies JWA, Kim G, Rauch S, He C, Dickinson BC, Fulopova B, Fletcher LN, Williams SR, Spitale RC, Bredy TW. Synapse-Enriched m 6A-Modified Malat1 Interacts with the Novel m 6A Reader, DPYSL2, and Is Required for Fear-Extinction Memory. J Neurosci 2023; 43:7084-7100. [PMID: 37669863 PMCID: PMC10601377 DOI: 10.1523/jneurosci.0943-23.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.
Collapse
Affiliation(s)
| | - Wei-Siang Liau
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Qiongyi Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China 430071
- Medical Research Institute, Wuhan University, Wuhan, China 430014
| | - Hao Gong
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Paul R Marshall
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Ambika Periyakaruppiah
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Esmi L Zajaczkowski
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Laura J Leighton
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Haobin Ren
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Mason R B Musgrove
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Joshua W A Davies
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Gwangmin Kim
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Simone Rauch
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Bryan C Dickinson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60607
| | - Barbora Fulopova
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Lee N Fletcher
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Stephen R Williams
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697
| | - Timothy W Bredy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 4072
| |
Collapse
|
38
|
Sempert K, Shohayeb B, Lanoue V, O'Brien EA, Flores C, Cooper HM. RGMa and Neogenin control dendritic spine morphogenesis via WAVE Regulatory Complex-mediated actin remodeling. Front Mol Neurosci 2023; 16:1253801. [PMID: 37928069 PMCID: PMC10620725 DOI: 10.3389/fnmol.2023.1253801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Structural plasticity, the ability of dendritic spines to change their volume in response to synaptic stimulation, is an essential determinant of synaptic strength and long-term potentiation (LTP), the proposed cellular substrate for learning and memory. Branched actin polymerization is a major force driving spine enlargement and sustains structural plasticity. The WAVE Regulatory Complex (WRC), a pivotal branched actin regulator, controls spine morphology and therefore structural plasticity. However, the molecular mechanisms that govern WRC activation during spine enlargement are largely unknown. Here we identify a critical role for Neogenin and its ligand RGMa (Repulsive Guidance Molecule a) in promoting spine enlargement through the activation of WRC-mediated branched actin remodeling. We demonstrate that Neogenin regulates WRC activity by binding to the highly conserved Cyfip/Abi binding pocket within the WRC. We find that after Neogenin or RGMa depletion, the proportions of filopodia and immature thin spines are dramatically increased, and the number of mature mushroom spines concomitantly decreased. Wildtype Neogenin, but not Neogenin bearing mutations in the Cyfip/Abi binding motif, is able to rescue the spine enlargement defect. Furthermore, Neogenin depletion inhibits actin polymerization in the spine head, an effect that is not restored by the mutant. We conclude that RGMa and Neogenin are critical modulators of WRC-mediated branched actin polymerization promoting spine enlargement. This study also provides mechanistic insight into Neogenin's emerging role in LTP induction.
Collapse
Affiliation(s)
- Kai Sempert
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Belal Shohayeb
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vanessa Lanoue
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth A O'Brien
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Douglas Mental Health University Institute, Montréal, QC, Canada
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Salamon I, Park Y, Miškić T, Kopić J, Matteson P, Page NF, Roque A, McAuliffe GW, Favate J, Garcia-Forn M, Shah P, Judaš M, Millonig JH, Kostović I, De Rubeis S, Hart RP, Krsnik Ž, Rasin MR. Celf4 controls mRNA translation underlying synaptic development in the prenatal mammalian neocortex. Nat Commun 2023; 14:6025. [PMID: 37758766 PMCID: PMC10533865 DOI: 10.1038/s41467-023-41730-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities in neocortical and synaptic development are linked to neurodevelopmental disorders. However, the molecular and cellular mechanisms governing initial synapse formation in the prenatal neocortex remain poorly understood. Using polysome profiling coupled with snRNAseq on human cortical samples at various fetal phases, we identify human mRNAs, including those encoding synaptic proteins, with finely controlled translation in distinct cell populations of developing frontal neocortices. Examination of murine and human neocortex reveals that the RNA binding protein and translational regulator, CELF4, is expressed in compartments enriched in initial synaptogenesis: the marginal zone and the subplate. We also find that Celf4/CELF4-target mRNAs are encoded by risk genes for adverse neurodevelopmental outcomes translating into synaptic proteins. Surprisingly, deleting Celf4 in the forebrain disrupts the balance of subplate synapses in a sex-specific fashion. This highlights the significance of RNA binding proteins and mRNA translation in evolutionarily advanced synaptic development, potentially contributing to sex differences.
Collapse
Affiliation(s)
- Iva Salamon
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
- Rutgers University, School of Graduate Studies, New Brunswick, NJ, 08854, USA
| | - Yongkyu Park
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Terezija Miškić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Janja Kopić
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Paul Matteson
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nicholas F Page
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Alfonso Roque
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Geoffrey W McAuliffe
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - John Favate
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Premal Shah
- Department of Genetics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Miloš Judaš
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - James H Millonig
- Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ivica Kostović
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Željka Krsnik
- Croatian Institute for Brain Research, Center of Research Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb, School of Medicine, Zagreb, 10000, Croatia.
| | - Mladen-Roko Rasin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| |
Collapse
|
40
|
Gundermann DG, Lymer S, Blau J. A rapid and dynamic role for FMRP in the plasticity of adult neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555985. [PMID: 37693612 PMCID: PMC10491314 DOI: 10.1101/2023.09.01.555985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Fragile X syndrome (FXS) is a neuro-developmental disorder caused by silencing Fmr1, which encodes the RNA-binding protein FMRP. Although Fmr1 is expressed in adult neurons, it has been challenging to separate acute from chronic effects of loss of Fmr1 in models of FXS. We have used the precision of Drosophila genetics to test if Fmr1 acutely affects adult neuronal plasticity in vivo, focusing on the s-LNv circadian pacemaker neurons that show 24 hour rhythms in structural plasticity. We found that over-expressing Fmr1 for only 4 hours blocks the activity-dependent expansion of s-LNv projections without altering the circadian clock or activity-regulated gene expression. Conversely, acutely reducing Fmr1 expression prevented s-LNv projections from retracting. One FMRP target that we identified in s-LNvs is sif, which encodes a Rac1 GEF. Our data indicate that FMRP normally reduces sif mRNA translation at dusk to reduce Rac1 activity. Overall, our data reveal a previously unappreciated rapid and direct role for FMRP in acutely regulating neuronal plasticity in adult neurons, and underscore the importance of RNA-binding proteins in this process.
Collapse
Affiliation(s)
- Daniel G Gundermann
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Seana Lymer
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Current address: Proteintech Genomics, 11588 Sorrento Valley Rd, San Diego, CA 92121
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
41
|
Arihisa W, Kondo T, Yamaguchi K, Matsumoto J, Nakanishi H, Kunii Y, Akatsu H, Hino M, Hashizume Y, Sato S, Sato S, Niwa S, Yabe H, Sasaki T, Shigenobu S, Setou M. Lipid-correlated alterations in the transcriptome are enriched in several specific pathways in the postmortem prefrontal cortex of Japanese patients with schizophrenia. Neuropsychopharmacol Rep 2023; 43:403-413. [PMID: 37498306 PMCID: PMC10496066 DOI: 10.1002/npr2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
AIMS Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.
Collapse
Affiliation(s)
- Wataru Arihisa
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
| | - Takeshi Kondo
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Department of Biochemistry, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | | | - Junya Matsumoto
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | | | - Yasuto Kunii
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura HospitalToyohashiJapan
- Department of Community‐based Medical Education/Department of Community‐based MedicineNagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | | | - Shumpei Sato
- RIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Shinji Sato
- Business Development, Otsuka Pharmaceutical Co., Ltd. Shinagawa Grand Central TowerTokyoJapan
| | - Shin‐Ichi Niwa
- Department of Psychiatry, Aizu Medical CenterFukushima Medical UniversityFukushimaJapan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Takehiko Sasaki
- Department of Biochemical PathophysiologyMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Preeminent Medical Photonics Education & Research CenterHamamatsu University School of MedicineShizuokaJapan
- Department of AnatomyThe University of Hong KongHong KongChina
| |
Collapse
|
42
|
Lin Z, Wu Z, Yuan Y, Zhong W, Luo W. m7G-related genes predict prognosis and affect the immune microenvironment and drug sensitivity in osteosarcoma. Front Pharmacol 2023; 14:1158775. [PMID: 37654606 PMCID: PMC10466804 DOI: 10.3389/fphar.2023.1158775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Background: Osteosarcoma (OS), a primary malignant bone tumor, confronts therapeutic challenges rooted in multidrug resistance. Comprehensive understanding of disease occurrence and progression is imperative for advancing treatment strategies. m7G modification, an emerging post-transcriptional modification implicated in various diseases, may provide new insights to explore OS pathogenesis and progression. Methods: The m7G-related molecular landscape in OS was probed using diverse bioinformatics analyses, encompassing LASSO Cox regression, immune infiltration assessment, and drug sensitivity analysis. Furthermore, the therapeutic potential of AZD2014 for OS was investigated through cell apoptosis and cycle assays. Eventually, multivariate Cox analysis and experimental validations, were conducted to investigate the independent prognostic m7G-related genes. Results: A comprehensive m7G-related risk model incorporating eight signatures was established, with corresponding risk scores correlated with immune infiltration and drug sensitivity. Drug sensitivity analysis spotlighted AZD2014 as a potential therapeutic candidate for OS. Subsequent experiments corroborated AZD2014's capability to induce G1-phase cell cycle arrest and apoptosis in OS cells. Ultimately, multivariate Cox regression analysis unveiled the independent prognostic importance of CYFIP1 and EIF4A1, differential expressions of which were validated at histological and cytological levels. Conclusion: This study furnishes a profound understanding of the contribution of m7G-related genes to the pathogenesis of OS. The discerned therapeutic potential of AZD2014, in conjunction with the identification of CYFIP1 and EIF4A1 as independent risk factors, opens novel vistas for the treatment of OS.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuhao Yuan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wei Zhong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
43
|
Dong R, Li X, Flores AD, Lai KO. The translation initiating factor eIF4E and arginine methylation underlie G3BP1 function in dendritic spine development of neurons. J Biol Chem 2023; 299:105029. [PMID: 37442236 PMCID: PMC10432808 DOI: 10.1016/j.jbc.2023.105029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Communication between neurons relies on neurotransmission that takes place at synapses. Excitatory synapses are located primarily on dendritic spines that possess diverse morphologies, ranging from elongated filopodia to mushroom-shaped spines. Failure in the proper development of dendritic spines has detrimental consequences on neuronal connectivity, but the molecular mechanism that controls the balance of filopodia and mushroom spines is not well understood. G3BP1 is the key RNA-binding protein that assembles the stress granules in non-neuronal cells to adjust protein synthesis upon exogenous stress. Emerging evidence suggests that the biological significance of G3BP1 extends beyond its role in stress response, especially in the nervous system. However, the mechanism underlying the regulation and function of G3BP1 in neurons remains elusive. Here we found that G3BP1 suppresses protein synthesis and binds to the translation initiation factor eIF4E via its NTF2-like domain. Notably, the over-production of filopodia caused by G3BP1 depletion can be alleviated by blocking the formation of the translation initiation complex. We further found that the interaction of G3BP1 with eIF4E is regulated by arginine methylation. Knockdown of the protein arginine methyltransferase PRMT8 leads to elevated protein synthesis and filopodia production, which is reversed by the expression of methylation-mimetic G3BP1. Our study, therefore, reveals arginine methylation as a key regulatory mechanism of G3BP1 during dendritic spine morphogenesis and identifies eIF4E as a novel downstream target of G3BP1 in neuronal development independent of stress response.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Xuejun Li
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China
| | - Angelo D Flores
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kwok-On Lai
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; Hong Kong Institute for Advanced Study, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
44
|
Xia QQ, Walker AK, Song C, Wang J, Singh A, Mobley JA, Xuan ZX, Singer JD, Powell CM. Effects of heterozygous deletion of autism-related gene Cullin-3 in mice. PLoS One 2023; 18:e0283299. [PMID: 37428799 PMCID: PMC10332626 DOI: 10.1371/journal.pone.0283299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/05/2023] [Indexed: 07/12/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a developmental disorder in which children display repetitive behavior, restricted range of interests, and atypical social interaction and communication. CUL3, coding for a Cullin family scaffold protein mediating assembly of ubiquitin ligase complexes through BTB domain substrate-recruiting adaptors, has been identified as a high-risk gene for autism. Although complete knockout of Cul3 results in embryonic lethality, Cul3 heterozygous mice have reduced CUL3 protein, demonstrate comparable body weight, and display minimal behavioral differences including decreased spatial object recognition memory. In measures of reciprocal social interaction, Cul3 heterozygous mice behaved similarly to their wild-type littermates. In area CA1 of hippocampus, reduction of Cul3 significantly increased mEPSC frequency but not amplitude nor baseline evoked synaptic transmission or paired-pulse ratio. Sholl and spine analysis data suggest there is a small yet significant difference in CA1 pyramidal neuron dendritic branching and stubby spine density. Unbiased proteomic analysis of Cul3 heterozygous brain tissue revealed dysregulation of various cytoskeletal organization proteins, among others. Overall, our results suggest that Cul3 heterozygous deletion impairs spatial object recognition memory, alters cytoskeletal organization proteins, but does not cause major hippocampal neuronal morphology, functional, or behavioral abnormalities in adult global Cul3 heterozygous mice.
Collapse
Affiliation(s)
- Qiang-qiang Xia
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Angela K. Walker
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Chenghui Song
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jing Wang
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Anju Singh
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - James A. Mobley
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham Mass Spectrometry & Proteomics Shared Facility, Birmingham, AL, United States of America
| | - Zhong X. Xuan
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| | - Jeffrey D. Singer
- Department of Biology, Portland State University, Portland, OR, United States of America
| | - Craig M. Powell
- Department of Neurobiology, University of Alabama at Birmingham Marnix E. Heersink School of Medicine, & Civitan International Research Center, Birmingham, AL, United States of America
| |
Collapse
|
45
|
Han KA, Ko J. Orchestration of synaptic functions by WAVE regulatory complex-mediated actin reorganization. Exp Mol Med 2023; 55:1065-1075. [PMID: 37258575 PMCID: PMC10318009 DOI: 10.1038/s12276-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/02/2023] Open
Abstract
The WAVE regulatory complex (WRC), composed of five components-Cyfip1/Sra1, WAVE/Scar, Abi, Nap1/Nckap1, and Brk1/HSPC300-is essential for proper actin cytoskeletal dynamics and remodeling in eukaryotic cells, likely by matching various patterned signals to Arp2/3-mediated actin nucleation. Accumulating evidence from recent studies has revealed diverse functions of the WRC in neurons, demonstrating its crucial role in dictating the assembly of molecular complexes for the patterning of various trans-synaptic signals. In this review, we discuss recent exciting findings on the physiological role of the WRC in regulating synaptic properties and highlight the involvement of WRC dysfunction in various brain disorders.
Collapse
Affiliation(s)
- Kyung Ah Han
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu, 42988, Korea.
- Center for Synapse Diversity and Specificity, DGIST, Daegu, 42988, Korea.
| |
Collapse
|
46
|
Peters C, He S, Fermani F, Lim H, Ding W, Mayer C, Klein R. Transcriptomics reveals amygdala neuron regulation by fasting and ghrelin thereby promoting feeding. SCIENCE ADVANCES 2023; 9:eadf6521. [PMID: 37224253 DOI: 10.1126/sciadv.adf6521] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The central amygdala (CeA) consists of numerous genetically defined inhibitory neurons that control defensive and appetitive behaviors including feeding. Transcriptomic signatures of cell types and their links to function remain poorly understood. Using single-nucleus RNA sequencing, we describe nine CeA cell clusters, of which four are mostly associated with appetitive and two with aversive behaviors. To analyze the activation mechanism of appetitive CeA neurons, we characterized serotonin receptor 2a (Htr2a)-expressing neurons (CeAHtr2a) that comprise three appetitive clusters and were previously shown to promote feeding. In vivo calcium imaging revealed that CeAHtr2a neurons are activated by fasting, the hormone ghrelin, and the presence of food. Moreover, these neurons are required for the orexigenic effects of ghrelin. Appetitive CeA neurons responsive to fasting and ghrelin project to the parabrachial nucleus (PBN) causing inhibition of target PBN neurons. These results illustrate how the transcriptomic diversification of CeA neurons relates to fasting and hormone-regulated feeding behavior.
Collapse
Affiliation(s)
- Christian Peters
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Songwei He
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Federica Fermani
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Hansol Lim
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Wenyu Ding
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Christian Mayer
- Laboratory of Neurogenomics, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Rüdiger Klein
- Department of Molecules-Signaling-Development, Max-Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
47
|
Patil S, Chalkiadaki K, Mergiya TF, Krimbacher K, Amorim IS, Akerkar S, Gkogkas CG, Bramham CR. eIF4E phosphorylation recruits β-catenin to mRNA cap and promotes Wnt pathway translation in dentate gyrus LTP maintenance. iScience 2023; 26:106649. [PMID: 37250335 PMCID: PMC10214474 DOI: 10.1016/j.isci.2023.106649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 04/06/2023] [Indexed: 05/31/2023] Open
Abstract
The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, β-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.
Collapse
Affiliation(s)
- Sudarshan Patil
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Kleanthi Chalkiadaki
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Tadiwos F. Mergiya
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Konstanze Krimbacher
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Inês S. Amorim
- Center for Discovery Brain Sciences, University of Edinburgh, EH8 9XD Edinburgh, UK
| | - Shreeram Akerkar
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
| | - Christos G. Gkogkas
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Clive R. Bramham
- Department of Biomedicine Jonas Lies vei 91, University of Bergen, 5009 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| |
Collapse
|
48
|
Carbonell AU, Freire-Cobo C, Deyneko IV, Dobariya S, Erdjument-Bromage H, Clipperton-Allen AE, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across five mouse models for autism reveals converging molecular similarities including deficits in oxidative phosphorylation and Rho GTPase signaling. Front Aging Neurosci 2023; 15:1152562. [PMID: 37255534 PMCID: PMC10225639 DOI: 10.3389/fnagi.2023.1152562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023] Open
Abstract
Specific and effective treatments for autism spectrum disorder (ASD) are lacking due to a poor understanding of disease mechanisms. Here we test the idea that similarities between diverse ASD mouse models are caused by deficits in common molecular pathways at neuronal synapses. To do this, we leverage the availability of multiple genetic models of ASD that exhibit shared synaptic and behavioral deficits and use quantitative mass spectrometry with isobaric tandem mass tagging (TMT) to compare their hippocampal synaptic proteomes. Comparative analyses of mouse models for Fragile X syndrome (Fmr1 knockout), cortical dysplasia focal epilepsy syndrome (Cntnap2 knockout), PTEN hamartoma tumor syndrome (Pten haploinsufficiency), ANKS1B syndrome (Anks1b haploinsufficiency), and idiopathic autism (BTBR+) revealed several common altered cellular and molecular pathways at the synapse, including changes in oxidative phosphorylation, and Rho family small GTPase signaling. Functional validation of one of these aberrant pathways, Rac1 signaling, confirms that the ANKS1B model displays altered Rac1 activity counter to that observed in other models, as predicted by the bioinformatic analyses. Overall similarity analyses reveal clusters of synaptic profiles, which may form the basis for molecular subtypes that explain genetic heterogeneity in ASD despite a common clinical diagnosis. Our results suggest that ASD-linked susceptibility genes ultimately converge on common signaling pathways regulating synaptic function and propose that these points of convergence are key to understanding the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Abigail U. Carbonell
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen Freire-Cobo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ilana V. Deyneko
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Saunil Dobariya
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Amy E. Clipperton-Allen
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Damon T. Page
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL, United States
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Bryen A. Jordan
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
49
|
Howes OD, Onwordi EC. The synaptic hypothesis of schizophrenia version III: a master mechanism. Mol Psychiatry 2023; 28:1843-1856. [PMID: 37041418 PMCID: PMC10575788 DOI: 10.1038/s41380-023-02043-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
The synaptic hypothesis of schizophrenia has been highly influential. However, new approaches mean there has been a step-change in the evidence available, and some tenets of earlier versions are not supported by recent findings. Here, we review normal synaptic development and evidence from structural and functional imaging and post-mortem studies that this is abnormal in people at risk and with schizophrenia. We then consider the mechanism that could underlie synaptic changes and update the hypothesis. Genome-wide association studies have identified a number of schizophrenia risk variants converging on pathways regulating synaptic elimination, formation and plasticity, including complement factors and microglial-mediated synaptic pruning. Induced pluripotent stem cell studies have demonstrated that patient-derived neurons show pre- and post-synaptic deficits, synaptic signalling alterations, and elevated, complement-dependent elimination of synaptic structures compared to control-derived lines. Preclinical data show that environmental risk factors linked to schizophrenia, such as stress and immune activation, can lead to synapse loss. Longitudinal MRI studies in patients, including in the prodrome, show divergent trajectories in grey matter volume and cortical thickness compared to controls, and PET imaging shows in vivo evidence for lower synaptic density in patients with schizophrenia. Based on this evidence, we propose version III of the synaptic hypothesis. This is a multi-hit model, whereby genetic and/or environmental risk factors render synapses vulnerable to excessive glia-mediated elimination triggered by stress during later neurodevelopment. We propose the loss of synapses disrupts pyramidal neuron function in the cortex to contribute to negative and cognitive symptoms and disinhibits projections to mesostriatal regions to contribute to dopamine overactivity and psychosis. It accounts for the typical onset of schizophrenia in adolescence/early adulthood, its major risk factors, and symptoms, and identifies potential synaptic, microglial and immune targets for treatment.
Collapse
Affiliation(s)
- Oliver D Howes
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ellis Chika Onwordi
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, W12 0NN, UK.
- Psychiatric Imaging Group, Medical Research Council, London Institute of Medical Sciences, Hammersmith Hospital, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
- Centre for Psychiatry and Mental Health, Wolfson Institute of Population Health, Queen Mary University of London, London, E1 2AB, UK.
| |
Collapse
|
50
|
St Paul A, Corbett C, Peluzzo A, Kelemen S, Okune R, Haines DS, Preston K, Eguchi S, Autieri MV. FXR1 regulates vascular smooth muscle cell cytoskeleton, VSMC contractility, and blood pressure by multiple mechanisms. Cell Rep 2023; 42:112381. [PMID: 37043351 PMCID: PMC10564969 DOI: 10.1016/j.celrep.2023.112381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 04/13/2023] Open
Abstract
Appropriate cytoskeletal organization is essential for vascular smooth muscle cell (VSMC) conditions such as hypertension. This study identifies FXR1 as a key protein linking cytoskeletal dynamics with mRNA stability. RNA immunoprecipitation sequencing (RIP-seq) in human VSMCs identifies that FXR1 binds to mRNA associated with cytoskeletal dynamics, and FXR1 depletion decreases their mRNA stability. FXR1 binds and regulates actin polymerization. Mass spectrometry identifies that FXR1 interacts with cytoskeletal proteins, particularly Arp2, a protein crucial for VSMC contraction, and CYFIP1, a WASP family verprolin-homologous protein (WAVE) regulatory complex (WRC) protein that links mRNA processing with actin polymerization. Depletion of FXR1 decreases the cytoskeletal processes of adhesion, migration, contraction, and GTPase activation. Using telemetry, conditional FXR1SMC/SMC mice have decreased blood pressure and an abundance of cytoskeletal-associated transcripts. This indicates that FXR1 is a muscle-enhanced WRC modulatory protein that regulates VSMC cytoskeletal dynamics by regulation of cytoskeletal mRNA stability and actin polymerization and cytoskeletal protein-protein interactions, which can regulate blood pressure.
Collapse
Affiliation(s)
- Amanda St Paul
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Cali Corbett
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Amanda Peluzzo
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Sheri Kelemen
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Rachael Okune
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Dale S Haines
- Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kyle Preston
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Michael V Autieri
- Lemole Center for Integrated Lymphatics Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|