1
|
Narita H, Natsume J, Suzuki T, Shiohama T, Kawaguchi M, Okazaki M, Hashizume A, Naganawa S, Ito Y, Yamamoto H, Nakata T, Kidokoro H, Takahashi Y, Takahashi S, Tsujimura K. Diffuse but Non-homogeneous Brain Atrophy: Identification of Specific Brain Regions and Their Correlation with Clinical Severity in Rett Syndrome. Brain Dev 2025; 47:104348. [PMID: 40147315 DOI: 10.1016/j.braindev.2025.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Rett syndrome is a genetic neurodevelopmental disorder that predominantly affects girls. While microcephaly is a common feature, there is limited information on the detailed structural changes in the brain. This study aimed to identify regional brain volume abnormalities and explore the correlation between brain volume and clinical characteristics. METHODS We compared the regional brain volumes of 20 female children with Rett syndrome to those of 25 healthy female children. Additionally, we assessed the correlation between regional brain volume, Clinical Severity Scores, and epilepsy status. RESULTS Significantly smaller volumes were observed in all brain regions, including the cerebral cortex, cerebral white matter, subcortical gray matter, cerebellum, and brainstem. Within the cortical regions, volume reduction was prominent in the left precentral, right lateral occipital, left precuneus, left inferior parietal, and right medial orbitofrontal cortices. After correcting for intracranial volumes, volume reduction was more prominent in the cerebral cortices than in the cerebral white matter. Small volumes were consistently observed, regardless of age. Negative correlations were observed between the volumes of multiple regions and the Clinical Severity Scores. There were no correlations among regional brain volume, seizure control, or duration of epilepsy. CONCLUSION The mechanism underlying the cortical-dominant volume reduction remains unclear; however, it may be caused by altered synapse development associated with methyl-CpG-binding protein 2 gene abnormalities. Characteristic impairments in visual recognition and deterioration of motor function in Rett syndrome may be associated with significant volume reduction in specific cortical regions, such as the lateral occipital cortex, precuneus, and precentral gyrus.
Collapse
Affiliation(s)
- Hajime Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takeshi Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Okazaki
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Guo Q, Kouyama-Suzuki E, Shirai Y, Tabuchi K. Jun N-Terminal Kinase Inhibitor Suppresses CASK Deficiency-Induced Cerebellar Granular Cell Death in MICPCH Syndrome Model Mice. Cells 2025; 14:750. [PMID: 40422253 DOI: 10.3390/cells14100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/28/2025] Open
Abstract
Microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome is a severe neurodevelopmental disorder caused by a deficiency in the X-linked gene calcium/calmodulin-dependent serine protein kinase (CASK). A better understanding of the role of CASK in the pathophysiology of neurodevelopmental disorders may provide insights into novel therapeutic and diagnostic strategies for MICPCH syndrome and other neurodegenerative diseases. To investigate this, we generated CASK knockout (KO) cerebellar granule (CG) cell culture from CASK floxed (CASKflox/flox) mice by infecting lentiviruses expressing codon-improved Cre recombinase (iCre). We performed RNA-sequencing (RNA-seq) on these cells and found that CASK-KO CG cells underwent apoptosis by activating intracellular Jun N-terminal kinase (JNK) signaling and upregulating reactive oxygen species (ROS)-related gene expression. We also performed mouse gait analysis and limb clasping behavior experiments on trans-heterozygous CASK-KO and Hprt-eGFP (CASK+/- HprteGFP/+) mice. The CASK+/- HprteGFP/+ mice exhibited cerebellar ataxic phenotypes as judged by the scores of these experiments compared to the CASK wild-type control (CASK+/+ HprteGFP/+) mice. Interestingly, the administration of the JNK inhibitor, JNK-IN-8, in CASK-KO CG cell cultures increased CG cell survival by reducing ROS generation. Moreover, injection of JNK-IN-8 into the cerebellum of CASK+/- HprteGFP/+ mice suppressed CG cell death and alleviated cerebellar ataxic phenotypes in vivo. In conclusion, JNK-IN-8 suppresses the cell death and activation of the ROS pathway in CASK-KO CG cells in both in vitro and in vivo models, suggesting its potential as a therapeutic strategy for cerebellar neurodegeneration in MICPCH syndrome.
Collapse
Affiliation(s)
- Qi Guo
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of NeuroHealth Innovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
3
|
Boone PM, Buenaventura T, King JWD, Merkenschlager M. X-linked competition - implications for human development and disease. Nat Rev Genet 2025:10.1038/s41576-025-00840-3. [PMID: 40355603 DOI: 10.1038/s41576-025-00840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2025] [Indexed: 05/14/2025]
Abstract
During early mammalian female development, X chromosome inactivation leads to random transcriptional silencing of one of the two X chromosomes. This inactivation is maintained through subsequent cell divisions, leading to intra-individual diversity, whereby cells express either the maternal or paternal X chromosome. Differences in X chromosome sequence content can trigger competitive interactions between clones that may alter organismal development and skew the representation of X-linked sequence variants in a cell-type-specific manner - a recently described phenomenon termed X-linked competition in analogy to existing cell competition paradigms. Skewed representation can define the phenotypic impact of X-linked variants, for example, the manifestation of disease in female carriers of X-linked disease alleles. Here, we review what is currently known about X-linked competition, reflect on what remains to be learnt and map out the implications for X-linked human disease.
Collapse
Affiliation(s)
- Philip M Boone
- Cornelia de Lange Syndrome and Related Disorders Clinic, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Teresa Buenaventura
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - James W D King
- MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Matthias Merkenschlager
- MRC Laboratory of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
4
|
Gadek M, Shaw CK, Abdulai-Saiku S, Saloner R, Marino F, Wang D, Bonham LW, Yokoyama JS, Panning B, Benayoun BA, Casaletto KB, Ramani V, Dubal DB. Aging activates escape of the silent X chromosome in the female mouse hippocampus. SCIENCE ADVANCES 2025; 11:eads8169. [PMID: 40043106 PMCID: PMC11881916 DOI: 10.1126/sciadv.ads8169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/31/2024] [Indexed: 03/09/2025]
Abstract
Women live longer than men and exhibit less cognitive aging. The X chromosome contributes to sex differences, as females harbor an inactive X (Xi) and active X (Xa), in contrast to males with only an Xa. Thus, reactivation of silent Xi genes may contribute to sex differences. We use allele-specific, single-nucleus RNA sequencing to show that aging remodels transcription of the Xi and Xa across hippocampal cell types. Aging preferentially changed gene expression on the X's relative to autosomes. Select genes on the Xi underwent activation, with new escape across cells including in the dentate gyrus, critical to learning and memory. Expression of the Xi escapee Plp1, a myelin component, was increased in the aging hippocampus of female mice and parahippocampus of women. AAV-mediated Plp1 elevation in the dentate gyrus of aging male and female mice improved cognition. Understanding how the Xi may confer female advantage could lead to novel targets that counter brain aging and disease in both sexes.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Cayce K. Shaw
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Samira Abdulai-Saiku
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Rowan Saloner
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Luke W. Bonham
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA, USA
- Biochemistry and Molecular Medicine Department, USC Keck School of Medicine; USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- USC Stem Cell Initiative, Los Angeles, CA, USA
| | - Kaitlin B. Casaletto
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Ramani
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Gladstone Institute for Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, San Francisco, CA, USA
| | - Dena B. Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Rehabilitation Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Ansere VA, Kim SS, Marino F, Morillo K, Dubal DB, Murphy CT, Suh Y, Benayoun BA. Strategies for studying sex differences in brain aging. Trends Genet 2025:S0168-9525(25)00027-7. [PMID: 40037936 DOI: 10.1016/j.tig.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Studying sex effects and their underlying mechanisms is of major relevance to understanding brain health. Despite growing interests, experimentally studying sex differences, particularly in the context of aging, remains challenging. Since sex chromosomal content influences gonadal development, separating the effects of gonadal hormones and chromosomal factors requires specific model systems. Here, we highlight rodent and tractable models for examining sex dimorphism in brain and cognitive aging. In addition, we discuss multi-omic and bioinformatic approaches that yield biological insights from animal and human studies. This review provides a comprehensive overview of the diverse toolkit now available to advance our understanding of sex differences in brain aging.
Collapse
Affiliation(s)
- Victor A Ansere
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesca Marino
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Katherine Morillo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Dena B Dubal
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; LSI Genomics, Princeton University, Princeton, NJ, USA.
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; Molecular and Computational Biology Department, USC Dornsife College of Letters, Arts and Sciences, Los Angeles, CA 90089, USA; Biochemistry and Molecular Medicine Department, USC Keck School of Medicine, Los Angeles, CA 90089, USA.
| |
Collapse
|
6
|
Abdulai-Saiku S, Gupta S, Wang D, Marino F, Moreno AJ, Huang Y, Srivastava D, Panning B, Dubal DB. The maternal X chromosome affects cognition and brain ageing in female mice. Nature 2025; 638:152-159. [PMID: 39843739 PMCID: PMC11798838 DOI: 10.1038/s41586-024-08457-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Female mammalian cells have two X chromosomes, one of maternal origin and one of paternal origin. During development, one X chromosome randomly becomes inactivated1-4. This renders either the maternal X (Xm) chromosome or the paternal X (Xp) chromosome inactive, causing X mosaicism that varies between female individuals, with some showing considerable or complete skew of the X chromosome that remains active5-7. Parent-of-X origin can modify epigenetics through DNA methylation8,9 and possibly gene expression; thus, mosaicism could buffer dysregulated processes in ageing and disease. However, whether X skew or its mosaicism alters functions in female individuals is largely unknown. Here we tested whether skew towards an active Xm chromosome influences the brain and body-and then delineated unique features of Xm neurons and Xp neurons. An active Xm chromosome impaired cognition in female mice throughout the lifespan and led to worsened cognition with age. Cognitive deficits were accompanied by Xm-mediated acceleration of biological or epigenetic ageing of the hippocampus, a key centre for learning and memory, in female mice. Several genes were imprinted on the Xm chromosome of hippocampal neurons, suggesting silenced cognitive loci. CRISPR-mediated activation of Xm-imprinted genes improved cognition in ageing female mice. Thus, the Xm chromosome impaired cognition, accelerated brain ageing and silenced genes that contribute to cognition in ageing. Understanding how Xm impairs brain function could lead to an improved understanding of heterogeneity in cognitive health in female individuals and to X-chromosome-derived pathways that protect against cognitive deficits and brain ageing.
Collapse
Affiliation(s)
- Samira Abdulai-Saiku
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shweta Gupta
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Dan Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Francesca Marino
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Arturo J Moreno
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Panning
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Neurosciences Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Narayan A, Taylor LJ, Sperring S, Shanks M, Clouston P, MacLaren RE, Cehajic-Kapetanovic J. A novel frameshift variant in LAMP2 gene mimicking choroideremia carrier retinopathy. Ophthalmic Genet 2024; 45:668-675. [PMID: 39297444 DOI: 10.1080/13816810.2024.2404148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Danon disease is a rare, multisystemic X-linked dominant disorder caused by variants in the LAMP2 gene. It can be associated with retinal degeneration, but this is not well characterized. Here we describe a late presentation of a mild retinal phenotype, initially diagnosed as choroideremia carrier, associated with a novel variant in the LAMP2 gene. METHODS Retrospective analysis of the case included medical history, ophthalmic examination, multimodal retinal imaging, and microperimetry. Genetic testing was conducted to establish the molecular diagnosis. RESULTS A 54-year-old female presented with worsening night vision, without any family history. BCVA was 6/6 bilaterally and fundus examination showed light peripheral pigmentary changes bilaterally. FAF demonstrated a widespread speckled pattern and OCT revealed hyper-reflective spots in the outer nuclear layer. Differentials included non-genetic and genetic causes, suspected of being a manifesting choroideremia carrier. However, initial genetic testing by targeted analysis of retinal disorders did not detect a pathogenic variant. Further systems review revealed that the patient had previously been diagnosed with dilated cardiomyopathy, mini-stroke and partial deafness. Subsequent whole mitochondrial genome sequencing analysis did not detect any pathogenic variants too. Finally, whole exome sequencing with targeted analysis of a panel of hypertrophic cardiomyopathy genes identified a novel pathogenic heterozygous variant (c.925del, p.(Ser309fs)) in the LAMP2 gene, confirming the diagnosis of X-linked Danon disease. CONCLUSION Recording previous medical history and extraocular symptoms is crucial. The similarity in choroideremia carrier and Danon disease retinal phenotypes suggests a possible common pathway in these two genes where pathogenic variants lead to retinal pigment epithelium degeneration.
Collapse
Affiliation(s)
- Akshay Narayan
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Morag Shanks
- Oxford Regional Genetics Laboratory, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Penny Clouston
- Oxford Regional Genetics Laboratory, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| | - Jasmina Cehajic-Kapetanovic
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Werner JM, Hover J, Gillis J. Population variability in X-chromosome inactivation across 10 mammalian species. Nat Commun 2024; 15:8991. [PMID: 39420003 PMCID: PMC11487087 DOI: 10.1038/s41467-024-53449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
One of the two X-chromosomes in female mammals is epigenetically silenced in embryonic stem cells by X-chromosome inactivation. This creates a mosaic of cells expressing either the maternal or the paternal X allele. The X-chromosome inactivation ratio, the proportion of inactivated parental alleles, varies widely among individuals, representing the largest instance of epigenetic variability within mammalian populations. While various contributing factors to X-chromosome inactivation variability are recognized, namely stochastic and/or genetic effects, their relative contributions are poorly understood. This is due in part to limited cross-species analysis, making it difficult to distinguish between generalizable or species-specific mechanisms for X-chromosome inactivation ratio variability. To address this gap, we measure X-chromosome inactivation ratios in ten mammalian species (9531 individual samples), ranging from rodents to primates, and compare the strength of stochastic models or genetic factors for explaining X-chromosome inactivation variability. Our results demonstrate the embryonic stochasticity of X-chromosome inactivation is a general explanatory model for population X-chromosome inactivation variability in mammals, while genetic factors play a minor role.
Collapse
Affiliation(s)
- Jonathan M Werner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - John Hover
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Zou LS, Cable DM, Barrera-Lopez IA, Zhao T, Murray E, Aryee MJ, Chen F, Irizarry RA. Detection of allele-specific expression in spatial transcriptomics with spASE. Genome Biol 2024; 25:180. [PMID: 38978101 PMCID: PMC11229351 DOI: 10.1186/s13059-024-03317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Spatial transcriptomics technologies permit the study of the spatial distribution of RNA at near-single-cell resolution genome-wide. However, the feasibility of studying spatial allele-specific expression (ASE) from these data remains uncharacterized. Here, we introduce spASE, a computational framework for detecting and estimating spatial ASE. To tackle the challenges presented by cell type mixtures and a low signal to noise ratio, we implement a hierarchical model involving additive mixtures of spatial smoothing splines. We apply our method to allele-resolved Visium and Slide-seq from the mouse cerebellum and hippocampus and report new insight into the landscape of spatial and cell type-specific ASE therein.
Collapse
Affiliation(s)
- Luli S Zou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Dylan M Cable
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139, USA
| | | | - Tongtong Zhao
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Rafael A Irizarry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
10
|
Armon C, Cannon-Albright LA, Allen-Brady K, Wolfson S. Chasing shadows: Investigating X chromosome mediation in late-onset Alzheimer's disease. ADVANCED NEUROLOGY 2024; 3:3122. [PMID: 39634155 PMCID: PMC11616353 DOI: 10.36922/an.3122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Alzheimer's disease (AD) is a major cause of dementia. While maternal inheritance has been recognized for late-onset AD (LOAD), risk factors have not been identified consistently on the X chromosome. We recently developed a new method to identify an apparent risk of 70% mediated by the X chromosome in newly-presenting cognitive disorders clinic patients with amnestic mild cognitive impairment (aMCI) or early LOAD with unilateral parental lineage for AD or dementia. We sought to confirm our preliminary findings in the Utah Population Database (UPDB). We obtained previously published aggregate data on the risk of AD in the UPDB based on family history, stratified the data by the sex of the proband, and analyzed them using the new method. The X chromosome-attributable relative risk was estimated by calculating the following: Odds ratio (OR) = (women with paternal lineage: Women with maternal lineage)/(men with paternal lineage: Men with maternal lineage). The proportion of genetic risk attributable to the X chromosome is equal to (OR-1)/OR. The analysis did not reveal any risk mediated by the X chromosome, and the null result could be attributed to methodological limitations. Factors that impact the initial or early presentation (incidence) of LOAD, which are appropriate for consideration as risk factors, may not be detectable in a (prevalent) population of deceased individuals. Thus, epidemiological evidence for the contribution of the X chromosome to the development of LOAD will need to be sought prospectively in incident patient populations with newly diagnosed, biologically-confirmed aMCI or LOAD.
Collapse
Affiliation(s)
- Carmel Armon
- Department of Neurology, Loma Linda University School of Medicine, Loma Linda, California, United States of America
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| | - Lisa A. Cannon-Albright
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Kristina Allen-Brady
- Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sharon Wolfson
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, Zerifin, Israel
| |
Collapse
|
11
|
Grissom NM, Glewwe N, Chen C, Giglio E. Sex mechanisms as nonbinary influences on cognitive diversity. Horm Behav 2024; 162:105544. [PMID: 38643533 PMCID: PMC11338071 DOI: 10.1016/j.yhbeh.2024.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
Essentially all neuropsychiatric diagnoses show some degree of sex and/or gender differences in their etiology, diagnosis, or prognosis. As a result, the roles of sex-related variables in behavior and cognition are of strong interest to many, with several lines of research showing effects on executive functions and value-based decision making in particular. These findings are often framed within a sex binary, with behavior of females described as less optimal than male "defaults"-- a framing that pits males and females against each other and deemphasizes the enormous overlap in fundamental neural mechanisms across sexes. Here, we propose an alternative framework in which sex-related factors encompass just one subset of many sources of valuable diversity in cognition. First, we review literature establishing multidimensional, nonbinary impacts of factors related to sex chromosomes and endocrine mechanisms on cognition, focusing on value- based decision-making tasks. Next, we present two suggestions for nonbinary interpretations and analyses of sex-related data that can be implemented by behavioral neuroscientists without devoting laboratory resources to delving into mechanisms underlying sex differences. We recommend (1) shifting interpretations of behavior away from performance metrics and towards strategy assessments to avoid the fallacy that the performance of one sex is worse than another; and (2) asking how much variance sex explains in measures and whether any differences are mosaic rather than binary, to avoid assuming that sex differences in separate measures are inextricably correlated. Nonbinary frameworks in research on cognition will allow neuroscience to represent the full spectrum of brains and behaviors.
Collapse
Affiliation(s)
- Nicola M Grissom
- Department of Psychology, University of Minnesota, United States of America.
| | - Nic Glewwe
- Department of Psychology, University of Minnesota, United States of America
| | - Cathy Chen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, United States of America
| | - Erin Giglio
- Department of Psychology, University of Minnesota, United States of America
| |
Collapse
|
12
|
Szelenyi ER, Fisenne D, Knox JE, Harris JA, Gornet JA, Palaniswamy R, Kim Y, Venkataraju KU, Osten P. Distributed X chromosome inactivation in brain circuitry is associated with X-linked disease penetrance of behavior. Cell Rep 2024; 43:114068. [PMID: 38614085 PMCID: PMC11107803 DOI: 10.1016/j.celrep.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.
Collapse
Affiliation(s)
- Eric R Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Neurobiology and Behavior, Stony Brook, NY 11794, USA.
| | - Danielle Fisenne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Hofstra University, Hempstead, NY 11549, USA; Certerra, Inc., Farmingdale, NY 11735, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James A Gornet
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Columbia University, New York, NY 10027, USA
| | | | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
13
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
O'Connor M, Qiao H, Odamah K, Cerdeira PC, Man HY. Heterozygous Nexmif female mice demonstrate mosaic NEXMIF expression, autism-like behaviors, and abnormalities in dendritic arborization and synaptogenesis. Heliyon 2024; 10:e24703. [PMID: 38322873 PMCID: PMC10844029 DOI: 10.1016/j.heliyon.2024.e24703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic basis. ASDs are commonly characterized by impairments in language, restrictive and repetitive behaviors, and deficits in social interactions. Although ASD is a highly heterogeneous disease with many different genes implicated in its etiology, many ASD-associated genes converge on common cellular defects, such as aberrant neuronal morphology and synapse dysregulation. Our previous work revealed that, in mice, complete loss of the ASD-associated X-linked gene NEXMIF results in a reduction in dendritic complexity, a decrease in spine and synapse density, altered synaptic transmission, and ASD-like behaviors. Interestingly, human females of NEXMIF haploinsufficiency have recently been reported to demonstrate autistic features; however, the cellular and molecular basis for this haploinsufficiency-caused ASD remains unclear. Here we report that in the brains of Nexmif± female mice, NEXMIF shows a mosaic pattern in its expression in neurons. Heterozygous female mice demonstrate behavioral impairments similar to those of knockout male mice. In the mosaic mixture of neurons from Nexmif± mice, cells that lack NEXMIF have impairments in dendritic arborization and spine development. Remarkably, the NEXMIF-expressing neurons from Nexmif± mice also demonstrate similar defects in dendritic growth and spine formation. These findings establish a novel mouse model of NEXMIF haploinsufficiency and provide new insights into the pathogenesis of NEXMIF-dependent ASD.
Collapse
Affiliation(s)
- Margaret O'Connor
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Hui Qiao
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - KathrynAnn Odamah
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | | | - Heng-Ye Man
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, 610 Commonwealth Ave, Boston, MA 02215, USA
| |
Collapse
|
15
|
Richards CJ, Pulido JS. Random Allelic Expression in Inherited Retinal Disease Genes. Curr Issues Mol Biol 2023; 45:10018-10025. [PMID: 38132471 PMCID: PMC10742332 DOI: 10.3390/cimb45120625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Inherited retinal diseases (IRDs) are a significant contributor to visual loss in children and young adults, falling second only to diabetic retinopathy. Understanding the pathogenic mechanisms of IRDs remains paramount. Some autosomal genes exhibit random allelic expression (RAE), similar to X-chromosome inactivation. This study identifies RAE genes in IRDs. Genes in the Retinal Information Network were cross-referenced with the recent literature to identify expression profiles, RAE, or biallelic expression (BAE). Loss-of-function intolerance (LOFI) was determined by cross-referencing the existing literature. Molecular and biological pathways that are significantly enriched were evaluated using gene ontology. A total of 184 IRD-causing genes were evaluated. Of these, 31 (16.8%) genes exhibited RAE. LOFI was exhibited in 6/31 (19.4%) of the RAE genes and 18/153 (11.8%) of the BAE genes. Brain tissue exhibited BAE in 107/128 (83.6%) genes for both sexes. The molecular pathways significantly enriched among BAE genes were photoreceptor activity, tubulin binding, and nucleotide/ribonucleotide binding. The biologic pathways significantly enriched for RAE genes were equilibrioception, parallel actin filament bundle assembly, photoreceptor cell outer segment organization, and protein depalmitoylation. Allele-specific expression may be a mechanism underlying IRD phenotypic variability, with clonal populations of embryologic precursor cells exhibiting RAE. Brain tissue preferentially exhibited BAE, possibly due to selective pressures against RAE. Pathways critical for cellular and visual function were enriched in BAE, which may offer a survival benefit.
Collapse
|
16
|
Fry LE, MacLaren RE. Comment on Di Giosaffatte et al. A Novel Hypothesis on Choroideremia-Manifesting Female Carriers: Could CHM In-Frame Variants Exert a Dominant Negative Effect? A Case Report. Genes 2022, 13, 1268. Genes (Basel) 2023; 14:2160. [PMID: 38136982 PMCID: PMC10743126 DOI: 10.3390/genes14122160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 10/18/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
The recent publication of Di Giosaffatte et al. [...].
Collapse
Affiliation(s)
- Lewis E. Fry
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- The Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Robert E. MacLaren
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
17
|
Wang KW, Yuan YX, Zhu B, Zhang Y, Wei YF, Meng FS, Zhang S, Wang JX, Zhou JY, for the Alzheimer’s Disease Neuroimaging Initiative. X chromosome-wide association study of quantitative biomarkers from the Alzheimer's Disease Neuroimaging Initiative study. Front Aging Neurosci 2023; 15:1277731. [PMID: 38035272 PMCID: PMC10682795 DOI: 10.3389/fnagi.2023.1277731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a complex neurodegenerative disease with high heritability. Compared to autosomes, a higher proportion of disorder-associated genes on X chromosome are expressed in the brain. However, only a few studies focused on the identification of the susceptibility loci for AD on X chromosome. Methods Using the data from the Alzheimer's Disease Neuroimaging Initiative Study, we conducted an X chromosome-wide association study between 16 AD quantitative biomarkers and 19,692 single nucleotide polymorphisms (SNPs) based on both the cross-sectional and longitudinal studies. Results We identified 15 SNPs statistically significantly associated with different quantitative biomarkers of the AD. For the cross-sectional study, six SNPs (rs5927116, rs4596772, rs5929538, rs2213488, rs5920524, and rs5945306) are located in or near to six genes DMD, TBX22, LOC101928437, TENM1, SPANXN1, and ZFP92, which have been reported to be associated with schizophrenia or neuropsychiatric diseases in literature. For the longitudinal study, four SNPs (rs4829868, rs5931111, rs6540385, and rs763320) are included in or near to two genes RAC1P4 and AFF2, which have been demonstrated to be associated with brain development or intellectual disability in literature, while the functional annotations of other five novel SNPs (rs12157031, rs428303, rs5953487, rs10284107, and rs5955016) have not been found. Discussion 15 SNPs were found statistically significantly associated with the quantitative biomarkers of the AD. Follow-up study in molecular genetics is needed to verify whether they are indeed related to AD. The findings in this article expand our understanding of the role of the X chromosome in exploring disease susceptibility, introduce new insights into the molecular genetics behind the AD, and may provide a mechanistic clue to further AD-related studies.
Collapse
Affiliation(s)
- Kai-Wen Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yu-Xin Yuan
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Bin Zhu
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yi Zhang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yi-Fang Wei
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Fan-Shuo Meng
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Shun Zhang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing-Xuan Wang
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ji-Yuan Zhou
- State Key Laboratory of Organ Failure Research, Ministry of Education, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Biostatistics, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | | |
Collapse
|
18
|
Werner JM, Hover J, Gillis J. Population variability in X-chromosome inactivation across 9 mammalian species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562732. [PMID: 37904929 PMCID: PMC10614859 DOI: 10.1101/2023.10.17.562732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
One of the two X chromosomes in female mammals is epigenetically silenced in embryonic stem cells by X chromosome inactivation (XCI). This creates a mosaic of cells expressing either the maternal or the paternal X allele. The XCI ratio, the proportion of inactivated parental alleles, varies widely among individuals, representing the largest instance of epigenetic variability within mammalian populations. While various contributing factors to XCI variability are recognized, namely stochastic and/or genetic effects, their relative contributions are poorly understood. This is due in part to limited cross-species analysis, making it difficult to distinguish between generalizable or species-specific mechanisms for XCI ratio variability. To address this gap, we measured XCI ratios in nine mammalian species (9,143 individual samples), ranging from rodents to primates, and compared the strength of stochastic models or genetic factors for explaining XCI variability. Our results demonstrate the embryonic stochasticity of XCI is a general explanatory model for population XCI variability in mammals, while genetic factors play a minor role.
Collapse
Affiliation(s)
- Jonathan M Werner
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - John Hover
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Bernardinelli E, Huber F, Roesch S, Dossena S. Clinical and Molecular Aspects Associated with Defects in the Transcription Factor POU3F4: A Review. Biomedicines 2023; 11:1695. [PMID: 37371790 DOI: 10.3390/biomedicines11061695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
X-linked deafness (DFNX) is estimated to account for up to 2% of cases of hereditary hearing loss and occurs in both syndromic and non-syndromic forms. POU3F4 is the gene most commonly associated with X-linked deafness (DFNX2, DFN3) and accounts for about 50% of the cases of X-linked non-syndromic hearing loss. This gene codes for a transcription factor of the POU family that plays a major role in the development of the middle and inner ear. The clinical features of POU3F4-related hearing loss include a pathognomonic malformation of the inner ear defined as incomplete partition of the cochlea type 3 (IP-III). Often, a perilymphatic gusher is observed upon stapedectomy during surgery, possibly as a consequence of an incomplete separation of the cochlea from the internal auditory canal. Here we present an overview of the pathogenic gene variants of POU3F4 reported in the literature and discuss the associated clinical features, including hearing loss combined with additional phenotypes such as cognitive and motor developmental delays. Research on the transcriptional targets of POU3F4 in the ear and brain is in its early stages and is expected to greatly advance our understanding of the pathophysiology of POU3F4-linked hearing loss.
Collapse
Affiliation(s)
- Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Florian Huber
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
20
|
Krueger K, Lamenza F, Gu H, El-Hodiri H, Wester J, Oberdick J, Fischer AJ, Oghumu S. Sex differences in susceptibility to substance use disorder: Role for X chromosome inactivation and escape? Mol Cell Neurosci 2023; 125:103859. [PMID: 37207894 PMCID: PMC10286730 DOI: 10.1016/j.mcn.2023.103859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
There is a sex-based disparity associated with substance use disorders (SUDs) as demonstrated by clinical and preclinical studies. Females are known to escalate from initial drug use to compulsive drug-taking behavior (telescoping) more rapidly, and experience greater negative withdrawal effects than males. Although these biological differences have largely been attributed to sex hormones, there is evidence for non-hormonal factors, such as the influence of the sex chromosome, which underlie sex disparities in addiction behavior. However, genetic and epigenetic mechanisms underlying sex chromosome influences on substance abuse behavior are not completely understood. In this review, we discuss the role that escape from X-chromosome inactivation (XCI) in females plays in sex-associated differences in addiction behavior. Females have two X chromosomes (XX), and during XCI, one X chromosome is randomly chosen to be transcriptionally silenced. However, some X-linked genes escape XCI and display biallelic gene expression. We generated a mouse model using an X-linked gene specific bicistronic dual reporter mouse as a tool to visualize allelic usage and measure XCI escape in a cell specific manner. Our results revealed a previously undiscovered X-linked gene XCI escaper (CXCR3), which is variable and cell type dependent. This illustrates the highly complex and context dependent nature of XCI escape which is largely understudied in the context of SUD. Novel approaches such as single cell RNA sequencing will provide a global molecular landscape and impact of XCI escape in addiction and facilitate our understanding of the contribution of XCI escape to sex disparities in SUD.
Collapse
Affiliation(s)
- Kate Krueger
- Department of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Felipe Lamenza
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Howard Gu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Jason Wester
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John Oberdick
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Andy J Fischer
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Steve Oghumu
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
21
|
Lee HW, Lee EK. Asymmetric presentation with a novel RP2 gene mutation in X-Linked retinitis pigmentosa: a case report. BMC Ophthalmol 2023; 23:221. [PMID: 37198560 DOI: 10.1186/s12886-023-02968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND We present the detailed multimodal imaging analysis in a case of X-linked retinitis pigmentosa (XLRP) exhibiting a markedly asymmetric presentation with a novel RP2 mutation. CASE PRESENTATION A 25-year-old woman complained of decreased vision in the right eye as well as night blindness. Her visual acuity was 20/100 (OD) and 20/20 (OS). Fundus examination revealed bone spicule pigmentation with tessellated changes in the fundus within the posterior pole. Optical coherence tomography (OCT) showed generalized disruption of foveal microstructures in the OD. No abnormal findings were identified, but localized ellipsoid zone band losses were observed on OCT in the OS. Fundus autofluorescence revealed multiple patchy hypo-autofluorescent lesions in the OD and a tapetal-like radial reflex against a dark background in the OS. Fluorescein angiography and OCT angiography revealed diffuse mottled hyperfluorescence with reduced retinal vessel density in the OD and no evidence of vascular compromise in the OS. Goldmann perimetry demonstrated a constricted visual field, and electrophysiological assessment revealed an extinguished rod response and a severely impaired cone response in the OD. Molecular genetic tests via next-generation sequencing revealed the pathogenic variant to be a heterozygous frameshift mutation in RP2 (RP2, p.Glu269Glyfs*7), resulting in premature termination of the protein. CONCLUSIONS Random X-inactivation may be attributed to interocular differences in the severity of XLRP in female carriers. A novel frameshift mutation in the RP2 gene and a comprehensive phenotypic evaluation in the current study may broaden the spectrum of the disease in XLRP carriers.
Collapse
Affiliation(s)
- Hyun Woo Lee
- Pre-medical Program, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Kyoung Lee
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Hospital, #101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Reale C, Invernizzi F, Panteghini C, Garavaglia B. Genetics, sex, and gender. J Neurosci Res 2023; 101:553-562. [PMID: 34498752 DOI: 10.1002/jnr.24945] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/27/2022]
Abstract
This review aims to give an overview of what has been discovered so far and what still needs to be analyzed about how sex and gender affect the disease development. These two terms are often confused and indifferently used. In principle, the term "sex" refers to biological differences between males and females, specifically reproductive organs and their functions, while the term "gender" refers to the social context in which people live and which contributes to a subjective sexual identity, masculine or feminine. This dichotomy, however, is not so rigid and both sex and gender influence different aspects of human health, such as brain, health and aging and drug treatment and pharmacokinetics. In particular, we want to focus on genetic differences between men and women: indeed, the expression of the genes mapped on X chromosome or Y chromosome and all epigenetic interactions affect the diseases development. Finally, we will briefly outline sex and gender differences in clinical manifestations of three neurological diseases: Alzheimer's disease, Parkinson's disease, and obsessive compulsive disorder. In the era of personalized medicine, we must not forget the importance of gender medicine to promote personalized care for any kind of patients.
Collapse
Affiliation(s)
- Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Federica Invernizzi
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS, Istituto Neurologico "C. Besta", Milan, Italy
| |
Collapse
|
23
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
24
|
Conlon FL, Arnold AP. Sex chromosome mechanisms in cardiac development and disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:340-350. [PMID: 37808586 PMCID: PMC10558115 DOI: 10.1038/s44161-023-00256-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 02/13/2023] [Indexed: 10/10/2023]
Abstract
Many human diseases, including cardiovascular disease, show differences between men and women in pathology and treatment outcomes. In the case of cardiac disease, sex differences are exemplified by differences in the frequency of specific types of congenital and adult-onset heart disease. Clinical studies have suggested that gonadal hormones are a factor in sex bias. However, recent research has shown that gene and protein networks under non-hormonal control also account for cardiac sex differences. In this review, we describe the sex chromosome pathways that lead to sex differences in the development and function of the heart and highlight how these findings affect future care and treatment of cardiac disease.
Collapse
Affiliation(s)
- Frank L Conlon
- Departments of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
25
|
Baghdadi M, Nespital T, Mesaros A, Buschbaum S, Withers DJ, Grönke S, Partridge L. Reduced insulin signaling in neurons induces sex-specific health benefits. SCIENCE ADVANCES 2023; 9:eade8137. [PMID: 36812323 PMCID: PMC9946356 DOI: 10.1126/sciadv.ade8137] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Reduced activity of insulin/insulin-like growth factor signaling (IIS) extends health and life span in mammals. Loss of the insulin receptor substrate 1 (Irs1) gene increases survival in mice and causes tissue-specific changes in gene expression. However, the tissues underlying IIS-mediated longevity are currently unknown. Here, we measured survival and health span in mice lacking IRS1 specifically in liver, muscle, fat, and brain. Tissue-specific loss of IRS1 did not increase survival, suggesting that lack of IRS1 in more than one tissue is required for life-span extension. Loss of IRS1 in liver, muscle, and fat did not improve health. In contrast, loss of neuronal IRS1 increased energy expenditure, locomotion, and insulin sensitivity, specifically in old males. Neuronal loss of IRS1 also caused male-specific mitochondrial dysfunction, activation of Atf4, and metabolic adaptations consistent with an activated integrated stress response at old age. Thus, we identified a male-specific brain signature of aging in response to reduced IIS associated with improved health at old age.
Collapse
Affiliation(s)
| | - Tobias Nespital
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrea Mesaros
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Dominic J. Withers
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Medical Research Council London Institute of Medical Sciences, London, UK
| | | | - Linda Partridge
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
- Institute of Healthy Ageing and Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
26
|
Singh G. Is Chronic Pain as an Autoimmune Disease? Can J Pain 2023. [DOI: 10.1080/24740527.2023.2175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
27
|
Saeed OB, Traboulsi EI, Coussa RG. Profiling of visual acuity and genotype correlations in RP2 patients: a cross-sectional comparative meta-analysis between carrier females and affected males. Eye (Lond) 2023; 37:350-355. [PMID: 35094030 PMCID: PMC9873705 DOI: 10.1038/s41433-022-01954-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/08/2022] [Accepted: 01/19/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND X-linked retinitis pigmentosa (XLRP) is the most severe form of retinitis pigmentosa (RP) and accounts for 15-20% of all RP cases. In this study, we investigated the progression of visual acuity loss across age groups in female carriers and compared it to affected males. METHODS A PubMed literature search was conducted, and RP2 cases were included based on specific inclusion criteria. Visual acuity (VA), refractive error spherical equivalent (SE), and retinal findings were recorded. Cross-sectional analyses investigated the relationship between VA and age in carrier females and affected males. Genotype-phenotype VA correlations were studied using t-tests. RESULTS 35 carrier females and 28 affected males with confirmed RP2 mutations were collected from 13 studies. The mean age and logMAR VA of carrier females were 44.2 ± 17.4 years, and 0.5 ± 0.5, respectively. 78.8% of carrier females showed abnormal XLRP-related fundus findings and had significantly reduced VA compared to those with normal fundi (0.6 ± 0.5 vs. 0.1 ± 0.1; p = 0.03). Compared to affected males, no statistical correlation was found between logMAR VA and advancing age in carrier females (p = 0.75). Statistically significant linear correlations were found between logMAR VA and SE in each of carrier females (p = 0.01). There were no observed differences in logMAR VA based on mutation type (p = 0.97) or mutation location (p = 0.83). Anisometropia was observed in 38% of carrier females and 68% of affected males; these prevalence numbers are statistically significant between the two groups (1.7 ± 0.3 vs. 3.9 ± 10.9 dioptres; p = 0.03). CONCLUSIONS RP2 carrier females generally maintain good VA throughout their lifetime, as opposed to affected males, whose vision progressively declines. Our study provides important VA prognostic data that is crucial for patient counseling.
Collapse
Affiliation(s)
| | - Elias I Traboulsi
- Cleveland Clinic, Cole Eye Institute, Center for Genetic Eye Diseases, Cleveland, OH, USA
| | - Razek Georges Coussa
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Li X, McLain C, Samuel MS, Olson MF, Radice GL. Actomyosin-mediated cellular tension promotes Yap nuclear translocation and myocardial proliferation through α5 integrin signaling. Development 2023; 150:dev201013. [PMID: 36621002 PMCID: PMC10110499 DOI: 10.1242/dev.201013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023]
Abstract
The cardiomyocyte phenotypic switch from a proliferative to terminally differentiated state results in the loss of regenerative potential of the mammalian heart shortly after birth. Nonmuscle myosin IIB (NM IIB)-mediated actomyosin contractility regulates cardiomyocyte cytokinesis in the embryonic heart, and NM IIB levels decline after birth, suggesting a role for cellular tension in the regulation of cardiomyocyte cell cycle activity in the postnatal heart. To investigate the role of actomyosin contractility in cardiomyocyte cell cycle arrest, we conditionally activated ROCK2 kinase domain (ROCK2:ER) in the murine postnatal heart. Here, we show that α5/β1 integrin and fibronectin matrix increase in response to actomyosin-mediated tension. Moreover, activation of ROCK2:ER promotes nuclear translocation of Yap, a mechanosensitive transcriptional co-activator, and enhances cardiomyocyte proliferation. Finally, we show that reduction of myocardial α5 integrin rescues the myocardial proliferation phenotype in ROCK2:ER hearts. These data demonstrate that cardiomyocytes respond to increased intracellular tension by altering their intercellular contacts in favor of cell-matrix interactions, leading to Yap nuclear translocation, thus uncovering a function for nonmuscle myosin contractility in promoting cardiomyocyte proliferation in the postnatal heart.
Collapse
Affiliation(s)
- Xiaofei Li
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Callie McLain
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Michael S. Samuel
- Centre for Cancer Biology, an alliance between SA Pathology and the University of South Australia, Adelaide 5000, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5000, Australia
| | - Michael F. Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, M5B 2K3 Canada
| | - Glenn L. Radice
- Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
29
|
Yang ZY, Liu W, Yuan YX, Kong YF, Zhao PZ, Fung WK, Zhou JY. Robust association tests for quantitative traits on the X chromosome. Heredity (Edinb) 2022; 129:244-256. [PMID: 36085362 PMCID: PMC9519943 DOI: 10.1038/s41437-022-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
The genome-wide association study is an elementary tool to assess the genetic contribution to complex human traits. However, such association tests are mainly proposed for autosomes, and less attention has been given to methods for identifying loci on the X chromosome due to their distinct biological features. In addition, the existing association tests for quantitative traits on the X chromosome either fail to incorporate the information of males or only detect variance heterogeneity. Therefore, we propose four novel methods, which are denoted as QXcat, QZmax, QMVXcat and QMVZmax. When using these methods, it is assumed that the risk alleles for females and males are the same and that the locus being studied satisfies the generalized genetic model for females. The first two methods are based on comparing the means of the trait value across different genotypes, while the latter two methods test for the difference of both means and variances. All four methods effectively incorporate the information of X chromosome inactivation. Simulation studies demonstrate that the proposed methods control the type I error rates well. Under the simulated scenarios, the proposed methods are generally more powerful than the existing methods. We also apply our proposed methods to data from the Minnesota Center for Twin and Family Research and find 10 single nucleotide polymorphisms that are statistically significantly associated with at least two traits at the significance level of 1 × 10-3.
Collapse
Affiliation(s)
- Zi-Ying Yang
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Wei Liu
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yu-Xin Yuan
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China
| | - Yi-Fan Kong
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Zhen Zhao
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wing Kam Fung
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China.
| | - Ji-Yuan Zhou
- Department of Biostatistics, State Key Laboratory of Organ Failure Research, Ministry of Education, and Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou, China.
| |
Collapse
|
30
|
Werner JM, Ballouz S, Hover J, Gillis J. Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events. Dev Cell 2022; 57:1995-2008.e5. [PMID: 35914524 PMCID: PMC9398941 DOI: 10.1016/j.devcel.2022.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that occurs during mammalian embryogenesis. We harness these features to investigate characteristics of early lineage specification events during human development. We initially assess the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and individuals, we find that XCI is shared across all tissues, suggesting that XCI is completed in the epiblast (in at least 6-16 cells) prior to specification of the germ layers. Additionally, we exploit tissue-specific variability to characterize the number of cells present during tissue-lineage commitment, ranging from approximately 20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating the variability of XCI ratios using adult tissue, we characterize embryonic features of human XCI and lineage specification that are otherwise difficult to ascertain experimentally.
Collapse
Affiliation(s)
- Jonathan M Werner
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sara Ballouz
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW Australia
| | - John Hover
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jesse Gillis
- The Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Physiology Department and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
31
|
Kubasova N, Alves-Pereira CF, Gupta S, Vinogradova S, Gimelbrant A, Barreto VM. In Vivo Clonal Analysis Reveals Random Monoallelic Expression in Lymphocytes That Traces Back to Hematopoietic Stem Cells. Front Cell Dev Biol 2022; 10:827774. [PMID: 36003148 PMCID: PMC9393635 DOI: 10.3389/fcell.2022.827774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
Evaluating the epigenetic landscape in the stem cell compartment at the single-cell level is essential to assess the cells’ heterogeneity and predict their fate. Here, using a genome-wide transcriptomics approach in vivo, we evaluated the allelic expression imbalance in the progeny of single hematopoietic cells (HSCs) as a read-out of epigenetic marking. After 4 months of extensive proliferation and differentiation, we found that X-chromosome inactivation (XCI) is tightly maintained in all single-HSC derived hematopoietic cells. In contrast, the vast majority of the autosomal genes did not show clonal patterns of random monoallelic expression (RME). However, a persistent allele-specific autosomal transcription in HSCs and their progeny was found in a rare number of cases, none of which has been previously reported. These data show that: 1) XCI and RME in the autosomal chromosomes are driven by different mechanisms; 2) the previously reported high frequency of genes under RME in clones expanded in vitro (up to 15%) is not found in clones undergoing multiple differentiation steps in vivo; 3) prior to differentiation, HSCs have stable patterns of autosomal RME. We propose that most RME patterns in autosomal chromosomes are erased and established de novo during cell lineage differentiation.
Collapse
Affiliation(s)
- Nadiya Kubasova
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- Genetagus, Egas Moniz – Cooperativa de Ensino Superior, CRL, Monte de Caparica, Portugal
| | - Clara F. Alves-Pereira
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Saumya Gupta
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Svetlana Vinogradova
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Alexander Gimelbrant
- Center of Cancer Systems Biology, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Genetics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT and Harvard, Cambridge, MA, United States
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| | - Vasco M. Barreto
- Chronic Diseases Research Centre, Nova Medical School, CEDOC, Lisbon, Portugal
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Costa da Caparica, Portugal
- *Correspondence: Vasco M. Barreto, ; Alexander Gimelbrant,
| |
Collapse
|
32
|
Hoye ML, Calviello L, Poff AJ, Ejimogu NE, Newman CR, Montgomery MD, Ou J, Floor SN, Silver DL. Aberrant cortical development is driven by impaired cell cycle and translational control in a DDX3X syndrome model. eLife 2022; 11:e78203. [PMID: 35762573 PMCID: PMC9239684 DOI: 10.7554/elife.78203] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Mutations in the RNA helicase, DDX3X, are a leading cause of Intellectual Disability and present as DDX3X syndrome, a neurodevelopmental disorder associated with cortical malformations and autism. Yet, the cellular and molecular mechanisms by which DDX3X controls cortical development are largely unknown. Here, using a mouse model of Ddx3x loss-of-function we demonstrate that DDX3X directs translational and cell cycle control of neural progenitors, which underlies precise corticogenesis. First, we show brain development is sensitive to Ddx3x dosage; complete Ddx3x loss from neural progenitors causes microcephaly in females, whereas hemizygous males and heterozygous females show reduced neurogenesis without marked microcephaly. In addition, Ddx3x loss is sexually dimorphic, as its paralog, Ddx3y, compensates for Ddx3x in the developing male neocortex. Using live imaging of progenitors, we show that DDX3X promotes neuronal generation by regulating both cell cycle duration and neurogenic divisions. Finally, we use ribosome profiling in vivo to discover the repertoire of translated transcripts in neural progenitors, including those which are DDX3X-dependent and essential for neurogenesis. Our study reveals invaluable new insights into the etiology of DDX3X syndrome, implicating dysregulated progenitor cell cycle dynamics and translation as pathogenic mechanisms.
Collapse
Affiliation(s)
- Mariah L Hoye
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Lorenzo Calviello
- Centre for Functional Genomics, Human TechnopoleMilanItaly
- Centre for Computational Biology, Human TechnopoleMilanItaly
| | - Abigail J Poff
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Nna-Emeka Ejimogu
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Carly R Newman
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Maya D Montgomery
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Duke Regeneration Center, Duke University Medical CenterDurhamUnited States
| | - Stephen N Floor
- Department of Cell and Tissue Biology, UCSFSan FranciscoUnited States
- Helen Diller Family Comprehensive Cancer CenterSan FranciscoUnited States
| | - Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Cell Biology, Duke University Medical CenterDurhamUnited States
- Duke Regeneration Center, Duke University Medical CenterDurhamUnited States
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- Duke Institute for Brain Sciences, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
33
|
Severino J, Bauer M, Mattimoe T, Arecco N, Cozzuto L, Lorden P, Hamada N, Nosaka Y, Nagaoka SI, Audergon P, Tarruell A, Heyn H, Hayashi K, Saitou M, Payer B. Controlled X-chromosome dynamics defines meiotic potential of female mouse in vitro germ cells. EMBO J 2022; 41:e109457. [PMID: 35603814 PMCID: PMC9194795 DOI: 10.15252/embj.2021109457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022] Open
Abstract
The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X‐chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X‐inactivation and reactivation dynamics using a tailor‐made in vitro system of primordial germ cell‐like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X‐inactivation in PGCLCs in vitro and in germ cell‐competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X‐inactivation is followed by step‐wise X‐reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X‐inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine‐tuned X‐chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.
Collapse
Affiliation(s)
- Jacqueline Severino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Moritz Bauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Niccolò Arecco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luca Cozzuto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Patricia Lorden
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Norio Hamada
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - So I Nagaoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Pauline Audergon
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Tarruell
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Holger Heyn
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
34
|
BAF complex-mediated chromatin relaxation is required for establishment of X chromosome inactivation. Nat Commun 2022; 13:1658. [PMID: 35351876 PMCID: PMC8964718 DOI: 10.1038/s41467-022-29333-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The process of epigenetic silencing, while fundamentally important, is not yet completely understood. Here we report a replenishable female mouse embryonic stem cell (mESC) system, Xmas, that allows rapid assessment of X chromosome inactivation (XCI), the epigenetic silencing mechanism of one of the two X chromosomes that enables dosage compensation in female mammals. Through a targeted genetic screen in differentiating Xmas mESCs, we reveal that the BAF complex is required to create nucleosome-depleted regions at promoters on the inactive X chromosome during the earliest stages of establishment of XCI. Without this action gene silencing fails. Xmas mESCs provide a tractable model for screen-based approaches that enable the discovery of unknown facets of the female-specific process of XCI and epigenetic silencing more broadly. Female embryonic stem cells (ESCs) are the ideal model to study X chromosome inactivation (XCI) establishment; however, these cells are challenging to keep in culture. Here the authors create fluorescent ‘Xmas’ reporter mice as a renewable source of ESCs and show nucleosome remodelers Smarcc1 and Smarca4 create a nucleosome-free promoter region prior to the establishment of silencing.
Collapse
|
35
|
Fang X, Butler KM, Abidi F, Gass J, Beisang A, Feyma T, Ryther RC, Standridge S, Heydemann P, Jones M, Haas R, Lieberman DN, Marsh E, Benke TA, Skinner S, Neul JL, Percy AK, Friez MJ, Caylor RC. Analysis of X-inactivation status in a Rett syndrome natural history study cohort. Mol Genet Genomic Med 2022; 10:e1917. [PMID: 35318820 PMCID: PMC9034674 DOI: 10.1002/mgg3.1917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a rare neurodevelopmental disorder associated with pathogenic MECP2 variants. Because the MECP2 gene is subject to X-chromosome inactivation (XCI), factors including MECP2 genotypic variation, tissue differences in XCI, and skewing of XCI all likely contribute to the clinical severity of individuals with RTT. METHODS We analyzed the XCI patterns from blood samples of 320 individuals and their mothers. It includes individuals with RTT (n = 287) and other syndromes sharing overlapping phenotypes with RTT (such as CDKL5 Deficiency Disorder [CDD, n = 16]). XCI status in each proband/mother duo and the parental origin of the preferentially inactivated X chromosome were analyzed. RESULTS The average XCI ratio in probands was slightly increased compared to their unaffected mothers (73% vs. 69%, p = .0006). Among the duos with informative XCI data, the majority of individuals with classic RTT had their paternal allele preferentially inactivated (n = 180/220, 82%). In sharp contrast, individuals with CDD had their maternal allele preferentially inactivated (n = 10/12, 83%). Our data indicate a weak positive correlation between XCI skewing ratio and clinical severity scale (CSS) scores in classic RTT patients with maternal allele preferentially inactivated XCI (rs = 0.35, n = 40), but not in those with paternal allele preferentially inactivated XCI (rs = -0.06, n = 180). The most frequent MECP2 pathogenic variants were enriched in individuals with highly/moderately skewed XCI patterns, suggesting an association with higher levels of XCI skewing. CONCLUSION These results extend our understanding of the pathogenesis of RTT and other syndromes with overlapping clinical features by providing insight into the both XCI and the preferential XCI of parental alleles.
Collapse
Affiliation(s)
- Xiaolan Fang
- Greenwood Genetic CenterGreenwoodSouth CarolinaUSA
| | | | - Fatima Abidi
- Greenwood Genetic CenterGreenwoodSouth CarolinaUSA
| | - Jennifer Gass
- Florida Cancer Specialists & Research InstituteFort MyersFLUSA,Present address:
Florida Cancer Specialists & Research InstituteFort MyersFloridaUSA
| | - Arthur Beisang
- Gillette Children’s Specialty HealthcareSt. PaulMinnesotaUSA
| | - Timothy Feyma
- Gillette Children’s Specialty HealthcareSt. PaulMinnesotaUSA
| | - Robin C. Ryther
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Shannon Standridge
- Division of NeurologyCincinnati Children’s Hospital Medical CenterCincinnatiOhioUSA,Department of Pediatrics, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Mary Jones
- Oakland Children’s Hospital, UCSFOaklandCaliforniaUSA
| | - Richard Haas
- University of California San DiegoSan DiegoCaliforniaUSA
| | - David N Lieberman
- Department of NeurologyBoston Children’s HospitalBostonMassachusettsUSA
| | - Eric D. Marsh
- Children’s Hospital of Philadelphia and University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tim A. Benke
- University of Colorado School of Medicine, Children’s Hospital Colorado‐AuroraDenverColoradoUSA
| | | | - Jeffrey L. Neul
- Vanderbilt Kennedy CenterVanderbilt University Medical CenterNashville TN
| | - Alan K. Percy
- The University of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | |
Collapse
|
36
|
Mechanisms of Choice in X-Chromosome Inactivation. Cells 2022; 11:cells11030535. [PMID: 35159344 PMCID: PMC8833938 DOI: 10.3390/cells11030535] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Early in development, placental and marsupial mammals harbouring at least two X chromosomes per nucleus are faced with a choice that affects the rest of their lives: which of those X chromosomes to transcriptionally inactivate. This choice underlies phenotypical diversity in the composition of tissues and organs and in their response to the environment, and can determine whether an individual will be healthy or affected by an X-linked disease. Here, we review our current understanding of the process of choice during X-chromosome inactivation and its implications, focusing on the strategies evolved by different mammalian lineages and on the known and unknown molecular mechanisms and players involved.
Collapse
|
37
|
Cui G, Xu Y, Cao S, Shi K. Inducing somatic cells into pluripotent stem cells is an important platform to study the mechanism of early embryonic development. Mol Reprod Dev 2022; 89:70-85. [PMID: 35075695 DOI: 10.1002/mrd.23559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 01/10/2022] [Indexed: 01/24/2023]
Abstract
The early embryonic development starts with the totipotent zygote upon fertilization of differentiated sperm and egg, which undergoes a range of reprogramming and transformation to acquire pluripotency. Induced pluripotent stem cells (iPSCs), a nonclonal technique to produce stem cells, are originated from differentiated somatic cells via accomplishment of cell reprogramming, which shares common reprogramming process with early embryonic development. iPSCs are attractive in recent years due to the potentially significant applications in disease modeling, potential value in genetic improvement of husbandry animal, regenerative medicine, and drug screening. This review focuses on introducing the research advance of both somatic cell reprogramming and early embryonic development, indicating that the mechanisms of iPSCs also shares common features with that of early embryonic development in several aspects, such as germ cell factors, DNA methylation, histone modification, and/or X chromosome inactivation. As iPSCs can successfully avoid ethical concerns that are naturally present in the embryos and/or embryonic stem cells, the practicality of somatic cell reprogramming (iPSCs) could provide an insightful platform to elucidate the mechanisms underlying the early embryonic development.
Collapse
Affiliation(s)
- Guina Cui
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Yanwen Xu
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Shuyuan Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
38
|
Voortman L, Johnston RJ. Transcriptional repression in stochastic gene expression, patterning, and cell fate specification. Dev Biol 2022; 481:129-138. [PMID: 34688689 PMCID: PMC8665150 DOI: 10.1016/j.ydbio.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/03/2023]
Abstract
Development is often driven by signaling and lineage-specific cues, yielding highly uniform and reproducible outcomes. Development also involves mechanisms that generate noise in gene expression and random patterns across tissues. Cells sometimes randomly choose between two or more cell fates in a mechanism called stochastic cell fate specification. This process diversifies cell types in otherwise homogenous tissues. Stochastic mechanisms have been extensively studied in prokaryotes where noisy gene activation plays a pivotal role in controlling cell fates. In eukaryotes, transcriptional repression stochastically limits gene expression to generate random patterns and specify cell fates. Here, we review our current understanding of repressive mechanisms that produce random patterns of gene expression and cell fates in flies, plants, mice, and humans.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
39
|
Wierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Karolinska Schizophrenia Project (KaSP) Consortium, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, et alWierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Karolinska Schizophrenia Project (KaSP) Consortium, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, McPhilemy G, van der Meer D, Menchón JM, Naaijen J, Nyberg L, Oosterlaan J, Paloyelis Y, Pauli P, Pergola G, Pomarol‐Clotet E, Portella MJ, Radua J, Reif A, Richard G, Roffman JL, Rosa PGP, Sacchet MD, Sachdev PS, Salvador R, Sarró S, Satterthwaite TD, Saykin AJ, Serpa MH, Sim K, Simmons A, Smoller JW, Sommer IE, Soriano‐Mas C, Stein DJ, Strike LT, Szeszko PR, Temmingh HS, Thomopoulos SI, Tomyshev AS, Trollor JN, Uhlmann A, Veer IM, Veltman DJ, Voineskos A, Völzke H, Walter H, Wang L, Wang Y, Weber B, Wen W, West JD, Westlye LT, Whalley HC, Williams SCR, Wittfeld K, Wolf DH, Wright MJ, Yoncheva YN, Zanetti MV, Ziegler GC, de Zubicaray GI, Thompson PM, Crone EA, Frangou S, Tamnes CK. Greater male than female variability in regional brain structure across the lifespan. Hum Brain Mapp 2022; 43:470-499. [PMID: 33044802 PMCID: PMC8675415 DOI: 10.1002/hbm.25204] [Show More Authors] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
Collapse
Affiliation(s)
- Lara M Wierenga
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Gaelle E Doucet
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Boys Town National Research HospitalOmahaNebraskaUSA
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, CityUniversity of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Research & InnovationGGZ inGeestAmsterdamThe Netherlands
- Institute of Education and Child Studies, Forensic Family and Youth CareLeiden UniversityLeidenThe Netherlands
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
- Institute of Medical Imaging & Visualisation, Faculty of Health & Social SciencesBournemouth UniversityBournemouthUK
| | - Anton Albajes‐Eizagirre
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Alan Anticevic
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Nuria Bargallo
- Imaging Diagnostic CenterHospital ClínicBarcelonaSpain
- Magnetic Resonance Image Core FacilityIDIBAPSBarcelonaSpain
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | | | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Dorret I Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of PsychiatryUniversity of LübeckLübeckGermany
| | - Josiane Bourque
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
| | - Anouk den Braber
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUMCAmsterdamThe Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Neuroscience Centre ZurichUniversity and ETH ZurichZurichSwitzerland
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Dementia Centre for Research Collaboration, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Jan K Buitelaar
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Vince D Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia TechAtlantaGeorgiaUSA
| | - Erick J Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Francisco X Castellanos
- Department of Child and Adolescent PsychiatryNYU Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Tiffany M Chaim‐Avancini
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Christopher RK Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Patricia J Conrod
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- Department of PsychiatryUniversity of MontrealMontrealCanada
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of TübingenTübingenGermany
- Department of Psychology (Clinical Psychology II)PFH – Private University of Applied SciencesGöttingenGermany
| | - Fabrice Crivello
- Groupe d'Imagerie NeurofonctionnelleInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Christopher G Davey
- Centre for Youth Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- OrygenParkvilleVictoriaAustralia
| | - Erin W Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences; Technische Universität Dresden, Faculty of MedicineUniversity Hospital C.G. CarusDresdenGermany
| | - Dennis van't Ent
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jean‐Paul Fouche
- Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Paola Fuentes‐Claramonte
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Eco JC de Geus
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | | | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Olin Center for Neuropsychiatric Research, Institute of LivingHartford HospitalHartfordConnecticutUSA
| | - Ian H Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Hans J Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Patricia Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Raquel E Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Ruben C Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Lieuwe de Haan
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneAustralia
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulationUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sean N Hatton
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dirk J Heslenfeld
- Departments of Experimental and Clinical PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ian B Hickie
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Pieter J Hoekstra
- Department of PsychiatryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Avram J Holmes
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Norbert Hosten
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Fleur M Howells
- Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Chaim Huyser
- De Bascule, Academic center child and adolescent psychiatryDuivendrechtThe Netherlands
- Amsterdam UMC Department of Child and Adolescent PsychiatryAmsterdamThe Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anthony C James
- Department of PsychiatryWarneford HospitalOxfordUK
- Highfield UnitWarneford HospitalOxfordUK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - John A Joska
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrew J Kalnin
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Marieke Klein
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Laura Koenders
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Knut K Kolskår
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTNesoddenNorway
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson InstituteBirtinyaQueenslandAustralia
- University of the Sunshine CoastSunshine CoastQueenslandAustralia
| | - Luisa Lazaro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Phil H Lee
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityCape TownWestern CapeSouth Africa
| | | | - Sophie Maingault
- Institut des maladies neurodégénérativesUniversité de BordeauxBordeauxFrance
| | - Nicholas G Martin
- Genetic EpidemiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Ignacio Martínez‐Zalacaín
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - David Mataix‐Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Bernard Mazoyer
- University of BordeauxBordeauxFrance
- Bordeaux University HospitalBordeauxFrance
| | - Brenna C McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | | | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - José M Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Jilly Naaijen
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Lars Nyberg
- Department of Radiation SciencesUmeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC University of Amsterdam and Vrije Universiteit AmsterdamEmma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & DevelopmentAmsterdamThe Netherlands
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Paul Pauli
- Department of PsychologyUniversity of WürzburgWürzburgGermany
- Centre of Mental Health, Medical FacultyUniversity of WürzburgWürzburgGermany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMary LandUSA
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Maria J Portella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryInstitut d'Investigació Biomèdica Sant PauBarcelonaSpain
| | - Joaquim Radua
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfur am MaintGermany
| | - Geneviève Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Joshua L Roffman
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Pedro GP Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress ResearchMcLean Hospital, Harvard Medical SchoolBelmontMassachusettsUSA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Andrew J Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndianapolisIndianaUSA
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Andrew Simmons
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neurology, King's College LondonLondonUK
| | - Jordan W Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carles Soriano‐Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Lachlan T Strike
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Philip R Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - Henk S Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anne Uhlmann
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Child and Adolescent Psychiatry and PsychotherapyFaculty of Medicine Carl Gustav Carus of TU DresdenDresdenGermany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dick J Veltman
- Department of Psychiatry & Amsterdam NeuroscienceAmsterdam UMC, location VUMCAmsterdamThe Netherlands
| | - Aristotle Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Henry Völzke
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- DZD (German Center for Diabetes Research), partner site GreifswaldGreifswaldGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity Hospital BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - John D West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Heather C Whalley
- Division of PsychiatryUniversity of EdinburghEdinburghUK
- Division of PsychiatryRoyal Edinburgh HospitalEdinburghUK
| | | | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Daniel H Wolf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Margaret J Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Yuliya N Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Child Study CenterHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Instituto de Ensino e PesquisaHospital Sírio‐LibanêsSão PauloBrazil
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
| | - Greig I de Zubicaray
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eveline A Crone
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
- Department of Psychology, Education and Child Studies (DPECS), Erasmus School of Social and Behavioral SciencesErasmus University RotterdamThe Netherlands
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| |
Collapse
|
40
|
Rainville JR, Lipuma T, Hodes GE. Translating the Transcriptome: Sex Differences in the Mechanisms of Depression and Stress, Revisited. Biol Psychiatry 2022; 91:25-35. [PMID: 33865609 PMCID: PMC10197090 DOI: 10.1016/j.biopsych.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/28/2022]
Abstract
The past decade has produced a plethora of studies examining sex differences in the transcriptional profiles of stress and mood disorders. As we move forward from accepting the existence of extensive molecular sex differences in the brain to exploring the purpose of these sex differences, our approach must become more systemic and less reductionist. Earlier studies have examined specific brain regions and/or cell types. To use this knowledge to develop the next generation of personalized medicine, we need to comprehend how transcriptional changes across the brain and/or the body relate to each other. We provide an overview of the relationships between baseline and depression/stress-related transcriptional sex differences and explore contributions of preclinically identified mechanisms and their impacts on behavior.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Timothy Lipuma
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia.
| |
Collapse
|
41
|
Barreto VM, Kubasova N, Alves-Pereira CF, Gendrel AV. X-Chromosome Inactivation and Autosomal Random Monoallelic Expression as "Faux Amis". Front Cell Dev Biol 2021; 9:740937. [PMID: 34631717 PMCID: PMC8495168 DOI: 10.3389/fcell.2021.740937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
X-chromosome inactivation (XCI) and random monoallelic expression of autosomal genes (RMAE) are two paradigms of gene expression regulation where, at the single cell level, genes can be expressed from either the maternal or paternal alleles. X-chromosome inactivation takes place in female marsupial and placental mammals, while RMAE has been described in mammals and also other species. Although the outcome of both processes results in random monoallelic expression and mosaicism at the cellular level, there are many important differences. We provide here a brief sketch of the history behind the discovery of XCI and RMAE. Moreover, we review some of the distinctive features of these two phenomena, with respect to when in development they are established, their roles in dosage compensation and cellular phenotypic diversity, and the molecular mechanisms underlying their initiation and stability.
Collapse
Affiliation(s)
- Vasco M Barreto
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Nadiya Kubasova
- Chronic Diseases Research Centre, CEDOC, Nova Medical School, Lisbon, Portugal
| | - Clara F Alves-Pereira
- Department of Genetics, Smurfit Institute of Genetics, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Anne-Valerie Gendrel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
42
|
Armon C, Wolfson S, Margalit R, Avraham L, Bugen Y, Cohen A, Meiri A, Shorer R. Estimating the X chromosome-mediated risk for developing Alzheimer's disease. J Neurol 2021; 269:2479-2485. [PMID: 34609600 DOI: 10.1007/s00415-021-10826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Parental lineage has been shown to increase the risk of Alzheimer's disease (AD) in the offspring, with greater risk attributed to maternal lineage. While 40 genes/loci have been linked to the risk of developing AD, none has been found on the X chromosome. We propose a new method to estimate the risk for developing AD mediated by the X chromosome in a subgroup of late-onset AD (LOAD) patients with amnestic mild cognitive impairment (aMCI) or early AD and unilateral ancestral history of AD or dementia, and pilot-test it on our clinic data. Records of patients aged 55-80 years presenting to our Memory Disorders Clinic with aMCI or early AD between May 2015 and September 2020, were reviewed, counting patients with a family history of AD or dementia and unilateral ancestral lineage. The X chromosome-attributable relative risk was estimated by calculating the following odds ratio (OR): (women with paternal lineage:women with maternal lineage)/(men with paternal lineage:men with maternal lineage). The proportion of genetic risk borne by the X chromosome is equal to (OR-1)/OR. 40 women aged 66.1 ± 5.1 years (mean ± standard deviation) and 31 men aged 68.1 ± 6.5 were identified. The OR was (18:22)/(6:25) = 3.4 (95% confidence interval 1.1-10.1; p = 0.027). The estimated proportion of genetic risk borne by the X chromosome in this population is 70% (95% CI 12-90%). This paper presents the first application of a new method. The numbers are small, the confidence intervals wide. The findings need to be replicated. The method may be generalizable to other diseases.
Collapse
Affiliation(s)
- Carmel Armon
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel.
| | - Sharon Wolfson
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| | - Rivka Margalit
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| | - Liraz Avraham
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| | - Yael Bugen
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| | - Amir Cohen
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| | - Adi Meiri
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| | - Ran Shorer
- Department of Neurology, Tel Aviv University School of Medicine and Shamir (Assaf Harofeh) Medical Center, PO Beer Yaakov, 70300, Zerifin, Israel
| |
Collapse
|
43
|
Mielke MM, Miller VM. Improving clinical outcomes through attention to sex and hormones in research. Nat Rev Endocrinol 2021; 17:625-635. [PMID: 34316045 PMCID: PMC8435014 DOI: 10.1038/s41574-021-00531-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Biological sex, fluctuations in sex steroid hormones throughout life and gender as a social construct all influence every aspect of health and disease. Yet, for decades, most basic and clinical studies have included only male individuals. As modern health care moves towards personalized medicine, it is clear that considering sex and hormonal status in basic and clinical studies will bring precision to the development of novel therapeutics and treatment paradigms. To this end, funding, regulatory and policy agencies now require inclusion of female animals and women in basic and clinical studies. However, inclusion of female animals and women often does not mean that information regarding potential hormonal interactions with pharmacological treatments or clinical outcomes is available. All sex steroid hormones can interact with receptors for drug targets, metabolism and transport. Genetic variation in receptors or in enzymatic function might contribute to sex differences in therapeutic efficacy and adverse drug reactions. Outcomes from clinical trials are often not reported by sex, and, if the data are available, they are not translated into clinical practice guidelines. This Review will provide a historical perspective for the current state of research related to hormone trials and provide concrete strategies that, if implemented, will improve the health of all people.
Collapse
Affiliation(s)
- Michelle M Mielke
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Specialized Center of Research Excellence, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Virginia M Miller
- Mayo Clinic Specialized Center of Research Excellence, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Women's Health Research Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
44
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
45
|
Qi X, Nizamutdinov D, Berman MH, Dougal G, Chazot PL, Wu E, Stevens AB, Yi SS, Huang JH. Gender Differences of Dementia in Response to Intensive Self-Administered Transcranial and Intraocular Near-Infrared Stimulation. Cureus 2021; 13:e16188. [PMID: 34262831 PMCID: PMC8260213 DOI: 10.7759/cureus.16188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
Background Transcranial near-infrared (tNIR) stimulation was proven to be a safe, reliable, and effective treatment for cognitive and behavioral symptoms of dementia. Dementia patients of different genders differ in terms of gross anatomy, biochemistry, genetic profile, clinical presentations, and socio-psychological status. Studies of the tNIR effect on dementia have thus far been gender-neutral, with dementia subjects being grouped based on diagnoses or dementia severity. This trial hereby investigated how dementia subjects of different sex respond to tNIR treatment. Methods A total of 60 patient-caregiver dyads were enrolled and randomized to this double-blind, sham-controlled clinical trial. The tNIR light has a wavelength of 1,060 nm to 1,080 nm and was delivered via a photobiomodulation (PBM) unit. The active PBM unit emits near-infrared (NIR) light while the sham unit does not. The treatment consists of a six-minute tNIR light stimulation session twice daily for eight weeks. Neuropsychological assessments conducted at baseline (week 0) and endline (week 8) were compared within the female and male group and between different sex, respectively. Results Over the course of treatment, active-arm female subjects had a 20.2% improvement in Mini‐Mental State Exam (MMSE) (mean 4.8 points increase, p < 0.001) and active-arm male cohort had 19.3% improvement (p < 0.001). Control-arm female subjects had a 6.5% improvement in MMSE (mean 1.5 points increase, p < 0.03) and control-arm male subjects had 5.9% improvement (p = 0.35) with no significant differences in the mean MMSE between female and male subjects in both arms respectively. Other comparison of assessments including Clock Copying and Drawing Test, Logical Memory Test - immediate and delayed recall yielded nominal but not statistically significant differences. No significant differences were observed in the mean MMSE between female and male subjects in both arms respectively before treatment implementation (active arm, p = 0.12; control arm, p = 0.50) at week 0, or after treatment completion (active arm, p = 0.11; control arm, p = 0.74) at week 8. Conclusion Despite differences between female and male dementia subjects, the response to tNIR light stimulation does not demonstrate gender-based differences. Further studies are warranted to refine the tNIR treatment protocol for subjects suffering from dementia or dementia-related symptoms.
Collapse
Affiliation(s)
- Xiaoming Qi
- Neurosurgery, Baylor Scott & White Health, Temple, USA
| | | | | | - Gordon Dougal
- Chief Executive Officer, Maculume Limited, Spennymoor, GBR
| | | | - Erxi Wu
- Neurosurgery, Baylor Scott & White Health, Temple, USA
| | - Alan B Stevens
- Gerontology, Baylor Scott & White Health Research Institute, Temple, USA
| | - S Stephen Yi
- Oncology, The University of Texas at Austin, Dell Medical School, Austin, USA
| | - Jason H Huang
- Neurosurgery, Baylor Scott & White Medical Center, Temple, USA
| |
Collapse
|
46
|
Chromosome compartments on the inactive X guide TAD formation independently of transcription during X-reactivation. Nat Commun 2021; 12:3499. [PMID: 34108480 PMCID: PMC8190187 DOI: 10.1038/s41467-021-23610-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
A hallmark of chromosome organization is the partition into transcriptionally active A and repressed B compartments, and into topologically associating domains (TADs). Both structures were regarded to be absent from the inactive mouse X chromosome, but to be re-established with transcriptional reactivation and chromatin opening during X-reactivation. Here, we combine a tailor-made mouse iPSC reprogramming system and high-resolution Hi-C to produce a time course combining gene reactivation, chromatin opening and chromosome topology during X-reactivation. Contrary to previous observations, we observe A/B-like compartments on the inactive X harbouring multiple subcompartments. While partial X-reactivation initiates within a compartment rich in X-inactivation escapees, it then occurs rapidly along the chromosome, concomitant with downregulation of Xist. Importantly, we find that TAD formation precedes transcription and initiates from Xist-poor compartments. Here, we show that TAD formation and transcriptional reactivation are causally independent during X-reactivation while establishing Xist as a common denominator.
Collapse
|
47
|
He H, Guzman RE, Cao D, Sierra-Marquez J, Yin F, Fahlke C, Peng J, Stauber T. The molecular and phenotypic spectrum of CLCN4-related epilepsy. Epilepsia 2021; 62:1401-1415. [PMID: 33951195 DOI: 10.1111/epi.16906] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE This study was undertaken to expand the phenotypic and genetic spectrum of CLCN4-related epilepsy and to investigate genotype-phenotype correlations. METHODS We systematically reviewed the phenotypic and genetic spectrum of newly diagnosed and previously reported patients with CLCN4-related epilepsy. Three novel variants identified in four patients reported in this study were evaluated through in silico prediction and functional analysis by Western blot, immunofluorescence, and electrophysiological measurements. RESULTS Epilepsy was diagnosed in 54.55% (24/44) of individuals with CLCN4-related disorders and was drug-resistant in most cases. Of 24 patients, 15 had epileptic encephalopathy and four died at an early age; 69.57% of patients had seizure onset within the first year of life. Myoclonic seizures are the most common seizure type, and 56.25% of patients presented multiple seizure types. Notably, seizure outcome was favorable in individuals with only one seizure type. All patients showed intellectual disability, which was severe in 65.22% of patients. Additional common features included language delay, behavioral disorders, and dysmorphic features. Five patients benefitted from treatment with lamotrigine. Most variants, which were mainly missense (79.17%), were inherited (70.83%). Whereas frameshift, intragenic deletion, or inherited variants were associated with milder phenotypes, missense or de novo variants led to more severe phenotypes. All evaluated CLCN4 variants resulted in loss of function with reduced ClC-4 currents. Nonetheless, genotype-phenotype relationships for CLCN4-related epilepsy are not straightforward, as phenotypic variability was observed in recurrent variants and within single families. SIGNIFICANCE Pathogenic CLCN4 variants contribute significantly to the genetic etiology of epilepsy. The phenotypic spectrum of CLCN4-related epilepsy includes drug-resistant seizures, cognitive and language impairment, behavioral disorders, and congenital anomalies. Notably, the mutation type and the number of seizure types correlate with the severity of the phenotype, suggesting its use for clinical prognosis. Lamotrigine can be considered a therapeutic option.
Collapse
Affiliation(s)
- Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Raul E Guzman
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Dezhi Cao
- Neurology Department, Shenzhen Children's Hospital, Shenzhen, China
| | - Juan Sierra-Marquez
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Christoph Fahlke
- Institute of Biological Information Processing (IBI-1), Molecular and Cell Physiology, Jülich Research Center, Jülich, Germany
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Tobias Stauber
- Institute of Chemistry and Biochemistry, Berlin Free University, Berlin, Germany.,Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
48
|
Hoshina N, Johnson-Venkatesh EM, Hoshina M, Umemori H. Female-specific synaptic dysfunction and cognitive impairment in a mouse model of PCDH19 disorder. Science 2021; 372:372/6539/eaaz3893. [PMID: 33859005 PMCID: PMC9873198 DOI: 10.1126/science.aaz3893] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 09/25/2020] [Accepted: 03/01/2021] [Indexed: 01/26/2023]
Abstract
Protocadherin-19 (PCDH19) mutations cause early-onset seizures and cognitive impairment. The PCDH19 gene is on the X-chromosome. Unlike most X-linked disorders, PCDH19 mutations affect heterozygous females (PCDH19HET♀ ) but not hemizygous males (PCDH19HEMI♂ ); however, the reason why remains to be elucidated. We demonstrate that PCDH19, a cell-adhesion molecule, is enriched at hippocampal mossy fiber synapses. Pcdh19HET♀ but not Pcdh19HEMI♂ mice show impaired mossy fiber synaptic structure and physiology. Consistently, Pcdh19HET♀ but not Pcdh19HEMI♂ mice exhibit reduced pattern completion and separation abilities, which require mossy fiber synaptic function. Furthermore, PCDH19 appears to interact with N-cadherin at mossy fiber synapses. In Pcdh19HET♀ conditions, mismatch between PCDH19 and N-cadherin diminishes N-cadherin-dependent signaling and impairs mossy fiber synapse development; N-cadherin overexpression rescues Pcdh19HET♀ phenotypes. These results reveal previously unknown molecular and cellular mechanisms underlying the female-specific PCDH19 disorder phenotype.
Collapse
Affiliation(s)
| | | | | | - Hisashi Umemori
- Corresponding author. Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Center for Life Sciences 13074, Boston, MA 02115,
| |
Collapse
|
49
|
Alwani M, Yassin A, Al-Zoubi RM, Aboumarzouk OM, Nettleship J, Kelly D, Al-Qudimat AR, Shabsigh R. Sex-based differences in severity and mortality in COVID-19. Rev Med Virol 2021; 31:e2223. [PMID: 33646622 PMCID: PMC8014761 DOI: 10.1002/rmv.2223] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease (COVID‐19) pandemic caused by novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has a male bias in severity and mortality. This is consistent with previous coronavirus pandemics such as SARS‐CoV and MERS‐CoV, and viral infections in general. Here, we discuss the sex‐disaggregated epidemiological data for COVID‐19 and highlight underlying differences that may explain the sexual dimorphism to help inform risk stratification strategies and therapeutic options.
Collapse
Affiliation(s)
- Mustafa Alwani
- Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.,Jordan University of Science and Technology, School of Medicine, Irbid, Jordan
| | - Aksam Yassin
- Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.,Department of Surgery, Hamad Medical Corporation, Division of Urology/Andrology & Men's Health, Doha, Qatar.,Center of Medicine and Health Sciences, Dresden International University, Dresden, Germany
| | - Raed M Al-Zoubi
- Surgical Research Section, Hamad Medical Corporation, Doha, Qatar.,Department of Chemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Omar M Aboumarzouk
- Department of Surgery, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar.,College of Medicine, University of Glasgow, Glasgow, UK
| | - Joanne Nettleship
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Daniel Kelly
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.,Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | - Ridwan Shabsigh
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
50
|
Kilgore DA, Kilgore TA, Sukpraprut-Braaten S, Schaefer GB, Uwaydat SH. Multimodal imaging of an RPGR carrier female. Ophthalmic Genet 2021; 42:312-316. [PMID: 33620278 DOI: 10.1080/13816810.2021.1881981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Retinitis pigmentosa GTPase regulator (RPGR) gene mutations are a common cause of X-linked retinitis pigmentosa and X-linked cone-rod dystrophy. There have been no previous reports of association with crystalline retinopathy or pseudo-crystalline retinopathy.Materials and Methods: We describe the history, clinical findings, retinal imaging, and electrodiagnostic studies of a patient with a tapetal-like reflex (TLR) and pseudo-crystalline retinopathy secondary to RPGR mutation.Case Description: Asymptomatic TLR secondary to RPGR mutation was diagnosed in a 14-year-old African American female with a family history of retinal dystrophy and no other past ophthalmic or medical history. Pseudo-crystalline retinopathy was observed on the Optos scanning laser ophthalmoscopy (SLO) imaging system but not on color fundus photography (CFP). Evidence of a TLR secondary to RPGR mutation was confirmed by CFP, autofluorescence, and genetic testing.Conclusion: We present a case of pseudo-crystalline retinopathy seen on Optos imaging in a patient with a TLR secondary to RPGR mutation.
Collapse
Affiliation(s)
- David A Kilgore
- Jones Eye Institute, Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Tyler A Kilgore
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Suporn Sukpraprut-Braaten
- Department of Graduate Medical Education, Unity Health-White County Medical Center, Searcy, Arkansas, USA
| | - Gerald B Schaefer
- Department of Genetics, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Sami H Uwaydat
- Jones Eye Institute, Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|