1
|
Mahishi D, Agrawal N, Jiang W, Yapici N. From Mammals to Insects: Exploring the Genetic and Neural Basis of Eating Behavior. Annu Rev Genet 2024; 58:455-485. [PMID: 39585905 DOI: 10.1146/annurev-genet-111523-102202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Obesity and anorexia are life-threatening diseases that are still poorly understood at the genetic and neuronal levels. Patients suffering from these conditions experience disrupted regulation of food consumption, leading to extreme weight gain or loss and, in severe situations, death from metabolic dysfunction. Despite the development of various behavioral and pharmacological interventions, current treatments often yield limited and short-lived success. To address this, a deeper understanding of the genetic and neural mechanisms underlying food perception and appetite regulation is essential for identifying new drug targets and developing more effective treatment methods. This review summarizes the progress of past research in understanding the genetic and neural mechanisms controlling food consumption and appetite regulation, focusing on two key model organisms: the fruit fly Drosophila melanogaster and the mouse Mus musculus. These studies investigate how the brain senses energy and nutrient deficiency, how sensory signals trigger appetitive behaviors, and how food intake is regulated through interconnected neural circuits in the brain.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Naman Agrawal
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Wenshuai Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA;
| |
Collapse
|
2
|
Yip C, Wyler SC, Liang K, Yamazaki S, Cobb T, Safdar M, Metai A, Merchant W, Wessells R, Rothenfluh A, Lee S, Elmquist J, You YJ. Neuronal E93 is required for adaptation to adult metabolism and behavior. Mol Metab 2024; 84:101939. [PMID: 38621602 PMCID: PMC11053319 DOI: 10.1016/j.molmet.2024.101939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVE Metamorphosis is a transition from growth to reproduction, through which an animal adopts adult behavior and metabolism. Yet the neural mechanisms underlying the switch are unclear. Here we report that neuronal E93, a transcription factor essential for metamorphosis, regulates the adult metabolism, physiology, and behavior in Drosophila melanogaster. METHODS To find new neuronal regulators of metabolism, we performed a targeted RNAi-based screen of 70 Drosophila orthologs of the mammalian genes enriched in ventromedial hypothalamus (VMH). Once E93 was identified from the screen, we characterized changes in physiology and behavior when neuronal expression of E93 is knocked down. To identify the neurons where E93 acts, we performed an additional screen targeting subsets of neurons or endocrine cells. RESULTS E93 is required to control appetite, metabolism, exercise endurance, and circadian rhythms. The diverse phenotypes caused by pan-neuronal knockdown of E93, including obesity, exercise intolerance and circadian disruption, can all be phenocopied by knockdown of E93 specifically in either GABA or MIP neurons, suggesting these neurons are key sites of E93 action. Knockdown of the Ecdysone Receptor specifically in MIP neurons partially phenocopies the MIP neuron-specific knockdown of E93, suggesting the steroid signal coordinates adult metabolism via E93 and a neuropeptidergic signal. Finally, E93 expression in GABA and MIP neurons also serves as a key switch for the adaptation to adult behavior, as animals with reduced expression of E93 in the two subsets of neurons exhibit reduced reproductive activity. CONCLUSIONS Our study reveals that E93 is a new monogenic factor essential for metabolic, physiological, and behavioral adaptation from larval behavior to adult behavior.
Collapse
Affiliation(s)
- Cecilia Yip
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven C Wyler
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Katrina Liang
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shin Yamazaki
- Department of Neuroscience and Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tyler Cobb
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maryam Safdar
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aarav Metai
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Warda Merchant
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert Wessells
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adrian Rothenfluh
- Huntsman Mental Health Institute, Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Syann Lee
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joel Elmquist
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Young-Jai You
- The Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
González Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. eLife 2023; 12:RP88143. [PMID: 37732734 PMCID: PMC10513480 DOI: 10.7554/elife.88143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila, four neurons called the interoceptive subesophageal zone neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell-type bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPCs), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, BerkeleyBerkeleyUnited States
| | | | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
5
|
González-Segarra AJ, Pontes G, Jourjine N, Del Toro A, Scott K. Hunger- and thirst-sensing neurons modulate a neuroendocrine network to coordinate sugar and water ingestion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535891. [PMID: 37066363 PMCID: PMC10104137 DOI: 10.1101/2023.04.06.535891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Consumption of food and water is tightly regulated by the nervous system to maintain internal nutrient homeostasis. Although generally considered independently, interactions between hunger and thirst drives are important to coordinate competing needs. In Drosophila , four neurons called the Interoceptive Subesophageal zone Neurons (ISNs) respond to intrinsic hunger and thirst signals to oppositely regulate sucrose and water ingestion. Here, we investigate the neural circuit downstream of the ISNs to examine how ingestion is regulated based on internal needs. Utilizing the recently available fly brain connectome, we find that the ISNs synapse with a novel cell type Bilateral T-shaped neuron (BiT) that projects to neuroendocrine centers. In vivo neural manipulations revealed that BiT oppositely regulates sugar and water ingestion. Neuroendocrine cells downstream of ISNs include several peptide-releasing and peptide-sensing neurons, including insulin producing cells (IPC), crustacean cardioactive peptide (CCAP) neurons, and CCHamide-2 receptor isoform RA (CCHa2R-RA) neurons. These neurons contribute differentially to ingestion of sugar and water, with IPCs and CCAP neurons oppositely regulating sugar and water ingestion, and CCHa2R-RA neurons modulating only water ingestion. Thus, the decision to consume sugar or water occurs via regulation of a broad peptidergic network that integrates internal signals of nutritional state to generate nutrient-specific ingestion.
Collapse
Affiliation(s)
| | - Gina Pontes
- University of California, Berkeley, United States
- present address: IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Nicholas Jourjine
- University of California, Berkeley, United States
- present address: Harvard University, Cambridge, United States
| | - Alexander Del Toro
- University of California, Berkeley, United States
- present address: Brown University, Rhode Island, United States
| | | |
Collapse
|
6
|
Han Y, He Y, Harris L, Xu Y, Wu Q. Identification of a GABAergic neural circuit governing leptin signaling deficiency-induced obesity. eLife 2023; 12:e82649. [PMID: 37043384 PMCID: PMC10097419 DOI: 10.7554/elife.82649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 04/13/2023] Open
Abstract
The hormone leptin is known to robustly suppress food intake by acting upon the leptin receptor (LepR) signaling system residing within the agouti-related protein (AgRP) neurons of the hypothalamus. However, clinical studies indicate that leptin is undesirable as a therapeutic regiment for obesity, which is at least partly attributed to the poorly understood complex secondary structure and key signaling mechanism of the leptin-responsive neural circuit. Here, we show that the LepR-expressing portal neurons send GABAergic projections to a cohort of α3-GABAA receptor expressing neurons within the dorsomedial hypothalamic nucleus (DMH) for the control of leptin-mediated obesity phenotype. We identified the DMH as a key brain region that contributes to the regulation of leptin-mediated feeding. Acute activation of the GABAergic AgRP-DMH circuit promoted food intake and glucose intolerance, while activation of post-synaptic MC4R neurons in the DMH elicited exactly opposite phenotypes. Rapid deletion of LepR from AgRP neurons caused an obesity phenotype which can be rescued by blockage of GABAA receptor in the DMH. Consistent with behavioral results, these DMH neurons displayed suppressed neural activities in response to hunger or hyperglycemia. Furthermore, we identified that α3-GABAA receptor signaling within the DMH exerts potent bi-directional regulation of the central effects of leptin on feeding and body weight. Together, our results demonstrate a novel GABAergic neural circuit governing leptin-mediated feeding and energy balance via a unique α3-GABAA signaling within the secondary leptin-responsive neural circuit, constituting a new avenue for therapeutic interventions in the treatment of obesity and associated comorbidities.
Collapse
Affiliation(s)
- Yong Han
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yang He
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Lauren Harris
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Yong Xu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| | - Qi Wu
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
7
|
Dey M, Ganguly A, Dahanukar A. An inhibitory mechanism for suppressing high salt intake in Drosophila. Chem Senses 2023; 48:bjad014. [PMID: 37201555 PMCID: PMC10413321 DOI: 10.1093/chemse/bjad014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 05/20/2023] Open
Abstract
High concentrations of dietary salt are harmful to health. Like most animals, Drosophila melanogaster are attracted to foods that have low concentrations of salt, but show strong taste avoidance of high salt foods. Salt in known on multiple classes of taste neurons, activating Gr64f sweet-sensing neurons that drive food acceptance and 2 others (Gr66a bitter and Ppk23 high salt) that drive food rejection. Here we find that NaCl elicits a bimodal dose-dependent response in Gr64f taste neurons, which show high activity with low salt and depressed activity with high salt. High salt also inhibits the sugar response of Gr64f neurons, and this action is independent of the neuron's taste response to salt. Consistent with the electrophysiological analysis, feeding suppression in the presence of salt correlates with inhibition of Gr64f neuron activity, and remains if high salt taste neurons are genetically silenced. Other salts such as Na2SO4, KCl, MgSO4, CaCl2, and FeCl3 act on sugar response and feeding behavior in the same way. A comparison of the effects of various salts suggests that inhibition is dictated by the cationic moiety rather than the anionic component of the salt. Notably, high salt-dependent inhibition is not observed in Gr66a neurons-response to a canonical bitter tastant, denatonium, is not altered by high salt. Overall, this study characterizes a mechanism in appetitive Gr64f neurons that can deter ingestion of potentially harmful salts.
Collapse
Affiliation(s)
- Manali Dey
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, United States
| | - Anindya Ganguly
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, United States
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, United States
- Department of Molecular, Cell & Systems Biology, University of California, Riverside, CA 92521, United States
| |
Collapse
|
8
|
Zhao Y, Duan J, Han Z, Engström Y, Hartenstein V. Identification of a GABAergic neuroblast lineage modulating sweet and bitter taste sensitivity. Curr Biol 2022; 32:5354-5363.e3. [PMID: 36347251 PMCID: PMC10728805 DOI: 10.1016/j.cub.2022.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
In Drosophila melanogaster, processing of gustatory information and controlling feeding behavior are executed by neural circuits located in the subesophageal zone (SEZ) of the brain.1 Gustatory receptor neurons (GRNs) project their axons in the primary gustatory center (PGC), which is located in the SEZ.1,2,3,4 To address the function of the PGC, we need detailed information about the different classes of gustatory interneurons that frame the PGC. In this work, we screened large collections of driver lines for SEZ interneuron-specific labeling and subsequently used candidate lines to access the SEZ neuroblast lineages. We converted 130 Gal4 lines to LexA drivers and carried out functional screening using calcium imaging. We found one neuroblast lineage, TRdm, whose neurons responded to both sweet and bitter tastants, and formed green fluorescent protein (GFP) reconstitution across synaptic partners (GRASP)-positive synapses with sweet sensory neurons. TRdm neurons express the inhibitory transmitter GABA, and silencing these neurons increases appetitive feeding behavior. These results demonstrate that TRdm generates a class of inhibitory local neurons that control taste sensitivity in Drosophila.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Biozentrum, University of Basel, 4056 Basel, Switzerland; Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA.
| | - Jianli Duan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, University of Maryland School of Medicine, Baltimore 21201, USA
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles 90095-1606, USA.
| |
Collapse
|
9
|
Deere JU, Devineni AV. Taste cues elicit prolonged modulation of feeding behavior in Drosophila. iScience 2022; 25:105159. [PMID: 36204264 PMCID: PMC9529979 DOI: 10.1016/j.isci.2022.105159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/02/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Taste cues regulate immediate feeding behavior, but their ability to modulate future behavior has been less well studied. Pairing one taste with another can modulate subsequent feeding responses through associative learning, but this requires simultaneous exposure to both stimuli. We investigated whether exposure to one taste modulates future responses to other tastes even when they do not overlap in time. Using Drosophila, we found that brief exposure to sugar enhanced future feeding responses, whereas bitter exposure suppressed them. This modulation relies on neural pathways distinct from those that acutely regulate feeding or mediate learning-dependent changes. Sensory neuron activity was required not only during initial taste exposure but also afterward, suggesting that ongoing sensory activity may maintain experience-dependent changes in downstream circuits. Thus, the brain stores a memory of each taste stimulus after it disappears, enabling animals to integrate information as they sequentially sample different taste cues that signal local food quality.
Collapse
Affiliation(s)
- Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anita V Devineni
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
10
|
De Backer JF, Grunwald Kadow IC. A role for glia in cellular and systemic metabolism: insights from the fly. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100947. [PMID: 35772690 DOI: 10.1016/j.cois.2022.100947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Excitability and synaptic transmission make neurons high-energy consumers. However, neurons do not store carbohydrates or lipids. Instead, they need support cells to fuel their metabolic demands. This role is assumed by glia, both in vertebrates and invertebrates. Many questions remain regarding the coupling between neuronal activity and energy demand on the one hand, and nutrient supply by glia on the other hand. Here, we review recent advances showing that fly glia, similar to their role in vertebrates, fuel neurons in times of high energetic demand, such as during memory formation and long-term storage. Vertebrate glia also play a role in the modulation of neurons, their communication, and behavior, including food search and feeding. We discuss recent literature pointing to similar roles of fly glia in behavior and metabolism.
Collapse
Affiliation(s)
- Jean-François De Backer
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, Liesel-Beckmann-Str. 4, 85354 Freising, Germany; University of Bonn, Faculty of Medicine, UKB, Institute of Physiology II, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
11
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
12
|
Yao Z, Scott K. Serotonergic neurons translate taste detection into internal nutrient regulation. Neuron 2022; 110:1036-1050.e7. [PMID: 35051377 DOI: 10.1016/j.neuron.2021.12.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/26/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
Abstract
The nervous and endocrine systems coordinately monitor and regulate nutrient availability to maintain energy homeostasis. Sensory detection of food regulates internal nutrient availability in a manner that anticipates food intake, but sensory pathways that promote anticipatory physiological changes remain unclear. Here, we identify serotonergic (5-HT) neurons as critical mediators that transform gustatory detection by sensory neurons into the activation of insulin-producing cells and enteric neurons in Drosophila. One class of 5-HT neurons responds to gustatory detection of sugars, excites insulin-producing cells, and limits consumption, suggesting that they anticipate increased nutrient levels and prevent overconsumption. A second class of 5-HT neurons responds to gustatory detection of bitter compounds and activates enteric neurons to promote gastric motility, likely to stimulate digestion and increase circulating nutrients upon food rejection. These studies demonstrate that 5-HT neurons relay acute gustatory detection to divergent pathways for longer-term stabilization of circulating nutrients.
Collapse
Affiliation(s)
- Zepeng Yao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Excessive energy expenditure due to acute physical restraint disrupts Drosophila motivational feeding response. Sci Rep 2021; 11:24208. [PMID: 34921197 PMCID: PMC8683507 DOI: 10.1038/s41598-021-03575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022] Open
Abstract
To study the behavior of Drosophila, it is often necessary to restrain and mount individual flies. This requires removal from food, additional handling, anesthesia, and physical restraint. We find a strong positive correlation between the length of time flies are mounted and their subsequent reflexive feeding response, where one hour of mounting is the approximate motivational equivalent to ten hours of fasting. In an attempt to explain this correlation, we rule out anesthesia side-effects, handling, additional fasting, and desiccation. We use respirometric and metabolic techniques coupled with behavioral video scoring to assess energy expenditure in mounted and free flies. We isolate a specific behavior capable of exerting large amounts of energy in mounted flies and identify it as an attempt to escape from restraint. We present a model where physical restraint leads to elevated activity and subsequent faster nutrient storage depletion among mounted flies. This ultimately further accelerates starvation and thus increases reflexive feeding response. In addition, we show that the consequences of the physical restraint profoundly alter aerobic activity, energy depletion, taste, and feeding behavior, and suggest that careful consideration is given to the time-sensitive nature of these highly significant effects when conducting behavioral, physiological or imaging experiments that require immobilization.
Collapse
|
14
|
Yang T, Yuan Z, Liu C, Liu T, Zhang W. A neural circuit integrates pharyngeal sensation to control feeding. Cell Rep 2021; 37:109983. [PMID: 34758309 DOI: 10.1016/j.celrep.2021.109983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Swallowing is an essential step of eating and drinking. However, how the quality of a food bolus is sensed by pharyngeal neurons is largely unknown. Here we find that mechanical receptors along the Drosophila pharynx are required for control of meal size, especially for food of high viscosity. The mechanical force exerted by the bolus passing across the pharynx is detected by neurons expressing the mechanotransduction channel NOMPC (no mechanoreceptor potential C) and is relayed, together with gustatory information, to IN1 neurons in the subesophageal zone (SEZ) of the brain. IN1 (ingestion neurons) neurons act directly upstream of a group of peptidergic neurons that encode satiety. Prolonged activation of IN1 neurons suppresses feeding. IN1 neurons receive inhibition from DSOG1 (descending subesophageal neurons) neurons, a group of GABAergic neurons that non-selectively suppress feeding. Our results reveal the function of pharyngeal mechanoreceptors and their downstream neural circuits in the control of food ingestion.
Collapse
Affiliation(s)
- Tingting Yang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Zixuan Yuan
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Chenxi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
15
|
Sakurai A, Littleton JT, Kojima H, Yoshihara M. Alteration in information flow through a pair of feeding command neurons underlies a form of Pavlovian conditioning in the Drosophila brain. Curr Biol 2021; 31:4163-4171.e3. [PMID: 34352215 PMCID: PMC9022044 DOI: 10.1016/j.cub.2021.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Pavlovian conditioning1 is a broadly used learning paradigm where defined stimuli are associated to induce behavioral switching. To define a causal relationship between activity change in a single neuron and behavioral switching, we took advantage of a "command neuron" that connects cellular function to behavior.2 To examine the cellular and molecular basis of Pavlovian conditioning, we previously identified a pair of feeding command neurons termed "feeding neurons" in the adult Drosophila brain3 using genetic screening4 and opto- and thermo-genetic techniques.5-7 The feeding neuron is activated by sweet signals like sucrose and induces the full complement of feeding behaviors, such as proboscis extension and food pumping. Ablation or inactivation of the pair of feeding neurons abolishes feeding behavior, suggesting that this single pair of neurons is indispensable for natural feeding behaviors.2,3 Here, we describe a novel conditioning protocol to associate a signal-mediating rod removal from legs (conditioned stimulus [CS]) to feeding behavior induced by sucrose stimulation (unconditioned stimulus [US]). Calcium imaging of the feeding neuron demonstrated it acquires responsiveness to CS during conditioning, with inactivation of the feeding neuron during conditioning suppressing plasticity. These results suggest conditioning alters signals flowing from the CS into the feeding circuit, with the feeding neuron functioning as a key integrative hub for Hebbian plasticity.
Collapse
Affiliation(s)
- Akira Sakurai
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan; The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hiroaki Kojima
- Protein Biophysics Project, National Institute of Information and Communications Technology, Kobe, Japan
| | - Motojiro Yoshihara
- Memory Neurobiology Project, National Institute of Information and Communications Technology, Kobe, Japan; The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Sterne GR, Otsuna H, Dickson BJ, Scott K. Classification and genetic targeting of cell types in the primary taste and premotor center of the adult Drosophila brain. eLife 2021; 10:e71679. [PMID: 34473057 PMCID: PMC8445619 DOI: 10.7554/elife.71679] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/01/2021] [Indexed: 12/29/2022] Open
Abstract
Neural circuits carry out complex computations that allow animals to evaluate food, select mates, move toward attractive stimuli, and move away from threats. In insects, the subesophageal zone (SEZ) is a brain region that receives gustatory, pheromonal, and mechanosensory inputs and contributes to the control of diverse behaviors, including feeding, grooming, and locomotion. Despite its importance in sensorimotor transformations, the study of SEZ circuits has been hindered by limited knowledge of the underlying diversity of SEZ neurons. Here, we generate a collection of split-GAL4 lines that provides precise genetic targeting of 138 different SEZ cell types in adult Drosophila melanogaster, comprising approximately one third of all SEZ neurons. We characterize the single-cell anatomy of these neurons and find that they cluster by morphology into six supergroups that organize the SEZ into discrete anatomical domains. We find that the majority of local SEZ interneurons are not classically polarized, suggesting rich local processing, whereas SEZ projection neurons tend to be classically polarized, conveying information to a limited number of higher brain regions. This study provides insight into the anatomical organization of the SEZ and generates resources that will facilitate further study of SEZ neurons and their contributions to sensory processing and behavior.
Collapse
Affiliation(s)
- Gabriella R Sterne
- University of California BerkeleyBerkeleyUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandQueenslandAustralia
| | - Kristin Scott
- University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
17
|
Landayan D, Wang BP, Zhou J, Wolf FW. Thirst interneurons that promote water seeking and limit feeding behavior in Drosophila. eLife 2021; 10:e66286. [PMID: 34018925 PMCID: PMC8139827 DOI: 10.7554/elife.66286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
Thirst is a motivational state that drives behaviors to obtain water for fluid homeostasis. We identified two types of central brain interneurons that regulate thirsty water seeking in Drosophila, that we term the Janu neurons. Janu-GABA, a local interneuron in the subesophageal zone, is activated by water deprivation and is specific to thirsty seeking. Janu-AstA projects from the subesophageal zone to the superior medial protocerebrum, a higher order processing area. Janu-AstA signals with the neuropeptide Allatostatin A to promote water seeking and to inhibit feeding behavior. NPF (Drosophila NPY) neurons are postsynaptic to Janu-AstA for water seeking and feeding through the AstA-R2 galanin-like receptor. NPF neurons use NPF to regulate thirst and hunger behaviors. Flies choose Janu neuron activation, suggesting that thirsty seeking up a humidity gradient is rewarding. These findings identify novel central brain circuit elements that coordinate internal state drives to selectively control motivated seeking behavior.
Collapse
Affiliation(s)
- Dan Landayan
- Quantitative and Systems Biology Graduate Program, UCMercedUnited States
| | - Brian P Wang
- Quantitative and Systems Biology Graduate Program, UCMercedUnited States
| | - Jennifer Zhou
- Department of Molecular and Cell Biology, UCMercedUnited States
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, UCMercedUnited States
- Department of Molecular and Cell Biology, UCMercedUnited States
| |
Collapse
|
18
|
Brown EB, Shah KD, Palermo J, Dey M, Dahanukar A, Keene AC. Ir56d-dependent fatty acid responses in Drosophila uncover taste discrimination between different classes of fatty acids. eLife 2021; 10:67878. [PMID: 33949306 PMCID: PMC8169106 DOI: 10.7554/elife.67878] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
Chemosensory systems are critical for evaluating the caloric value and potential toxicity of food. While animals can discriminate between thousands of odors, much less is known about the discriminative capabilities of taste systems. Fats and sugars represent calorically potent and attractive food sources that contribute to hedonic feeding. Despite the differences in nutritional value between fats and sugars, the ability of the taste system to discriminate between different rewarding tastants is thought to be limited. In Drosophila, taste neurons expressing the ionotropic receptor 56d (IR56d) are required for reflexive behavioral responses to the medium-chain fatty acid, hexanoic acid. Here, we tested whether flies can discriminate between different classes of fatty acids using an aversive memory assay. Our results indicate that flies are able to discriminate medium-chain fatty acids from both short- and long-chain fatty acids, but not from other medium-chain fatty acids. While IR56d neurons are broadly responsive to short-, medium-, and long-chain fatty acids, genetic deletion of IR56d selectively disrupts response to medium-chain fatty acids. Further, IR56d+ GR64f+ neurons are necessary for proboscis extension response (PER) to medium-chain fatty acids, but both IR56d and GR64f neurons are dispensable for PER to short- and long-chain fatty acids, indicating the involvement of one or more other classes of neurons. Together, these findings reveal that IR56d is selectively required for medium-chain fatty acid taste, and discrimination of fatty acids occurs through differential receptor activation in shared populations of neurons. Our study uncovers a capacity for the taste system to encode tastant identity within a taste category.
Collapse
Affiliation(s)
- Elizabeth B Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Kreesha D Shah
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States.,Wilkes Honors College, Florida Atlantic University, Jupiter, United States
| | - Justin Palermo
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| | - Manali Dey
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, United States
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, United States.,Department of Molecular, Cell & Systems Biology, University of California, Riverside, Riverside, United States
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, United States
| |
Collapse
|
19
|
Min S, Oh Y, Verma P, Whitehead SC, Yapici N, Van Vactor D, Suh GS, Liberles S. Control of feeding by Piezo-mediated gut mechanosensation in Drosophila. eLife 2021; 10:63049. [PMID: 33599608 PMCID: PMC7920550 DOI: 10.7554/elife.63049] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/16/2021] [Indexed: 11/13/2022] Open
Abstract
Across animal species, meals are terminated after ingestion of large food volumes, yet underlying mechanosensory receptors have so far remained elusive. Here, we identify an essential role for Drosophila Piezo in volume-based control of meal size. We discover a rare population of fly neurons that express Piezo, innervate the anterior gut and crop (a food reservoir organ), and respond to tissue distension in a Piezo-dependent manner. Activating Piezo neurons decreases appetite, while Piezo knockout and Piezo neuron silencing cause gut bloating and increase both food consumption and body weight. These studies reveal that disrupting gut distension receptors changes feeding patterns and identify a key role for Drosophila Piezo in internal organ mechanosensation.
Collapse
Affiliation(s)
- Soohong Min
- Howard Hughes Medical Institute, Harvard Medical School, Department of Cell Biology, Boston, United States
| | - Yangkyun Oh
- Skirball Institute, NYU School of Medicine, New York, United States
| | - Pushpa Verma
- Harvard Medical School, Department of Cell Biology, Boston, United States
| | | | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, United States
| | - David Van Vactor
- Harvard Medical School, Department of Cell Biology, Boston, United States
| | - Greg Sb Suh
- Skirball Institute, NYU School of Medicine, New York, United States.,KAIST, Department of Biological Sciences, Daejeon, Republic of Korea
| | - Stephen Liberles
- Howard Hughes Medical Institute, Harvard Medical School, Department of Cell Biology, Boston, United States
| |
Collapse
|
20
|
Abstract
The integration of two or more distinct sensory cues can help animals make more informed decisions about potential food sources, but little is known about how feeding-related multimodal sensory integration happens at the cellular and molecular levels. Here, we show that multimodal sensory integration contributes to a stereotyped feeding behavior in the model organism Drosophila melanogaster Simultaneous olfactory and mechanosensory inputs significantly influence a taste-evoked feeding behavior called the proboscis extension reflex (PER). Olfactory and mechanical information are mediated by antennal Or35a neurons and leg hair plate mechanosensory neurons, respectively. We show that the controlled delivery of three different sensory cues can produce a supra-additive PER via the concurrent stimulation of olfactory, taste, and mechanosensory inputs. We suggest that the fruit fly is a versatile model system to study multisensory integration related to feeding, which also likely exists in vertebrates.
Collapse
|
21
|
Wang P, Jia Y, Liu T, Jan YN, Zhang W. Visceral Mechano-sensing Neurons Control Drosophila Feeding by Using Piezo as a Sensor. Neuron 2020; 108:640-650.e4. [PMID: 32910893 DOI: 10.1016/j.neuron.2020.08.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/24/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Animal feeding is controlled by external sensory cues and internal metabolic states. Does it also depend on enteric neurons that sense mechanical cues to signal fullness of the digestive tract? Here, we identify a group of piezo-expressing neurons innervating the Drosophila crop (the fly equivalent of the stomach) that monitor crop volume to avoid food overconsumption. These neurons reside in the pars intercerebralis (PI), a neuro-secretory center in the brain involved in homeostatic control, and express insulin-like peptides with well-established roles in regulating food intake and metabolism. Piezo knockdown in these neurons of wild-type flies phenocopies the food overconsumption phenotype of piezo-null mutant flies. Conversely, expression of either fly Piezo or mammalian Piezo1 in these neurons of piezo-null mutants suppresses the overconsumption phenotype. Importantly, Piezo+ neurons at the PI are activated directly by crop distension, thus conveying a rapid satiety signal along the "brain-gut axis" to control feeding.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yinjun Jia
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Ting Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Yuh-Nung Jan
- Howard Hughes Medical Institute, Departments of Physiology, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Wei Zhang
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Jin K, Wilson KA, Beck JN, Nelson CS, Brownridge GW, Harrison BR, Djukovic D, Raftery D, Brem RB, Yu S, Drton M, Shojaie A, Kapahi P, Promislow D. Genetic and metabolomic architecture of variation in diet restriction-mediated lifespan extension in Drosophila. PLoS Genet 2020; 16:e1008835. [PMID: 32644988 PMCID: PMC7347105 DOI: 10.1371/journal.pgen.1008835] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
In most organisms, dietary restriction (DR) increases lifespan. However, several studies have found that genotypes within the same species vary widely in how they respond to DR. To explore the mechanisms underlying this variation, we exposed 178 inbred Drosophila melanogaster lines to a DR or ad libitum (AL) diet, and measured a panel of 105 metabolites under both diets. Twenty four out of 105 metabolites were associated with the magnitude of the lifespan response. These included proteinogenic amino acids and metabolites involved in α-ketoglutarate (α-KG)/glutamine metabolism. We confirm the role of α-KG/glutamine synthesis pathways in the DR response through genetic manipulations. We used covariance network analysis to investigate diet-dependent interactions between metabolites, identifying the essential amino acids threonine and arginine as “hub” metabolites in the DR response. Finally, we employ a novel metabolic and genetic bipartite network analysis to reveal multiple genes that influence DR lifespan response, some of which have not previously been implicated in DR regulation. One of these is CCHa2R, a gene that encodes a neuropeptide receptor that influences satiety response and insulin signaling. Across the lines, variation in an intronic single nucleotide variant of CCHa2R correlated with variation in levels of five metabolites, all of which in turn were correlated with DR lifespan response. Inhibition of adult CCHa2R expression extended DR lifespan of flies, confirming the role of CCHa2R in lifespan response. These results provide support for the power of combined genomic and metabolomic analysis to identify key pathways underlying variation in this complex quantitative trait. Dietary restriction extends lifespan across most organisms in which it has been tested. However, several studies have now demonstrated that this effect can vary dramatically across different genotypes within a population. Within a population, dietary restriction might be beneficial for some, yet detrimental for others. Here, we measure the metabolome of 178 genetically characterized fly strains on fully fed and restricted diets. The fly strains vary widely in their lifespan response to dietary restriction. We then use information about each strain’s genome and metabolome (a measure of small molecules circulating in flies) to pinpoint cellular pathways that govern this variation in response. We identify a novel pathway involving the gene CCHa2R, which encodes a neuropeptide receptor that has not previously been implicated in dietary restriction or age-related signaling pathways. This study demonstrates the power of leveraging systems biology and network biology methods to understand how and why different individuals vary in their response to health and lifespan-extending interventions.
Collapse
Affiliation(s)
- Kelly Jin
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Kenneth A. Wilson
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Jennifer N. Beck
- Buck Institute for Research on Aging, Novato, California, United States of America
| | | | - George W. Brownridge
- Buck Institute for Research on Aging, Novato, California, United States of America
- Dominican University of California, San Rafael, California, United States of America
| | - Benjamin R. Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Danijel Djukovic
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, United States of America
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Shiqing Yu
- Department of Statistics, University of Washington, Seattle, Washington, United States of America
| | - Mathias Drton
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Ali Shojaie
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, Novato, California, United States of America
- Davis School of Gerontology, University of Southern California, University Park, Los Angeles, California, United States of America
| | - Daniel Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Luan H, Kuzin A, Odenwald WF, White BH. Cre-assisted fine-mapping of neural circuits using orthogonal split inteins. eLife 2020; 9:e53041. [PMID: 32286225 PMCID: PMC7217698 DOI: 10.7554/elife.53041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/11/2020] [Indexed: 01/18/2023] Open
Abstract
Existing genetic methods of neuronal targeting do not routinely achieve the resolution required for mapping brain circuits. New approaches are thus necessary. Here, we introduce a method for refined neuronal targeting that can be applied iteratively. Restriction achieved at the first step can be further refined in a second step, if necessary. The method relies on first isolating neurons within a targeted group (i.e. Gal4 pattern) according to their developmental lineages, and then intersectionally limiting the number of lineages by selecting only those in which two distinct neuroblast enhancers are active. The neuroblast enhancers drive expression of split Cre recombinase fragments. These are fused to non-interacting pairs of split inteins, which ensure reconstitution of active Cre when all fragments are expressed in the same neuroblast. Active Cre renders all neuroblast-derived cells in a lineage permissive for Gal4 activity. We demonstrate how this system can facilitate neural circuit-mapping in Drosophila.
Collapse
Affiliation(s)
- Haojiang Luan
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| | - Alexander Kuzin
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Ward F Odenwald
- Neural Cell-Fate Determinants Section, National Institute of Neurological Disorders and Stroke, NIHBethesdaUnited States
| | - Benjamin H White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIHBethesdaUnited States
| |
Collapse
|
24
|
Wang GH, Wang LM. Recent advances in the neural regulation of feeding behavior in adult Drosophila. J Zhejiang Univ Sci B 2020; 20:541-549. [PMID: 31168968 DOI: 10.1631/jzus.b1900080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability to maintain metabolic homeostasis is a key capability critical for the survival and well-being of animals living in constantly changing environments. Metabolic homeostasis depends on neuromodulators, such as biogenic amines, neuropeptides, and hormones, to signal changes in animals' internal metabolic status and to orchestrate their behaviors accordingly. An important example is the regulation of feeding behavior by conserved molecular and cellular mechanisms across the animal kingdom. Its relatively simple brain coupled with well-characterized genetics and behavioral paradigms makes the fruit fly Drosophila melanogaster an excellent model for investigating the neuromodulatory regulation of feeding behavior. In this review we discuss the neuromodulators and neural circuits that integrate the internal physiological status with external sensory cues and modulate feeding behavior in adult fruit flies. Studies show that various specific aspects of feeding behavior are subjected to unique neuromodulatory regulation, which permits fruit flies to maintain metabolic homeostasis effectively.
Collapse
Affiliation(s)
- Gao-Hang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li-Ming Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Mahishi D, Huetteroth W. The prandial process in flies. CURRENT OPINION IN INSECT SCIENCE 2019; 36:157-166. [PMID: 31765996 DOI: 10.1016/j.cois.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Feeding is fundamental to any heterotroph organism; in its role to quell hunger it overrides most other motivational states. But feeding also literally opens the door to harmful risks, especially for a saprophagous animal like Drosophila; ingestion of poisonous substrate can lead to irreversible damage. Thus feeding incorporates a series of steps with several checkpoints to guarantee that the ingestion remains beneficial and provides a balanced diet, or the feeding process is interrupted. Subsequently, we will summarize and describe the feeding process in Drosophila in a comprehensive manner. We propose eleven distinct steps for feeding, grouped into four categories, to address our current knowledge of prandial regulatory mechanisms in Drosophila.
Collapse
Affiliation(s)
- Deepthi Mahishi
- Department of Biology, University of Leipzig, Leipzig, Germany
| | - Wolf Huetteroth
- Department of Biology, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
26
|
Gendron CM, Chakraborty TS, Chung BY, Harvanek ZM, Holme KJ, Johnson JC, Lyu Y, Munneke AS, Pletcher SD. Neuronal Mechanisms that Drive Organismal Aging Through the Lens of Perception. Annu Rev Physiol 2019; 82:227-249. [PMID: 31635526 DOI: 10.1146/annurev-physiol-021119-034440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Sensory neurons provide organisms with data about the world in which they live, for the purpose of successfully exploiting their environment. The consequences of sensory perception are not simply limited to decision-making behaviors; evidence suggests that sensory perception directly influences physiology and aging, a phenomenon that has been observed in animals across taxa. Therefore, understanding the neural mechanisms by which sensory input influences aging may uncover novel therapeutic targets for aging-related physiologies. In this review, we examine different perceptive experiences that have been most clearly linked to aging or age-related disease: food perception, social perception, time perception, and threat perception. For each, the sensory cues, receptors, and/or pathways that influence aging as well as the individual or groups of neurons involved, if known, are discussed. We conclude with general thoughts about the potential impact of this line of research on human health and aging.
Collapse
Affiliation(s)
- Christi M Gendron
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Tuhin S Chakraborty
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Zachary M Harvanek
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Kristina J Holme
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Jacob C Johnson
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Yang Lyu
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA;
| | - Allyson S Munneke
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology and the Geriatrics Center, University of Michigan, Ann Arbor, Michigan 48109, USA; .,Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
27
|
Chen YCD, Ahmad S, Amin K, Dahanukar A. A subset of brain neurons controls regurgitation in adult Drosophila melanogaster. J Exp Biol 2019; 222:jeb210724. [PMID: 31511344 PMCID: PMC6806010 DOI: 10.1242/jeb.210724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022]
Abstract
Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.
Collapse
Affiliation(s)
- Yu-Chieh David Chen
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
| | - Sameera Ahmad
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Kush Amin
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Anupama Dahanukar
- Interdepartmental Neuroscience Program, University of California, Riverside, CA 92521, USA
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
28
|
Musso PY, Junca P, Jelen M, Feldman-Kiss D, Zhang H, Chan RC, Gordon MD. Closed-loop optogenetic activation of peripheral or central neurons modulates feeding in freely moving Drosophila. eLife 2019; 8:45636. [PMID: 31322499 PMCID: PMC6668987 DOI: 10.7554/elife.45636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/18/2019] [Indexed: 12/25/2022] Open
Abstract
Manipulating feeding circuits in freely moving animals is challenging, in part because the timing of sensory inputs is affected by the animal's behavior. To address this challenge in Drosophila, we developed the Sip-Triggered Optogenetic Behavior Enclosure ('STROBE'). The STROBE is a closed-looped system for real-time optogenetic activation of feeding flies, designed to evoke neural excitation coincident with food contact. We previously demonstrated the STROBE's utility in probing the valence of fly sensory neurons (Jaeger et al., 2018). Here we provide a thorough characterization of the STROBE system, demonstrate that STROBE-driven behavior is modified by hunger and the presence of taste ligands, and find that mushroom body dopaminergic input neurons and their respective post-synaptic partners drive opposing feeding behaviors following activation. Together, these results establish the STROBE as a new tool for dissecting fly feeding circuits and suggest a role for mushroom body circuits in processing naïve taste responses.
Collapse
Affiliation(s)
- Pierre-Yves Musso
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Pierre Junca
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Meghan Jelen
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Damian Feldman-Kiss
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Han Zhang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Rachel Cw Chan
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
29
|
Zhou Y, Cao LH, Sui XW, Guo XQ, Luo DG. Mechanosensory circuits coordinate two opposing motor actions in Drosophila feeding. SCIENCE ADVANCES 2019; 5:eaaw5141. [PMID: 31131327 PMCID: PMC6531006 DOI: 10.1126/sciadv.aaw5141] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 05/29/2023]
Abstract
Mechanoreception detects physical forces in the senses of hearing, touch, and proprioception. Here, we show that labellar mechanoreception wires two motor circuits to facilitate and terminate Drosophila feeding. Using patch-clamp recordings, we identified mechanosensory neurons (MSNs) in taste pegs of the inner labella and taste bristles of the outer labella, both of which rely on the same mechanoreceptor, NOMPC (no mechanoreceptor potential C), to transduce mechanical deflection. Connecting with distinct brain motor circuits, bristle MSNs drive labellar spread to facilitate feeding and peg MSNs elicit proboscis retraction to terminate feeding. Bitter sense modulates these two mechanosensory circuits in opposing manners, preventing labellar spread by bristle MSNs and promoting proboscis retraction by peg MSNs. Together, these labeled-line circuits enable labellar peg and bristle MSNs to use the same mechanoreceptors to direct opposing feeding actions and differentially integrate gustatory information in shaping feeding decisions.
Collapse
Affiliation(s)
- Yao Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Hui Cao
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiu-Wen Sui
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xiao-Qing Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Gen Luo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
30
|
Gu S, Wang F, Patel NP, Bourgeois JA, Huang JH. A Model for Basic Emotions Using Observations of Behavior in Drosophila. Front Psychol 2019; 10:781. [PMID: 31068849 PMCID: PMC6491740 DOI: 10.3389/fpsyg.2019.00781] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/21/2019] [Indexed: 01/21/2023] Open
Abstract
Emotion plays a crucial role, both in general human experience and in psychiatric illnesses. Despite the importance of emotion, the relative lack of objective methodologies to scientifically studying emotional phenomena limits our current understanding and thereby calls for the development of novel methodologies, such us the study of illustrative animal models. Analysis of Drosophila and other insects has unlocked new opportunities to elucidate the behavioral phenotypes of fundamentally emotional phenomena. Here we propose an integrative model of basic emotions based on observations of this animal model. The basic emotions are internal states that are modulated by neuromodulators, and these internal states are externally expressed as certain stereotypical behaviors, such as instinct, which is proposed as ancient mechanisms of survival. There are four kinds of basic emotions: happiness, sadness, fear, and anger, which are differentially associated with three core affects: reward (happiness), punishment (sadness), and stress (fear and anger). These core affects are analogous to the three primary colors (red, yellow, and blue) in that they are combined in various proportions to result in more complex “higher order” emotions, such as love and aesthetic emotion. We refer to our proposed model of emotions as called the “Three Primary Color Model of Basic Emotions.”
Collapse
Affiliation(s)
- Simeng Gu
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China
| | - Fushun Wang
- Institute of Brain and Psychological Science, Sichuan Normal University, Chengdu, China.,Department of Psychology, Jiangsu University, Zhenjiang, China
| | - Nitesh P Patel
- College of Medicine, Texas A&M University, College Station, TX, United States
| | - James A Bourgeois
- College of Medicine, Texas A&M University, College Station, TX, United States.,Department of Psychiatry, Baylor Scott & White Health, Dallas, TX, United States
| | - Jason H Huang
- Department of Psychology, Jiangsu University, Zhenjiang, China.,College of Medicine, Texas A&M University, College Station, TX, United States
| |
Collapse
|
31
|
Kaushik S, Kumar R, Kain P. Salt an Essential Nutrient: Advances in Understanding Salt Taste Detection Using Drosophila as a Model System. J Exp Neurosci 2018; 12:1179069518806894. [PMID: 30479487 PMCID: PMC6249657 DOI: 10.1177/1179069518806894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 11/16/2022] Open
Abstract
Taste modalities are conserved in insects and mammals. Sweet gustatory signals evoke attractive behaviors while bitter gustatory information drive aversive behaviors. Salt (NaCl) is an essential nutrient required for various physiological processes, including electrolyte homeostasis, neuronal activity, nutrient absorption, and muscle contraction. Not only mammals, even in Drosophila melanogaster, the detection of NaCl induces two different behaviors: Low concentrations of NaCl act as an attractant, whereas high concentrations act as repellant. The fruit fly is an excellent model system for studying the underlying mechanisms of salt taste due to its relatively simple neuroanatomical organization of the brain and peripheral taste system, the availability of powerful genetic tools and transgenic strains. In this review, we have revisited the literature and the information provided by various laboratories using invertebrate model system Drosophila that has helped us to understand NaCl salt taste so far. We hope that this compiled information from Drosophila will be of general significance and interest for forthcoming studies of the structure, function, and behavioral role of NaCl-sensitive (low and high concentrations) gustatory circuitry for understanding NaCl salt taste in all animals.
Collapse
Affiliation(s)
- Shivam Kaushik
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Rahul Kumar
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India.,Department of Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pinky Kain
- Department of Neurobiology and Genetics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
32
|
Using Drosophila behavioral assays to characterize terebrid venom-peptide bioactivity. Sci Rep 2018; 8:15276. [PMID: 30323294 PMCID: PMC6189199 DOI: 10.1038/s41598-018-33215-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/24/2018] [Indexed: 12/14/2022] Open
Abstract
The number of newly discovered peptides from the transcriptomes and proteomes of animal venom arsenals is rapidly increasing, resulting in an abundance of uncharacterized peptides. There is a pressing need for a systematic, cost effective, and scalable approach to identify physiological effects of venom peptides. To address this discovery-to-function gap, we developed a sequence driven:activity-based hybrid approach for screening venom peptides that is amenable to large-venom peptide libraries with minimal amounts of peptide. Using this approach, we characterized the physiological and behavioral phenotypes of two peptides from the venom of predatory terebrid marine snails, teretoxins Tv1 from Terebra variegata and Tsu1.1 from Terebra subulata. Our results indicate that Tv1 and Tsu1.1 have distinct bioactivity. Tv1 (100 µM) had an antinociceptive effect in adult Drosophila using a thermal nociception assay to measure heat avoidance. Alternatively, Tsu1.1 (100 µM) increased food intake. These findings describe the first functional bioactivity of terebrid venom peptides in relation to pain and diet and indicate that Tv1 and Tsu1.1 may, respectively, act as antinociceptive and orexigenic agents. Tv1 and Tsu1.1 are distinct from previously identified venom peptides, expanding the toolkit of peptides that can potentially be used to investigate the physiological mechanisms of pain and diet.
Collapse
|
33
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
34
|
Jordi J, Guggiana-Nilo D, Bolton AD, Prabha S, Ballotti K, Herrera K, Rennekamp AJ, Peterson RT, Lutz TA, Engert F. High-throughput screening for selective appetite modulators: A multibehavioral and translational drug discovery strategy. SCIENCE ADVANCES 2018; 4:eaav1966. [PMID: 30402545 PMCID: PMC6209392 DOI: 10.1126/sciadv.aav1966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
How appetite is modulated by physiological, contextual, or pharmacological influence is still unclear. Specifically, the discovery of appetite modulators is compromised by the abundance of side effects that usually limit in vivo drug action. We set out to identify neuroactive drugs that trigger only their intended single behavioral change, which would provide great therapeutic advantages. To identify these ideal bioactive small molecules, we quantified the impact of more than 10,000 compounds on an extended series of different larval zebrafish behaviors using an in vivo imaging strategy. Known appetite-modulating drugs altered feeding and a pleiotropy of behaviors. Using this multibehavioral strategy as an active filter for behavioral side effects, we identified previously unidentified compounds that selectively increased or reduced food intake by more than 50%. The general applicability of this strategy is shown by validation in mice. Mechanistically, most candidate compounds were independent of the main neurotransmitter systems. In addition, we identified compounds with multibehavioral impact, and correlational comparison of these profiles with those of known drugs allowed for the prediction of their mechanism of action. Our results illustrate an unbiased and translational drug discovery strategy for ideal psychoactive compounds and identified selective appetite modulators in two vertebrate species.
Collapse
Affiliation(s)
- Josua Jordi
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Institute of Veterinary Physiology, University of Zurich, Switzerland
- Corresponding author. (J.J.); (F.E.)
| | - Drago Guggiana-Nilo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew D Bolton
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Srishti Prabha
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kaitlyn Ballotti
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kristian Herrera
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Andrew J. Rennekamp
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Randall T. Peterson
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Thomas A. Lutz
- Institute of Veterinary Physiology, University of Zurich, Switzerland
| | - Florian Engert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Corresponding author. (J.J.); (F.E.)
| |
Collapse
|
35
|
Schoofs A, Hückesfeld S, Pankratz MJ. Serotonergic network in the subesophageal zone modulates the motor pattern for food intake in Drosophila. JOURNAL OF INSECT PHYSIOLOGY 2018; 106:36-46. [PMID: 28735009 DOI: 10.1016/j.jinsphys.2017.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 05/13/2023]
Abstract
The functional organization of central motor circuits underlying feeding behaviors is not well understood. We have combined electrophysiological and genetic approaches to investigate the regulatory networks upstream of the motor program underlying food intake in the Drosophila larval central nervous system. We discovered that the serotonergic network of the CNS is able to set the motor rhythm frequency of pharyngeal pumping. Pharmacological experiments verified that modulation of the feeding motor pattern is based on the release of serotonin. Classical lesion and laser based cell ablation indicated that the serotonergic neurons in the subesophageal zone represent a redundant network for motor control of larval food intake.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology, Limes Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany.
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology, Limes Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Michael J Pankratz
- Department of Molecular Brain Physiology, Limes Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| |
Collapse
|
36
|
Ram A, Lo AW. Is Smaller Better? A Proposal to Use Bacteria For Neuroscientific Modeling. Front Comput Neurosci 2018; 12:7. [PMID: 29527158 PMCID: PMC5829041 DOI: 10.3389/fncom.2018.00007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/17/2018] [Indexed: 11/24/2022] Open
Abstract
Bacteria are easily characterizable model organisms with an impressively complicated set of abilities. Among them is quorum sensing, a cell-cell signaling system that may have a common evolutionary origin with eukaryotic cell-cell signaling. The two systems are behaviorally similar, but quorum sensing in bacteria is more easily studied in depth than cell-cell signaling in eukaryotes. Because of this comparative ease of study, bacterial dynamics are also more suited to direct interpretation than eukaryotic dynamics, e.g., those of the neuron. Here we review literature on neuron-like qualities of bacterial colonies and biofilms, including ion-based and hormonal signaling, and a phenomenon similar to the graded action potential. This suggests that bacteria could be used to help create more accurate and detailed biological models in neuroscientific research. More speculatively, bacterial systems may be considered an analog for neurons in biologically based computational research, allowing models to better harness the tremendous ability of biological organisms to process information and make decisions.
Collapse
Affiliation(s)
- Archana Ram
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andrew W. Lo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA, United States
- Laboratory for Financial Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
37
|
Abstract
Taste allows animals to discriminate the value and potential toxicity of food prior to ingestion. Many tastants elicit an innate attractive or avoidance response that is modifiable with nutritional state and prior experience. A powerful genetic tool kit, well-characterized gustatory system, and standardized behavioral assays make the fruit fly, Drosophila melanogaster, an excellent system for investigating taste processing and memory. Recent studies have used this system to identify the neural basis for acquired taste preference. These studies have revealed a role for dopamine-mediated plasticity of the mushroom bodies that modulate the threshold of response to appetitive tastants. The identification of neural circuitry regulating taste memory provides a system to study the genetic and physiological processes that govern plasticity within a defined memory circuit.
Collapse
Affiliation(s)
- Pavel Masek
- a Department of Biology , Binghamton University , Binghamton , NY , USA
| | - Alex C Keene
- b Department of Biological Sciences , Florida Atlantic University , Jupiter , FL , USA
| |
Collapse
|
38
|
The Role of the Gustatory System in the Coordination of Feeding. eNeuro 2017; 4:eN-REV-0324-17. [PMID: 29159281 PMCID: PMC5694965 DOI: 10.1523/eneuro.0324-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/19/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
To survive, all animals must find, inspect, and ingest food. Behavioral coordination and control of feeding is therefore a challenge that animals must face. Here, we focus on how the gustatory system guides the precise execution of behavioral sequences that promote ingestion and suppresses competing behaviors. We summarize principles learnt from Drosophila, where underlying sensory neuronal mechanisms are illustrated in great detail. Moreover, we compare these principles with findings in other animals, where such coordination plays prominent roles. These examples suggest that the use of gustatory information for feeding coordination has an ancient origin and is prevalent throughout the animal kingdom.
Collapse
|
39
|
Tauber JM, Brown EB, Li Y, Yurgel ME, Masek P, Keene AC. A subset of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid taste. PLoS Genet 2017; 13:e1007059. [PMID: 29121639 PMCID: PMC5697886 DOI: 10.1371/journal.pgen.1007059] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/21/2017] [Accepted: 10/08/2017] [Indexed: 01/10/2023] Open
Abstract
Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. The highly palatable taste of free fatty acids (FAs), one of the building blocks of fat, promotes food consumption, activates reward circuitry, and is thought to contribute to hedonic feeding underlying many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. Previously, we showed that a broad population of sugar-sensing taste neurons expressing Gustatory Receptor 64f (Gr64f) is required for reflexive feeding responses to both FAs and sugars. Here, we report a genetic silencing screen to identify specific populations of taste neurons that mediate fatty acid (FA) taste. We find neurons identified by expression of Ionotropic Receptor 56d (IR56d) are necessary and sufficient for reflexive feeding response to FAs. Functional imaging reveals that IR56d-expressing neurons are responsive to short- and medium-chain FAs. Silencing IR56d neurons selectively abolishes FA taste, and their activation is sufficient to drive feeding responses. Analysis of co-expression with Gr64f identifies two subpopulations of IR56d-expressing neurons. While physiological imaging reveals that both populations are responsive to FAs, IR56d/Gr64f neurons are activated by medium-chain FAs and are sufficient for reflexive feeding response to FAs. Moreover, flies can discriminate between sugar and FAs in an aversive taste memory assay, indicating that FA taste is a unique modality in Drosophila. Taken together, these findings localize FA taste within the Drosophila gustatory center and provide an opportunity to investigate discrimination between different categories of appetitive tastants. Fat represents a calorically potent food source that yields approximately twice the amount of energy as carbohydrates or proteins per unit of mass. Dietary lipids are comprised of both triacylglycerides and FAs, and growing evidence suggests that it is the free FAs that are detected by the gustatory system. The highly palatable taste of FAs promotes food consumption, activates reward centers in mammals, and is thought to contribute to hedonic feeding that underlies many metabolism-related disorders. Despite a role in the etiology of metabolic diseases, little is known about how dietary fats are detected by the gustatory system to promote feeding. We have identified a subset of sugar-sensing neurons in the fly that also responds to medium-chain FAs and are necessary and sufficient for behavioral response to FAs. Further, we find that despite being sensed by shared neuronal populations, flies can differentiate between the taste of sugar and FAs, fortifying the notion that FAs and sugar represent distinct taste modalities in flies.
Collapse
Affiliation(s)
- John M. Tauber
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Elizabeth B. Brown
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Yuanyuan Li
- Department of Biological Sciences, Binghamton University, Binghamton, NY, United States of America
| | - Maria E. Yurgel
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
| | - Pavel Masek
- Department of Biological Sciences, Binghamton University, Binghamton, NY, United States of America
| | - Alex C. Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, United States of America
- * E-mail:
| |
Collapse
|
40
|
Eriksson A, Raczkowska M, Navawongse R, Choudhury D, Stewart JC, Tang YL, Wang Z, Claridge-Chang A. Neuromodulatory circuit effects on Drosophila feeding behaviour and metabolism. Sci Rep 2017; 7:8839. [PMID: 28821829 PMCID: PMC5562903 DOI: 10.1038/s41598-017-08466-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/07/2017] [Indexed: 12/02/2022] Open
Abstract
Animals have evolved to maintain homeostasis in a changing external environment by adapting their internal metabolism and feeding behaviour. Metabolism and behaviour are coordinated by neuromodulation; a number of the implicated neuromodulatory systems are homologous between mammals and the vinegar fly, an important neurogenetic model. We investigated whether silencing fly neuromodulatory networks would elicit coordinated changes in feeding, behavioural activity and metabolism. We employed transgenic lines that allowed us to inhibit broad cellular sets of the dopaminergic, serotonergic, octopaminergic, tyraminergic and neuropeptide F systems. The genetically-manipulated animals were assessed for changes in their overt behavioural responses and metabolism by monitoring eleven parameters: activity; climbing ability; individual feeding; group feeding; food discovery; both fed and starved respiration; fed and starved lipid content; and fed/starved body weight. The results from these 55 experiments indicate that individual neuromodulatory system effects on feeding behaviour, motor activity and metabolism are dissociated.
Collapse
Affiliation(s)
- Anders Eriksson
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Marlena Raczkowska
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Rapeechai Navawongse
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Deepak Choudhury
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 638075, Singapore
| | - James C Stewart
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Yi Ling Tang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore, 638075, Singapore
| | - Adam Claridge-Chang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Duke-NUS Medical School, 61 Biopolis Drive, Singapore, 138673, Singapore. .,Department of Physiology, NUS Yong Loo Lin School of Medicine, Singapore, 138673, Singapore.
| |
Collapse
|
41
|
Cheung SK, Scott K. GABAA receptor-expressing neurons promote consumption in Drosophila melanogaster. PLoS One 2017; 12:e0175177. [PMID: 28362856 PMCID: PMC5376345 DOI: 10.1371/journal.pone.0175177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Feeding decisions are highly plastic and bidirectionally regulated by neurons that either promote or inhibit feeding. In Drosophila melanogaster, recent studies have identified four GABAergic interneurons that act as critical brakes to prevent incessant feeding. These GABAergic neurons may inhibit target neurons that drive consumption. Here, we tested this hypothesis by examining GABA receptors and neurons that promote consumption. We find that Resistance to dieldrin (RDL), a GABAA type receptor, is required for proper control of ingestion. Knockdown of Rdl in a subset of neurons causes overconsumption of tastants. Acute activation of these neurons is sufficient to drive consumption of appetitive substances and non-appetitive substances and acute silencing of these neurons decreases consumption. Taken together, these studies identify GABAA receptor-expressing neurons that promote Drosophila ingestive behavior and provide insight into feeding regulation.
Collapse
Affiliation(s)
- Samantha K. Cheung
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Kristin Scott
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Facilitating Neuron-Specific Genetic Manipulations in Drosophila melanogaster Using a Split GAL4 Repressor. Genetics 2017; 206:775-784. [PMID: 28363977 PMCID: PMC5499185 DOI: 10.1534/genetics.116.199687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 03/28/2017] [Indexed: 12/22/2022] Open
Abstract
Efforts to map neural circuits have been galvanized by the development of genetic technologies that permit the manipulation of targeted sets of neurons in the brains of freely behaving animals. The success of these efforts relies on the experimenter’s ability to target arbitrarily small subsets of neurons for manipulation, but such specificity of targeting cannot routinely be achieved using existing methods. In Drosophila melanogaster, a widely-used technique for refined cell type-specific manipulation is the Split GAL4 system, which augments the targeting specificity of the binary GAL4-UAS (Upstream Activating Sequence) system by making GAL4 transcriptional activity contingent upon two enhancers, rather than one. To permit more refined targeting, we introduce here the “Killer Zipper” (KZip+), a suppressor that makes Split GAL4 targeting contingent upon a third enhancer. KZip+ acts by disrupting both the formation and activity of Split GAL4 heterodimers, and we show how this added layer of control can be used to selectively remove unwanted cells from a Split GAL4 expression pattern or to subtract neurons of interest from a pattern to determine their requirement in generating a given phenotype. To facilitate application of the KZip+ technology, we have developed a versatile set of LexAop-KZip+ fly lines that can be used directly with the large number of LexA driver lines with known expression patterns. KZip+ significantly sharpens the precision of neuronal genetic control available in Drosophila and may be extended to other organisms where Split GAL4-like systems are used.
Collapse
|
43
|
Joseph RM, Sun JS, Tam E, Carlson JR. A receptor and neuron that activate a circuit limiting sucrose consumption. eLife 2017; 6. [PMID: 28332980 PMCID: PMC5388533 DOI: 10.7554/elife.24992] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/19/2017] [Indexed: 11/23/2022] Open
Abstract
The neural control of sugar consumption is critical for normal metabolism. In contrast to sugar-sensing taste neurons that promote consumption, we identify a taste neuron that limits sucrose consumption in Drosophila. Silencing of the neuron increases sucrose feeding; optogenetic activation decreases it. The feeding inhibition depends on the IR60b receptor, as shown by behavioral analysis and Ca2+ imaging of an IR60b mutant. The IR60b phenotype shows a high degree of chemical specificity when tested with a broad panel of tastants. An automated analysis of feeding behavior in freely moving flies shows that IR60b limits the duration of individual feeding bouts. This receptor and neuron provide the molecular and cellular underpinnings of a new element in the circuit logic of feeding regulation. We propose a dynamic model in which sucrose acts via IR60b to activate a circuit that inhibits feeding and prevents overconsumption. DOI:http://dx.doi.org/10.7554/eLife.24992.001 All animals – from the fruit fly to mammals like humans – must control their dietary intake of nutrients to survive and stay healthy. Taste receptors that sense high-calorie sugars are essential to this process. Typically, when food tastes sweet, it signals that the food contains nutrients and promotes consumption. However, eating too much sugar can be detrimental because the animal wastes time and energy eating food that it does not need, and could eventually lead to obesity and other metabolic diseases. This raised the question: are there any taste receptors that, once they detect sugars, cause animals to eat less? Joseph et al. worked with the fruit fly Drosophila melanogaster and identified one such taste receptor called IR60b. The experiments showed that this taste receptor responds selectively to sucrose (a high-calorie sugar), and that it activates nerve cells that cause fruit flies to eat less food, rather than more. When the receptor was experimentally inactivated, the fruit flies ate for longer and ate too much sucrose. This indicates that the flies need this receptor to control their sugar intake. A next step will be to see if mammals similarly use sweet-sensing taste receptors to limit the amount of food they eat. A better insight into how mammals can control what they eat could provide a deeper understanding of how to tackle major health issues, such as obesity, in humans. DOI:http://dx.doi.org/10.7554/eLife.24992.002
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Edric Tam
- Department of Biomedical Engineering, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
44
|
Abstract
The brain has an essential role in maintaining a balance between energy intake and expenditure of the body. Deciphering the processes underlying the decision-making for timely feeding of appropriate amounts may improve our understanding of physiological and psychological disorders related to feeding control. Here, we identify a group of appetite-enhancing neurons in a behavioural screen for flies with increased appetite. Manipulating the activity of these neurons, which we name Taotie neurons, induces bidirectional changes in feeding motivation. Long-term stimulation of Taotie neurons results in flies with highly obese phenotypes. Furthermore, we show that the in vivo activity of Taotie neurons in the neuroendocrine region reflects the hunger/satiety states of un-manipulated animals, and that appetitive-enhancing Taotie neurons control the secretion of insulin, a known regulator of feeding behaviour. Thus, our study reveals a new set of neurons regulating feeding behaviour in the high brain regions that represents physiological hunger states and control feeding behaviour in Drosophila.
Feeding control requires the integration and coordination of motivational, sensory and motor circuits in the brain. Here, the authors discover a set of neurons that regulate feeding in Drosophila by promoting insulin release, and whose activity reflects physiological hunger and satiety states of flies.
Collapse
|
45
|
To feed or not to feed: circuits involved in the control of feeding in insects. Curr Opin Neurobiol 2016; 41:87-91. [PMID: 27649465 DOI: 10.1016/j.conb.2016.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/12/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022]
Abstract
To feed or not to feed is a dilemma faced by every animal. The sense of taste is fundamental to the control of food intake. It permits recognition of nutrients, the rejection of toxins, and provides feedback for the coordination of feeding. The suboesophageal zone of the insect brain uses taste information to orchestrate the motor programs responsible for mouthparts coordination during feeding. Discovering the structure of the relevant neural circuits is a work in progress.
Collapse
|
46
|
Yu Y, Huang R, Ye J, Zhang V, Wu C, Cheng G, Jia J, Wang L. Regulation of starvation-induced hyperactivity by insulin and glucagon signaling in adult Drosophila. eLife 2016; 5. [PMID: 27612383 PMCID: PMC5042652 DOI: 10.7554/elife.15693] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023] Open
Abstract
Starvation induces sustained increase in locomotion, which facilitates food localization and acquisition and hence composes an important aspect of food-seeking behavior. We investigated how nutritional states modulated starvation-induced hyperactivity in adult Drosophila. The receptor of the adipokinetic hormone (AKHR), the insect analog of glucagon, was required for starvation-induced hyperactivity. AKHR was expressed in a small group of octopaminergic neurons in the brain. Silencing AKHR+ neurons and blocking octopamine signaling in these neurons eliminated starvation-induced hyperactivity, whereas activation of these neurons accelerated the onset of hyperactivity upon starvation. Neither AKHR nor AKHR+ neurons were involved in increased food consumption upon starvation, suggesting that starvation-induced hyperactivity and food consumption are independently regulated. Single cell analysis of AKHR+ neurons identified the co-expression of Drosophila insulin-like receptor (dInR), which imposed suppressive effect on starvation-induced hyperactivity. Therefore, insulin and glucagon signaling exert opposite effects on starvation-induced hyperactivity via a common neural target in Drosophila. DOI:http://dx.doi.org/10.7554/eLife.15693.001 Animals can be thought of as tightly controlled eating machines. An animal’s brain senses if it is hungry via signals from the nervous system or hormones, and then alters the animal’s behavior to obtain a supply of food. These behaviors include looking for food and eating it; and regulating both food seeking and food consumption behaviors is crucial for the animal’s chances of survival and reproduction. Studies that used fruit flies as a model have previously shown that flies walk more when they are hungry. This activity helped the flies to locate and occupy food sources, but it was not clear how this food seeking behavior was regulated. Now, Yu, Huang et al. find that a small group of neurons in the fly brain controls food seeking in starving flies. The neurons achieve this by sensing two groups of hormones with opposing activity. These hormones are the fly’s equivalents of glucagon and insulin, which are found in humans and other mammals. In humans, glucagon is released when blood sugar levels are low and stimulates hunger, while insulin is released when blood sugar is high and acts to suppress feelings of hunger. Therefore, food seeking in the flies is under the precise control of signals of hunger and satiety. Further experiments show that these fly neurons use a chemical messenger called octopamine to convey the hormone-based signals to other circuits of neurons. Notably, these downstream neurons are not involved in regulating the consumption of food. Therefore, food seeking and eating appear to be independently regulated in fruit flies. Further studies are now needed to dissect the downstream circuits of neurons that actually control the food seeking behavior. It will also be important to explore how this behavior is suppressed when a food source is detected. DOI:http://dx.doi.org/10.7554/eLife.15693.002
Collapse
Affiliation(s)
- Yue Yu
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Rui Huang
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Jie Ye
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Vivian Zhang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Chao Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Guo Cheng
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Junling Jia
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Liming Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, China.,Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Jourjine N, Mullaney BC, Mann K, Scott K. Coupled Sensing of Hunger and Thirst Signals Balances Sugar and Water Consumption. Cell 2016; 166:855-866. [PMID: 27477513 PMCID: PMC4983267 DOI: 10.1016/j.cell.2016.06.046] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/04/2016] [Accepted: 06/23/2016] [Indexed: 01/08/2023]
Abstract
Hunger and thirst are ancient homeostatic drives for food and water consumption. Although molecular and neural mechanisms underlying these drives are currently being uncovered, less is known about how hunger and thirst interact. Here, we use molecular genetic, behavioral, and anatomical studies in Drosophila to identify four neurons that modulate food and water consumption. Activation of these neurons promotes sugar consumption and restricts water consumption, whereas inactivation promotes water consumption and restricts sugar consumption. By calcium imaging studies, we show that these neurons are directly regulated by a hormone signal of nutrient levels and by osmolality. Finally, we identify a hormone receptor and an osmolality-sensitive ion channel that underlie this regulation. Thus, a small population of neurons senses internal signals of nutrient and water availability to balance sugar and water consumption. Our results suggest an elegant mechanism by which interoceptive neurons oppositely regulate homeostatic drives to eat and drink.
Collapse
Affiliation(s)
- Nicholas Jourjine
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brendan C Mullaney
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kevin Mann
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kristin Scott
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
48
|
Apostolopoulou AA, Köhn S, Stehle B, Lutz M, Wüst A, Mazija L, Rist A, Galizia CG, Lüdke A, Thum AS. Caffeine Taste Signaling in Drosophila Larvae. Front Cell Neurosci 2016; 10:193. [PMID: 27555807 PMCID: PMC4977282 DOI: 10.3389/fncel.2016.00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal, and ventral organ). However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative co-receptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s). This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviors.
Collapse
Affiliation(s)
- Anthi A Apostolopoulou
- Department of Biology, University of KonstanzKonstanz, Germany; Department of Biomedical Science, University of SheffieldSheffield, UK
| | - Saskia Köhn
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Bernhard Stehle
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Michael Lutz
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Alexander Wüst
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Lorena Mazija
- Department of Biology, University of Konstanz Konstanz, Germany
| | - Anna Rist
- Department of Biology, University of Konstanz Konstanz, Germany
| | - C Giovanni Galizia
- Department of Biology, University of KonstanzKonstanz, Germany; Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Alja Lüdke
- Department of Biology, University of KonstanzKonstanz, Germany; Zukunftskolleg, University of KonstanzKonstanz, Germany
| | - Andreas S Thum
- Department of Biology, University of KonstanzKonstanz, Germany; Zukunftskolleg, University of KonstanzKonstanz, Germany
| |
Collapse
|
49
|
|
50
|
Otero-Moreno D, Peña-Rangel MT, Riesgo-Escovar JR. CRECIMIENTO Y METABOLISMO: LA REGULACIÓN Y LA VÍA DE LA INSULINA DESDE LA MOSCA DE LA FRUTA, Drosophila melanogaster. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|