1
|
Ishii KK, Hashikawa K, Chea J, Yin S, Fox RE, Kan S, Shah M, Zhou ZC, Navarrete J, Murry AD, Szelenyi ER, Golden SA, Stuber GD. Post-ejaculatory inhibition of female sexual drive via heterogeneous neuronal ensembles in the medial preoptic area. eLife 2025; 12:RP91765. [PMID: 40042245 PMCID: PMC11882143 DOI: 10.7554/elife.91765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2025] Open
Abstract
Male ejaculation acutely suppresses sexual motivation in male mice. In contrast, relatively little is known about how male ejaculation affects sexual motivation and sexual behavior in female mice. How the brain responds to the completion of mating is also unclear. Here, by using a self-paced mating assay, we first demonstrate that female mice show decreased sexual motivation acutely after experiencing male ejaculation. By using brain-wide analysis of activity-dependent labeling, we next pin-pointed the medial preoptic area as a brain region strongly activated during the post-ejaculatory period. Furthermore, using freely moving in vivo calcium imaging to compare the neural activity of inhibitory and excitatory neurons in the medial preoptic area, we revealed that a subset of the neurons in this region responds significantly and specifically to male ejaculation but not to female-to-male sniffing or to male mounting. While there were excitatory and inhibitory neurons that showed increased response to male ejaculation, the response magnitude as well as the proportion of neurons responding to the event was significantly larger in the inhibitory neuron population. Next, by unbiased classification of their responses, we also found a subpopulation of neurons that increase their activity late after the onset of male ejaculation. These neurons were all inhibitory indicating that male ejaculation induces a prolonged inhibitory activity in the medial preoptic area. Lastly, we found that chemogenetic activation of medial preoptic area neurons that were active during the post-ejaculatory period, but not during appetitive or consummatory periods, were sufficient to suppress female sexual motivation. Together, our data illuminate the importance of the medial preoptic area as a brain node which encodes a negative signal that sustains a low sexual motivation state after the female mice experience ejaculation.
Collapse
Affiliation(s)
- Kentaro K Ishii
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Jane Chea
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Shihan Yin
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Rebecca Erin Fox
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Suyang Kan
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Meha Shah
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Zhe Charles Zhou
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Jovana Navarrete
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Alexandria D Murry
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Eric R Szelenyi
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Sam A Golden
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Biological Structure, University of WashingtonSeattleUnited States
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, University of WashingtonSeattleUnited States
- Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
2
|
Oh Y, Lee WJ. Fine-tuning protein hunger: sex- and mating-dependent setpoint control. Cell Res 2025; 35:161-162. [PMID: 39402401 PMCID: PMC11909102 DOI: 10.1038/s41422-024-01039-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Affiliation(s)
- Yangkyun Oh
- Department of Life Science, College of Natural Sciences, Ewha Womans University, Seoul, South Korea.
| | - Won-Jae Lee
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea.
| |
Collapse
|
3
|
Chen J, Zhu P, Jin S, Zhang Z, Jiang S, Li S, Liu S, Peng Q, Pan Y. A hormone-to-neuropeptide pathway inhibits sexual receptivity in immature Drosophila females. Proc Natl Acad Sci U S A 2025; 122:e2418481122. [PMID: 39982743 PMCID: PMC11874258 DOI: 10.1073/pnas.2418481122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Newborns, typically asexual, undergo a process of sexual transition to reach sexual maturity, but the regulatory mechanism underlying this transition is not clear. Here, we studied how female sexual behavior is modulated during sexual transition by hormones and neuromodulators in Drosophila. We found that neuropeptide Leucokinin (LK) inhibits female receptivity specifically during a sexual transition period in immature females, but not in younger or mature females. Moreover, the steroid hormone ecdysone, which is mainly synthesized in the female ovary during sexual maturation, acts on LK neurons via the ecdysone receptor to suppress sexual receptivity. We further found that LK suppresses female receptivity through its receptor LKR in central pC1 neurons, a decision center for female sexual behavior. These findings reveal a hormone-to-neuropeptide pathway that specifically inhibits sexual behavior during sexual maturation in female Drosophila, shedding light on how hormones and neuromodulators coordinate sexual development and behaviors.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Peiwen Zhu
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Sihui Jin
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Zhaokun Zhang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Simei Jiang
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou514779, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou510631, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou514779, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Jiangsu Key Laboratory of Brain Science and Medicine, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
4
|
Meissner GW, Vannan A, Jeter J, Close K, DePasquale GM, Dorman Z, Forster K, Beringer JA, Gibney T, Hausenfluck JH, He Y, Henderson K, Johnson L, Johnston RM, Ihrke G, Iyer NA, Lazarus R, Lee K, Li HH, Liaw HP, Melton B, Miller S, Motaher R, Novak A, Ogundeyi O, Petruncio A, Price J, Protopapas S, Tae S, Taylor J, Vorimo R, Yarbrough B, Zeng KX, Zugates CT, Dionne H, Angstadt C, Ashley K, Cavallaro A, Dang T, Gonzalez GA, Hibbard KL, Huang C, Kao JC, Laverty T, Mercer M, Perez B, Pitts SR, Ruiz D, Vallanadu V, Zheng GZ, Goina C, Otsuna H, Rokicki K, Svirskas RR, Cheong HSJ, Dolan MJ, Ehrhardt E, Feng K, Galfi BEI, Goldammer J, Huston SJ, Hu N, Ito M, McKellar C, Minegishi R, Namiki S, Nern A, Schretter CE, Sterne GR, Venkatasubramanian L, Wang K, Wolff T, Wu M, George R, Malkesman O, Aso Y, Card GM, Dickson BJ, Korff W, Ito K, Truman JW, Zlatic M, Rubin GM, FlyLight Project Team. A split-GAL4 driver line resource for Drosophila neuron types. eLife 2025; 13:RP98405. [PMID: 39854223 PMCID: PMC11759409 DOI: 10.7554/elife.98405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.
Collapse
Affiliation(s)
- Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Allison Vannan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Jeter
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kari Close
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gina M DePasquale
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Zachary Dorman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaitlyn Forster
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jaye Anne Beringer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Theresa Gibney
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Yisheng He
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kristin Henderson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Lauren Johnson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca M Johnston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gudrun Ihrke
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Nirmala A Iyer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rachel Lazarus
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelley Lee
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hsing-Hsi Li
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hua-Peng Liaw
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brian Melton
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Scott Miller
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reeham Motaher
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alexandra Novak
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Alyson Petruncio
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jacquelyn Price
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Sophia Protopapas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Susana Tae
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Taylor
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Rebecca Vorimo
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brianna Yarbrough
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kevin Xiankun Zeng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Heather Dionne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire Angstadt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kelly Ashley
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Amanda Cavallaro
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tam Dang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Karen L Hibbard
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cuizhen Huang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jui-Chun Kao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Todd Laverty
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Monti Mercer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Brenda Perez
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Scarlett Rose Pitts
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Danielle Ruiz
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Viruthika Vallanadu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Grace Zhiyu Zheng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Robert R Svirskas
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Han SJ Cheong
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Michael-John Dolan
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Basel EI Galfi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jens Goldammer
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - Stephen J Huston
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | - Nan Hu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Masayoshi Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Claire McKellar
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Gabriella R Sterne
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Department of Cell & Molecular Biology, University of California, BerkeleyBerkeleyUnited States
| | | | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Tanya Wolff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ming Wu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Reed George
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Oz Malkesman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, University of QueenslandBrisbaneAustralia
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Institute of Zoology, University of CologneCologneGermany
| | - James W Truman
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Marta Zlatic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | |
Collapse
|
5
|
Liu C, Tian N, Chang P, Zhang W. Mating reconciles fitness and fecundity by switching diet preference in flies. Nat Commun 2024; 15:9912. [PMID: 39548088 PMCID: PMC11568147 DOI: 10.1038/s41467-024-54369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Protein-rich diets shorten lifespan but increase fecundity in many organisms. Animals actively adjust their feeding behavior to meet their nutritional requirements. However, the neural mechanisms underlying the dynamic regulation of protein consumption remain unclear. Here we find that both sexes of fruit flies exhibit a preference for protein food before mating to prepare for reproduction. Mated female flies display an increased appetite for yeast to benefit their offspring, albeit at the cost of stress resistance and lifespan. In contrast, males show a momentarily reduced yeast appetite after mating likely to restore their fitness. This mating state-dependent switch between sexes is mediated by a sexually dimorphic neural circuit labeled with leucokinin in the anterior brain. Furthermore, intermittent yeast consumption benefits both the lifespan and fecundity of males, while maximizing female fecundity without compromising lifespan.
Collapse
Affiliation(s)
- Chenxi Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Ning Tian
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Li J, Ning C, Liu Y, Deng B, Wang B, Shi K, Wang R, Fang R, Zhou C. The function of juvenile-adult transition axis in female sexual receptivity of Drosophila melanogaster. eLife 2024; 12:RP92545. [PMID: 39240259 PMCID: PMC11379460 DOI: 10.7554/elife.92545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Female sexual receptivity is essential for reproduction of a species. Neuropeptides play the main role in regulating female receptivity. However, whether neuropeptides regulate female sexual receptivity during the neurodevelopment is unknown. Here, we found the peptide hormone prothoracicotropic hormone (PTTH), which belongs to the insect PG (prothoracic gland) axis, negatively regulated virgin female receptivity through ecdysone during neurodevelopment in Drosophila melanogaster. We identified PTTH neurons as doublesex-positive neurons, they regulated virgin female receptivity before the metamorphosis during the third-instar larval stage. PTTH deletion resulted in the increased EcR-A expression in the whole newly formed prepupae. Furthermore, the ecdysone receptor EcR-A in pC1 neurons positively regulated virgin female receptivity during metamorphosis. The decreased EcR-A in pC1 neurons induced abnormal morphological development of pC1 neurons without changing neural activity. Among all subtypes of pC1 neurons, the function of EcR-A in pC1b neurons was necessary for virgin female copulation rate. These suggested that the changes of synaptic connections between pC1b and other neurons decreased female copulation rate. Moreover, female receptivity significantly decreased when the expression of PTTH receptor Torso was reduced in pC1 neurons. This suggested that PTTH not only regulates female receptivity through ecdysone but also through affecting female receptivity associated neurons directly. The PG axis has similar functional strategy as the hypothalamic-pituitary-gonadal axis in mammals to trigger the juvenile-adult transition. Our work suggests a general mechanism underlying which the neurodevelopment during maturation regulates female sexual receptivity.
Collapse
Affiliation(s)
- Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yaohua Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Plant Protection, Shanxi Agricultural University, Jinzhong, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguancun Life Sciences Park, Beijing, China
| | - Bingcai Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rencong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruixin Fang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chuan Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Afkhami M. Neurobiology of egg-laying behavior in Drosophila: neural control of the female reproductive system. J Neurogenet 2024; 38:47-61. [PMID: 39250036 DOI: 10.1080/01677063.2024.2396352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Egg-laying is one of the key aspects of female reproductive behavior in insects. Egg-laying has been studied since the dawn of Drosophila melanogaster as a model organism. The female's internal state, hormones, and external factors, such as nutrition, light, and social environment, affect egg-laying output. However, only recently, neurobiological features of egg-laying behavior have been studied in detail. fruitless and doublesex, two key players in the sex determination pathway, have become focal points in identifying neurons of reproductive significance in both central and peripheral nervous systems. The reproductive tract and external terminalia house sensory neurons that carry the sensory information of egg maturation, mating and egg-laying. These sensory signals include the presence of male accessory gland products and mechanical stimuli. The abdominal neuromere houses neurons that receive information from the reproductive tract, including sex peptide abdominal ganglion neurons (SAGs), and send their information to the brain. In the brain, neuronal groups like aDNs and pC1 clusters modulate egg-laying decision-making, and other neurons like oviINs and oviDNs are necessary for egg-laying itself. Lastly, motor neurons involved in egg-laying, which are mostly octopaminergic, reside in the abdominal neuromere and orchestrate the muscle movements required for laying the egg. Egg-laying neuronal control is important in various evolutionary processes like cryptic female choice, and using different Drosophila species can provide intriguing avenues for the future of the field.
Collapse
Affiliation(s)
- Mehrnaz Afkhami
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
8
|
Gautham AK, Miner LE, Franco MN, Thornquist SC, Crickmore MA. Dopamine biases decisions by limiting temporal integration. Nature 2024; 632:850-857. [PMID: 39085606 DOI: 10.1038/s41586-024-07749-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
Motivations bias our responses to stimuli, producing behavioural outcomes that match our needs and goals. Here we describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate towards a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges1-3. We show that a set of copulation decision neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signalling restricts CDN integration time by potentiating Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation in response to stimulatory inputs, imposing a high threshold for changing behaviours. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviours. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.
Collapse
Affiliation(s)
- Aditya K Gautham
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren E Miner
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco N Franco
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen C Thornquist
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Laboratory of Integrative Brain Function, The Rockefeller University, New York, NY, USA.
| | - Michael A Crickmore
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Imoto K, Ishikawa Y, Aso Y, Funke J, Tanaka R, Kamikouchi A. Neural-circuit basis of song preference learning in fruit flies. iScience 2024; 27:110266. [PMID: 39040064 PMCID: PMC11260866 DOI: 10.1016/j.isci.2024.110266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
As observed in human language learning and song learning in birds, the fruit fly Drosophila melanogaster changes its auditory behaviors according to prior sound experiences. This phenomenon, known as song preference learning in flies, requires GABAergic input to pC1 neurons in the brain, with these neurons playing a key role in mating behavior. The neural circuit basis of this GABAergic input, however, is not known. Here, we find that GABAergic neurons expressing the sex-determination gene doublesex are necessary for song preference learning. In the brain, only four doublesex-expressing GABAergic neurons exist per hemibrain, identified as pCd-2 neurons. pCd-2 neurons directly, and in many cases mutually, connect with pC1 neurons, suggesting the existence of reciprocal circuits between them. Moreover, GABAergic and dopaminergic inputs to doublesex-expressing GABAergic neurons are necessary for song preference learning. Together, this study provides a neural circuit model that underlies experience-dependent auditory plasticity at a single-cell resolution.
Collapse
Affiliation(s)
- Keisuke Imoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yuki Ishikawa
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jan Funke
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Ryoya Tanaka
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
10
|
Amaro IA, Wohl MP, Pitcher S, Alfonso-Parra C, Avila FW, Paige AS, Helinski MEH, Duvall LB, Harrington LC, Wolfner MF, McMeniman CJ. Sex peptide receptor is not required for refractoriness to remating or induction of egg laying in Aedes aegypti. Genetics 2024; 227:iyae034. [PMID: 38551457 PMCID: PMC11075561 DOI: 10.1093/genetics/iyae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/09/2024] [Indexed: 05/08/2024] Open
Abstract
Across diverse insect taxa, the behavior and physiology of females dramatically changes after mating-processes largely triggered by the transfer of seminal proteins from their mates. In the vinegar fly Drosophila melanogaster, the seminal protein sex peptide (SP) decreases the likelihood of female flies remating and causes additional behavioral and physiological changes that promote fertility including increasing egg production. Although SP is only found in the Drosophila genus, its receptor, sex peptide receptor (SPR), is the widely conserved myoinhibitory peptide (MIP) receptor. To test the functional role of SPR in mediating postmating responses in a non-Drosophila dipteran, we generated 2 independent Spr-knockout alleles in the yellow fever mosquito, Aedes aegypti. Although SPR is needed for postmating responses in Drosophila and the cotton bollworm Helicoverpa armigera, Spr mutant Ae. aegypti show completely normal postmating decreases in remating propensity and increases in egg laying. In addition, injection of synthetic SP or accessory gland homogenate from D. melanogaster into virgin female mosquitoes did not elicit these postmating responses. Our results demonstrate that Spr is not required for these canonical postmating responses in Ae. aegypti, indicating that other, as yet unknown, signaling pathways are likely responsible for these behavioral switches in this disease vector.
Collapse
Affiliation(s)
| | - Margot P Wohl
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sylvie Pitcher
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | | | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew S Paige
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Laura B Duvall
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Conor J McMeniman
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. Mol Biol Evol 2024; 41:msae065. [PMID: 38518286 PMCID: PMC11017328 DOI: 10.1093/molbev/msae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide binds to the sex peptide receptor, triggering a series of post-mating responses. However, the origin of sex peptide receptor predates the emergence of sex peptide. The evolutionary origins of the interactions between sex peptide and sex peptide receptor and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study sex peptide-sex peptide receptor interactions and their origination. Using AlphaFold2 and long-time molecular dynamics simulations, we predicted the structure and dynamics of sex peptide-sex peptide receptor interactions. We show that sex peptide potentially binds to the ancestral states of Diptera sex peptide receptor. Notably, we found that only a few amino acid changes in sex peptide receptor are sufficient for the formation of sex peptide-sex peptide receptor interactions. Ancestral sequence reconstruction and molecular dynamics simulations further reveal that sex peptide receptor interacts with sex peptide through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides. We propose a potential mechanism whereby sex peptide-sex peptide receptor interactions arise from the preexisting myoinhibitory peptides-sex peptide receptor interface as well as early chance events both inside and outside the preexisting interface that created novel sex peptide-specific sex peptide-sex peptide receptor interactions. Our findings provide new insights into the origin and evolution of sex peptide-sex peptide receptor interactions and their relationship with myoinhibitory peptides-sex peptide receptor interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
12
|
Cheong HSJ, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WCA, Card GM, Daly KC, Dacks AM. Organization of an ascending circuit that conveys flight motor state in Drosophila. Curr Biol 2024; 34:1059-1075.e5. [PMID: 38402616 PMCID: PMC10939832 DOI: 10.1016/j.cub.2024.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca2+ imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.
Collapse
Affiliation(s)
- Han S J Cheong
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Kaitlyn N Boone
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Marryn M Bennett
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Jacob D Ralston
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Kaleb Hatch
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Raven F Allen
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Alec M Phelps
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Andrew P Cook
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Jasper S Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Mert Erginkaya
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Wei-Chung A Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Kevin C Daly
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA; Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA.
| |
Collapse
|
13
|
Gautham AK, Miner LE, Franco MN, Thornquist SC, Crickmore MA. Molecular control of temporal integration matches decision-making to motivational state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582988. [PMID: 38496671 PMCID: PMC10942309 DOI: 10.1101/2024.03.01.582988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Motivations bias our responses to stimuli, producing behavioral outcomes that match our needs and goals. We describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate toward a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges. We show that a set of Copulation Decision Neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signaling restricts CDN integration time by potentiating CaMKII activation in response to stimulatory inputs, imposing a high threshold for changing behaviors. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviors. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.
Collapse
Affiliation(s)
- Aditya K. Gautham
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Lauren E. Miner
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Marco N. Franco
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Michael A. Crickmore
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
14
|
Kim DH, Jang YH, Yun M, Lee KM, Kim YJ. Long-term neuropeptide modulation of female sexual drive via the TRP channel in Drosophila melanogaster. Proc Natl Acad Sci U S A 2024; 121:e2310841121. [PMID: 38412134 PMCID: PMC10927590 DOI: 10.1073/pnas.2310841121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/17/2024] [Indexed: 02/29/2024] Open
Abstract
Connectomics research has made it more feasible to explore how neural circuits can generate multiple outputs. Female sexual drive provides a good model for understanding reversible, long-term functional changes in motivational circuits. After emerging, female flies avoid male courtship, but they become sexually receptive over 2 d. Mating causes females to reject further mating for several days. Here, we report that pC1 neurons, which process male courtship and regulate copulation behavior, exhibit increased CREB (cAMP response element binding protein) activity during sexual maturation and decreased CREB activity after mating. This increased CREB activity requires the neuropeptide Dh44 (Diuretic hormone 44) and its receptors. A subset of the pC1 neurons secretes Dh44, which stimulates CREB activity and increases expression of the TRP channel Pyrexia (Pyx) in more pC1 neurons. This, in turn, increases pC1 excitability and sexual drive. Mating suppresses pyx expression and pC1 excitability. Dh44 is orthologous to the conserved corticotrophin-releasing hormone family, suggesting similar roles in other species.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Yong-Hoon Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Minsik Yun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Kang-Min Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
15
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567744. [PMID: 38013995 PMCID: PMC10680801 DOI: 10.1101/2023.11.19.567744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide (SP) binds to the sex peptide receptor (SPR), triggering a series of post-mating responses. However, the origin of SPR predates the emergence of SP. The evolutionary origins of the interactions between SP and SPR and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study SP-SPR interactions and their origination. Using AlphaFold2 and long-time molecular dynamics (MD) simulations, we predicted the structure and dynamics of SP-SPR interactions. We show that SP potentially binds to the ancestral states of Diptera SPR. Notably, we found that only a few amino acid changes in SPR are sufficient for the formation of SP-SPR interactions. Ancestral sequence reconstruction and MD simulations further reveal that SPR interacts with SP through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides (MIPs). We propose a potential mechanism whereby SP-SPR interactions arise from the pre-existing MIP-SPR interface as well as early chance events both inside and outside the pre-existing interface that created novel SP-specific SP-SPR interactions. Our findings provide new insights into the origin and evolution of SP-SPR interactions and their relationship with MIP-SPR interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
16
|
Cordero-Molina S, Fetter-Pruneda I, Contreras-Garduño J. Neural mechanisms involved in female mate choice in invertebrates. Front Endocrinol (Lausanne) 2024; 14:1291635. [PMID: 38269245 PMCID: PMC10807292 DOI: 10.3389/fendo.2023.1291635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
Mate choice is a critical decision with direct implications for fitness. Although it has been recognized for over 150 years, our understanding of its underlying mechanisms is still limited. Most studies on mate choice focus on the evolutionary causes of behavior, with less attention given to the physiological and molecular mechanisms involved. This is especially true for invertebrates, where research on mate choice has largely focused on male behavior. This review summarizes the current state of knowledge on the neural, molecular and neurohormonal mechanisms of female choice in invertebrates, including behaviors before, during, and after copulation. We identify areas of research that have not been extensively explored in invertebrates, suggesting potential directions for future investigation. We hope that this review will stimulate further research in this area.
Collapse
Affiliation(s)
- Sagrario Cordero-Molina
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingrid Fetter-Pruneda
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge Contreras-Garduño
- Laboratorio de Ecología Evolutiva. Escuela Nacional de Estudios Superiores. Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Berg C, Sieber M, Sun J. Finishing the egg. Genetics 2024; 226:iyad183. [PMID: 38000906 PMCID: PMC10763546 DOI: 10.1093/genetics/iyad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/26/2023] Open
Abstract
Gamete development is a fundamental process that is highly conserved from early eukaryotes to mammals. As germ cells develop, they must coordinate a dynamic series of cellular processes that support growth, cell specification, patterning, the loading of maternal factors (RNAs, proteins, and nutrients), differentiation of structures to enable fertilization and ensure embryonic survival, and other processes that make a functional oocyte. To achieve these goals, germ cells integrate a complex milieu of environmental and developmental signals to produce fertilizable eggs. Over the past 50 years, Drosophila oogenesis has risen to the forefront as a system to interrogate the sophisticated mechanisms that drive oocyte development. Studies in Drosophila have defined mechanisms in germ cells that control meiosis, protect genome integrity, facilitate mRNA trafficking, and support the maternal loading of nutrients. Work in this system has provided key insights into the mechanisms that establish egg chamber polarity and patterning as well as the mechanisms that drive ovulation and egg activation. Using the power of Drosophila genetics, the field has begun to define the molecular mechanisms that coordinate environmental stresses and nutrient availability with oocyte development. Importantly, the majority of these reproductive mechanisms are highly conserved throughout evolution, and many play critical roles in the development of somatic tissues as well. In this chapter, we summarize the recent progress in several key areas that impact egg chamber development and ovulation. First, we discuss the mechanisms that drive nutrient storage and trafficking during oocyte maturation and vitellogenesis. Second, we examine the processes that regulate follicle cell patterning and how that patterning impacts the construction of the egg shell and the establishment of embryonic polarity. Finally, we examine regulatory factors that control ovulation, egg activation, and successful fertilization.
Collapse
Affiliation(s)
- Celeste Berg
- Department of Genome Sciences, University of Washington, Seattle, WA 98195-5065 USA
| | - Matthew Sieber
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 USA
| |
Collapse
|
18
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
19
|
Ahmed OM, Crocker A, Murthy M. Transcriptional profiling of Drosophila male-specific P1 (pC1) neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566045. [PMID: 37986870 PMCID: PMC10659367 DOI: 10.1101/2023.11.07.566045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In Drosophila melanogaster, the P1 (pC1) cluster of male-specific neurons both integrates sensory cues and drives or modulates behavioral programs such as courtship, in addition to contributing to a social arousal state. The behavioral function of these neurons is linked to the genes they express, which underpin their capacity for synaptic signaling, neuromodulation, and physiology. Yet, P1 (pC1) neurons have not been fully characterized at the transcriptome level. Moreover, it is unknown how the molecular landscape of P1 (pC1) neurons acutely changes after flies engage in social behaviors, where baseline P1 (pC1) neural activity is expected to increase. To address these two gaps, we use single cell-type RNA sequencing to profile and compare the transcriptomes of P1 (pC1) neurons harvested from socially paired versus solitary male flies. Compared to control transcriptome datasets, we find that P1 (pC1) neurons are enriched in 2,665 genes, including those encoding receptors, neuropeptides, and cell-adhesion molecules (dprs/DIPs). Furthermore, courtship is characterized by changes in ~300 genes, including those previously implicated in regulating behavior (e.g. DopEcR, Octβ3R, Fife, kairos, rad). Finally, we identify a suite of genes that link conspecific courtship with the innate immune system. Together, these data serve as a molecular map for future studies of an important set of higher-order and sexually-dimorphic neurons.
Collapse
Affiliation(s)
- Osama M Ahmed
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
- Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| |
Collapse
|
20
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
21
|
Sun M, Ma M, Deng B, Li N, Peng Q, Pan Y. A neural pathway underlying hunger modulation of sexual receptivity in Drosophila females. Cell Rep 2023; 42:113243. [PMID: 37819758 DOI: 10.1016/j.celrep.2023.113243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Accepting or rejecting a mate is one of the most crucial decisions a female will make, especially when faced with food shortage. Previous studies have identified the core neural circuity from sensing male courtship or mating status to decision-making for sexual receptivity in Drosophila females, but how hunger and satiety states modulate female receptivity is poorly understood. Here, we identify the neural circuit and its neuromodulation underlying the hunger modulation of female receptivity. We find that adipokinetic hormone receptor (AkhR)-expressing neurons inhibit sexual receptivity in a starvation-dependent manner. AkhR neurons are octopaminergic and act on a subset of Octβ1R-expressing LH421 neurons. Knocking down Octβ1R expression in LH421 neurons eliminates starvation-induced suppression of female receptivity. We further find that LH421 neurons inhibit the sex-promoting pC1 neurons via GABA-resistant to dieldrin (Rdl) signaling. pC1 neurons also integrate courtship stimulation and mating status and thus serve as a common integrator of multiple internal and external cues for decision-making.
Collapse
Affiliation(s)
- Mengshi Sun
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Na Li
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China.
| |
Collapse
|
22
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. Visual feedback neurons fine-tune Drosophila male courtship via GABA-mediated inhibition. Curr Biol 2023; 33:3896-3910.e7. [PMID: 37673068 PMCID: PMC10529139 DOI: 10.1016/j.cub.2023.08.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
23
|
Duhart JM, Buchler JR, Inami S, Kennedy KJ, Jenny BP, Afonso DJS, Koh K. Modulation and neural correlates of postmating sleep plasticity in Drosophila females. Curr Biol 2023; 33:2702-2716.e3. [PMID: 37352854 PMCID: PMC10527417 DOI: 10.1016/j.cub.2023.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/25/2023]
Abstract
Sleep is essential, but animals may forgo sleep to engage in other critical behaviors, such as feeding and reproduction. Previous studies have shown that female flies exhibit decreased sleep after mating, but our understanding of the process is limited. Here, we report that postmating nighttime sleep loss is modulated by diet and sleep deprivation, demonstrating a complex interaction among sleep, reproduction, and diet. We also find that female-specific pC1 neurons and sleep-promoting dorsal fan-shaped body (dFB) neurons are required for postmating sleep plasticity. Activating pC1 neurons leads to sleep suppression on standard fly culture media but has little sleep effect on sucrose-only food. Published connectome data suggest indirect, inhibitory connections among pC1 subtypes. Using calcium imaging, we show that activating the pC1e subtype inhibits dFB neurons. We propose that pC1 and dFB neurons integrate the mating status, food context, and sleep drive to modulate postmating sleep plasticity.
Collapse
Affiliation(s)
- José M Duhart
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir-IIBBA-CONICET, Buenos Aires C1405BWE, Argentina; Universidad Nacional de Quilmes, Quilmes B1876BXD, Argentina.
| | - Joseph R Buchler
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Sho Inami
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyle J Kennedy
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - B Peter Jenny
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Dinis J S Afonso
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Kyunghee Koh
- Department of Neuroscience, the Farber Institute for Neurosciences, and Synaptic Biology Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
24
|
Cheong HSJ, Boone KN, Bennett MM, Salman F, Ralston JD, Hatch K, Allen RF, Phelps AM, Cook AP, Phelps JS, Erginkaya M, Lee WCA, Card GM, Daly KC, Dacks AM. Organization of an Ascending Circuit that Conveys Flight Motor State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544074. [PMID: 37333334 PMCID: PMC10274802 DOI: 10.1101/2023.06.07.544074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Natural behaviors are a coordinated symphony of motor acts which drive self-induced or reafferent sensory activation. Single sensors only signal presence and magnitude of a sensory cue; they cannot disambiguate exafferent (externally-induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to make appropriate decisions and initiate adaptive behavioral outcomes. This is mediated by predictive motor signaling mechanisms, which emanate from motor control pathways to sensory processing pathways, but how predictive motor signaling circuits function at the cellular and synaptic level is poorly understood. We use a variety of techniques, including connectomics from both male and female electron microscopy volumes, transcriptomics, neuroanatomical, physiological and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs), which putatively provide predictive motor signals to several sensory and motor neuropil. Both AHN pairs receive input primarily from an overlapping population of descending neurons, many of which drive wing motor output. The two AHN pairs target almost exclusively non-overlapping downstream neural networks including those that process visual, auditory and mechanosensory information as well as networks coordinating wing, haltere, and leg motor output. These results support the conclusion that the AHN pairs multi-task, integrating a large amount of common input, then tile their output in the brain, providing predictive motor signals to non-overlapping sensory networks affecting motor control both directly and indirectly.
Collapse
Affiliation(s)
- Han S. J. Cheong
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States of America
| | - Kaitlyn N. Boone
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Marryn M. Bennett
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Jacob D. Ralston
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Kaleb Hatch
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Raven F. Allen
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Alec M. Phelps
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Andrew P. Cook
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
| | - Jasper S. Phelps
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mert Erginkaya
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Wei-Chung A. Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Gwyneth M. Card
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, United States of America
- Zuckerman Institute, Columbia University, New York, NY 10027, United States of America
| | - Kevin C. Daly
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, United States of America
| | - Andrew M. Dacks
- Department of Biology, West Virginia University, Morgantown, WV 26505, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, United States of America
| |
Collapse
|
25
|
Cury KM, Axel R. Flexible neural control of transition points within the egg-laying behavioral sequence in Drosophila. Nat Neurosci 2023; 26:1054-1067. [PMID: 37217726 PMCID: PMC10244180 DOI: 10.1038/s41593-023-01332-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023]
Abstract
Innate behaviors are frequently comprised of ordered sequences of component actions that progress to satisfy essential drives. Progression is governed by specialized sensory cues that induce transitions between components within the appropriate context. Here we have characterized the structure of the egg-laying behavioral sequence in Drosophila and found significant variability in the transitions between component actions that affords the organism an adaptive flexibility. We identified distinct classes of interoceptive and exteroceptive sensory neurons that control the timing and direction of transitions between the terminal components of the sequence. We also identified a pair of motor neurons that enact the final transition to egg expulsion. These results provide a logic for the organization of innate behavior in which sensory information processed at critical junctures allows for flexible adjustments in component actions to satisfy drives across varied internal and external environments.
Collapse
Affiliation(s)
- Kevin M Cury
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
| | - Richard Axel
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY, USA.
- Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Laturney M, Sterne GR, Scott K. Mating activates neuroendocrine pathways signaling hunger in Drosophila females. eLife 2023; 12:e85117. [PMID: 37184218 PMCID: PMC10229122 DOI: 10.7554/elife.85117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/13/2023] [Indexed: 05/16/2023] Open
Abstract
Mated females reallocate resources to offspring production, causing changes to nutritional requirements and challenges to energy homeostasis. Although observed across species, the neural and endocrine mechanisms that regulate the nutritional needs of mated females are not well understood. Here, we find that mated Drosophila melanogaster females increase sugar intake, which is regulated by the activity of sexually dimorphic insulin receptor (Lgr3) neurons. In virgins, Lgr3+ cells have reduced activity as they receive inhibitory input from active, female-specific pCd-2 cells, restricting sugar intake. During copulation, males deposit sex peptide into the female reproductive tract, which silences a three-tier mating status circuit and initiates the female postmating response. We show that pCd-2 neurons also become silenced after mating due to the direct synaptic input from the mating status circuit. Thus, in mated females pCd-2 inhibition is attenuated, activating downstream Lgr3+ neurons and promoting sugar intake. Together, this circuit transforms the mated signal into a long-term hunger signal. Our results demonstrate that the mating circuit alters nutrient sensing centers to increase feeding in mated females, providing a mechanism to increase intake in anticipation of the energetic costs associated with reproduction.
Collapse
Affiliation(s)
| | | | - Kristin Scott
- University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
27
|
Sorkaç A, Moșneanu RA, Crown AM, Savaş D, Okoro AM, Memiş E, Talay M, Barnea G. retro-Tango enables versatile retrograde circuit tracing in Drosophila. eLife 2023; 12:e85041. [PMID: 37166114 PMCID: PMC10208638 DOI: 10.7554/elife.85041] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/11/2023] [Indexed: 05/12/2023] Open
Abstract
Transsynaptic tracing methods are crucial tools in studying neural circuits. Although a couple of anterograde tracing methods and a targeted retrograde tool have been developed in Drosophila melanogaster, there is still need for an unbiased, user-friendly, and flexible retrograde tracing system. Here, we describe retro-Tango, a method for transsynaptic, retrograde circuit tracing and manipulation in Drosophila. In this genetically encoded system, a ligand-receptor interaction at the synapse triggers an intracellular signaling cascade that results in reporter gene expression in presynaptic neurons. Importantly, panneuronal expression of the elements of the cascade renders this method versatile, enabling its use not only to test hypotheses but also to generate them. We validate retro-Tango in various circuits and benchmark it by comparing our findings with the electron microscopy reconstruction of the Drosophila hemibrain. Our experiments establish retro-Tango as a key method for circuit tracing in neuroscience research.
Collapse
Affiliation(s)
- Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Rareș A Moșneanu
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Anthony M Crown
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Doruk Savaş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Angel M Okoro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Ezgi Memiş
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| |
Collapse
|
28
|
Rohrbach EW, Knapp EM, Deshpande SA, Krantz DE. Drosophila cells that express octopamine receptors can either inhibit or promote oviposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539296. [PMID: 37205438 PMCID: PMC10187210 DOI: 10.1101/2023.05.03.539296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Adrenergic signaling is known to play a critical role in regulating female reproductive processes in both mammals and insects. In Drosophila , the ortholog of noradrenaline, octopamine (Oa), is required for ovulation as well as several other female reproductive processes. Loss of function studies using mutant alleles of receptors, transporters, and biosynthetic enzymes for Oa have led to a model in which disruption of octopaminergic pathways reduces egg laying. However, neither the complete expression pattern in the reproductive tract nor the role of most octopamine receptors in oviposition is known. We show that all six known Oa receptors are expressed in peripheral neurons at multiple sites within in the female fly reproductive tract as well as in non-neuronal cells within the sperm storage organs. The complex pattern of Oa receptor expression in the reproductive tract suggests the potential for influencing multiple regulatory pathways, including those known to inhibit egg-laying in unmated flies. Indeed, activation of some neurons that express Oa receptors inhibits oviposition, and neurons that express different subtypes of Oa receptor can affect different stages of egg laying. Stimulation of some Oa receptor expressing neurons (OaRNs) also induces contractions in lateral oviduct muscle and activation of non-neuronal cells in the sperm storage organs by Oa generates OAMB-dependent intracellular calcium release. Our results are consistent with a model in which adrenergic pathways play a variety of complex roles in the fly reproductive tract that includes both the stimulation and inhibition of oviposition.
Collapse
|
29
|
Yang YT, Hu SW, Li X, Sun Y, He P, Kohlmeier KA, Zhu Y. Sex peptide regulates female receptivity through serotoninergic neurons in Drosophila. iScience 2023; 26:106123. [PMID: 36876123 PMCID: PMC9976462 DOI: 10.1016/j.isci.2023.106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The courtship ritual is a dynamic interplay between males and females. Courtship successfully leading to copulation is determined by the intention of both parties which is conveyed by complex action sequences. In Drosophila, the neural mechanisms controlling the female's willingness to mate, or sexual receptivity, have only recently become the focus of investigations. Here, we report that pre-mating sexual receptivity in females requires activity within a subset of serotonergic projection neurons (SPNs), which positively regulate courtship success. Of interest, a male-derived sex peptide, SP, which was transferred to females during copulation acted to inhibit the activity of SPN and suppressed receptivity. Downstream of 5-HT, subsets of 5-HT7 receptor neurons played critical roles in SP-induced suppression of sexual receptivity. Together, our study reveals a complex serotonin signaling system in the central brain of Drosophila which manages the female's desire to mate.
Collapse
Affiliation(s)
- Yan Tong Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Shao Wei Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China
| | - Xiaonan Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Sun
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark.,Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Yan Zhu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.,Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,Sino-Danish Center for Education and Research, Beijing 101408, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100190, China
| |
Collapse
|
30
|
Duhart JM, Inami S, Koh K. Many faces of sleep regulation: beyond the time of day and prior wake time. FEBS J 2023; 290:931-950. [PMID: 34908236 PMCID: PMC9198110 DOI: 10.1111/febs.16320] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
The two-process model of sleep regulation posits two main processes regulating sleep: the circadian process controlled by the circadian clock and the homeostatic process that depends on the history of sleep and wakefulness. The model has provided a dominant conceptual framework for sleep research since its publication ~ 40 years ago. The time of day and prior wake time are the primary factors affecting the circadian and homeostatic processes, respectively. However, it is critical to consider other factors influencing sleep. Since sleep is incompatible with other behaviors, it is affected by the need for essential behaviors such as eating, foraging, mating, caring for offspring, and avoiding predators. Sleep is also affected by sensory inputs, sickness, increased need for memory consolidation after learning, and other factors. Here, we review multiple factors influencing sleep and discuss recent insights into the mechanisms balancing competing needs.
Collapse
Affiliation(s)
- José Manuel Duhart
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
- Present address: Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Sho Inami
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
- These authors contributed equally
| | - Kyunghee Koh
- Department of Neuroscience, Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia PA
| |
Collapse
|
31
|
Yu J, Guo X, Zheng S, Zhang W. A dedicate sensorimotor circuit enables fine texture discrimination by active touch. PLoS Genet 2023; 19:e1010562. [PMID: 36649336 PMCID: PMC9882754 DOI: 10.1371/journal.pgen.1010562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/27/2023] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Active touch facilitates environments exploration by voluntary, self-generated movements. However, the neural mechanisms underlying sensorimotor control for active touch are poorly understood. During foraging and feeding, Drosophila gather information on the properties of food (texture, hardness, taste) by constant probing with their proboscis. Here we identify a group of neurons (sd-L neurons) on the fly labellum that are mechanosensitive to labellum displacement and synapse onto the sugar-sensing neurons via axo-axonal synapses to induce preference to harder food. These neurons also feed onto the motor circuits that control proboscis extension and labellum spreading to provide on-line sensory feedback critical for controlling the probing processes, thus facilitating ingestion of less liquified food. Intriguingly, this preference was eliminated in mated female flies, reflecting an elevated need for softer food. Our results propose a sensorimotor circuit composed of mechanosensory, gustatory and motor neurons that enables the flies to select ripe yet not over-rotten food by active touch.
Collapse
Affiliation(s)
- Jie Yu
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xuan Guo
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shen Zheng
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
32
|
Riva S, Ispizua JI, Breide MT, Polcowñuk S, Lobera JR, Ceriani MF, Risau-Gusman S, Franco DL. Mating disrupts morning anticipation in Drosophila melanogaster females. PLoS Genet 2022; 18:e1010258. [PMID: 36548223 PMCID: PMC9779042 DOI: 10.1371/journal.pgen.1010258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/04/2022] [Indexed: 12/24/2022] Open
Abstract
After mating, the physiology of Drosophila females undergo several important changes, some of which are reflected in their rest-activity cycles. To explore the hypothesis that mating modifies the temporal organization of locomotor activity patterns, we recorded fly activity by a video tracking method. Monitoring rest-activity patterns under light/dark (LD) cycles indicated that mated females lose their ability to anticipate the night-day transition, in stark contrast to males and virgins. This postmating response is mediated by the activation of the sex peptide receptor (SPR) mainly on pickpocket (ppk) expressing neurons, since reducing expression of this receptor in these neurons restores the ability to anticipate the LD transition in mated females. Furthermore, we provide evidence of connectivity between ppk+ neurons and the pigment-dispersing factor (PDF)-positive ventral lateral neurons (sLNv), which play a central role in the temporal organization of daily activity. Since PDF has been associated to the generation of the morning activity peak, we hypothesized that the mating signal could modulate PDF levels. Indeed, we confirm that mated females have reduced PDF levels at the dorsal protocerebrum; moreover, SPR downregulation in ppk+ neurons mimics PDF levels observed in males. In sum, our results are consistent with a model whereby mating-triggered signals reach clock neurons in the fly central nervous system to modulate the temporal organization of circadian behavior according to the needs of the new status.
Collapse
Affiliation(s)
- Sabrina Riva
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Juan Ignacio Ispizua
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - María Trinidad Breide
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - Sofía Polcowñuk
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - José Ricardo Lobera
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
| | - María Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir—IIBBA—CONICET, Buenos Aires, Argentina
| | - Sebastian Risau-Gusman
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
- * E-mail: (SRG); (DLF)
| | - Diana Lorena Franco
- Medical Physics Department, Bariloche Atomic Center, Comisión Nacional de Energía Atómica (CNEA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Carlos de Bariloche, Argentina
- * E-mail: (SRG); (DLF)
| |
Collapse
|
33
|
Okamoto N, Watanabe A. Interorgan communication through peripherally derived peptide hormones in Drosophila. Fly (Austin) 2022; 16:152-176. [PMID: 35499154 PMCID: PMC9067537 DOI: 10.1080/19336934.2022.2061834] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In multicellular organisms, endocrine factors such as hormones and cytokines regulate development and homoeostasis through communication between different organs. For understanding such interorgan communications through endocrine factors, the fruit fly Drosophila melanogaster serves as an excellent model system due to conservation of essential endocrine systems between flies and mammals and availability of powerful genetic tools. In Drosophila and other insects, functions of neuropeptides or peptide hormones from the central nervous system have been extensively studied. However, a series of recent studies conducted in Drosophila revealed that peptide hormones derived from peripheral tissues also play critical roles in regulating multiple biological processes, including growth, metabolism, reproduction, and behaviour. Here, we summarise recent advances in understanding target organs/tissues and functions of peripherally derived peptide hormones in Drosophila and describe how these hormones contribute to various biological events through interorgan communications.
Collapse
Affiliation(s)
- Naoki Okamoto
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Watanabe
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
34
|
Karigo T, Deutsch D. Flexibility of neural circuits regulating mating behaviors in mice and flies. Front Neural Circuits 2022; 16:949781. [PMID: 36426135 PMCID: PMC9679785 DOI: 10.3389/fncir.2022.949781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/28/2022] [Indexed: 11/11/2022] Open
Abstract
Mating is essential for the reproduction of animal species. As mating behaviors are high-risk and energy-consuming processes, it is critical for animals to make adaptive mating decisions. This includes not only finding a suitable mate, but also adapting mating behaviors to the animal's needs and environmental conditions. Internal needs include physical states (e.g., hunger) and emotional states (e.g., fear), while external conditions include both social cues (e.g., the existence of predators or rivals) and non-social factors (e.g., food availability). With recent advances in behavioral neuroscience, we are now beginning to understand the neural basis of mating behaviors, particularly in genetic model organisms such as mice and flies. However, how internal and external factors are integrated by the nervous system to enable adaptive mating-related decision-making in a state- and context-dependent manner is less well understood. In this article, we review recent knowledge regarding the neural basis of flexible mating behaviors from studies of flies and mice. By contrasting the knowledge derived from these two evolutionarily distant model organisms, we discuss potential conserved and divergent neural mechanisms involved in the control of flexible mating behaviors in invertebrate and vertebrate brains.
Collapse
Affiliation(s)
- Tomomi Karigo
- Kennedy Krieger Institute, Baltimore, MD, United States,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: Tomomi Karigo,
| | - David Deutsch
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel,David Deutsch,
| |
Collapse
|
35
|
Lillvis JL, Otsuna H, Ding X, Pisarev I, Kawase T, Colonell J, Rokicki K, Goina C, Gao R, Hu A, Wang K, Bogovic J, Milkie DE, Meienberg L, Mensh BD, Boyden ES, Saalfeld S, Tillberg PW, Dickson BJ. Rapid reconstruction of neural circuits using tissue expansion and light sheet microscopy. eLife 2022; 11:e81248. [PMID: 36286237 PMCID: PMC9651950 DOI: 10.7554/elife.81248] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Brain function is mediated by the physiological coordination of a vast, intricately connected network of molecular and cellular components. The physiological properties of neural network components can be quantified with high throughput. The ability to assess many animals per study has been critical in relating physiological properties to behavior. By contrast, the synaptic structure of neural circuits is presently quantifiable only with low throughput. This low throughput hampers efforts to understand how variations in network structure relate to variations in behavior. For neuroanatomical reconstruction, there is a methodological gulf between electron microscopic (EM) methods, which yield dense connectomes at considerable expense and low throughput, and light microscopic (LM) methods, which provide molecular and cell-type specificity at high throughput but without synaptic resolution. To bridge this gulf, we developed a high-throughput analysis pipeline and imaging protocol using tissue expansion and light sheet microscopy (ExLLSM) to rapidly reconstruct selected circuits across many animals with single-synapse resolution and molecular contrast. Using Drosophila to validate this approach, we demonstrate that it yields synaptic counts similar to those obtained by EM, enables synaptic connectivity to be compared across sex and experience, and can be used to correlate structural connectivity, functional connectivity, and behavior. This approach fills a critical methodological gap in studying variability in the structure and function of neural circuits across individuals within and between species.
Collapse
Affiliation(s)
- Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Xiaoyu Ding
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Igor Pisarev
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Takashi Kawase
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Konrad Rokicki
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Cristian Goina
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Ruixuan Gao
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- MIT McGovern Institute for Brain ResearchCambridgeUnited States
- Departments of Chemistry and Biological Sciences, University of Illinois ChicagoChicagoUnited States
| | - Amy Hu
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Daniel E Milkie
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Brett D Mensh
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Edward S Boyden
- MIT McGovern Institute for Brain ResearchCambridgeUnited States
- Howard Hughes Medical InstituteCambridgeUnited States
| | - Stephan Saalfeld
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
- Queensland Brain Institute, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
36
|
Ribeiro IMA, Eßbauer W, Kutlesa R, Borst A. Spatial and temporal control of expression with light-gated LOV-LexA. G3 GENES|GENOMES|GENETICS 2022; 12:6649684. [PMID: 35876796 PMCID: PMC9526042 DOI: 10.1093/g3journal/jkac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022]
Abstract
The ability to drive expression of exogenous genes in different tissues and cell types, under the control of specific enhancers, has been crucial for discovery in biology. While many enhancers drive expression broadly, several genetic tools were developed to obtain access to isolated cell types. Studies of spatially organized neuropiles in the central nervous system of fruit flies have raised the need for a system that targets subsets of cells within a single neuronal type, a feat currently dependent on stochastic flip-out methods. To access the same cells within a given expression pattern consistently across fruit flies, we developed the light-gated expression system LOV-LexA. We combined the bacterial LexA transcription factor with the plant-derived light, oxygen, or voltage photosensitive domain and a fluorescent protein. Exposure to blue light uncages a nuclear localizing signal in the C-terminal of the light, oxygen, or voltage domain and leads to the translocation of LOV-LexA to the nucleus, with the subsequent initiation of transcription. LOV-LexA enables spatial and temporal control of expression of transgenes under LexAop sequences in larval fat body and pupal and adult neurons with blue light. The LOV-LexA tool is ready to use with GAL4 and Split-GAL4 drivers in its current form and constitutes another layer of intersectional genetics that provides light-controlled genetic access to specific cells across flies.
Collapse
Affiliation(s)
- Inês M A Ribeiro
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Wolfgang Eßbauer
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Romina Kutlesa
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| | - Alexander Borst
- Department of Circuits-Computations-Models, Max Planck Institute of Neurobiology , 82152 Martinsried, Germany
| |
Collapse
|
37
|
White MA, Wolfner MF. The Effects of Male Seminal Fluid Proteins on Gut/Gonad Interactions in Drosophila. INSECTS 2022; 13:623. [PMID: 35886799 PMCID: PMC9324770 DOI: 10.3390/insects13070623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 02/04/2023]
Abstract
Mating initiates broad physiological changes encompassing multiple organ systems in females. Elucidating the complex inter- and intra-organ signaling events that coordinate these physiological changes is an important goal in the field of reproductive biology. Further characterization of these complex molecular and physiological interactions is key to understanding how females meet the energetic demands of offspring production. Many recent studies of the fruit fly, Drosophila melanogaster, have described the mechanisms of post-mating changes within the female reproductive tract and digestive system. Additionally, other studies have described post-mating signaling crosstalk between these systems. Interestingly, male seminal fluid proteins have been linked to post-mating responses within the female reproductive tract and gut, and to signaling events between the two organ systems. However, information about the hormonal and neuronal signaling pathways underlying the post-mating signaling events within and between the reproductive tract and digestive systems that are triggered by seminal fluid proteins has yet to be combined into a single view. In this article, we summarize and integrate these studies into a single "network schematic" of the known signaling events within and between the reproductive and digestive systems downstream of male seminal fluid proteins. This synthesis also draws attention to the incomplete parts of these pathways, so that outstanding questions may be addressed in future studies.
Collapse
Affiliation(s)
- Melissa A. White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Baker Institute for Animal Health, Cornell University, Ithaca, NY 14853, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
38
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
39
|
Wang T, Jing B, Deng B, Shi K, Li J, Ma B, Wu F, Zhou C. Drosulfakinin signaling modulates female sexual receptivity in Drosophila. eLife 2022; 11:76025. [PMID: 35475782 PMCID: PMC9045819 DOI: 10.7554/elife.76025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Female sexual behavior as an innate behavior is of prominent biological importance for survival and reproduction. However, molecular and circuit mechanisms underlying female sexual behavior is not well understood. Here, we identify the Cholecystokinin-like peptide Drosulfakinin (DSK) to promote female sexual behavior in Drosophila. Loss of DSK function reduces female receptivity while overexpressing DSK enhances female receptivity. We identify two pairs of Dsk-expressing neurons in the central brain to promote female receptivity. We find that the DSK peptide acts through one of its receptors, CCKLR-17D3, to modulate female receptivity. Manipulation of CCKLR-17D3 and its expressing neurons alters female receptivity. We further reveal that the two pairs of Dsk-expressing neurons receive input signal from pC1 neurons that integrate sex-related cues and mating status. These results demonstrate how a neuropeptide pathway interacts with a central neural node in the female sex circuitry to modulate sexual receptivity.
Collapse
Affiliation(s)
- Tao Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Biyang Jing
- State Key Laboratory of Membrane Biology, College of Life Sciences, IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bowen Deng
- Chinese Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Zhongguangcun Life Sciences Park, Beijing, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jing Li
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Baoxu Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fengming Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Chuan Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
40
|
Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol 2022; 73:102523. [DOI: 10.1016/j.conb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
|
41
|
Hopkins BR, Perry JC. The evolution of sex peptide: sexual conflict, cooperation, and coevolution. Biol Rev Camb Philos Soc 2022; 97:1426-1448. [PMID: 35249265 PMCID: PMC9256762 DOI: 10.1111/brv.12849] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022]
Abstract
A central paradigm in evolutionary biology is that the fundamental divergence in the fitness interests of the sexes (‘sexual conflict’) can lead to both the evolution of sex‐specific traits that reduce fitness for individuals of the opposite sex, and sexually antagonistic coevolution between the sexes. However, clear examples of traits that evolved in this way – where a single trait in one sex demonstrably depresses the fitness of members of the opposite sex, resulting in antagonistic coevolution – are rare. The Drosophila seminal protein ‘sex peptide’ (SP) is perhaps the most widely cited example of a trait that appears to harm females while benefitting males. Transferred in the ejaculate by males during mating, SP triggers profound and wide‐ranging changes in female behaviour and physiology. Early studies reported that the transfer of SP enhances male fitness while depressing female fitness, providing the foundations for the widespread view that SP has evolved to manipulate females for male benefit. Here, we argue that this view is (i) a simplification of a wider body of contradictory empirical research, (ii) narrow with respect to theory describing the origin and maintenance of sexually selected traits, and (iii) hard to reconcile with what we know of the evolutionary history of SP's effects on females. We begin by charting the history of thought regarding SP, both at proximate (its production, function, and mechanism of action) and ultimate (its fitness consequences and evolutionary history) levels, reviewing how studies of SP were central to the development of the field of sexual conflict. We describe a prevailing paradigm for SP's evolution: that SP originated and continues to evolve to manipulate females for male benefit. In contrast to this view, we argue on three grounds that the weight of evidence does not support the view that receipt of SP decreases female fitness: (i) results from studies of SP's impact on female fitness are mixed and more often neutral or positive, with fitness costs emerging only under nutritional extremes; (ii) whether costs from SP are appreciable in wild‐living populations remains untested; and (iii) recently described confounds in genetic manipulations of SP raise the possibility that measures of the costs and benefits of SP have been distorted. Beyond SP's fitness effects, comparative and genetic data are also difficult to square with the idea that females suffer fitness costs from SP. Instead, these data – from functional and evolutionary genetics and the neural circuitry of female responses to SP – suggest an evolutionary history involving the evolution of a dedicated SP‐sensing apparatus in the female reproductive tract that is likely to have evolved because it benefits females, rather than harms them. We end by exploring theory and evidence that SP benefits females by functioning as a signal of male quality or of sperm receipt and storage (or both). The expanded view of the evolution of SP that we outline recognises the context‐dependent and fluctuating roles played by both cooperative and antagonistic selection in the origin and maintenance of reproductive traits.
Collapse
Affiliation(s)
- Ben R. Hopkins
- Department of Evolution and Ecology University of California – Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Jennifer C. Perry
- School of Biological Sciences University of East Anglia Norwich NR4 7TJ U.K
| |
Collapse
|
42
|
The insect somatostatin pathway gates vitellogenesis progression during reproductive maturation and the post-mating response. Nat Commun 2022; 13:969. [PMID: 35181671 PMCID: PMC8857180 DOI: 10.1038/s41467-022-28592-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Vitellogenesis (yolk accumulation) begins upon eclosion and continues through the process of sexual maturation. Upon reaching sexual maturity, vitellogenesis is placed on hold until it is induced again by mating. However, the mechanisms that gate vitellogenesis in response to developmental and reproductive signals remain unclear. Here, we have identified the neuropeptide allatostatin-C (AstC)-producing neurons that gate both the initiation of vitellogenesis that occurs post-eclosion and its re-initiation post-mating. During sexual maturation, the AstC neurons receive excitatory inputs from Sex Peptide Abdominal Ganglion (SAG) neurons. In mature virgin females, high sustained activity of SAG neurons shuts off vitellogenesis via continuous activation of the AstC neurons. Upon mating, however, Sex Peptide inhibits SAG neurons, leading to deactivation of the AstC neurons. As a result, this permits both JH biosynthesis and the progression of vitellogenesis in mated females. Our work has uncovered a central neural circuit that gates the progression of oogenesis. In mammals, somatostatin plays a role in preventing the release of sex hormones before puberty begins. A Drosophila study uncovered the process by which insect somatostatin controls ovarian development in response to developmental and mating signals.
Collapse
|
43
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
44
|
Hoshino R, Niwa R. Regulation of Mating-Induced Increase in Female Germline Stem Cells in the Fruit Fly Drosophila melanogaster. Front Physiol 2021; 12:785435. [PMID: 34950056 PMCID: PMC8689587 DOI: 10.3389/fphys.2021.785435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 01/19/2023] Open
Abstract
In many insect species, mating stimuli can lead to changes in various behavioral and physiological responses, including feeding, mating refusal, egg-laying behavior, energy demand, and organ remodeling, which are collectively known as the post-mating response. Recently, an increase in germline stem cells (GSCs) has been identified as a new post-mating response in both males and females of the fruit fly, Drosophila melanogaster. We have extensively studied mating-induced increase in female GSCs of D. melanogaster at the molecular, cellular, and systemic levels. After mating, the male seminal fluid peptide [e.g. sex peptide (SP)] is transferred to the female uterus. This is followed by binding to the sex peptide receptor (SPR), which evokes post-mating responses, including increase in number of female GSCs. Downstream of SP-SPR signaling, the following three hormones and neurotransmitters have been found to act on female GSC niche cells to regulate mating-induced increase in female GSCs: (1) neuropeptide F, a peptide hormone produced in enteroendocrine cells; (2) octopamine, a monoaminergic neurotransmitter synthesized in ovary-projecting neurons; and (3) ecdysone, a steroid hormone produced in ovarian follicular cells. These humoral factors are secreted from each organ and are received by ovarian somatic cells and regulate the strength of niche signaling in female GSCs. This review provides an overview of the latest findings on the inter-organ relationship to regulate mating-induced female GSC increase in D. melanogaster as a model. We also discuss the remaining issues that should be addressed in the future.
Collapse
Affiliation(s)
- Ryo Hoshino
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
45
|
Carreira-Rosario A, York RA, Choi M, Doe CQ, Clandinin TR. Mechanosensory input during circuit formation shapes Drosophila motor behavior through patterned spontaneous network activity. Curr Biol 2021; 31:5341-5349.e4. [PMID: 34478644 PMCID: PMC8665011 DOI: 10.1016/j.cub.2021.08.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023]
Abstract
Neural activity sculpts circuit wiring in many animals. In vertebrates, patterned spontaneous network activity (PaSNA) generates sensory maps and establishes local circuits.1-3 However, it remains unclear how PaSNA might shape neuronal circuits and behavior in invertebrates. Previous work in the developing Drosophila embryo discovered intrinsic muscle activity that did not require synaptic transmission, and hence was myogenic, preceding PaSNA.4-6 These studies, however, monitored muscle movement, not neural activity, and were therefore unable to observe how myogenic activity might relate to subsequent neural network engagement. Here we use calcium imaging to directly record neural activity and characterize the emergence of PaSNA. We demonstrate that the spatiotemporal properties of PaSNA are highly stereotyped across embryos, arguing for genetic programming. Neural activity begins well before it becomes patterned, emerging during the myogenic stage. Remarkably, inhibition of mechanosensory input, as well as inhibition of muscle contractions, results in premature and excessive PaSNA, demonstrating that muscle movement serves as a brake on this process. Finally, transient mechanosensory inhibition during PaSNA, followed by quantitative modeling of larval behavior, shows that mechanosensory modulation during development is required for proper larval foraging. This work provides a foundation for using the Drosophila embryo to study the role of PaSNA in circuit formation, provides mechanistic insight into how PaSNA is entrained by motor activity, and demonstrates that spontaneous network activity is essential for locomotor behavior. These studies argue that sensory feedback during the earliest stages of circuit formation can sculpt locomotor behaviors through innate motor learning.
Collapse
Affiliation(s)
- Arnaldo Carreira-Rosario
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Ryan A York
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Minseung Choi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
47
|
Guo D, Zhang YJ, Zhang S, Li J, Guo C, Pan YF, Zhang N, Liu CX, Jia YL, Li CY, Ma JY, Nässel DR, Gao CF, Wu SF. Cholecystokinin-like peptide mediates satiety by inhibiting sugar attraction. PLoS Genet 2021; 17:e1009724. [PMID: 34398892 PMCID: PMC8366971 DOI: 10.1371/journal.pgen.1009724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022] Open
Abstract
Feeding is essential for animal survival and reproduction and is regulated by both internal states and external stimuli. However, little is known about how internal states influence the perception of external sensory cues that regulate feeding behavior. Here, we investigated the neuronal and molecular mechanisms behind nutritional state-mediated regulation of gustatory perception in control of feeding behavior in the brown planthopper and Drosophila. We found that feeding increases the expression of the cholecystokinin-like peptide, sulfakinin (SK), and the activity of a set of SK-expressing neurons. Starvation elevates the transcription of the sugar receptor Gr64f and SK negatively regulates the expression of Gr64f in both insects. Interestingly, we found that one of the two known SK receptors, CCKLR-17D3, is expressed by some of Gr64f-expressing neurons in the proboscis and proleg tarsi. Thus, we have identified SK as a neuropeptide signal in a neuronal circuitry that responds to food intake, and regulates feeding behavior by diminishing gustatory receptor gene expression and activity of sweet sensing GRNs. Our findings demonstrate one nutritional state-dependent pathway that modulates sweet perception and thereby feeding behavior, but our experiments cannot exclude further parallel pathways. Importantly, we show that the underlying mechanisms are conserved in the two distantly related insect species. Food intake is critical for animal survival and reproduction and is regulated both by internal states that signal appetite or satiety, and by external sensory stimuli. It is well known that the internal nutritional state influences the strength of the chemosensory perception of food signals. Thus, both gustatory and olfactory signals of preferred food are strengthened in hungry animals. However, the molecular mechanisms behind satiety-mediated modulation of taste are still not known. We show here that cholecystokinin-like (SK) peptide in brown planthopper and Drosophila signals satiety and inhibits sugar attraction by lowering the activity of sweet-sensing gustatory neurons and transcription of a sugar receptor gene, Gr64f. We show that SK peptide signaling reflects the nutritional state and inhibits feeding behavior. Re-feeding after starvation increases SK peptide expression and spontaneous activity of SK producing neurons. Interestingly, we found that SK peptide negatively regulates the expression of the sweet gustatory receptor and that activation of SK producing neurons inhibits the activity of sweet-sensing gustatory neurons (GRNs). Furthermore, we found that one of the two known SK peptide receptors is expressed in some sweet-sensing GRNs in the proboscis and proleg tarsi. In summary, our findings provide a mechanism that is conserved in distantly related insects and which explains how feeding state modulates sweet perception to regulate feeding behavior. Thus, we have identified a neuropeptide signal and its neuronal circuitry that respond to satiety, and that regulate feeding behavior by inhibiting gustatory receptor gene expression and activity of sweet sensing GRNs.
Collapse
Affiliation(s)
- Di Guo
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Yi-Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Su Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jian Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chao Guo
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Yu-Feng Pan
- The Key Laboratory of Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Ning Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Xi Liu
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ya-Long Jia
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Chen-Yu Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Jun-Yu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Cong-Fen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
| | - Shun-Fan Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Jiangsu, China
- * E-mail:
| |
Collapse
|
48
|
Garaulet DL, Moro A, Lai EC. A double-negative gene regulatory circuit underlies the virgin behavioral state. Cell Rep 2021; 36:109335. [PMID: 34233178 PMCID: PMC8344067 DOI: 10.1016/j.celrep.2021.109335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Virgin females of many species conduct distinctive behaviors, compared with post-mated and/or pregnant individuals. In Drosophila, this post-mating switch is initiated by seminal factors, implying that the default female state is virgin. However, we recently showed that loss of miR-iab-4/8-mediated repression of the transcription factor Homothorax (Hth) within the abdominal ventral nerve cord (VNC) causes virgins to execute mated behaviors. Here, we use genomic analysis of mir-iab-4/8 deletion and hth-microRNA (miRNA) binding site mutants (hth[BSmut]) to elucidate doublesex (dsx) as a critical downstream factor. Dsx and Hth proteins are highly complementary in CNS, and Dsx is downregulated in miRNA/hth[BSmut] mutants. Moreover, virgin behavior is highly dose sensitive to developmental dsx function. Strikingly, depletion of Dsx from very restricted abdominal neurons (SAG-1 cells) abrogates female virgin conducts, in favor of mated behaviors. Thus, a double-negative regulatory pathway in the VNC (miR-iab-4/8 ⫞ Hth ⫞ Dsx) specifies the virgin behavioral state. Garaulet et al. use transcriptomic analysis to reveal new downstream elements in a post-transcriptional cascade, via miR-iab-4/8 and Homothorax, that affects patterning of the CNS. This genetic circuit regulates the accumulation of a secondary target (Doublesex), whose level in specific neurons determines the behavior of adult virgin flies.
Collapse
Affiliation(s)
- Daniel L Garaulet
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Albertomaria Moro
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
49
|
Ishimoto H, Kamikouchi A. Molecular and neural mechanisms regulating sexual motivation of virgin female Drosophila. Cell Mol Life Sci 2021; 78:4805-4819. [PMID: 33837450 PMCID: PMC11071752 DOI: 10.1007/s00018-021-03820-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
During courtship, multiple information sources are integrated in the brain to reach a final decision, i.e., whether or not to mate. The brain functions for this complex behavior can be investigated by genetically manipulating genes and neurons, and performing anatomical, physiological, and behavioral analyses. Drosophila is a powerful model experimental system for such studies, which need to be integrated from molecular and cellular levels to the behavioral level, and has enabled pioneering research to be conducted. In male flies, which exhibit a variety of characteristic sexual behaviors, we have accumulated knowledge of many genes and neural circuits that control sexual behaviors. On the other hand, despite the importance of the mechanisms of mating decision-making in females from an evolutionary perspective (such as sexual selection), research on the mechanisms that control sexual behavior in females has progressed somewhat slower. In this review, we focus on the pre-mating behavior of female Drosophila melanogaster, and introduce previous key findings on the neuronal and molecular mechanisms that integrate sensory information and selective expression of behaviors toward the courting male.
Collapse
Grants
- JP20H03355 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04997 Ministry of Education, Culture, Sports, Science and Technology
- 19H04933 Ministry of Education, Culture, Sports, Science and Technology
- 17K19450 Ministry of Education, Culture, Sports, Science and Technology
- 15K07147 Ministry of Education, Culture, Sports, Science and Technology
- 18K06332 Ministry of Education, Culture, Sports, Science and Technology
- Naito Foundation
- Inamori Foundation
Collapse
Affiliation(s)
- Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
50
|
White MA, Chen DS, Wolfner MF. She's got nerve: roles of octopamine in insect female reproduction. J Neurogenet 2021; 35:132-153. [PMID: 33909537 DOI: 10.1080/01677063.2020.1868457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The biogenic monoamine octopamine (OA) is a crucial regulator of invertebrate physiology and behavior. Since its discovery in the 1950s in octopus salivary glands, OA has been implicated in many biological processes among diverse invertebrate lineages. It can act as a neurotransmitter, neuromodulator and neurohormone in a variety of biological contexts, and can mediate processes including feeding, sleep, locomotion, flight, learning, memory, and aggression. Here, we focus on the roles of OA in female reproduction in insects. OA is produced in the octopaminergic neurons that innervate the female reproductive tract (RT). It exerts its effects by binding to receptors throughout the RT to generate tissue- and region-specific outcomes. OA signaling regulates oogenesis, ovulation, sperm storage, and reproductive behaviors in response to the female's internal state and external conditions. Mating profoundly changes a female's physiology and behavior. The female's OA signaling system interacts with, and is modified by, male molecules transferred during mating to elicit a subset of the post-mating changes. Since the role of OA in female reproduction is best characterized in the fruit fly Drosophila melanogaster, we focus our discussion on this species but include discussion of OA in other insect species whenever relevant. We conclude by proposing areas for future research to further the understanding of OA's involvement in female reproduction in insects.
Collapse
Affiliation(s)
- Melissa A White
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|