1
|
Latremoliere A. From a clinically relevant pain target to a possible analgesic treatment strategy. Neurotherapeutics 2025; 22:e00542. [PMID: 39909810 PMCID: PMC12014399 DOI: 10.1016/j.neurot.2025.e00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Affiliation(s)
- Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Tong SH, Liu DL, Liao P, Zhang SY, Zhou J, Zong Y, Zhang CQ, Huang YG, Gao JJ. Emerging role of macrophages in neuropathic pain. J Orthop Translat 2025; 51:227-241. [PMID: 40177638 PMCID: PMC11964759 DOI: 10.1016/j.jot.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 04/05/2025] Open
Abstract
Neuropathic pain is a complex syndrome caused by injury to the neurons, which causes persistent hypersensitivity and considerable inconvenience to the patient's whole life. Over the past two decades, the interaction between immune cells and neurons has been proven to play a crucial role in the development of neuropathic pain. Increasing studies have indicated the important role of macrophages for neuroinflammation and have shed light on the underlying molecular and cellular mechanisms. In addition, novel therapeutic methods targeting macrophages are springing up, which provide more options in our clinical treatment. Herein, we reviewed the characteristics of peripheral macrophages and their function in neuropathic pain, with the aim of better understanding how these cells contribute to pathological processes and paving the way for therapeutic approaches. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the macrophages and nervous system during the progression of nerve injury. Additionally, it compiles existing intervention strategies targeting macrophages for the treatment of neuropathic pain. This information offers valuable insights for researchers seeking to address the challenge of this intractable pain.
Collapse
Affiliation(s)
- Si-Han Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - De-Lin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sen-Yao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi-Gang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
3
|
Chang H, Lee KJ, Park M, Woo HN, Kim JH, Kang IK, Park H, Chon CH, Lee H, Jung HH. Cross-species RNAi therapy via AAV delivery alleviates neuropathic pain by targeting GCH1. Neurotherapeutics 2025; 22:e00511. [PMID: 39674763 PMCID: PMC12014335 DOI: 10.1016/j.neurot.2024.e00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024] Open
Abstract
Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms. We identified universal small-interfering RNA sequences effective across species and developed an AAV-u-shRNA that successfully suppressed GCH1 expression with minimal off-target effects. Male Sprague Dawley rats were divided into four groups: normal, spared nerve injury, AAV-shCON, and AAV-u-shGCH1. The rats were sacrificed on post-injection day 28 to collect blood for BH4 level assessment. The AAV-u-shGCH1 group demonstrated remarkable improvement in the mechanical withdrawal threshold by PID 28, significantly outperforming the normal, spared nerve injury, and AAV-shCON groups. Plasma BH4 levels confirmed that AAV-u-shGCH1 effectively reduced neuropathic pain by inhibiting BH4 synthesis in vivo, introducing a novel, multispecies-compatible therapeutic strategy. Our results suggest that a single application of AAV-u-shGCH1 could offer a viable solution for neuropathic pain relief.
Collapse
Affiliation(s)
- Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Minkyung Park
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Ha-Na Woo
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Im Kyeung Kang
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | - Heuiran Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Microbiology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Brain Research institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Gao C, Yang T, Shu J, Gao X, Meng C. Overexpression of miR-133a-3p reduces microglia activation by binding to GCH1, alleviating neuroinflammation and neuropathic pain. Exp Brain Res 2024; 243:23. [PMID: 39666013 DOI: 10.1007/s00221-024-06956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/25/2024] [Indexed: 12/13/2024]
Abstract
Neuropathic pain is a chronic pain condition that is primarily caused by underlying neurological damage and dysfunction. Recent studies have identified microRNAs (miRNAs) as a key factor in the treatment of neuropathic pain. To explore the effects of miR-133a-3p on neuroinflammation and neuropathic pain via GTP cyclohydrolase (GCH1), and its underlying mechanisms. In vitro models were constructed using BV-2 cells that had been treated with lipopolysaccharide, followed by treatment with either miR-133a-3p mimic or GCH1 viral knockdown/overexpression. The expression of miR-133a-3p and GCH1 in BV-2 cells was quantified by RT-qPCR. The degree of neuroinflammation was quantified using an enzyme-linked immunosorbent assay (ELISA). The targeting relationship between miR-133a-3p and GCH1 was confirmed by western blot and dual luciferase reporter assay. A chronic constriction injury model was employed to induce neuropathic pain in rats, and the mechanical withdrawal threshold (MWT) was quantified. Immunofluorescence was used to demonstrate alterations in microglial cells. The expression of miR-133a-3p was found to be decreased in lipopolysaccharide-induced BV-2 cells. The overexpression of miR-133a-3p was observed to inhibit the expression of IL-1β, IL-6, TNF-α and iNOS, which was attributed to a reduction in GCH1.Nevertheless, OE-GCH1 could partially reverse the downregulation by miR-133a-3p of the expression of inflammatory factors. In animal experiments, intrathecal injection of AVV-miR-133a-3p was observed to alleviate mechanical nociceptive abnormalities induced by activated microglia. Furthermore, miR-133a-3p ameliorated neuroinflammation in the spinal cord of chronic constriction injury rats. In summary, miR-133a-3p improves neuroinflammation and neuropathic pain by binding to GCH1. The binding of miR-133a-3p to GCH1 has been demonstrated to improve neuroinflammation and neuropathic pain.This insight will facilitate the development of new methods to effectively treat neuropathic pain.
Collapse
Affiliation(s)
- Chengcan Gao
- Department of Surgery, Jining No. 1 People's Hospital, Jining, 272000, Shandong, China
| | - Tao Yang
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Jia Shu
- The Central Laboratory of Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China
| | - Xu Gao
- Department of Orthopaedic Surgery, Qingdao University, Qingdao City, 266071, China
| | - Chunyang Meng
- Department of Spine Surgery, Affiliated Hospital of Jining Medical University, 89 Guhuai Road, Jining, 272000, Shandong Province, China.
| |
Collapse
|
5
|
Loggia ML. "Neuroinflammation": does it have a role in chronic pain? Evidence from human imaging. Pain 2024; 165:S58-S67. [PMID: 39560416 PMCID: PMC11729497 DOI: 10.1097/j.pain.0000000000003342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/06/2024] [Indexed: 11/20/2024]
Abstract
ABSTRACT Despite hundreds of studies demonstrating the involvement of neuron-glia-immune interactions in the establishment and/or maintenance of persistent pain behaviors in animals, the role (or even occurrence) of so-called "neuroinflammation" in human pain has been an object of contention for decades. Here, I present the results of multiple positron emission tomography (PET) studies measuring the levels of the 18 kDa translocator protein (TSPO), a putative neuroimmune marker, in individuals with various pain conditions. Overall, these studies suggest that brain TSPO PET signal: (1) is elevated, compared to healthy volunteers, in individuals with chronic low back pain (with additional elevations in spinal cord and neuroforamina), fibromyalgia, migraine and other conditions characterized by persistent pain; (2) has a spatial distribution exhibiting a degree of disorder specificity; (3) is parametrically linked to pain characteristics or comorbid symptoms (eg, nociplastic pain, fatigue, depression), as well as measures of brain function (ie, functional connectivity), in a regionally-specific manner. In this narrative, I also discuss important caveats to consider in the interpretation of this work (eg, regarding the cellular source of the signal and the complexities inherent in its acquisition and analysis). While the biological and clinical significance of these findings awaits further work, this emerging preclinical literature supports a role of neuron-glia-immune interactions as possible pathophysiological underpinnings of human chronic pain. Gaining a deeper understanding of the role of neuroimmune function in human pain would likely have important practical implications, possibly paving the way for novel interventions.
Collapse
Affiliation(s)
- Marco L. Loggia
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Starkl P, Jonsson G, Artner T, Turnes BL, Gail LM, Oliveira T, Jain A, Serhan N, Stejskal K, Lakovits K, Hladik A, An M, Channon KM, Kim H, Köcher T, Weninger W, Stary G, Knapp S, Klang V, Gaudenzio N, Woolf CJ, Tikoo S, Jain R, Penninger JM, Cronin SJF. Mast cell-derived BH4 and serotonin are critical mediators of postoperative pain. Sci Immunol 2024; 9:eadh0545. [PMID: 39178277 DOI: 10.1126/sciimmunol.adh0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2024] [Indexed: 08/25/2024]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. The considerable side effects and limited efficacy of current treatments underline the need for new therapeutic options. We observed increased amounts of the metabolites BH4 and serotonin after skin injury. Mast cells were primary postoperative sources of Gch1, the rate-limiting enzyme in BH4 synthesis, itself an obligate cofactor in serotonin production by tryptophan hydroxylase (Tph1). Mice deficient in mast cells or in mast cell-specific Gch1 or Tph1 showed drastically decreased postoperative pain. We found that injury induced the nociceptive neuropeptide substance P, mast cell degranulation, and granule nerve colocalization. Substance P triggered serotonin release in mouse and human mast cells, and substance P receptor blockade substantially ameliorated pain hypersensitivity. Our findings highlight the importance of mast cells at the neuroimmune interface and substance P-driven mast cell BH4 and serotonin production as a therapeutic target for postoperative pain treatment.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tiago Oliveira
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Karin Lakovits
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Keith M Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hail Kim
- Korea Advanced Institute of Science and Technology, Daejoen, Republic of Korea
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Wolfgang Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Shweta Tikoo
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Rohit Jain
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Josef M Penninger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Shane J F Cronin
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
7
|
Fischer C, Schreiber Y, Nitsch R, Vogt J, Thomas D, Geisslinger G, Tegeder I. Lysophosphatidic Acid Receptors LPAR5 and LPAR2 Inversely Control Hydroxychloroquine-Evoked Itch and Scratching in Mice. Int J Mol Sci 2024; 25:8177. [PMID: 39125747 PMCID: PMC11312285 DOI: 10.3390/ijms25158177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Lysophosphatidic acids (LPAs) evoke nociception and itch in mice and humans. In this study, we assessed the signaling paths. Hydroxychloroquine was injected intradermally to evoke itch in mice, which evoked an increase of LPAs in the skin and in the thalamus, suggesting that peripheral and central LPA receptors (LPARs) were involved in HCQ-evoked pruriception. To unravel the signaling paths, we assessed the localization of candidate genes and itching behavior in knockout models addressing LPAR5, LPAR2, autotaxin/ENPP2 and the lysophospholipid phosphatases, as well as the plasticity-related genes Prg1/LPPR4 and Prg2/LPPR3. LacZ reporter studies and RNAscope revealed LPAR5 in neurons of the dorsal root ganglia (DRGs) and in skin keratinocytes, LPAR2 in cortical and thalamic neurons, and Prg1 in neuronal structures of the dorsal horn, thalamus and SSC. HCQ-evoked scratching behavior was reduced in sensory neuron-specific Advillin-LPAR5-/- mice (peripheral) but increased in LPAR2-/- and Prg1-/- mice (central), and it was not affected by deficiency of glial autotaxin (GFAP-ENPP2-/-) or Prg2 (PRG2-/-). Heat and mechanical nociception were not affected by any of the genotypes. The behavior suggested that HCQ-mediated itch involves the activation of peripheral LPAR5, which was supported by reduced itch upon treatment with an LPAR5 antagonist and autotaxin inhibitor. Further, HCQ-evoked calcium fluxes were reduced in primary sensory neurons of Advillin-LPAR5-/- mice. The results suggest that LPA-mediated itch is primarily mediated via peripheral LPAR5, suggesting that a topical LPAR5 blocker might suppress "non-histaminergic" itch.
Collapse
Affiliation(s)
- Caroline Fischer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| | - Yannick Schreiber
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Robert Nitsch
- Institute for Translational Neuroscience, Medical Faculty, WWU Münster, 48149 Münster, Germany;
| | - Johannes Vogt
- Department of Molecular and Translational Neurosciences, Institute for Anatomy and Center of Molecular Medicine Cologne (CMMC), and Cologne Excellence Cluster for Aging associated Diseases (CECAD), University of Cologne, 50923 Köln, Germany;
| | - Dominique Thomas
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
| | - Gerd Geisslinger
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt am Main, Germany;
- Fraunhofer Cluster of Excellence of Immune Mediated Diseases (CIMD), 60596 Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt am Main, Germany; (C.F.); (D.T.); (G.G.)
| |
Collapse
|
8
|
Girish A, Sutar S, Murthy TPK, Premanand SA, Garg V, Patil L, Shreyas S, Shukla R, Yadav AK, Singh TR. Comprehensive bioinformatics analysis of structural and functional consequences of deleterious missense mutations in the human QDPR gene. J Biomol Struct Dyn 2024; 42:5485-5501. [PMID: 37382215 DOI: 10.1080/07391102.2023.2226740] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023]
Abstract
Quinonoid dihydropteridine reductase (QDPR) is an enzyme that regulates tetrahydrobiopterin (BH4), a cofactor for enzymes involved in neurotransmitter synthesis and blood pressure regulation. Reduced QDPR activity can cause dihydrobiopterin (BH2) accumulation and BH4 depletion, leading to impaired neurotransmitter synthesis, oxidative stress, and increased risk of Parkinson's disease. A total of 10,236 SNPs were identified in the QDPR gene, with 217 being missense SNPs. Over 18 different sequence-based and structure-based tools were employed to assess the protein's biological activity, with several computational tools identifying deleterious SNPs. Additionally, the article provides detailed information about the QDPR gene and protein structure and conservation analysis. The results showed that 10 mutations were harmful and linked to brain and central nervous system disorders, and were predicted to be oncogenic by Dr. Cancer and CScape. Following conservation analysis, the HOPE server was used to analyse the effect of six selected mutations (L14P, V15G, G23S, V54G, M107K, G151S) on the protein structure. Overall, the study provides insights into the biological and functional impact of nsSNPs on QDPR activity and the potential induced pathogenicity and oncogenicity. In the future, research can be conducted to systematically evaluate QDPR gene variation through clinical studies, investigate mutation prevalence across different geographical regions, and validate computational results with conclusive experiments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aishwarya Girish
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Samruddhi Sutar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - T P Krishna Murthy
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vrinda Garg
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Lavan Patil
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - S Shreyas
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, India
| | - Rohit Shukla
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Arvind Kumar Yadav
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Tiratha Raj Singh
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
9
|
Haque MM, Kuppusamy P, Melemedjian OK. Disruption of mitochondrial pyruvate oxidation in dorsal root ganglia drives persistent nociceptive sensitization and causes pervasive transcriptomic alterations. Pain 2024; 165:1531-1549. [PMID: 38285538 PMCID: PMC11189764 DOI: 10.1097/j.pain.0000000000003158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 01/31/2024]
Abstract
ABSTRACT Metabolism is inextricably linked to every aspect of cellular function. In addition to energy production and biosynthesis, metabolism plays a crucial role in regulating signal transduction and gene expression. Altered metabolic states have been shown to maintain aberrant signaling and transcription, contributing to diseases like cancer, cardiovascular disease, and neurodegeneration. Metabolic gene polymorphisms and defects are also associated with chronic pain conditions, as are increased levels of nerve growth factor (NGF). However, the mechanisms by which NGF may modulate sensory neuron metabolism remain unclear. This study demonstrated that intraplantar NGF injection reprograms sensory neuron metabolism. Nerve growth factor suppressed mitochondrial pyruvate oxidation and enhanced lactate extrusion, requiring 24 hours to increase lactate dehydrogenase A and pyruvate dehydrogenase kinase 1 (PDHK1) expression. Inhibiting these metabolic enzymes reversed NGF-mediated effects. Remarkably, directly disrupting mitochondrial pyruvate oxidation induced severe, persistent allodynia, implicating this metabolic dysfunction in chronic pain. Nanopore long-read sequencing of poly(A) mRNA uncovered extensive transcriptomic changes upon metabolic disruption, including altered gene expression, splicing, and poly(A) tail lengths. By linking metabolic disturbance of dorsal root ganglia to transcriptome reprogramming, this study enhances our understanding of the mechanisms underlying persistent nociceptive sensitization. These findings imply that impaired mitochondrial pyruvate oxidation may drive chronic pain, possibly by impacting transcriptomic regulation. Exploring these metabolite-driven mechanisms further might reveal novel therapeutic targets for intractable pain.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Panjamurthy Kuppusamy
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
| | - Ohannes K. Melemedjian
- Deptartmen of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States
- UM Center to Advance Chronic Pain Research, Baltimore, MD, United States
- UM Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
10
|
Alexandre C, Miracca G, Holanda VD, Sharma A, Kourbanova K, Ferreira A, Bicca MA, Zeng X, Nassar VA, Lee S, Kaur S, Sarma SV, Sacré P, Scammell TE, Woolf CJ, Latremoliere A. Nociceptor spontaneous activity is responsible for fragmenting non-rapid eye movement sleep in mouse models of neuropathic pain. Sci Transl Med 2024; 16:eadg3036. [PMID: 38630850 PMCID: PMC11106840 DOI: 10.1126/scitranslmed.adg3036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.
Collapse
Affiliation(s)
- Chloe Alexandre
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Giulia Miracca
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Duarte Holanda
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Sharma
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kamila Kourbanova
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Ashley Ferreira
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maíra A. Bicca
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Xiangsunze Zeng
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Victoria A. Nassar
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Seungkyu Lee
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Satvinder Kaur
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sridevi V. Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Pierre Sacré
- Department of Electrical Engineering and Computer Science, School of Engineering, University of Liège, Liège, Belgium
| | - Thomas E. Scammell
- Department of Neurology, Beth israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children’s Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
11
|
Deng IB, Follett J, Bu M, Farrer MJ. DNAJC12 in Monoamine Metabolism, Neurodevelopment, and Neurodegeneration. Mov Disord 2024; 39:249-258. [PMID: 38014588 DOI: 10.1002/mds.29677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Recent studies show that pathogenic variants in DNAJC12, a co-chaperone for monoamine synthesis, may cause mild hyperphenylalaninemia with infantile dystonia, young-onset parkinsonism, developmental delay and cognitive deficits. DNAJC12 has been included in newborn screening, most revealingly in Spain, and those results highlight the importance of genetic diagnosis and early intervention in combating human disease. However, practitioners may be unaware of these advances and it is probable that many patients, especially adults, have yet to receive molecular testing for DNAJC12. Hence, this review summarizes genotype-phenotype relationships and treatment paradigms for patients with pathogenic variants in DNAJC12. It provides an overview of the structure of DNAJC12 protein, known genetic variants, domains, and binding partners, and elaborates on its role in monoamine synthesis, disease etiology, and pathogenesis. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Isaac Bul Deng
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Gupta P, Kumar R. GTP cyclohydroxylase1 (GCH1): Role in neurodegenerative diseases. Gene 2023; 888:147749. [PMID: 37652170 DOI: 10.1016/j.gene.2023.147749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
GCH1 gene provides directions for the synthesis of GTP cyclohydrolase 1 which regulates the formation of Tetrahydrobiopterin (BH4). BH4 is a crucial cofactor for essential neurotransmitters synthesis such as dopamine, serotonin and nitric oxide synthases. Deficiency of GCH1 limits the synthesis of BH4 which is responsible for neuropsychiatric diseases such as dopa-responsive dystonia, hyperalaninemia, Parkinson's disease and depression. Few single nucleotide polymorphisms of GCH1 gene are also responsible for pain in sickle cell disease. Furthermore, GCH1 regulates NO activity which controls the blood pressure, vasodilatory functions and oxidative stress. Understanding the therapeutic implications of targeting GCH1 which holds promise for treating various diseases. Novel therapeutic strategies could involve small molecule drugs or gene therapy techniques that enhance GCH1 expression or activity.
Collapse
Affiliation(s)
- Parul Gupta
- ICMR-National Institute of Research in Tribal Health, India
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, India.
| |
Collapse
|
13
|
Xi C, He L, Huang Z, Zhang J, Zou K, Guo Q, Huang C. Combined metabolomics and transcriptomics analysis of rats under neuropathic pain and pain-related depression. Front Pharmacol 2023; 14:1320419. [PMID: 38143492 PMCID: PMC10739318 DOI: 10.3389/fphar.2023.1320419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Neuropathic pain often leads to negative emotions, which in turn can enhance the sensation of pain. This study aimed to investigate the molecular mechanisms mediating neuropathic pain and negative emotions. Chronic constriction injury (CCI) rats were used as model animals and behavioral tests were conducted to assess pain and negative emotions. Then, the rat anterior cingulate cortex (ACC) was analyzed using UPLC-MS/MS and subsequently integrated with our previously published transcriptome data. Metabolomics analysis revealed that 68 differentially expressed metabolites (DEMs) were identified, mainly in amino acid metabolites and fatty acyls. Combined with our previously published transcriptome data, we predicted two genes that potentially exhibited associations with these metabolites, respectively Apolipoprotein L domain containing 1 (Apold1) and WAP four-disulfide core domain 1 (Wfdc1). Taken together, our results indicated that peripheral nerve injury contributing to neuropathic pain and pain-related depression may be associated with these metabolites and genes. This research provides new insights into the molecular regulatory mechanism, which could serve as a reference for the treatment of neuropathic pain and pain-related depression.
Collapse
Affiliation(s)
- Caiyun Xi
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liqiong He
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhifeng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jianxi Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Kailu Zou
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Changsheng Huang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Mecklenburg J, Shein SA, Malmir M, Hovhannisyan AH, Weldon K, Zou Y, Lai Z, Jin YF, Ruparel S, Tumanov AV, Akopian AN. Transcriptional profiles of non-neuronal and immune cells in mouse trigeminal ganglia. FRONTIERS IN PAIN RESEARCH 2023; 4:1274811. [PMID: 38028432 PMCID: PMC10644122 DOI: 10.3389/fpain.2023.1274811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/29/2023] [Indexed: 12/01/2023] Open
Abstract
Non-neuronal cells constitute 90%-95% of sensory ganglia. These cells, especially glial and immune cells, play critical roles in the modulation of sensory neurons. This study aimed to identify, profile, and summarize the types of trigeminal ganglion (TG) non-neuronal cells in naïve male mice using published and our own data generated by single-cell RNA sequencing, flow cytometry, and immunohistochemistry. TG has five types of non-neuronal cells, namely, glial, fibroblasts, smooth muscle, endothelial, and immune cells. There is an agreement among publications for glial, fibroblasts, smooth muscle, and endothelial cells. Based on gene profiles, glial cells were classified as myelinated and non-myelinated Schwann cells and satellite glial cells. Mpz has dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2+ fibroblasts located throughout TG were distinguished. TG smooth muscle and endothelial cells in the blood vessels were detected using well-defined markers. Our study reported three types of macrophages (Mph) and four types of neutrophils (Neu) in TG. Mph were located in the neuronal bodies and nerve fibers and were sub-grouped by unique transcriptomic profiles with Ccr2, Cx3cr1, and Iba1 as markers. A comparison of databases showed that type 1 Mph is similar to choroid plexus-low (CPlo) border-associated Mph (BAMs). Type 2 Mph has the highest prediction score with CPhi BAMs, while type 3 Mph is distinct. S100a8+ Neu were located in the dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r, Ly6G, Ngp, Elane, and Mpo. Integrative analysis of published datasets indicated that Neu-1, Neu-2, and Neu-3 are similar to the brain Neu-1 group, while Neu-4 has a resemblance to the monocyte-derived cells. Overall, the generated and summarized datasets on non-neuronal TG cells showed a unique composition of myeloid cell types in TG and could provide essential and fundamental information for studies on cell plasticity, interactomic networks between neurons and non-neuronal cells, and function during a variety of pain conditions in the head and neck regions.
Collapse
Affiliation(s)
- Jennifer Mecklenburg
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Sergey A. Shein
- Microbiology, Immunology & Molecular Genetics Departments, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Mostafa Malmir
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX, United States
| | - Anahit H. Hovhannisyan
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Korri Weldon
- Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Yi Zou
- Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Zhao Lai
- Molecular Medicine, School of Medicine, UTHSCSA, San Antonio, TX, United States
- Greehey Children’s Cancer Research Institute, UTHSCSA, San Antonio, TX, United States
| | - Yu-Fang Jin
- Department of Electrical and Computer Engineering, the University of Texas at San Antonio, San Antonio, TX, United States
| | - Shivani Ruparel
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| | - Alexei V. Tumanov
- Microbiology, Immunology & Molecular Genetics Departments, School of Medicine, UTHSCSA, San Antonio, TX, United States
| | - Armen N. Akopian
- Department of Endodontics, School of Dentistry, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, TX, United States
| |
Collapse
|
15
|
Wu Q, Cui X, Guan LC, Zhang C, Liu J, Ford NC, He S, Chen X, Cao X, Zang L, Guan Y. Chronic pain after spine surgery: Insights into pathogenesis, new treatment, and preventive therapy. J Orthop Translat 2023; 42:147-159. [PMID: 37823035 PMCID: PMC10562770 DOI: 10.1016/j.jot.2023.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/13/2023] Open
Abstract
Chronic pain after spine surgery (CPSS) is often characterized by intractable low back pain and/or radiating leg pain, and has been reported in 8-40% of patients that received lumbar spine surgery. We conducted a literature search of PubMed, MEDLINE/OVID with a focus on studies about the etiology and treatments of CPSS and low back pain. Our aim was to provide a narrative review that would help us better understand the pathogenesis and current treatment options for CPSS. This knowledge will aid in the development of optimal strategies for managing postoperative pain symptoms and potentially curing the underlying etiologies. Firstly, we reviewed recent advances in the mechanistic study of CPSS, illustrated both structural (e.g., fibrosis and scaring) and non-structural factors (e.g., inflammation, neuronal sensitization, glial activation, psychological factor) causing CPSS, and highlighted those having not been given sufficient attention as the etiology of CPSS. Secondly, we summarized clinical evidence and therapeutic perspectives of CPSS. We also presented new insights about the treatments and etiology of CPSS, in order to raise awareness of medical staff in the identification and management of this complex painful disease. Finally, we discussed potential new targets for clinical interventions of CPSS and future perspectives of mechanistic and translational research. CPSS patients often have a mixed etiology. By reviewing recent findings, the authors advocate that clinicians shall comprehensively evaluate each case to formulate a patient-specific and multi-modal pain treatment, and importantly, consider an early intraoperative intervention that may decrease the risk or even prevent the onset of CPSS. Translational potential statement CPSS remains difficult to treat. This review broadens our understanding of clinical therapies and underlying mechanisms of CPSS, and provides new insights which will aid in the development of novel mechanism-based therapies for not only managing the established pain symptoms but also preventing the development of CPSS.
Collapse
Affiliation(s)
- Qichao Wu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100149, China
| | - Xiang Cui
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Leo C. Guan
- McDonogh School, Owing Mills, Maryland, 21117, USA
| | - Chi Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Jing Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Xueming Chen
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, 100149, China
| | - Xu Cao
- Department of Orthopedics, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| | - Lei Zang
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100149, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
16
|
Mecklenburg J, Shein SA, Hovhannisyan AH, Zou Y, Lai Z, Ruparel S, Tumanov AV, Akopian AN. Transcriptional Profiles of Non-neuronal and Immune Cells in Mouse Trigeminal Ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.18.553897. [PMID: 37645736 PMCID: PMC10462109 DOI: 10.1101/2023.08.18.553897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Non-neuronal cells constitute 90-95% of sensory ganglia. These cells play critical roles in modulation of nociceptive signal transmissions by sensory neurons. Accordingly, the aim of this review-study was to identify, profile and summarize TG non-neuronal cell types in naïve male mice using published and our own data generated by single-cell RNA sequencing (scRNA-seq), flow cytometry (FC) and immunohistochemistry (IHC). TG contains 5 types of non-neuronal cells: glial, fibroblasts, smooth muscle, endothelial and immune cells. There is agreement among publications for glial, fibroblasts, smooth muscle and endothelial cells. Based on gene profiles, glial cells were classified as Schwann cells and satellite glial cells (SGC). Mpz had dominant expression in Schwann cells, and Fabp7 is specific for SCG. Two types of Col1a2 + fibroblasts located throughout TG were distinguished using gene profiles. TG smooth muscle and endothelial cells representing blood vessels were detected with well recognized markers. Our study split reported single TG immune cell group into 3 types of macrophages and 4 types of neutrophils. Macrophages were located among neuronal bodies and nerve fibers, and were sub-grouped by unique transcriptomic profiles and using Ccr2 , Cx3cr1 and Iba1 as markers. S100a8 + neutrophils were located in dura surrounding TG and were sub-grouped by clustering and expressions of Csf3r , Ly6G, Ngp, Elane and Mpo . Overall, generated and summarized here dataset on non-neuronal TG cells could provide essential and fundamental information for studies on cell plasticity, interactomic network between neurons and non-neuronal cells and function during variety of pain conditions in the head and neck region.
Collapse
|
17
|
Cronin SJF, Andrews NA, Latremoliere A. Peripheralized sepiapterin reductase inhibition as a safe analgesic therapy. Front Pharmacol 2023; 14:1173599. [PMID: 37251335 PMCID: PMC10213231 DOI: 10.3389/fphar.2023.1173599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The development of novel analgesics for chronic pain in the last 2 decades has proven virtually intractable, typically failing due to lack of efficacy and dose-limiting side effects. Identified through unbiased gene expression profiling experiments in rats and confirmed by human genome-wide association studies, the role of excessive tetrahydrobiopterin (BH4) in chronic pain has been validated by numerous clinical and preclinical studies. BH4 is an essential cofactor for aromatic amino acid hydroxylases, nitric oxide synthases, and alkylglycerol monooxygenase so a lack of BH4 leads to a range of symptoms in the periphery and central nervous system (CNS). An ideal therapeutic goal therefore would be to block excessive BH4 production, while preventing potential BH4 rundown. In this review, we make the case that sepiapterin reductase (SPR) inhibition restricted to the periphery (i.e., excluded from the spinal cord and brain), is an efficacious and safe target to alleviate chronic pain. First, we describe how different cell types that engage in BH4 overproduction and contribute to pain hypersensitivity, are themselves restricted to peripheral tissues and show their blockade is sufficient to alleviate pain. We discuss the likely safety profile of peripherally restricted SPR inhibition based on human genetic data, the biochemical alternate routes of BH4 production in various tissues and species, and the potential pitfalls to predictive translation when using rodents. Finally, we propose and discuss possible formulation and molecular strategies to achieve peripherally restricted, potent SPR inhibition to treat not only chronic pain but other conditions where excessive BH4 has been demonstrated to be pathological.
Collapse
Affiliation(s)
| | - Nick A. Andrews
- The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Alban Latremoliere
- Departments of Neurosurgery and Neuroscience, Johns Hopkins School of Medicine, Neurosurgery Pain Research Institute, Baltimore, MD, United States
| |
Collapse
|
18
|
Cronin SJF, Yu W, Hale A, Licht-Mayer S, Crabtree MJ, Korecka JA, Tretiakov EO, Sealey-Cardona M, Somlyay M, Onji M, An M, Fox JD, Turnes BL, Gomez-Diaz C, da Luz Scheffer D, Cikes D, Nagy V, Weidinger A, Wolf A, Reither H, Chabloz A, Kavirayani A, Rao S, Andrews N, Latremoliere A, Costigan M, Douglas G, Freitas FC, Pifl C, Walz R, Konrat R, Mahad DJ, Koslov AV, Latini A, Isacson O, Harkany T, Hallett PJ, Bagby S, Woolf CJ, Channon KM, Je HS, Penninger JM. Crucial neuroprotective roles of the metabolite BH4 in dopaminergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539795. [PMID: 37214873 PMCID: PMC10197517 DOI: 10.1101/2023.05.08.539795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Dopa-responsive dystonia (DRD) and Parkinson's disease (PD) are movement disorders caused by the dysfunction of nigrostriatal dopaminergic neurons. Identifying druggable pathways and biomarkers for guiding therapies is crucial due to the debilitating nature of these disorders. Recent genetic studies have identified variants of GTP cyclohydrolase-1 (GCH1), the rate-limiting enzyme in tetrahydrobiopterin (BH4) synthesis, as causative for these movement disorders. Here, we show that genetic and pharmacological inhibition of BH4 synthesis in mice and human midbrain-like organoids accurately recapitulates motor, behavioral and biochemical characteristics of these human diseases, with severity of the phenotype correlating with extent of BH4 deficiency. We also show that BH4 deficiency increases sensitivities to several PD-related stressors in mice and PD human cells, resulting in worse behavioral and physiological outcomes. Conversely, genetic and pharmacological augmentation of BH4 protects mice from genetically- and chemically induced PD-related stressors. Importantly, increasing BH4 levels also protects primary cells from PD-affected individuals and human midbrain-like organoids (hMLOs) from these stressors. Mechanistically, BH4 not only serves as an essential cofactor for dopamine synthesis, but also independently regulates tyrosine hydroxylase levels, protects against ferroptosis, scavenges mitochondrial ROS, maintains neuronal excitability and promotes mitochondrial ATP production, thereby enhancing mitochondrial fitness and cellular respiration in multiple preclinical PD animal models, human dopaminergic midbrain-like organoids and primary cells from PD-affected individuals. Our findings pinpoint the BH4 pathway as a key metabolic program at the intersection of multiple protective mechanisms for the health and function of midbrain dopaminergic neurons, identifying it as a potential therapeutic target for PD.
Collapse
Affiliation(s)
- Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Ashley Hale
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Joanna A Korecka
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Evgenii O Tretiakov
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marco Sealey-Cardona
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Mate Somlyay
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Masahiro Onji
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Meilin An
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Jesse D Fox
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Bruna Lenfers Turnes
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Carlos Gomez-Diaz
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Domagoj Cikes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Vanja Nagy
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD); Department of Neurology, Medical University of Vienna (MUW), 1090 Vienna, Austria
| | - Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Wolf
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Harald Reither
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Antoine Chabloz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Anoop Kavirayani
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nick Andrews
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Alban Latremoliere
- Neurosurgery Department, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Michael Costigan
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Gillian Douglas
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roger Walz
- Center for Applied Neurocience, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Neurology Division, Internal Medicine Department, University Hospital of UFSC, Florianópolis, Brazil
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Don J Mahad
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Andrey V Koslov
- Ludwig Boltzmann Institute for Traumatology. The Research Center in Cooperation with AUVA, Donaueschingen Str. 13, 1200 Vienna, Austria
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88037-100, Brazil
| | - Ole Isacson
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Biomedicum 7D, Karolinska Institute, Solna, Sweden
| | - Penelope J Hallett
- Neurodegeneration Research Institute, Harvard Medical School/McLean Hospital, Belmont, MA, 02478, USA
| | - Stefan Bagby
- Department of Biology and Biochemistry and the Milner Centre for Evolution, University of Bath, Bath, UK
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Keith M Channon
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioural Disorders, Duke-National University of Singapore (NUS) Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Cronin SJF, Davidow LS, Arvanites AC, Rubin LL, Penninger JM, Woolf CJ. Implementation of a Drug Screening Platform to Target Gch1 Expression in Injured Mouse Dorsal Root Ganglion Neurons. Bio Protoc 2023; 13:e4666. [PMID: 37188109 PMCID: PMC10176205 DOI: 10.21769/bioprotoc.4666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023] Open
Abstract
Management of neuropathic pain is notoriously difficult; current analgesics, including anti-inflammatory- and opioid-based medications, are generally ineffective and can pose serious side effects. There is a need to uncover non-addictive and safe analgesics to combat neuropathic pain. Here, we describe the setup of a phenotypic screen whereby the expression of an algesic gene,Gch1, is targeted. GCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4), a metabolite linked to neuropathic pain in both animal models and in human chronic pain sufferers.Gch1is induced in sensory neurons after nerve injury and its upregulation is responsible for increased BH4 levels. GCH1 protein has proven to be a difficult enzyme to pharmacologically target with small molecule inhibition. Thus, by establishing a platform to monitor and target inducedGch1 expression in individual injured dorsal root ganglion (DRG) neurons in vitro, we can screen for compounds that regulate its expression levels. This approach also allows us to gain valuable biological insights into the pathways and signals regulating GCH1 and BH4 levels upon nerve injury. This protocol is compatible with any transgenic reporter system in which the expression of an algesic gene (or multiple genes) can be monitored fluorescently. Such an approach can be scaled up for high-throughput compound screening and is amenable to transgenic mice as well as human stem cell-derived sensory neurons. Graphical overview.
Collapse
Affiliation(s)
- Shane J. F. Cronin
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lance S. Davidow
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge MA 02138, USA
| | - Anthony C. Arvanites
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge MA 02138, USA
| | - Lee L. Rubin
- Harvard University Department of Stem Cell and Regenerative Biology, 7 Divinity Ave, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge MA 02138, USA
| | - Josef M. Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | - Clifford J. Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Eichwald T, da Silva LDB, Staats Pires AC, Niero L, Schnorrenberger E, Filho CC, Espíndola G, Huang WL, Guillemin GJ, Abdenur JE, Latini A. Tetrahydrobiopterin: Beyond Its Traditional Role as a Cofactor. Antioxidants (Basel) 2023; 12:1037. [PMID: 37237903 PMCID: PMC10215290 DOI: 10.3390/antiox12051037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Tetrahydrobiopterin (BH4) is an endogenous cofactor for some enzymatic conversions of essential biomolecules, including nitric oxide, and monoamine neurotransmitters, and for the metabolism of phenylalanine and lipid esters. Over the last decade, BH4 metabolism has emerged as a promising metabolic target for negatively modulating toxic pathways that may result in cell death. Strong preclinical evidence has shown that BH4 metabolism has multiple biological roles beyond its traditional cofactor activity. We have shown that BH4 supports essential pathways, e.g., to generate energy, to enhance the antioxidant resistance of cells against stressful conditions, and to protect from sustained inflammation, among others. Therefore, BH4 should not be understood solely as an enzyme cofactor, but should instead be depicted as a cytoprotective pathway that is finely regulated by the interaction of three different metabolic pathways, thus assuring specific intracellular concentrations. Here, we bring state-of-the-art information about the dependency of mitochondrial activity upon the availability of BH4, as well as the cytoprotective pathways that are enhanced after BH4 exposure. We also bring evidence about the potential use of BH4 as a new pharmacological option for diseases in which mitochondrial disfunction has been implicated, including chronic metabolic disorders, neurodegenerative diseases, and primary mitochondriopathies.
Collapse
Affiliation(s)
- Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Lucila de Bortoli da Silva
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Ananda Christina Staats Pires
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Laís Niero
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Erick Schnorrenberger
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Clovis Colpani Filho
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
| | - Gisele Espíndola
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei-Lin Huang
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Gilles J. Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - José E. Abdenur
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo—LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis 88037-100, SC, Brazil; (T.E.); (L.N.); (C.C.F.); (G.E.)
- Laboratory for Energy Metabolism, Division of Metabolic Disorders, CHOC Children’s Hospital, Orange, CA 92868, USA; (W.-L.H.); (J.E.A.)
| |
Collapse
|
21
|
Raman S, Ikutame D, Okura K, Matsuka Y. Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine. J Pers Med 2023; 13:jpm13030565. [PMID: 36983746 PMCID: PMC10057163 DOI: 10.3390/jpm13030565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Orofacial pain (OFP) is a dental specialty that includes the diagnosis, management and treatment of disorders of the jaw, mouth, face, head and neck. Evidence-based understanding is critical in effectively treating OFPs as the pathophysiology of these conditions is multifactorial. Since OFP impacts the quality of life of the affected individuals, treating patients successfully is of the utmost significance. Despite the therapeutic choices available, treating OFP is still quite challenging, owing to inter-patient variations. The emerging trends in precision medicine could probably lead us to a paradigm shift in effectively managing the untreatable long-standing pain conditions. Precision medicine is designed based on the patient's genetic profile to meet their needs. Several significant relationships have been discovered based on the genetics and genomics of pain in the past, and some of the notable targets are discussed in this review. The scope of this review is to discuss preclinical and clinical trials that include approaches used in targeted therapy for orofacial pain. Future developments in pain medicine should benefit from current trends in research into novel therapeutic approaches.
Collapse
Affiliation(s)
- Swarnalakshmi Raman
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Daisuke Ikutame
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Kazuo Okura
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| |
Collapse
|
22
|
Ciapała K, Pawlik K, Ciechanowska A, Mika J, Rojewska E. Effect of pharmacological modulation of the kynurenine pathway on pain-related behavior and opioid analgesia in a mouse model of neuropathic pain. Toxicol Appl Pharmacol 2023; 461:116382. [PMID: 36681127 DOI: 10.1016/j.taap.2023.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood. Therefore, we designed several experiments to verify changes in the mRNA levels of KP enzymes in parallel with other factors related to this metabolic route after chronic constriction injury of the sciatic nerve (CCI model) in mice. The analysis revealed an increase in, Kmo, Kynu and Haoo mRNA levels in the spinal cord on the 7th day after CCI, while Kat1, Kat2, Tdo2, Ido2 and Qprt mRNA levels remain unchanged. Subsequent pharmacological studies provided evidence that modulation of KP by single intrathecal administration of 1-D-MT, UPF468 or L-kynurenine attenuates mechanical and thermal hypersensitivity and increases the effectiveness of selected opioids in mice as measured on day 7 after CCI. Moreover, our results provide the first evidence that the injection of L-kynurenine preceded by UPF468 (KMO inhibitor) is more effective at reducing hypersensitivity in animals with neuropathic pain. Importantly, L-kynurenine also exerts an analgesic effect after intravenous injections, which is enhanced by the administration of minocycline, an inhibitor of microglial activation. Additionally, L-kynurenine administered intrathecally and intravenously enhances analgesia evoked by all tested opioids (morphine, buprenorphine and oxycodone). Overall, our results indicate that the modulation of KP at different levels might be a new pharmacological tool in neuropathy management.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
23
|
Lepiarczyk E, Paukszto Ł, Wiszpolska M, Łopieńska-Biernat E, Bossowska A, Majewski MK, Majewska M. Molecular Influence of Resiniferatoxin on the Urinary Bladder Wall Based on Differential Gene Expression Profiling. Cells 2023; 12:cells12030462. [PMID: 36766804 PMCID: PMC9914288 DOI: 10.3390/cells12030462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Resiniferatoxin (RTX) is a potent capsaicin analog used as a drug for experimental therapy to treat neurogenic disorders associated with enhanced nociceptive transmission, including lower urinary tract symptoms. The present study, for the first time, investigated the transcriptomic profile of control and RTX-treated porcine urinary bladder walls. We applied multistep bioinformatics and discovered 129 differentially expressed genes (DEGs): 54 upregulated and 75 downregulated. Metabolic pathways analysis revealed five significant Kyoto Encyclopedia of Genes and Genomes (KEGG) items ('folate biosynthesis', 'metabolic pathways', 'sulfur relay system', 'sulfur metabolism' and 'serotonergic synapse') that were altered after RTX intravesical administration. A thorough analysis of the detected DEGs indicated that RTX treatment influenced the signaling pathways regulating nerve growth, myelination, axon specification, and elongation. Many of the revealed DEGs are involved in the nerve degeneration process; however, some of them were implicated in the initiation of neuroprotective mechanisms. Interestingly, RTX intravesical installation was followed by changes in the expression of genes involved in synaptic plasticity and neuromodulation, including 5-HT, H2S, glutamate, and GABA transmission. The obtained results suggest that the toxin may exert a therapeutic, antinociceptive effect not only by acting on TRPV1 receptors.
Collapse
Affiliation(s)
- Ewa Lepiarczyk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-53-34; Fax: +48-89-524-53-07
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland
| | - Marta Wiszpolska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Agnieszka Bossowska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Mariusz Krzysztof Majewski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| | - Marta Majewska
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-082 Olsztyn, Poland
| |
Collapse
|
24
|
Starkl P, Jonsson G, Artner T, Turnes BL, Serhan N, Oliveira T, Gail LM, Stejskal K, Channon KM, Köcher T, Stary G, Klang V, Gaudenzio N, Knapp S, Woolf CJ, Penninger JM, Cronin SJ. Mast cell-derived BH4 is a critical mediator of postoperative pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525378. [PMID: 37293068 PMCID: PMC10245978 DOI: 10.1101/2023.01.24.525378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Postoperative pain affects most patients after major surgery and can transition to chronic pain. Here, we discovered that postoperative pain hypersensitivity correlated with markedly increased local levels of the metabolite BH4. Gene transcription and reporter mouse analyses after skin injury identified neutrophils, macrophages and mast cells as primary postoperative sources of GTP cyclohydrolase-1 (Gch1) expression, the rate-limiting enzyme in BH4 production. While specific Gch1 deficiency in neutrophils or macrophages had no effect, mice deficient in mast cells or mast cell-specific Gch1 showed drastically decreased postoperative pain after surgery. Skin injury induced the nociceptive neuropeptide substance P, which directly triggers the release of BH4-dependent serotonin in mouse and human mast cells. Substance P receptor blockade substantially ameliorated postoperative pain. Our findings underline the unique position of mast cells at the neuro-immune interface and highlight substance P-driven mast cell BH4 production as promising therapeutic targets for the treatment of postoperative pain.
Collapse
Affiliation(s)
- Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Nadine Serhan
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
| | - Tiago Oliveira
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Laura-Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Karel Stejskal
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Keith M. Channon
- Radcliffe Department of, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Thomas Köcher
- Vienna BioCenter Core Facilities (VBCF), 1030 Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- LBI-RUD – Ludwig-Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Klang
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nicolas Gaudenzio
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291 CNRS UMR5051, University of Toulouse III, Toulouse, France
- Genoskin SAS, Toulouse, France
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, United States
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Boston, United States, Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Shane J.F. Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
25
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Hussein D. In Silico Investigation of the Human GTP Cyclohydrolase 1 Enzyme Reveals the Potential of Drug Repurposing Approaches towards the Discovery of Effective BH 4 Therapeutics. Int J Mol Sci 2023; 24:ijms24021210. [PMID: 36674724 PMCID: PMC9862521 DOI: 10.3390/ijms24021210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The GTP cyclohydrolase 1 enzyme (GTPCH1) is the rate-limiting enzyme of the tetrahydrobiopterin (BH4) biosynthetic pathway. Physiologically, BH4 plays a crucial role as an essential cofactor for the production of catecholamine neurotransmitters, including epinephrine, norepinephrine and dopamine, as well as the gaseous signaling molecule, nitric oxide. Pathological levels of the cofactor have been reported in a number of disease states, such as inflammatory conditions, neuropathic pain and cancer. Targeting the GTPCH1 enzyme has great potential in the management of a number of disease pathologies associated with dysregulated BH4 physiology. This study is an in silico investigation of the human GTPCH1 enzyme using virtual screening and molecular dynamic simulation to identify molecules that can be repurposed to therapeutically target the enzyme. A three-tier molecular docking protocol was employed in the virtual screening of a comprehensive library of over 7000 approved medications and nutraceuticals in order to identify hit compounds capable of binding to the GTPCH1 binding pocket with the highest affinity. Hit compounds were further verified by molecular dynamic simulation studies to provide a detailed insight regarding the stability and nature of the binding interaction. In this study, we identify a number of drugs and natural compounds with recognized anti-inflammatory, analgesic and cytotoxic effects, including the aminosalicylate olsalazine, the antiepileptic phenytoin catechol, and the phlorotannins phlorofucofuroeckol and eckol. Our results suggest that the therapeutic and clinical effects of hit compounds may be partially attributed to the inhibition of the GTPCH1 enzyme. Notably, this study offers an understanding of the off-target effects of a number of compounds and advocates the potential role of aminosalicylates in the regulation of BH4 production in inflammatory disease states. It highlights an in silico drug repurposing approach to identify a potential means of safely targeting the BH4 biosynthetic pathway using established therapeutic agents.
Collapse
Affiliation(s)
- Dania Hussein
- Department of Pharmacology and Toxicology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, Khobar 31441, Saudi Arabia
| |
Collapse
|
27
|
Lim EXY, Webster JA, Rudd PA, Herrero LJ. Pathways Activated by Infected and Bystander Chondrocytes in Response to Ross River Virus Infection. Viruses 2022; 15:136. [PMID: 36680176 PMCID: PMC9864161 DOI: 10.3390/v15010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Old world alphaviruses, such as Ross River virus (RRV), cause debilitating arthralgia during acute and chronic stages of the disease. RRV-induced cartilage degradation has been implicated as a cause of joint pain felt by RRV patients. Chondrocytes are a major cell type of cartilage and are involved in the production and maintenance of the cartilage matrix. It is thought that these cells may play a vital role in RRV disease pathogenesis. In this study, we used RNA-sequencing (RNA-Seq) to examine the transcriptomes of RRV-infected and bystander chondrocytes in the same environment. RRV containing green fluorescent protein (GFP) allowed for the separation of RRV-infected (GFP+) and bystander uninfected cells (GFP-). We found that whereas GFP+ and GFP- populations commonly presented similar gene expression profiles during infection, there were also unique signatures. For example, RIMS2 and FOXJ1 were unique to GFP+ cells, whilst Aim2 and CCL8 were only found in bystander chondrocytes. This indicates that careful selection of potential therapeutic targets is important to minimise adverse effects to the neighbouring uninfected cell populations. Our study serves as a resource to provide more information about the pathways and responses elicited by RRV in cells which are both infected and stimulated because of neighbouring infected cells.
Collapse
|
28
|
Deulofeu M, Peña-Méndez EM, Vaňhara P, Havel J, Moráň L, Pečinka L, Bagó-Mas A, Verdú E, Salvadó V, Boadas-Vaello P. Artificial Neural Networks Coupled with MALDI-TOF MS Serum Fingerprinting To Classify and Diagnose Pathological Pain Subtypes in Preclinical Models. ACS Chem Neurosci 2022; 14:300-311. [PMID: 36584284 PMCID: PMC9853500 DOI: 10.1021/acschemneuro.2c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathological pain subtypes can be classified as either neuropathic pain, caused by a somatosensory nervous system lesion or disease, or nociplastic pain, which develops without evidence of somatosensory system damage. Since there is no gold standard for the diagnosis of pathological pain subtypes, the proper classification of individual patients is currently an unmet challenge for clinicians. While the determination of specific biomarkers for each condition by current biochemical techniques is a complex task, the use of multimolecular techniques, such as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), combined with artificial intelligence allows specific fingerprints for pathological pain-subtypes to be obtained, which may be useful for diagnosis. We analyzed whether the information provided by the mass spectra of serum samples of four experimental models of neuropathic and nociplastic pain combined with their functional pain outcomes could enable pathological pain subtype classification by artificial neural networks. As a result, a simple and innovative clinical decision support method has been developed that combines MALDI-TOF MS serum spectra and pain evaluation with its subsequent data analysis by artificial neural networks and allows the identification and classification of pathological pain subtypes in experimental models with a high level of specificity.
Collapse
Affiliation(s)
- Meritxell Deulofeu
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Eladia M. Peña-Méndez
- Department
of Chemistry, Analytical Chemistry Division, Faculty of Sciences, University of La Laguna, 38204 San Cristóbal de
La Laguna, Tenerife, Spain
| | - Petr Vaňhara
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Josef Havel
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Lukáš Moráň
- Department
of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic,Research
Centre for Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, 62500 Brno, Czech Republic
| | - Lukáš Pečinka
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice 5/A14, 625 00 Brno, Czech Republic,International
Clinical Research Center, St. Anne’s
University Hospital, 656
91 Brno, Czech Republic
| | - Anna Bagó-Mas
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Enrique Verdú
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain
| | - Victoria Salvadó
- Department
of Chemistry, Faculty of Science, University
of Girona, 17071 Girona, Catalonia, Spain,
| | - Pere Boadas-Vaello
- Research
Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department
of Medical Sciences, University of Girona, Girona, Catalonia 17003, Spain,
| |
Collapse
|
29
|
Zhang Z, Roberson DP, Kotoda M, Boivin B, Bohnslav JP, González-Cano R, Yarmolinsky DA, Turnes BL, Wimalasena NK, Neufeld SQ, Barrett LB, Quintão NLM, Fattori V, Taub DG, Wiltschko AB, Andrews NA, Harvey CD, Datta SR, Woolf CJ. Automated preclinical detection of mechanical pain hypersensitivity and analgesia. Pain 2022; 163:2326-2336. [PMID: 35543646 PMCID: PMC9649838 DOI: 10.1097/j.pain.0000000000002680] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The lack of sensitive and robust behavioral assessments of pain in preclinical models has been a major limitation for both pain research and the development of novel analgesics. Here, we demonstrate a novel data acquisition and analysis platform that provides automated, quantitative, and objective measures of naturalistic rodent behavior in an observer-independent and unbiased fashion. The technology records freely behaving mice, in the dark, over extended periods for continuous acquisition of 2 parallel video data streams: (1) near-infrared frustrated total internal reflection for detecting the degree, force, and timing of surface contact and (2) simultaneous ongoing video graphing of whole-body pose. Using machine vision and machine learning, we automatically extract and quantify behavioral features from these data to reveal moment-by-moment changes that capture the internal pain state of rodents in multiple pain models. We show that these voluntary pain-related behaviors are reversible by analgesics and that analgesia can be automatically and objectively differentiated from sedation. Finally, we used this approach to generate a paw luminance ratio measure that is sensitive in capturing dynamic mechanical hypersensitivity over a period and scalable for high-throughput preclinical analgesic efficacy assessment.
Collapse
Affiliation(s)
- Zihe Zhang
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - David P. Roberson
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Masakazu Kotoda
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bruno Boivin
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - James P. Bohnslav
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Rafael González-Cano
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - David A. Yarmolinsky
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Bruna Lenfers Turnes
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Nivanthika K. Wimalasena
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Shay Q. Neufeld
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Lee B. Barrett
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Nara L. M. Quintão
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Victor Fattori
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Daniel G. Taub
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | | | - Nick A. Andrews
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | | | | | - Clifford J. Woolf
- Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, United States. D.P. Roberson is now with Blackbox Bio, LLC, Dallas, TX, United States. R. González-Cano is now with the Department of Pharmacology, University of Granada, Granada, Spain. N.K. Wimalasena is now with Decibel Therapeutics, Boston, MA, United States. N.L.M. Quintão is now with the Postgraduate Programe in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil. V. Fattori is now with the Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Paraná, Brazil. A.B. Wiltschko is now with the Google Research, Brain Team, Cambridge, MA, United States. N.A. Andrews is now with the Salk Institute for Biological Studies, La Jolla, CA, United States
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Xu L, Chen Z, Li X, Xu H, Zhang Y, Yang W, Chen J, Zhang S, Xu L, Zhou S, Li G, Yu B, Gu X, Yang J. Integrated analyses reveal evolutionarily conserved and specific injury response genes in dorsal root ganglion. Sci Data 2022; 9:666. [PMID: 36323676 PMCID: PMC9630366 DOI: 10.1038/s41597-022-01783-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Rodent dorsal root ganglion (DRG) is widely used for studying axonal injury. Extensive studies have explored genome-wide profiles on rodent DRGs under peripheral nerve insults. However, systematic integration and exploration of these data still be limited. Herein, we re-analyzed 21 RNA-seq datasets and presented a web-based resource (DRGProfile). We identified 53 evolutionarily conserved injury response genes, including well-known injury genes (Atf3, Npy and Gal) and less-studied transcriptional factors (Arid5a, Csrnp1, Zfp367). Notably, we identified species-preference injury response candidates (e.g. Gpr151, Lipn, Anxa10 in mice; Crisp3, Csrp3, Vip, Hamp in rats). Temporal profile analysis reveals expression patterns of genes related to pre-regenerative and regenerating states. Finally, we found a large sex difference in response to sciatic nerve injury, and identified four male-specific markers (Uty, Eif2s3y, Kdm5d, Ddx3y) expressed in DRG. Our study provides a comprehensive integrated landscape for expression change in DRG upon injury which will greatly contribute to the neuroscience community.
Collapse
Affiliation(s)
- Lian Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaodi Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Xu
- Nantong Institute of Genetics and Reproductive Medicine, Affiliated Maternity and Child Healthcare Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yu Zhang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiwei Yang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Chen
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Lingchi Xu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
- Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jian Yang
- Key Laboratory of Neuroregeneration, Ministry of Education and Jiangsu Province, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19# Qixiu Road, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
31
|
Cronin SJF, Rao S, Tejada MA, Turnes BL, Licht-Mayer S, Omura T, Brenneis C, Jacobs E, Barrett L, Latremoliere A, Andrews N, Channon KM, Latini A, Arvanites AC, Davidow LS, Costigan M, Rubin LL, Penninger JM, Woolf CJ. Phenotypic drug screen uncovers the metabolic GCH1/BH4 pathway as key regulator of EGFR/KRAS-mediated neuropathic pain and lung cancer. Sci Transl Med 2022; 14:eabj1531. [PMID: 36044597 PMCID: PMC9985140 DOI: 10.1126/scitranslmed.abj1531] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.
Collapse
Affiliation(s)
- Shane J. F. Cronin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Shuan Rao
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Miguel A. Tejada
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Bruna Lenfers Turnes
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Simon Licht-Mayer
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
| | - Takao Omura
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Christian Brenneis
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Emily Jacobs
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lee Barrett
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alban Latremoliere
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Departments of Neurosurgery and Neuroscience, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Nick Andrews
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Keith M. Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Anthony C. Arvanites
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Lance S. Davidow
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Michael Costigan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Josef M. Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Dr. Bohrgasse 3, Vienna A-1030, Austria
- Department of Medical Genetics, Life Sciences Institute, UBC, Vancouver, BC V6T 1Z3, Canada
| | - Clifford J. Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
32
|
Gentle Touch Therapy, Pain Relief and Neuroplasticity at Baseline in Fibromyalgia Syndrome: A Randomized, Multicenter Trial with Six-Month Follow-Up. J Clin Med 2022; 11:jcm11164898. [PMID: 36013137 PMCID: PMC9410244 DOI: 10.3390/jcm11164898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Fibromyalgia (FM) is considered a stress-related disorder characterized mainly by chronic widespread pain. Its pathogenesis is unknown, but cumulative evidence points at dysfunctional transmitter systems and inflammatory biomarkers that may underlie the major symptoms of the condition. This study aimed to evaluate pain scores (primary outcome), quality of life, inflammatory biomarkers and neurotransmitter systems in women with FM (secondary outcomes) subjected to gentle touch therapy (GTT) or placebo. Methods: A total of 64 female patients with FM were randomly assigned to two groups, namely GTT (n = 32) or Placebo (n = 32). Clinical assessments were conducted at baseline and post-intervention with six-month follow-up. We measured serum catecholamines (dopamine), indolamines and intermediary metabolites (serotonin or 5-hydroxyindolacetic acid (5-HIAA)), as well as tetrahydrobiopterin (BH4), which is a cofactor for the synthesis of neurotransmitters and inflammatory biomarkers in women with FM. A group of healthy individuals with no intervention (control group) was used to compare biochemical measurements. Intervention effects were analyzed using repeated measures (RM) two-way ANOVA followed by Bonferroni post hoc test and mixed ANCOVA model with intention to treat. Results: Compared to placebo, the GTT group presented lower pain scores and brain-derived neurotrophic factor (BDNF) levels without altering the quality of life of women with FM. Changes in BDNF had a mediating role in pain. Higher baseline serum BDNF and 5-HIAA or those with a history of anxiety disorder showed a higher reduction in pain scores across time. However, women with higher serum dopamine levels at baseline showed a lower effect of the intervention across the observation period revealed by an ANCOVA mixed model. Conclusions: In conclusion, lower pain scores were observed in the GTT group compared to the placebo group without altering the quality of life in women with FM. Reductions in BDNF levels could be a mechanism of FM pain status improvement. In this sense, the present study encourages the use of these GTT techniques as an integrative and complementary treatment of FM.
Collapse
|
33
|
Raman S, Waskitho A, Raju R, Iwasa T, Ikutame D, Okura K, Oshima M, Matsuka Y. Analgesic Effect of Tranilast in an Animal Model of Neuropathic Pain and Its Role in the Regulation of Tetrahydrobiopterin Synthesis. Int J Mol Sci 2022; 23:5878. [PMID: 35682555 PMCID: PMC9180260 DOI: 10.3390/ijms23115878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Trigeminal neuralgia is unilateral, lancinating, episodic pain that can be provoked by routine activities. Anticonvulsants, such as carbamazepine, are the drugs of choice; however, these possess side-effects. Microvascular decompression is the most effective surgical technique with a higher success rate, although occasionally causes adverse effects. The potential treatment for this type of pain remains unmet. Increased tetrahydrobiopterin (BH4) levels have been reported in association with axonal injury. This study aimed to evaluate the effect of tranilast on relieving neuropathic pain in animal models and analyze the changes in BH4 synthesis. Neuropathic pain was induced via infraorbital nerve constriction. Tranilast, carbamazepine, or saline was injected intraperitoneally to assess the rat's post-intervention pain response. In the von Frey's test, the tranilast and carbamazepine groups showed significant changes in the head withdrawal threshold in the ipsilateral whisker pad area. The motor coordination test showed no changes in the tranilast group, whereas the carbamazepine group showed decreased performance, indicating impaired motor coordination. Trigeminal ganglion tissues were used for the PCR array analysis of genes that regulate the BH4 pathway. Downregulation of the sepiapterin reductase (Spr) and aldoketo reductase (Akr) genes after tranilast injection was observed compared to the pain model. These findings suggest that tranilast effectively treats neuropathic pain.
Collapse
Affiliation(s)
- Swarnalakshmi Raman
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| | - Arief Waskitho
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| | - Resmi Raju
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA;
| | - Takuma Iwasa
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| | - Daisuke Ikutame
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| | - Kazuo Okura
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| | - Masamitsu Oshima
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan; (S.R.); (A.W.); (T.I.); (D.I.); (K.O.); (M.O.)
| |
Collapse
|
34
|
Tao N, Cheng B, Chai H, Cui X, Ma Y, Yan J, Zhao Y, Chen W. A Putative Guanosine Triphosphate Cyclohydrolase I Named CaGCH1 Is Involved in Hyphal Branching and Fruiting Development in Cyclocybe aegerita. Front Microbiol 2022; 13:870658. [PMID: 35535251 PMCID: PMC9076582 DOI: 10.3389/fmicb.2022.870658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Guanosine triphosphate (GTP) cyclohydrolase I (GCH1) is the limiting enzyme of the tetrahydrobiopterin (BH4) synthesis pathway. The disruption of gch1 gene may cause conditional lethality due to folic acid auxotrophy in microorganisms, although the function of gch1 in basidiomycetes has not been deciphered so far. In the present study, gch1 expression in Cyclocybe aegerita (cagch1) was downregulated using the RNAi method, which resulted in growth retardation in both solid and liquid medium, with the hyphal tips exhibiting increased branching compared to that in the wild strain. The development of fruiting bodies in the mutant strains was significantly blocked, and there were short and bottle-shaped stipes. The transcriptional profile revealed that the genes of the MAPK pathway may be involved in the regulation of these effects caused by cagch1 knockdown, which provided an opportunity to study the role of gch1 in the development process of basidiomycetes.
Collapse
Affiliation(s)
- Nan Tao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China.,Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Bopu Cheng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,College of Life Sciences, Southwest Forestry University, Kunming, China
| | - Hongmei Chai
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China.,Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Xianghua Cui
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China.,Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Yuanhao Ma
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China.,Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Jinping Yan
- Life Science and Technology College, Kunming University of Science and Technology, Kunming, China
| | - Yongchang Zhao
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China.,Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.,Yunnan Provincial Key Lab of Agricultural Biotechnology, Kunming, China.,Key Lab of Southwestern Crop Gene Resources and Germplasm Innovation, Ministry of Agriculture, Kunming, China
| |
Collapse
|
35
|
Miyajima K, Sudo Y, Sanechika S, Hara Y, Horiguchi M, Xu F, Suzuki M, Hara S, Tanda K, Inoue KI, Takada M, Yoshioka N, Takebayashi H, Mori-Kojima M, Sugimoto M, Sumi-Ichinose C, Kondo K, Takao K, Miyakawa T, Ichinose H. Perturbation of monoamine metabolism and enhanced fear responses in mice defective in the regeneration of tetrahydrobiopterin. J Neurochem 2022; 161:129-145. [PMID: 35233765 DOI: 10.1111/jnc.15600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 11/28/2022]
Abstract
Increasing evidence suggests the involvement of peripheral amino acid metabolism in the pathophysiology of neuropsychiatric disorders, whereas the molecular mechanisms are largely unknown. Tetrahydrobiopterin (BH4) is a cofactor for enzymes that catalyze phenylalanine metabolism, monoamine synthesis, nitric oxide production, and lipid metabolism. BH4 is synthesized from guanosine triphosphate and regenerated by quinonoid dihydropteridine reductase (QDPR), which catalyzes the reduction of quinonoid dihydrobiopterin. We analyzed Qdpr-/- mice to elucidate the physiological significance of the regeneration of BH4. We found that the Qdpr-/- mice exhibited mild hyperphenylalaninemia and monoamine deficiency in the brain, despite the presence of substantial amounts of BH4 in the liver and brain. Hyperphenylalaninemia was ameliorated by exogenously administered BH4, and dietary phenylalanine restriction was effective for restoring the decreased monoamine contents in the brain of the Qdpr-/- mice, suggesting that monoamine deficiency was caused by the secondary effect of hyperphenylalaninemia. Immunohistochemical analysis showed that QDPR was primarily distributed in oligodendrocytes but hardly detectable in monoaminergic neurons in the brain. Finally, we performed a behavioral assessment using a test battery. The Qdpr-/- mice exhibited enhanced fear responses after electrical foot shock. Taken together, our data suggest that the perturbation of BH4 metabolism should affect brain monoamine levels through alterations in peripheral amino acid metabolism, and might contribute to the development of anxiety-related psychiatric disorders. Cover Image for this issue: https://doi.org/10.1111/jnc.15398.
Collapse
Affiliation(s)
- Katsuya Miyajima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yusuke Sudo
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Sho Sanechika
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshitaka Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mieko Horiguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Department of Domestic Science, Otsuma Women's University Junior College Division, Tokyo, Japan
| | - Feng Xu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Minori Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Satoshi Hara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Tanda
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masayo Mori-Kojima
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
| | - Chiho Sumi-Ichinose
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Kazunao Kondo
- Department of Pharmacology, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Keizo Takao
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Genetic Engineering and Functional Genomics Group, Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Hiroshi Ichinose
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
36
|
Jung HH, Koh CS, Park M, Kim JH, Woo HN, Lee H, Chang JW. Microglial deactivation by adeno-associated virus expressing small-hairpin GCH1 has protective effects against neuropathic pain development in a spinothalamic tract-lesion model. CNS Neurosci Ther 2021; 28:36-45. [PMID: 34845843 PMCID: PMC8673712 DOI: 10.1111/cns.13751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS Neuropathic pain after spinal cord injury is one of the most difficult clinical problems after the loss of mobility, and pharmacological or neuromodulation therapy showed limited efficacy. In this study, we examine the possibility of pain modulation by a recombinant adeno-associated virus (rAAV) encoding small-hairpin RNA against GCH1 (rAAV-shGCH1) in a spinal cord injury model in which neuropathic pain was induced by a spinothalamic tract (STT) lesion. METHODS Micro-electric lesioning was used to damage the left STT in rats (n = 32), and either rAAV-shGCH1 (n = 19) or rAAV control (n = 6) was injected into the dorsal horn of the rats at the same time. On postoperative days 3, 7, and 14, we evaluated neuropathic pain using a behavioral test and microglial activation by immunohistochemical staining. RESULTS A pain modulation effect of shGCH1 was observed from postoperative days 3 to 14. The mechanical withdrawal threshold was 13.0 ± 0.95 in the shGCH1 group, 4.3 ± 1.37 in the control group, and 3.49 ± 0.85 in sham on postoperative day 3 (p < 0.0001) and continued to postoperative day 14 (shGCH1 vs. control: 11.4 ± 1.1 vs. 2.05 ± 0.60, p < 0.001 and shGCH1 vs. sham: 11.4 ± 1.1 vs. 1.43 ± 0.54, p < 0.001). Immunohistochemical staining of the spinal cord dorsal horn showed deactivation of microglia in the shGCH1 group without any change of delayed pattern of astrocyte activation as in STT model. CONCLUSIONS Neuropathic pain after spinal cord injury can be modulated bilaterally by deactivating microglial activation after a unilateral injection of rAAV-shGCH1 into the dorsal horn of a STT lesion spinal cord pain model. This new attempt would be another therapeutic approach for NP after SCI, which once happens; there is no clear curative options still now.
Collapse
Affiliation(s)
- Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Minkyung Park
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Korea.,Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea
| | - Ha-Na Woo
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea.,Department of Biochemistry & Molecular Biology, University of Ulsan College of Medicine, Seoul, Korea
| | - Heuiran Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Korea.,Department of Microbiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
37
|
Jayakar S, Shim J, Jo S, Bean BP, Singeç I, Woolf CJ. Developing nociceptor-selective treatments for acute and chronic pain. Sci Transl Med 2021; 13:eabj9837. [PMID: 34757806 PMCID: PMC9964063 DOI: 10.1126/scitranslmed.abj9837] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite substantial efforts dedicated to the development of new, nonaddictive analgesics, success in treating pain has been limited. Clinically available analgesic agents generally lack efficacy and may have undesirable side effects. Traditional target-based drug discovery efforts that generate compounds with selectivity for single targets have a high rate of attrition because of their poor clinical efficacy. Here, we examine the challenges associated with the current analgesic drug discovery model and review evidence in favor of stem cell–derived neuronal-based screening approaches for the identification of analgesic targets and compounds for treating diverse forms of acute and chronic pain.
Collapse
Affiliation(s)
- Selwyn Jayakar
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Jaehoon Shim
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| | - Sooyeon Jo
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Bruce P Bean
- Department of Neurobiology, Harvard Medical School; Boston, MA 02115, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH); Bethesda, MD 20892, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology, Boston Children’s Hospital, and Department of Neurology, Harvard Medical School; Boston, MA 02115, USA
| |
Collapse
|
38
|
Scheffer DDL, Freitas FC, Aguiar AS, Ward C, Guglielmo LGA, Prediger RD, Cronin SJF, Walz R, Andrews NA, Latini A. Impaired dopamine metabolism is linked to fatigability in mice and fatigue in Parkinson's disease patients. Brain Commun 2021; 3:fcab116. [PMID: 34423297 PMCID: PMC8374980 DOI: 10.1093/braincomms/fcab116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 11/21/2022] Open
Abstract
Fatigue is a common symptom of Parkinson’s disease that compromises significantly the patients’ quality of life. Despite that, fatigue has been under-recognized as symptom, its pathophysiology remains poorly understood, and there is no adequate treatment so far. Parkinson’s disease is characterized by the progressive loss of midbrain dopaminergic neurons, eliciting the classical motor symptoms including slowing of movements, muscular rigidity and resting tremor. The dopamine synthesis is mediated by the rate-limiting enzyme tyrosine hydroxylase, which requires tetrahydrobiopterin as a mandatory cofactor. Here, we showed that reserpine administration (1 mg/kg, two intraperitoneal injections with an interval of 48 h) in adult Swiss male mice (8–10 weeks; 35–45 g) provoked striatal depletion of dopamine and tetrahydrobiopterin, and intolerance to exercise. The poor exercise performance of reserpinized mice was not influenced by emotional or anhedonic factors, mechanical nociceptive thresholds, electrocardiogram pattern alterations or muscle-impaired bioenergetics. The administration of levodopa (100 mg/kg; i.p.) plus benserazide (50 mg/kg; i.p.) rescued reserpine-induced fatigability-like symptoms and restored striatal dopamine and tetrahydrobiopterin levels. Remarkably, it was observed, for the first time, that impaired blood dopamine metabolism inversely and idependently correlated with fatigue scores in eighteen idiopathic Parkinson’s disease patients (male n = 13; female n = 5; age 61.3 ± 9.59 years). Altogether, this study provides new experimental and clinical evidence that fatigue symptoms might be caused by the impaired striatal dopaminergic neurotransmission, pointing to a central origin of fatigue in Parkinson’s disease.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Fernando Cini Freitas
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Hospital Governador Celso Ramos, Florianópolis, SC 88015-270, Brazil
| | - Aderbal Silva Aguiar
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Catherine Ward
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Rui Daniel Prediger
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Shane J F Cronin
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Roger Walz
- Graduate Program in Medical Sciences, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Center for Applied Neuroscience, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Neurology Division, Departament of Internal Medicine, University Hospital, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | - Nick A Andrews
- Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.,The Salk in Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Alexandra Latini
- LABOX, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.,Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
39
|
Echeverria-Villalobos M, Mitchell J, Fiorda-Diaz J, Weaver T. Effects of Dorsal Column Spinal Cord Stimulation on Neuroinflammation: Revisiting Molecular Mechanisms and Clinical Outcomes on Chronic Lumbar/Leg Pain and Failed Back Surgery Syndrome. J Pain Res 2021; 14:2337-2345. [PMID: 34354373 PMCID: PMC8331196 DOI: 10.2147/jpr.s309872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE In this narrative review, we reviewed and discussed current literature describing the molecular mechanisms leading to neuroinflammation and its role in the onset and progression of chronic neuropathic lumbar and leg pain in patients with persistent spinal pain syndrome. In addition, we reviewed the proposed mechanisms and impact of spinal cord stimulation (SCS) on neuroinflammation. METHODS A broad search of current literature in PubMed, Embase, Scopus, Cochrane library, Medline/Ovid, and Web of Science was performed using the following terms and their combinations: "biomarkers", "chronic back and leg pain", "cytokines", "neuroinflammation", "spinal cord stimulation (scs)," and "spinal cord modulation". We selected: 1) articles published in the English language between January 2000 and July 2020 2) preclinical and clinical data 3) case reports 4) meta-analysis and systematic reviews and 5) conference abstracts. Manuscripts not disclosing methodology or without full-text availability were excluded. DISCUSSION SCS techniques have gradually evolved since inception to include novel methods such as burst-SCS, high frequency SCS, and differential targeted multiplexed SCS. The incidence of chronic pain after spine surgery is highly variable, with at least one third of patients developing persistent spinal pain syndrome. Novel SCS techniques have been associated with improved clinical and functional outcomes thus increasing patient quality of life. CONCLUSION Currently, health care providers rely on different options and methods for SCS when treating patients with refractory chronic lumbar pain and persistent spinal pain syndrome. Nevertheless, compelling clinical trials remain necessary to elucidate the long-term benefits and mechanisms of neuromodulation of all different types of SCS.
Collapse
Affiliation(s)
| | - Justin Mitchell
- College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Juan Fiorda-Diaz
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tristan Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
40
|
Pietrangelo T. Raising the Guanosine-Based Molecules as Regulators of Excitable Tissues by the Exosomal-Vehiculated Signaling. Front Pharmacol 2021; 12:658370. [PMID: 34393768 PMCID: PMC8363250 DOI: 10.3389/fphar.2021.658370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
- Interuniversity Institute of Myology, Chieti, Italy
| |
Collapse
|
41
|
IMPDH2: a new gene associated with dominant juvenile-onset dystonia-tremor disorder. Eur J Hum Genet 2021; 29:1833-1837. [PMID: 34305140 PMCID: PMC8633184 DOI: 10.1038/s41431-021-00939-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/08/2022] Open
Abstract
The aetiology of dystonia disorders is complex, and next-generation sequencing has become a useful tool in elucidating the variable genetic background of these diseases. Here we report a deleterious heterozygous truncating variant in the inosine monophosphate dehydrogenase gene (IMPDH2) by whole-exome sequencing, co-segregating with a dominantly inherited dystonia-tremor disease in a large Finnish family. We show that the defect results in degradation of the gene product, causing IMPDH2 deficiency in patient cells. IMPDH2 is the first and rate-limiting enzyme in the de novo biosynthesis of guanine nucleotides, a dopamine synthetic pathway previously linked to childhood or adolescence-onset dystonia disorders. We report IMPDH2 as a new gene to the dystonia disease entity. The evidence underlines the important link between guanine metabolism, dopamine biosynthesis and dystonia.
Collapse
|
42
|
Himmelreich N, Blau N, Thöny B. Molecular and metabolic bases of tetrahydrobiopterin (BH 4) deficiencies. Mol Genet Metab 2021; 133:123-136. [PMID: 33903016 DOI: 10.1016/j.ymgme.2021.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023]
Abstract
Tetrahydrobiopterin (BH4) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH4 metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH4 deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.
Collapse
Affiliation(s)
- Nastassja Himmelreich
- Center for Child and Adolescent Medicine, Dietmar-Hopp Metabolic Center, Division 1, Heidelberg, Germany
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland.
| | - Beat Thöny
- Division of Metabolism and Children's Research Centre, University Children's Hospital Zürich, Zürich, Switzerland.
| |
Collapse
|
43
|
Zhong GC, Zhao ZB, Cheng Y, Wang YB, Qiu C, Mao LH, Hu JJ, Cai D, Liu Y, Gong JP, Li SW. Epigenetic silencing of GCH1promotes hepatocellular carcinoma growth by activating superoxide anion-mediated ASK1/p38 signaling via inhibiting tetrahydrobiopterin de novo biosynthesis. Free Radic Biol Med 2021; 168:81-94. [PMID: 33781891 DOI: 10.1016/j.freeradbiomed.2021.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer, including hepatocellular carcinoma (HCC). However, its role in HCC remains to be elucidated. Herein, we identified GTP cyclohydrolase 1 (GCH1), the first rate-limiting enzyme in tetrahydrobiopterin (BH4) de novo biosynthesis, as a novel metabolic regulator of HCC. GCH1 was frequently down-regulated in HCC tissues and cell lines by promoter methylation. Low GCH1 expression was associated with larger tumor size, increased tumor number, and worse prognosis in two independent cohorts of HCC patients. Functionally, GCH1 silencing promoted HCC growth in vitro and in vivo, while GCH1 overexpression exerted an opposite effect. The metabolite BH4 inhibited HCC growth in vitro and in vivo. GCH1 silencing exerted its growth-promoting effect through directly inhibiting BH4 de novo biosynthesis. Mechanistically, GCH1 silencing activated ASK1/p38 signaling; pharmacological or genetic inhibition of ASK1 or p38 abolished GCH1 silencing-induced growth-promoting effect. Further mechanistic studies found that GCH1 silencing-induced BH4 reduction resulted in an increase of intracellular superoxide anion levels in a dose-dependent manner, which mediated the activation of ASK1/p38 signaling. Collectively, our study reveals that epigenetic silencing of GCH1 promotes HCC growth by activating superoxide anion-mediated ASK1/p38 signaling via inhibiting BH4 de novo biosynthesis, suggesting that targeting GCH1/BH4 pathway may be a promising therapeutic strategy to combat HCC.
Collapse
Affiliation(s)
- Guo-Chao Zhong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Bo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Cheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun-Bing Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chan Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie-Jun Hu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Liu
- Department of Gastroenterology, The Fifth People's Hospital of Chengdu, Chengdu, China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Sheng-Wei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
44
|
Obeng S, Hiranita T, León F, McMahon LR, McCurdy CR. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J Med Chem 2021; 64:6523-6548. [PMID: 33956427 DOI: 10.1021/acs.jmedchem.1c00028] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Because of the problems associated with opioids, drug discovery efforts have been employed to develop opioids with reduced side effects using approaches such as biased opioid agonism, multifunctional opioids, and allosteric modulation of opioid receptors. Receptor targets such as adrenergic, cannabinoid, P2X3 and P2X7, NMDA, serotonin, and sigma, as well as ion channels like the voltage-gated sodium channels Nav1.7 and Nav1.8 have been targeted to develop novel analgesics. Several enzymes, such as soluble epoxide hydrolase, sepiapterin reductase, and MAGL/FAAH, have also been targeted to develop novel analgesics. In this review, old and recent targets involved in pain signaling and compounds acting at these targets are summarized. In addition, strategies employed to reduce side effects, increase potency, and efficacy of opioids are also elaborated. This review should aid in propelling drug discovery efforts to discover novel analgesics.
Collapse
Affiliation(s)
- Samuel Obeng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Takato Hiranita
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia 29208, United States
| | - Lance R McMahon
- Department Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States.,Translational Drug Development Core, Clinical and Translational Sciences Institute, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
45
|
Fujimura M, Usuki F, Nakamura A. Methylmercury induces hyperalgesia/allodynia through spinal cord dorsal horn neuronal activation and subsequent somatosensory cortical circuit formation in rats. Arch Toxicol 2021; 95:2151-2162. [PMID: 33847776 DOI: 10.1007/s00204-021-03047-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/01/2021] [Indexed: 12/30/2022]
Abstract
Methylmercury (MeHg) is known to cause serious neurological deficits in humans. In this study, we investigated the occurrence of MeHg-mediated neuropathic pain and identified the underlying pathophysiological mechanism in a rat model of MeHg exposure. Rats were exposed to MeHg (20 ppm in drinking water) for 3 weeks. Neurological damage was observed in the primary afferent neuronal system, including the dorsal root nerve and the dorsal column of the spinal cord. The MeHg-exposed rats showed hyperalgesia/allodynia, compared to controls, as evidenced by a significant decrease in the threshold of mechanical pain evaluated using an algometer with calibrated forceps. Immunohistochemistry revealed the accumulation of activated microglia in the dorsal root nerve, dorsal column, and dorsal horn of the spinal cord. Western blot analyses of the dorsal part of the spinal cord demonstrated an increase in inflammotoxic and inflammatory cytokines and a neuronal activation related protein, phospho-CRE bunding protein (CREB). The results suggest that dorsal horn neuronal activation was mediated by inflammatory factors excreted by accumulated microglia. Furthermore, analyses of the cerebral cortex demonstrated increased expression of phospho-CREB and thrombospondin-1, which is known to be an important factor for excitatory synapse formation, specifically in the somatosensory cortical area. In addition, the expression of pre- and post-synaptic markers was increased in this cortex area. These results suggested that the new cortical circuit was wired specifically in the somatosensory cortex. In conclusion, MeHg-mediated dorsal horn neuronal activation with inflammatory microglia might induce somatosensory cortical rewiring, leading to hyperalgesia/allodynia.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease, Kumamoto, Japan.
| | - Fusako Usuki
- Division of Neuroimmunology, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, Japan
| | - Atsushi Nakamura
- Department of Clinical Medicine, National Institute for Minamata Disease, Kumamoto, Japan
| |
Collapse
|
46
|
Buffington SA, Dooling SW, Sgritta M, Noecker C, Murillo OD, Felice DF, Turnbaugh PJ, Costa-Mattioli M. Dissecting the contribution of host genetics and the microbiome in complex behaviors. Cell 2021; 184:1740-1756.e16. [PMID: 33705688 PMCID: PMC8996745 DOI: 10.1016/j.cell.2021.02.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/07/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.
Collapse
Affiliation(s)
- Shelly A Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W Dooling
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martina Sgritta
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cecilia Noecker
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Oscar D Murillo
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniela F Felice
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Memory and Brain Research Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Huang Y, Jiao B, Zhu B, Xiong B, Lu P, Ai L, Yang N, Zhao Y, Xu H. Nitric Oxide in the Spinal Cord Is Involved in the Hyperalgesia Induced by Tetrahydrobiopterin in Chronic Restraint Stress Rats. Front Neurosci 2021; 15:593654. [PMID: 33867911 PMCID: PMC8044835 DOI: 10.3389/fnins.2021.593654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
It has been well recognized that exposure to chronic stress could increase pain responding and exacerbate pain symptoms, resulting in stress-induced hyperalgesia. However, the mechanisms underlying stress-induced hyperalgesia are not yet fully elucidated. To this end, we observed that restraint as a stressful event exacerbated mechanical and thermal hyperalgesia, accompanied with up-regulation of nitric oxide (NO) (P < 0.001), GTP cyclohydrolase 1 (GCH1) (GCH1 mRNA: P = 0.001; GCH1 protein: P = 0.001), and tetrahydrobiopterin (BH4) concentration (plasma BH4: P < 0.001; spinal BH4: P < 0.001) on Day 7 in restraint stress (RS) rats. Intrathecal injection of N ω-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase inhibitor, or N-([3-(aminomethyl)phenyl]methyl) ethanimidamide, a special inhibitor of inducible NO synthase (iNOS), for seven consecutive days attenuated stress-induced hyperalgesia and decreased the production of NO (P < 0.001). Interestingly, 7-nitro indazole, a special inhibitor of neuronal NO synthase, alleviated stress-induced hyperalgesia but did not affect spinal NO synthesis. Furthermore, intrathecal injection of BH4 not only aggravated stress-induced hyperalgesia but also up-regulated the expression of spinal iNOS (iNOS mRNA: P = 0.015; iNOS protein: P < 0.001) and NO production (P < 0.001). These findings suggest that hyperalgesia induced by RS is associated with the modulation of the GCH1-BH4 system and constitutively expressed spinal iNOS. Thus, the GCH1-BH4-iNOS signaling pathway may be a new novel therapeutic target for pain relief in the spinal cord.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhu
- Department of Anesthesiology, Chengdu Second People's Hospital, Chengdu, China
| | - Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Ai
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Yang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Song I, Cho S, Nedeljkovic SS, Lee SR, Lee C, Kim J, Bai SJ. Role of VVZ-149, a Novel Analgesic Molecule, in the Affective Component of Pain: Results from an Exploratory Proof-of-Concept Study of Postoperative Pain following Laparoscopic and Robotic-Laparoscopic Gastrectomy. PAIN MEDICINE 2021; 22:2037-2049. [PMID: 33624798 DOI: 10.1093/pm/pnab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE VVZ-149 is a small molecule that both inhibits the glycine transporter type 2 and the serotonin receptor 5 hydroxytryptamine 2 A. In a randomized, parallel-group, and double-blind trial (NCT02844725), we investigated the analgesic efficacy and safety of VVZ-149 Injections, which is under clinical development as a single-use injectable product for treating moderate to severe postoperative pain. METHODS Sixty patients undergoing laparoscopic and robotic-laparoscopic gastrectomy were randomly assigned to receive a 10-hour intravenous infusion of VVZ-149 Injections or placebo, initiated approximately 1 hour before completion of surgical suturing. Major outcomes included pain intensity and opioid consumption via patient-controlled analgesia and rescue analgesia provided "as needed." The treatment efficacy of VVZ-149 was further examined in a subpopulation requiring early rescue medication, previously associated with the presence of high levels of preoperative negative affect in a prior Phase 2 study (NCT02489526). RESULTS Pain intensity was lower in the VVZ-149 (n = 30) than the placebo group (n = 29), reaching statistical significance at 4 hours post-emergence (P < .05), with a 29.5% reduction in opioid consumption for 24 hours and fewer demands for patient-controlled analgesia. In the rescued subgroup, VVZ-149 further reduced pain intensity (P < .05) with 32.6% less opioid consumption for 24 hours compared to placebo patients. CONCLUSIONS VVZ-149 demonstrated effective analgesia with reduced postoperative pain and opioid requirements. Consistent with the results from the previous Phase 2 study, patients with early rescue requirement had greater benefit from VVZ-149, supporting the hypothesis that VVZ-149 may alleviate the affective component of pain and mitigate excessive use of opioids postoperatively.
Collapse
Affiliation(s)
- Inkyung Song
- Department of Global Research and Development, Vivozon, Inc, West Windsor, New Jersey
| | - Sunyoung Cho
- Department of Global Research and Development, Vivozon, Inc, West Windsor, New Jersey
| | - Srdjan S Nedeljkovic
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sang Rim Lee
- Department of Global Research and Development, Vivozon, Inc, West Windsor, New Jersey
| | - Chaewon Lee
- Department of Clinical Development, Vivozon, Inc, Seoul, Republic of Korea
| | - Jina Kim
- Department of Clinical Development, Vivozon, Inc, Seoul, Republic of Korea
| | - Sun Joon Bai
- Department of Global Research and Development, Vivozon, Inc, West Windsor, New Jersey.,Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
49
|
Yasukochi S, Kusunose N, Matsunaga N, Koyanagi S, Ohdo S. Sulfasalazine alleviates neuropathic pain hypersensitivity in mice through inhibition of SGK-1 in the spinal cord. Biochem Pharmacol 2021; 185:114411. [PMID: 33428896 DOI: 10.1016/j.bcp.2021.114411] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Diurnal variations in pain hypersensitivity are common in chronic pain disorders. Temporal exacerbation of neuropathic pain hypersensitivity is dependent on diurnal variations in glucocorticoid secretion from the adrenal glands. We previously demonstrated that spinal expression of serum- and glucocorticoid-inducible kinase-1 (SGK-1) is associated with glucocorticoid- induced exacerbation of pain hypersensitivity, but there are no available strategies to inhibit SGK-1 in the spinal cord. By screening a clinically approved drug library (more than 1,200 drugs), we found that sulfasalazine (SSZ) has inhibitory effects on SGK-1. SSZ is a prodrug composed of 5-aminosalicylic acid and sulfapyridine linked by NN bond, which is therapeutically effective for inflammatory bowel diseases. However, the NN bond in SSZ was necessary for its inhibitory action against SGK-1. Although intrathecal injection of SSZ to nerve-injured mice significantly alleviated mechanical pain hypersensitivity, no significant anti- neuropathic pain effects of SSZ were detected after oral administration due to its low bioavailability and limited spinal distribution, which were associated with efflux by the xenobiotic transporter breast cancer resistance protein (BCRP). Concomitant oral administration of SSZ with febuxostat (FBX), which is an approved drug to inhibit BCRP, improved the distribution of SSZ to the spinal cord. The concomitant oral administration with FBX also increased the anti-neuropathic pain effects of SSZ. Our study revealed a previously unrecognized pharmacological effect of SSZ to alleviate SGK-1-induced painful peripheral neuropathy, and concomitant oral administration of SSZ with FBX may also be a preventative option for diurnal exacerbation of neuropathic pain hypersensitivity.
Collapse
Affiliation(s)
- Sai Yasukochi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Kusunose
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Matsunaga
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoru Koyanagi
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Department of Glocal Healthcare Science, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shigehiro Ohdo
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
50
|
Shi D, Liu L, Li H, Pan D, Yao X, Xiao W, Yao X, Yu Y. Identifying the molecular basis of Jinhong tablets against chronic superficial gastritis via chemical profile identification and symptom-guided network pharmacology analysis. J Pharm Anal 2021; 12:65-76. [PMID: 35573887 PMCID: PMC9073317 DOI: 10.1016/j.jpha.2021.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Danfeng Shi
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Lingxian Liu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Haibo Li
- Kanion Pharmaceutical Co., Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
| | - Dabo Pan
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Wei Xiao
- Kanion Pharmaceutical Co., Ltd., State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, Jiangsu, 222001, China
- Corresponding author.
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Yang Yu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| |
Collapse
|