1
|
Mobille Z, Sikandar UB, Sponberg S, Choi H. Temporal resolution of spike coding in feedforward networks with signal convergence and divergence. PLoS Comput Biol 2025; 21:e1012971. [PMID: 40258062 PMCID: PMC12021431 DOI: 10.1371/journal.pcbi.1012971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 04/24/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
Convergent and divergent structures in the networks that make up biological brains are found across many species and brain regions at various spatial scales. Neurons in these networks fire action potentials, or "spikes," whose precise timing is becoming increasingly appreciated as large sources of information about both sensory input and motor output. In this work, we investigate the extent to which feedforward convergent/divergent network structure is related to the gain in information of spike timing representations over spike count representations. While previous theories on coding in convergent and divergent networks have largely neglected the role of precise spike timing, our model and analyses place this aspect at the forefront. For a suite of stimuli with different timescales, we demonstrate that structural bottlenecks-small groups of neurons post-synaptic to network convergence-have a stronger preference for spike timing codes than expansion layers created by structural divergence. We further show that this relationship can be generalized across different spike-generating models and measures of coding capacity, implying a potentially fundamental link between network structure and coding strategy using spikes. Additionally, we found that a simple network model based on convergence and divergence ratios of a hawkmoth (Manduca sexta) nervous system can reproduce the relative contribution of spike timing information in its motor output, providing testable predictions on optimal temporal resolutions of spike coding across the moth sensory-motor pathway at both the single-neuron and population levels.
Collapse
Affiliation(s)
- Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Usama Bin Sikandar
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Simon Sponberg
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
Churgin MA, Lavrentovich DO, Smith MAY, Gao R, Boyden ES, de Bivort BL. A neural correlate of individual odor preference in Drosophila. eLife 2025; 12:RP90511. [PMID: 40067954 PMCID: PMC11896609 DOI: 10.7554/elife.90511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025] Open
Abstract
Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical origins of this individuality. Here, we demonstrate a neural correlate of Drosophila odor preference behavior in the olfactory sensory periphery. Namely, idiosyncratic calcium responses in projection neuron (PN) dendrites and densities of the presynaptic protein Bruchpilot in olfactory receptor neuron (ORN) axon terminals correlate with individual preferences in a choice between two aversive odorants. The ORN-PN synapse appears to be a locus of individuality where microscale variation gives rise to idiosyncratic behavior. Simulating microscale stochasticity in ORN-PN synapses of a 3062 neuron model of the antennal lobe recapitulates patterns of variation in PN calcium responses matching experiments. Conversely, stochasticity in other compartments of this circuit does not recapitulate those patterns. Our results demonstrate how physiological and microscale structural circuit variations can give rise to individual behavior, even when genetics and environment are held constant.
Collapse
Affiliation(s)
- Matthew A Churgin
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| | - Danylo O Lavrentovich
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| | - Matthew A-Y Smith
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| | - Ruixuan Gao
- McGovern Institute, MITCambridgeUnited States
- MIT Media Lab, MITCambridgeUnited States
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Edward S Boyden
- McGovern Institute, MITCambridgeUnited States
- Department of Biological Engineering, MITCambridgeUnited States
- Koch Institute, Department of Biology, MITCambridgeUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Brain and Cognitive Sciences, MITCambridgeUnited States
| | - Benjamin L de Bivort
- Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Center for Brain Science, Harvard University, CambridgeCambridgeUnited States
| |
Collapse
|
3
|
Li J, Bauer R, Rentzeperis I, van Leeuwen C. Adaptive rewiring: a general principle for neural network development. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1410092. [PMID: 39534101 PMCID: PMC11554485 DOI: 10.3389/fnetp.2024.1410092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The nervous system, especially the human brain, is characterized by its highly complex network topology. The neurodevelopment of some of its features has been described in terms of dynamic optimization rules. We discuss the principle of adaptive rewiring, i.e., the dynamic reorganization of a network according to the intensity of internal signal communication as measured by synchronization or diffusion, and its recent generalization for applications in directed networks. These have extended the principle of adaptive rewiring from highly oversimplified networks to more neurally plausible ones. Adaptive rewiring captures all the key features of the complex brain topology: it transforms initially random or regular networks into networks with a modular small-world structure and a rich-club core. This effect is specific in the sense that it can be tailored to computational needs, robust in the sense that it does not depend on a critical regime, and flexible in the sense that parametric variation generates a range of variant network configurations. Extreme variant networks can be associated at macroscopic level with disorders such as schizophrenia, autism, and dyslexia, and suggest a relationship between dyslexia and creativity. Adaptive rewiring cooperates with network growth and interacts constructively with spatial organization principles in the formation of topographically distinct modules and structures such as ganglia and chains. At the mesoscopic level, adaptive rewiring enables the development of functional architectures, such as convergent-divergent units, and sheds light on the early development of divergence and convergence in, for example, the visual system. Finally, we discuss future prospects for the principle of adaptive rewiring.
Collapse
Affiliation(s)
- Jia Li
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Roman Bauer
- NICE Research Group, Computer Science Research Centre, University of Surrey, Guildford, United Kingdom
| | - Ilias Rentzeperis
- Institute of Optics, Spanish National Research Council (CSIC), Madrid, Spain
| | - Cees van Leeuwen
- Brain and Cognition, KU Leuven, Leuven, Belgium
- Cognitive Science, RPTU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
4
|
Mobille Z, Sikandar UB, Sponberg S, Choi H. Temporal resolution of spike coding in feedforward networks with signal convergence and divergence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602598. [PMID: 39026834 PMCID: PMC11257569 DOI: 10.1101/2024.07.08.602598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Convergent and divergent structures in the networks that make up biological brains are found across many species and brain regions at various spatial scales. Neurons in these networks fire action potentials, or "spikes", whose precise timing is becoming increasingly appreciated as large sources of information about both sensory input and motor output. While previous theories on coding in convergent and divergent networks have largely neglected the role of precise spike timing, our model and analyses place this aspect at the forefront. For a suite of stimuli with different timescales, we demonstrate that structural bottlenecks- small groups of neurons post-synaptic to network convergence - have a stronger preference for spike timing codes than expansion layers created by structural divergence. Additionally, we found that a simple network model based on convergence and divergence ratios of a hawkmoth (Manduca sexta) nervous system can reproduce the relative contribution of spike timing information in its motor output, providing testable predictions on optimal temporal resolutions of spike coding across the moth sensory-motor pathway at both the single-neuron and population levels. Our simulations and analyses suggest a relationship between the level of convergent/divergent structure present in a feedforward network and the loss of stimulus information encoded by its population spike trains as their temporal resolution decreases, which could be tested experimentally across diverse neural systems in future studies. We further show that this relationship can be generalized across different spike-generating models and measures of coding capacity, implying a potentially fundamental link between network structure and coding strategy using spikes.
Collapse
Affiliation(s)
- Zach Mobille
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30332
| | - Usama Bin Sikandar
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Simon Sponberg
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30332
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | - Hannah Choi
- School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
5
|
Lazar AA, Liu T, Yeh CH, Zhou Y. Modeling and characterization of pure and odorant mixture processing in the Drosophila mushroom body calyx. Front Physiol 2024; 15:1410946. [PMID: 39479309 PMCID: PMC11521939 DOI: 10.3389/fphys.2024.1410946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience. To address this challenge we start by explicitly modeling the space of odorants using constructs of both semantic and syntactic information. Odorant semantics concerns the identity of odorants while odorant syntactics pertains to their concentration amplitude. These odorant attributes are multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory systems must address is how to disentangle the odorant semantic information from the odorant syntactic information. To address the untanglement we devised an Odorant Encoding Machine (OEM) modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded DNPs. By extensively modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we seek to answer the question of its functional significance. We demonstrate that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant concentration, thereby separating odorant semantic information from syntactic information. We then advance a code, called first spike sequence code, that the KCs make available at the output of the Calyx. We show that the semantics of odorants can be represented by this code in the spike domain and is ready for easy memory access in the Mushroom Body compartments.
Collapse
Affiliation(s)
- Aurel A. Lazar
- Bionet Group, Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Tingkai Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Chung-Heng Yeh
- Bionet Group, Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Yiyin Zhou
- Department of Computer and Information Science, Fordham University, New York, NY, United States
| |
Collapse
|
6
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
7
|
Halty-deLeon L, Pal Mahadevan V, Wiesel E, Hansson BS, Wicher D. Response Plasticity of Drosophila Olfactory Sensory Neurons. Int J Mol Sci 2024; 25:7125. [PMID: 39000230 PMCID: PMC11241008 DOI: 10.3390/ijms25137125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/10/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.
Collapse
Affiliation(s)
| | | | - Eric Wiesel
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Dieter Wicher
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
8
|
Raiser G, Galizia CG, Szyszka P. Olfactory receptor neurons are sensitive to stimulus onset asynchrony: implications for odor source discrimination. Chem Senses 2024; 49:bjae030. [PMID: 39133054 PMCID: PMC11408607 DOI: 10.1093/chemse/bjae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 08/13/2024] Open
Abstract
In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit nonsynaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odor source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odor stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odor source discrimination.
Collapse
Affiliation(s)
- Georg Raiser
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- International Max-Planck Research School for Organismal Biology, Konstanz, Germany
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | | - Paul Szyszka
- Department of Neurobiology, University Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Szyszka P, Emonet T, Edwards TL. Extracting spatial information from temporal odor patterns: insights from insects. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101082. [PMID: 37419251 PMCID: PMC10878403 DOI: 10.1016/j.cois.2023.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Extracting spatial information from temporal stimulus patterns is essential for sensory perception (e.g. visual motion direction detection or concurrent sound segregation), but this process remains understudied in olfaction. Animals rely on olfaction to locate resources and dangers. In open environments, where odors are dispersed by turbulent wind, detection of wind direction seems crucial for odor source localization. However, recent studies showed that insects can extract spatial information from the odor stimulus itself, independently from sensing wind direction. This remarkable ability is achieved by detecting the fine-scale temporal pattern of odor encounters, which contains information about the location and size of an odor source, and the distance between different odor sources.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | | |
Collapse
|
10
|
Gugel ZV, Maurais EG, Hong EJ. Chronic exposure to odors at naturally occurring concentrations triggers limited plasticity in early stages of Drosophila olfactory processing. eLife 2023; 12:e85443. [PMID: 37195027 PMCID: PMC10229125 DOI: 10.7554/elife.85443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/06/2023] [Indexed: 05/18/2023] Open
Abstract
In insects and mammals, olfactory experience in early life alters olfactory behavior and function in later life. In the vinegar fly Drosophila, flies chronically exposed to a high concentration of a monomolecular odor exhibit reduced behavioral aversion to the familiar odor when it is reencountered. This change in olfactory behavior has been attributed to selective decreases in the sensitivity of second-order olfactory projection neurons (PNs) in the antennal lobe that respond to the overrepresented odor. However, since odorant compounds do not occur at similarly high concentrations in natural sources, the role of odor experience-dependent plasticity in natural environments is unclear. Here, we investigated olfactory plasticity in the antennal lobe of flies chronically exposed to odors at concentrations that are typically encountered in natural odor sources. These stimuli were chosen to each strongly and selectively excite a single class of primary olfactory receptor neuron (ORN), thus facilitating a rigorous assessment of the selectivity of olfactory plasticity for PNs directly excited by overrepresented stimuli. Unexpectedly, we found that chronic exposure to three such odors did not result in decreased PN sensitivity but rather mildly increased responses to weak stimuli in most PN types. Odor-evoked PN activity in response to stronger stimuli was mostly unaffected by odor experience. When present, plasticity was observed broadly in multiple PN types and thus was not selective for PNs receiving direct input from the chronically active ORNs. We further investigated the DL5 olfactory coding channel and found that chronic odor-mediated excitation of its input ORNs did not affect PN intrinsic properties, local inhibitory innervation, ORN responses or ORN-PN synaptic strength; however, broad-acting lateral excitation evoked by some odors was increased. These results show that PN odor coding is only mildly affected by strong persistent activation of a single olfactory input, highlighting the stability of early stages of insect olfactory processing to significant perturbations in the sensory environment.
Collapse
Affiliation(s)
- Zhannetta V Gugel
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth G Maurais
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Elizabeth J Hong
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
11
|
Rozenfeld E, Ehmann N, Manoim JE, Kittel RJ, Parnas M. Homeostatic synaptic plasticity rescues neural coding reliability. Nat Commun 2023; 14:2993. [PMID: 37225688 DOI: 10.1038/s41467-023-38575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
To survive, animals must recognize reoccurring stimuli. This necessitates a reliable stimulus representation by the neural code. While synaptic transmission underlies the propagation of neural codes, it is unclear how synaptic plasticity can maintain coding reliability. By studying the olfactory system of Drosophila melanogaster, we aimed to obtain a deeper mechanistic understanding of how synaptic function shapes neural coding in the live, behaving animal. We show that the properties of the active zone (AZ), the presynaptic site of neurotransmitter release, are critical for generating a reliable neural code. Reducing neurotransmitter release probability of olfactory sensory neurons disrupts both neural coding and behavioral reliability. Strikingly, a target-specific homeostatic increase of AZ numbers rescues these defects within a day. These findings demonstrate an important role for synaptic plasticity in maintaining neural coding reliability and are of pathophysiological interest by uncovering an elegant mechanism through which the neural circuitry can counterbalance perturbations.
Collapse
Affiliation(s)
- Eyal Rozenfeld
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nadine Ehmann
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Julia E Manoim
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Robert J Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, 04103, Leipzig, Germany.
| | - Moshe Parnas
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
12
|
Ling D, Moss EH, Smith CL, Kroeger R, Reimer J, Raman B, Arenkiel BR. Conserved neural dynamics and computations across species in olfaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538157. [PMID: 37162844 PMCID: PMC10168254 DOI: 10.1101/2023.04.24.538157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Interpreting chemical information and translating it into ethologically relevant output is a common challenge of olfactory systems across species. Are computations performed by olfactory circuits conserved across species to overcome these common challenges? To understand this, we compared odor responses in the locust antennal lobe (AL) and mouse olfactory bulb (OB). We found that odors activated nearly mutually exclusive neural ensembles during stimulus presentation ('ON response') and after stimulus termination ('OFF response'). Strikingly, ON and OFF responses evoked by a single odor were anticorrelated with each other. 'Inverted' OFF responses enhanced contrast between odors experienced close together in time. Notably, OFF responses persisted long after odor termination in both AL and OB networks, indicating a form of short-term memory. Taken together, our results reveal key neurodynamic features underlying olfactory computations that are conserved across insect and mammalian olfactory systems.
Collapse
Affiliation(s)
- Doris Ling
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Elizabeth H Moss
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Cameron L Smith
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Ryan Kroeger
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston TX
| | - Baranidharan Raman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
13
|
Manneschi L, Lin AC, Vasilaki E. SpaRCe: Improved Learning of Reservoir Computing Systems Through Sparse Representations. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023; 34:824-838. [PMID: 34398765 DOI: 10.1109/tnnls.2021.3102378] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
"Sparse" neural networks, in which relatively few neurons or connections are active, are common in both machine learning and neuroscience. While, in machine learning, "sparsity" is related to a penalty term that leads to some connecting weights becoming small or zero, in biological brains, sparsity is often created when high spiking thresholds prevent neuronal activity. Here, we introduce sparsity into a reservoir computing network via neuron-specific learnable thresholds of activity, allowing neurons with low thresholds to contribute to decision-making but suppressing information from neurons with high thresholds. This approach, which we term "SpaRCe," optimizes the sparsity level of the reservoir without affecting the reservoir dynamics. The read-out weights and the thresholds are learned by an online gradient rule that minimizes an error function on the outputs of the network. Threshold learning occurs by the balance of two opposing forces: reducing interneuronal correlations in the reservoir by deactivating redundant neurons, while increasing the activity of neurons participating in correct decisions. We test SpaRCe on classification problems and find that threshold learning improves performance compared to standard reservoir computing. SpaRCe alleviates the problem of catastrophic forgetting, a problem most evident in standard echo state networks (ESNs) and recurrent neural networks in general, due to increasing the number of task-specialized neurons that are included in the network decisions.
Collapse
|
14
|
Wechsler SP, Bhandawat V. Behavioral algorithms and neural mechanisms underlying odor-modulated locomotion in insects. J Exp Biol 2023; 226:jeb200261. [PMID: 36637433 PMCID: PMC10086387 DOI: 10.1242/jeb.200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Odors released from mates and resources such as a host and food are often the first sensory signals that an animal can detect. Changes in locomotion in response to odors are an important mechanism by which animals access resources important to their survival. Odor-modulated changes in locomotion in insects constitute a whole suite of flexible behaviors that allow insects to close in on these resources from long distances and perform local searches to locate and subsequently assess them. Here, we review changes in odor-mediated locomotion across many insect species. We emphasize that changes in locomotion induced by odors are diverse. In particular, the olfactory stimulus is sporadic at long distances and becomes more continuous at short distances. This distance-dependent change in temporal profile produces a corresponding change in an insect's locomotory strategy. We also discuss the neural circuits underlying odor modulation of locomotion.
Collapse
Affiliation(s)
- Samuel P. Wechsler
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Nonspiking Interneurons in the Drosophila Antennal Lobe Exhibit Spatially Restricted Activity. eNeuro 2023; 10:ENEURO.0109-22.2022. [PMID: 36650069 PMCID: PMC9884108 DOI: 10.1523/eneuro.0109-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/17/2022] [Accepted: 10/21/2022] [Indexed: 01/19/2023] Open
Abstract
Inhibitory interneurons are important for neuronal circuit function. They regulate sensory inputs and enhance output discriminability (Olsen and Wilson, 2008; Root et al., 2008; Olsen et al., 2010). Often, the identities of interneurons can be determined by location and morphology, which can have implications for their functions (Wachowiak and Shipley, 2006). While most interneurons fire traditional action potentials, many are nonspiking. These can be seen in insect olfaction (Laurent and Davidowitz, 1994; Husch et al., 2009; Tabuchi et al., 2015) and the vertebrate retina (Gleason et al., 1993). Here, we present the novel observation of nonspiking inhibitory interneurons in the antennal lobe (AL) of the adult fruit fly, Drosophila melanogaster These neurons have a morphology where they innervate a patchwork of glomeruli. We used electrophysiology to determine whether their nonspiking characteristic is because of a lack of sodium current. We then used immunohistochemsitry and in situ hybridization to show this is likely achieved through translational regulation of the voltage-gated sodium channel gene, para Using in vivo calcium imaging, we explored how these cells respond to odors, finding regional isolation in their responses' spatial patterns. Further, their response patterns were dependent on both odor identity and concentration. Thus, we surmise these neurons are electrotonically compartmentalized such that activation of the neurites in one region does not propagate across the whole antennal lobe. We propose these neurons may be the source of intraglomerular inhibition in the AL and may contribute to regulation of spontaneous activity within glomeruli.
Collapse
|
16
|
Kadakia N, Demir M, Michaelis BT, DeAngelis BD, Reidenbach MA, Clark DA, Emonet T. Odour motion sensing enhances navigation of complex plumes. Nature 2022; 611:754-761. [PMID: 36352224 PMCID: PMC10039482 DOI: 10.1038/s41586-022-05423-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Odour plumes in the wild are spatially complex and rapidly fluctuating structures carried by turbulent airflows1-4. To successfully navigate plumes in search of food and mates, insects must extract and integrate multiple features of the odour signal, including odour identity5, intensity6 and timing6-12. Effective navigation requires balancing these multiple streams of olfactory information and integrating them with other sensory inputs, including mechanosensory and visual cues9,12,13. Studies dating back a century have indicated that, of these many sensory inputs, the wind provides the main directional cue in turbulent plumes, leading to the longstanding model of insect odour navigation as odour-elicited upwind motion6,8-12,14,15. Here we show that Drosophila melanogaster shape their navigational decisions using an additional directional cue-the direction of motion of odours-which they detect using temporal correlations in the odour signal between their two antennae. Using a high-resolution virtual-reality paradigm to deliver spatiotemporally complex fictive odours to freely walking flies, we demonstrate that such odour-direction sensing involves algorithms analogous to those in visual-direction sensing16. Combining simulations, theory and experiments, we show that odour motion contains valuable directional information that is absent from the airflow alone, and that both Drosophila and virtual agents are aided by that information in navigating naturalistic plumes. The generality of our findings suggests that odour-direction sensing may exist throughout the animal kingdom and could improve olfactory robot navigation in uncertain environments.
Collapse
Affiliation(s)
- Nirag Kadakia
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, CT, USA
| | - Mahmut Demir
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Brenden T Michaelis
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Brian D DeAngelis
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Matthew A Reidenbach
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.
- Department of Physics, Yale University, New Haven, CT, USA.
| |
Collapse
|
17
|
Levi A, Spivak L, Sloin HE, Someck S, Stark E. Error correction and improved precision of spike timing in converging cortical networks. Cell Rep 2022; 40:111383. [PMID: 36130516 PMCID: PMC9513803 DOI: 10.1016/j.celrep.2022.111383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022] Open
Abstract
The brain propagates neuronal signals accurately and rapidly. Nevertheless, whether and how a pool of cortical neurons transmits an undistorted message to a target remains unclear. We apply optogenetic white noise signals to small assemblies of cortical pyramidal cells (PYRs) in freely moving mice. The directly activated PYRs exhibit a spike timing precision of several milliseconds. Instead of losing precision, interneurons driven via synaptic activation exhibit higher precision with respect to the white noise signal. Compared with directly activated PYRs, postsynaptic interneuron spike trains allow better signal reconstruction, demonstrating error correction. Data-driven modeling shows that nonlinear amplification of coincident spikes can generate error correction and improved precision. Over multiple applications of the same signal, postsynaptic interneuron spiking is most reliable at timescales ten times shorter than those of the presynaptic PYR, exhibiting temporal coding. Similar results are observed in hippocampal region CA1. Coincidence detection of convergent inputs enables messages to be precisely propagated between cortical PYRs and interneurons. PYR-to-interneuron spike transmission exhibits error correction and improved precision Interneuron precision is higher when a larger pool of presynaptic PYRs is recruited Error correction and improved precision are consistent with coincidence detection Interneurons activated by synaptic transmission act as temporal coders
Collapse
Affiliation(s)
- Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hadas E Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
18
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|
19
|
Neupert S, McCulloch GA, Foster BJ, Waters JM, Szyszka P. Reduced olfactory acuity in recently flightless insects suggests rapid regressive evolution. BMC Ecol Evol 2022; 22:50. [PMID: 35429979 PMCID: PMC9013461 DOI: 10.1186/s12862-022-02005-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Insects have exceptionally fast smelling capabilities, and some can track the temporal structure of odour plumes at rates above 100 Hz. It has been hypothesized that this fast smelling capability is an adaptation for flying. We test this hypothesis by comparing the olfactory acuity of sympatric flighted versus flightless lineages within a wing-polymorphic stonefly species.
Results
Our analyses of olfactory receptor neuron responses reveal that recently-evolved flightless lineages have reduced olfactory acuity. By comparing flighted versus flightless ecotypes with similar genetic backgrounds, we eliminate other confounding factors that might have affected the evolution of their olfactory reception mechanisms. Our detection of different patterns of reduced olfactory response strength and speed in independently wing-reduced lineages suggests parallel evolution of reduced olfactory acuity.
Conclusions
These reductions in olfactory acuity echo the rapid reduction of wings themselves, and represent an olfactory parallel to the convergent phenotypic shifts seen under selective gradients in other sensory systems (e.g. parallel loss of vision in cave fauna). Our study provides evidence for the hypothesis that flight poses a selective pressure on the speed and strength of olfactory receptor neuron responses and emphasizes the energetic costs of rapid olfaction.
Collapse
|
20
|
Liu TX, Davoudian PA, Lizbinski KM, Jeanne JM. Connectomic features underlying diverse synaptic connection strengths and subcellular computation. Curr Biol 2022; 32:559-569.e5. [PMID: 34914905 PMCID: PMC8825683 DOI: 10.1016/j.cub.2021.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Connectomes generated from electron microscopy images of neural tissue unveil the complex morphology of every neuron and the locations of every synapse interconnecting them. These wiring diagrams may also enable inference of synaptic and neuronal biophysics, such as the functional weights of synaptic connections, but this requires integration with physiological data to properly parameterize. Working with a stereotyped olfactory network in the Drosophila brain, we make direct comparisons of the anatomy and physiology of diverse neurons and synapses with subcellular and subthreshold resolution. We find that synapse density and location jointly predict the amplitude of the somatic postsynaptic potential evoked by a single presynaptic spike. Biophysical models fit to data predict that electrical compartmentalization allows axon and dendrite arbors to balance independent and interacting computations. These findings begin to fill the gap between connectivity maps and activity maps, which should enable new hypotheses about how network structure constrains network function.
Collapse
Affiliation(s)
- Tony X. Liu
- Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510,These authors contributed equally
| | - Pasha A. Davoudian
- MD/PhD Program, Yale School of Medicine. 333 Cedar Street, New Haven, CT 06510,These authors contributed equally
| | - Kristyn M. Lizbinski
- Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510,These authors contributed equally
| | - James M. Jeanne
- Department of Neuroscience, Yale University. 333 Cedar Street, New Haven, CT 06510,Lead contact,Correspondence: , Twitter: @neurojeanne
| |
Collapse
|
21
|
Piao C, Sigrist SJ. (M)Unc13s in Active Zone Diversity: A Drosophila Perspective. Front Synaptic Neurosci 2022; 13:798204. [PMID: 35046788 PMCID: PMC8762327 DOI: 10.3389/fnsyn.2021.798204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
The so-called active zones at pre-synaptic terminals are the ultimate filtering devices, which couple between action potential frequency and shape, and the information transferred to the post-synaptic neurons, finally tuning behaviors. Within active zones, the release of the synaptic vesicle operates from specialized “release sites.” The (M)Unc13 class of proteins is meant to define release sites topologically and biochemically, and diversity between Unc13-type release factor isoforms is suspected to steer diversity at active zones. The two major Unc13-type isoforms, namely, Unc13A and Unc13B, have recently been described from the molecular to the behavioral level, exploiting Drosophila being uniquely suited to causally link between these levels. The exact nanoscale distribution of voltage-gated Ca2+ channels relative to release sites (“coupling”) at pre-synaptic active zones fundamentally steers the release of the synaptic vesicle. Unc13A and B were found to be either tightly or loosely coupled across Drosophila synapses. In this review, we reported recent findings on diverse aspects of Drosophila Unc13A and B, importantly, their nano-topological distribution at active zones and their roles in release site generation, active zone assembly, and pre-synaptic homeostatic plasticity. We compared their stoichiometric composition at different synapse types, reviewing the correlation between nanoscale distribution of these two isoforms and release physiology and, finally, discuss how isoform-specific release components might drive the functional heterogeneity of synapses and encode discrete behavior.
Collapse
Affiliation(s)
- Chengji Piao
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
| | - Stephan J. Sigrist
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany
- *Correspondence: Stephan J. Sigrist
| |
Collapse
|
22
|
Gutierrez GJ, Rieke F, Shea-Brown ET. Nonlinear convergence boosts information coding in circuits with parallel outputs. Proc Natl Acad Sci U S A 2021; 118:e1921882118. [PMID: 33593894 PMCID: PMC7923546 DOI: 10.1073/pnas.1921882118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural circuits are structured with layers of converging and diverging connectivity and selectivity-inducing nonlinearities at neurons and synapses. These components have the potential to hamper an accurate encoding of the circuit inputs. Past computational studies have optimized the nonlinearities of single neurons, or connection weights in networks, to maximize encoded information, but have not grappled with the simultaneous impact of convergent circuit structure and nonlinear response functions for efficient coding. Our approach is to compare model circuits with different combinations of convergence, divergence, and nonlinear neurons to discover how interactions between these components affect coding efficiency. We find that a convergent circuit with divergent parallel pathways can encode more information with nonlinear subunits than with linear subunits, despite the compressive loss induced by the convergence and the nonlinearities when considered separately.
Collapse
Affiliation(s)
- Gabrielle J Gutierrez
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195;
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Eric T Shea-Brown
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
23
|
Scaplen KM, Talay M, Fisher JD, Cohn R, Sorkaç A, Aso Y, Barnea G, Kaun KR. Transsynaptic mapping of Drosophila mushroom body output neurons. eLife 2021; 10:e63379. [PMID: 33570489 PMCID: PMC7877909 DOI: 10.7554/elife.63379] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
The mushroom body (MB) is a well-characterized associative memory structure within the Drosophila brain. Analyzing MB connectivity using multiple approaches is critical for understanding the functional implications of this structure. Using the genetic anterograde transsynaptic tracing tool, trans-Tango, we identified divergent projections across the brain and convergent downstream targets of the MB output neurons (MBONs). Our analysis revealed at least three separate targets that receive convergent input from MBONs: other MBONs, the fan-shaped body (FSB), and the lateral accessory lobe (LAL). We describe, both anatomically and functionally, a multilayer circuit in which inhibitory and excitatory MBONs converge on the same genetic subset of FSB and LAL neurons. This circuit architecture enables the brain to update and integrate information with previous experience before executing appropriate behavioral responses. Our use of trans-Tango provides a genetically accessible anatomical framework for investigating the functional relevance of components within these complex and interconnected circuits.
Collapse
Affiliation(s)
- Kristin M Scaplen
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Department of Psychology, Bryant UniversitySmithfieldUnited States
- Center for Health and Behavioral Sciences, Bryant UniversitySmithfieldUnited States
| | - Mustafa Talay
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - John D Fisher
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Raphael Cohn
- Laboratory of Neurophysiology and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Altar Sorkaç
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Yoshi Aso
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Gilad Barnea
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Karla R Kaun
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| |
Collapse
|
24
|
Abstract
The olfactory system translates chemical signals into neuronal signals that inform behavioral decisions of the animal. Odors are cues for source identity, but if monitored long enough, they can also be used to localize the source. Odor representations should therefore be robust to changing conditions and flexible in order to drive an appropriate behavior. In this review, we aim at discussing the main computations that allow robust and flexible encoding of odor information in the olfactory neural pathway.
Collapse
|
25
|
Das Chakraborty S, Sachse S. Olfactory processing in the lateral horn of Drosophila. Cell Tissue Res 2021; 383:113-123. [PMID: 33475851 PMCID: PMC7873099 DOI: 10.1007/s00441-020-03392-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022]
Abstract
Sensing olfactory signals in the environment represents a crucial and significant task of sensory systems in almost all organisms to facilitate survival and reproduction. Notably, the olfactory system of diverse animal phyla shares astonishingly many fundamental principles with regard to anatomical and functional properties. Binding of odor ligands by chemosensory receptors present in the olfactory peripheral organs leads to a neuronal activity that is conveyed to first and higher-order brain centers leading to a subsequent odor-guided behavioral decision. One of the key centers for integrating and processing innate olfactory behavior is the lateral horn (LH) of the protocerebrum in insects. In recent years the LH of Drosophila has garnered increasing attention and many studies have been dedicated to elucidate its circuitry. In this review we will summarize the recent advances in mapping and characterizing LH-specific cell types, their functional properties with respect to odor tuning, their neurotransmitter profiles, their connectivity to pre-synaptic and post-synaptic partner neurons as well as their impact for olfactory behavior as known so far.
Collapse
Affiliation(s)
- Sudeshna Das Chakraborty
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany.
| |
Collapse
|
26
|
Colton GF, Cook AP, Nusbaum MP. Different microcircuit responses to comparable input from one versus both copies of an identified projection neuron. J Exp Biol 2020; 223:jeb228114. [PMID: 32820029 PMCID: PMC7648612 DOI: 10.1242/jeb.228114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Neuronal inputs to microcircuits are often present as multiple copies of apparently equivalent neurons. Thus far, however, little is known regarding the relative influence on microcircuit output of activating all or only some copies of such an input. We examine this issue in the crab (Cancer borealis) stomatogastric ganglion, where the gastric mill (chewing) microcircuit is activated by modulatory commissural neuron 1 (MCN1), a bilaterally paired modulatory projection neuron. Both MCN1s contain the same co-transmitters, influence the same gastric mill microcircuit neurons, can drive the biphasic gastric mill rhythm, and are co-activated by all identified MCN1-activating pathways. Here, we determine whether the gastric mill microcircuit response is equivalent when stimulating one or both MCN1s under conditions where the pair are matched to collectively fire at the same overall rate and pattern as single MCN1 stimulation. The dual MCN1 stimulations elicited more consistently coordinated rhythms, and these rhythms exhibited longer phases and cycle periods. These different outcomes from single and dual MCN1 stimulation may have resulted from the relatively modest, and equivalent, firing rate of the gastric mill neuron LG (lateral gastric) during each matched set of stimulations. The LG neuron-mediated, ionotropic inhibition of the MCN1 axon terminals is the trigger for the transition from the retraction to protraction phase. This LG neuron influence on MCN1 was more effective during the dual stimulations, where each MCN1 firing rate was half that occurring during the matched single stimulations. Thus, equivalent individual- and co-activation of a class of modulatory projection neurons does not necessarily drive equivalent microcircuit output.
Collapse
Affiliation(s)
- Gabriel F Colton
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron P Cook
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Nusbaum
- Department of Neuroscience, 211 Clinical Research Building, 415 Curie Boulevard, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Hu Y, Wang C, Yang L, Pan G, Liu H, Yu G, Ye B. A Neural Basis for Categorizing Sensory Stimuli to Enhance Decision Accuracy. Curr Biol 2020; 30:4896-4909.e6. [PMID: 33065003 DOI: 10.1016/j.cub.2020.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/08/2020] [Accepted: 09/14/2020] [Indexed: 11/15/2022]
Abstract
Sensory stimuli with graded intensities often lead to yes-or-no decisions on whether to respond to the stimuli. How this graded-to-binary conversion is implemented in the central nervous system (CNS) remains poorly understood. Here, we show that graded encodings of noxious stimuli are categorized in a decision-associated CNS region in Drosophila larvae, and then decoded by a group of peptidergic neurons for executing binary escape decisions. GABAergic inhibition gates weak nociceptive encodings from being decoded, whereas escalated amplification through the recruitment of second-order neurons boosts nociceptive encodings at intermediate intensities. These two modulations increase the detection accuracy by reducing responses to negligible stimuli whereas enhancing responses to intense stimuli. Our findings thus unravel a circuit mechanism that underlies accurate detection of harmful stimuli.
Collapse
Affiliation(s)
- Yujia Hu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Congchao Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA
| | - Limin Yang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; School of Medicine, Dalian University, Dalian, Liaoning 116622, China
| | - Geng Pan
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao Liu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guoqiang Yu
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA 22203, USA.
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Bates AS, Schlegel P, Roberts RJV, Drummond N, Tamimi IFM, Turnbull R, Zhao X, Marin EC, Popovici PD, Dhawan S, Jamasb A, Javier A, Serratosa Capdevila L, Li F, Rubin GM, Waddell S, Bock DD, Costa M, Jefferis GSXE. Complete Connectomic Reconstruction of Olfactory Projection Neurons in the Fly Brain. Curr Biol 2020; 30:3183-3199.e6. [PMID: 32619485 PMCID: PMC7443706 DOI: 10.1016/j.cub.2020.06.042] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/07/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022]
Abstract
Nervous systems contain sensory neurons, local neurons, projection neurons, and motor neurons. To understand how these building blocks form whole circuits, we must distil these broad classes into neuronal cell types and describe their network connectivity. Using an electron micrograph dataset for an entire Drosophila melanogaster brain, we reconstruct the first complete inventory of olfactory projections connecting the antennal lobe, the insect analog of the mammalian olfactory bulb, to higher-order brain regions in an adult animal brain. We then connect this inventory to extant data in the literature, providing synaptic-resolution "holotypes" both for heavily investigated and previously unknown cell types. Projection neurons are approximately twice as numerous as reported by light level studies; cell types are stereotyped, but not identical, in cell and synapse numbers between brain hemispheres. The lateral horn, the insect analog of the mammalian cortical amygdala, is the main target for this olfactory information and has been shown to guide innate behavior. Here, we find new connectivity motifs, including axo-axonic connectivity between projection neurons, feedback, and lateral inhibition of these axons by a large population of neurons, and the convergence of different inputs, including non-olfactory inputs and memory-related feedback onto third-order olfactory neurons. These features are less prominent in the mushroom body calyx, the insect analog of the mammalian piriform cortex and a center for associative memory. Our work provides a complete neuroanatomical platform for future studies of the adult Drosophila olfactory system.
Collapse
Affiliation(s)
- Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Nikolas Drummond
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Imaan F M Tamimi
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Robert Turnbull
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Xincheng Zhao
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK; Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Elizabeth C Marin
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Patricia D Popovici
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Serene Dhawan
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Arian Jamasb
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Alexandre Javier
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Feng Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, The University of Oxford, Oxford OX1 3SR, UK
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, VT 05405, USA
| | - Marta Costa
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK.
| |
Collapse
|
29
|
Coates KE, Calle-Schuler SA, Helmick LM, Knotts VL, Martik BN, Salman F, Warner LT, Valla SV, Bock DD, Dacks AM. The Wiring Logic of an Identified Serotonergic Neuron That Spans Sensory Networks. J Neurosci 2020; 40:6309-6327. [PMID: 32641403 PMCID: PMC7424878 DOI: 10.1523/jneurosci.0552-20.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/16/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonergic neurons project widely throughout the brain to modulate diverse physiological and behavioral processes. However, a single-cell resolution understanding of the connectivity of serotonergic neurons is currently lacking. Using a whole-brain EM dataset of a female Drosophila, we comprehensively determine the wiring logic of a broadly projecting serotonergic neuron (the CSDn) that spans several olfactory regions. Within the antennal lobe, the CSDn differentially innervates each glomerulus, yet surprisingly, this variability reflects a diverse set of presynaptic partners, rather than glomerulus-specific differences in synaptic output, which is predominately to local interneurons. Moreover, the CSDn has distinct connectivity relationships with specific local interneuron subtypes, suggesting that the CSDn influences distinct aspects of local network processing. Across olfactory regions, the CSDn has different patterns of connectivity, even having different connectivity with individual projection neurons that also span these regions. Whereas the CSDn targets inhibitory local neurons in the antennal lobe, the CSDn has more distributed connectivity in the LH, preferentially synapsing with principal neuron types based on transmitter content. Last, we identify individual novel synaptic partners associated with other sensory domains that provide strong, top-down input to the CSDn. Together, our study reveals the complex connectivity of serotonergic neurons, which combine the integration of local and extrinsic synaptic input in a nuanced, region-specific manner.SIGNIFICANCE STATEMENT All sensory systems receive serotonergic modulatory input. However, a comprehensive understanding of the synaptic connectivity of individual serotonergic neurons is lacking. In this study, we use a whole-brain EM microscopy dataset to comprehensively determine the wiring logic of a broadly projecting serotonergic neuron in the olfactory system of Drosophila Collectively, our study demonstrates, at a single-cell level, the complex connectivity of serotonergic neurons within their target networks, identifies specific cell classes heavily targeted for serotonergic modulation in the olfactory system, and reveals novel extrinsic neurons that provide strong input to this serotonergic system outside of the context of olfaction. Elucidating the connectivity logic of individual modulatory neurons provides a ground plan for the seemingly heterogeneous effects of modulatory systems.
Collapse
Affiliation(s)
- Kaylynn E Coates
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | | | - Levi M Helmick
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Victoria L Knotts
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Brennah N Martik
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Farzaan Salman
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Lauren T Warner
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Sophia V Valla
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405
| | - Andrew M Dacks
- Department of Biology, West Virginia University, Morgantown, West Virginia 26506
- Department of Neuroscience, West Virginia University, Morgantown, West Virginia 26506
| |
Collapse
|
30
|
Zhang X, Meeks JP. Paradoxically Sparse Chemosensory Tuning in Broadly Integrating External Granule Cells in the Mouse Accessory Olfactory Bulb. J Neurosci 2020; 40:5247-5263. [PMID: 32503886 PMCID: PMC7329303 DOI: 10.1523/jneurosci.2238-19.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
The accessory olfactory bulb (AOB), the first neural circuit in the mouse accessory olfactory system, is critical for interpreting social chemosignals. Despite its importance, AOB information processing is poorly understood compared with the main olfactory bulb (MOB). Here, we sought to fill gaps in the understanding of AOB interneuron function. We used 2-photon GCaMP6f Ca2+ imaging in an ex vivo preparation to study chemosensory tuning in AOB external granule cells (EGCs), interneurons hypothesized to broadly inhibit activity in excitatory mitral cells (MCs). In ex vivo preparations from mice of both sexes, we measured MC and EGC tuning to natural chemosignal blends and monomolecular ligands, finding that EGC tuning was sparser, not broader, than upstream MCs. Simultaneous electrophysiological recording and Ca2+ imaging showed no differences in GCaMP6f-to-spiking relationships in these cell types during simulated sensory stimulation, suggesting that measured EGC sparseness was not due to cell type-dependent variability in GCaMP6f performance. Ex vivo patch-clamp recordings revealed that EGC subthreshold responsivity was far broader than indicated by GCaMP6f Ca2+ imaging, and that monomolecular ligands rarely elicited EGC spiking. These results indicate that EGCs are selectively engaged by chemosensory blends, suggesting different roles for EGCs than analogous interneurons in the MOB.SIGNIFICANCE STATEMENT The mouse accessory olfactory system (AOS) interprets social chemosignals, but we poorly understand AOS information processing. Here, we investigate the functional properties of external granule cells (EGCs), a major class of interneurons in the accessory olfactory bulb (AOB). We hypothesized that EGCs, which are densely innervated by excitatory mitral cells (MCs), would show broad chemosensory tuning, suggesting a role in divisive normalization. Using ex vivo GCaMP6f imaging, we found that EGCs were instead more sparsely tuned than MCs. This was not due to weaker GCaMP6f signaling in EGCs than in MCs. Instead, we found that many MC-activating chemosignals caused only subthreshold EGC responses. This indicates a different role for AOB EGCs compared with analogous cells in the main olfactory bulb.
Collapse
Affiliation(s)
- Xingjian Zhang
- University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Julian P Meeks
- University of Texas Southwestern Medical Center, Dallas, Texas 75390
- University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642
| |
Collapse
|
31
|
Bates AS, Manton JD, Jagannathan SR, Costa M, Schlegel P, Rohlfing T, Jefferis GSXE. The natverse, a versatile toolbox for combining and analysing neuroanatomical data. eLife 2020; 9:e53350. [PMID: 32286229 PMCID: PMC7242028 DOI: 10.7554/elife.53350] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/11/2020] [Indexed: 11/18/2022] Open
Abstract
To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.
Collapse
Affiliation(s)
| | - James D Manton
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Sridhar R Jagannathan
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Marta Costa
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | - Torsten Rohlfing
- SRI International, Neuroscience Program, Center for Health SciencesMenlo ParkUnited States
| | - Gregory SXE Jefferis
- Neurobiology Division, MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
- Drosophila Connectomics Group, Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
32
|
Suzuki Y, Schenk JE, Tan H, Gaudry Q. A Population of Interneurons Signals Changes in the Basal Concentration of Serotonin and Mediates Gain Control in the Drosophila Antennal Lobe. Curr Biol 2020; 30:1110-1118.e4. [PMID: 32142699 DOI: 10.1016/j.cub.2020.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/02/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Serotonin (5-HT) represents a quintessential neuromodulator, having been identified in nearly all animal species [1] where it functions in cognition [2], motor control [3], and sensory processing [4]. In the olfactory circuits of flies and mice, serotonin indirectly inhibits odor responses in olfactory receptor neurons (ORNs) via GABAergic local interneurons (LNs) [5, 6]. However, the effects of 5-HT in olfaction are likely complicated, because multiple receptor subtypes are distributed throughout the olfactory bulb (OB) and antennal lobe (AL), the first layers of olfactory neuropil in mammals and insects, respectively [7]. For example, serotonin has a non-monotonic effect on odor responses in Drosophila projection neurons (PNs), where low concentrations suppress odor-evoked activity and higher concentrations boost PN responses [8]. Serotonin reaches the AL via the diffusion of paracrine 5-HT through the fly hemolymph [8] and by activation of the contralaterally projecting serotonin-immunoreactive deuterocerebral interneurons (CSDns): the only serotonergic cells that innervate the AL [9, 10]. Concentration-dependent effects could arise by either the expression of multiple 5-HT receptors (5-HTRs) on the same cells or by populations of neurons dedicated to detecting serotonin at different concentrations. Here, we identify a population of LNs that express 5-HT7Rs exclusively to detect basal concentrations of 5-HT. These LNs inhibit PNs via GABAB receptors and mediate subtractive gain control. LNs expressing 5-HT7Rs are broadly tuned to odors and target every glomerulus in the antennal lobe. Our results demonstrate that serotonergic modulation at low concentrations targets a specific population of LNs to globally downregulate PN odor responses in the AL.
Collapse
Affiliation(s)
- Yoshinori Suzuki
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Jonathan E Schenk
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Hua Tan
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Quentin Gaudry
- Department of Biology, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
33
|
Gamlin CR, Zhang C, Dyer MA, Wong ROL. Distinct Developmental Mechanisms Act Independently to Shape Biased Synaptic Divergence from an Inhibitory Neuron. Curr Biol 2020; 30:1258-1268.e2. [PMID: 32109390 DOI: 10.1016/j.cub.2020.01.080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
Neurons often contact more than one postsynaptic partner type and display stereotypic patterns of synaptic divergence. Such synaptic patterns usually involve some partners receiving more synapses than others. The developmental strategies generating "biased" synaptic distributions remain largely unknown. To gain insight, we took advantage of a compact circuit in the vertebrate retina, whereby the AII amacrine cell (AII AC) provides inhibition onto cone bipolar cell (BC) axons and retinal ganglion cell (RGC) dendrites, but makes the majority of its synapses with the BCs. Using light and electron microscopy, we reconstructed the morphology and connectivity of mouse retinal AII ACs across postnatal development. We found that AII ACs do not elaborate their presynaptic structures, the lobular appendages, until BCs differentiate about a week after RGCs are present. Lobular appendages are present in mutant mice lacking BCs, implying that although synchronized with BC axonal differentiation, presynaptic differentiation of the AII ACs is not dependent on cues from BCs. With maturation, AII ACs maintain a constant number of synapses with RGCs, preferentially increase synaptogenesis with BCs, and eliminate synapses with wide-field amacrine cells. Thus, AII ACs undergo partner type-specific changes in connectivity to attain their mature pattern of synaptic divergence. Moreover, AII ACs contact non-BCs to the same extent in bipolarless retinas, indicating that AII ACs establish partner-type-specific connectivity using diverse mechanisms that operate in parallel but independently.
Collapse
Affiliation(s)
- Clare R Gamlin
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Chi Zhang
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude's Children Research Hospital, Danny Thomas Place, Memphis, TN 38105, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Feedforward Thalamocortical Connectivity Preserves Stimulus Timing Information in Sensory Pathways. J Neurosci 2019; 39:7674-7688. [PMID: 31270157 DOI: 10.1523/jneurosci.3165-17.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/26/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022] Open
Abstract
Reliable timing of cortical spikes in response to visual events is crucial in representing visual inputs to the brain. Spikes in the primary visual cortex (V1) need to occur at the same time within a repeated visual stimulus. Two classical mechanisms are employed by the cortex to enhance reliable timing. First, cortical neurons respond reliably to a restricted set of stimuli through their preference for certain patterns of membrane potential due to their intrinsic properties. Second, intracortical networking of excitatory and inhibitory neurons induces lateral inhibition that, through the timing and strength of IPSCs and EPSCs, produces sparse and reliably timed cortical neuron spike trains to be transmitted downstream. Here, we describe a third mechanism that, through preferential thalamocortical synaptic connectivity, enhances the trial-to-trial timing precision of cortical spikes in the presence of spike train variability within each trial that is introduced between LGN neurons in the retino-thalamic pathway. Applying experimentally recorded LGN spike trains from the anesthetized cat to a detailed model of a spiny stellate V1 neuron, we found that output spike timing precision improved with increasing numbers of convergent LGN inputs. The improvement was consistent with the predicted proportionality of [Formula: see text] for n LGN source neurons. We also found connectivity configurations that maximize reliability and that generate V1 cell output spike trains quantitatively similar to the experimental recordings. Our findings suggest a general principle, namely intra-trial variability among converging inputs, that increases stimulus response precision and is widely applicable to synaptically connected spiking neurons.SIGNIFICANCE STATEMENT The early visual pathway of the cat is favorable for studying the effects of trial-to-trial variability of synaptic inputs and intra-trial variability of thalamocortical connectivity on information transmission into the visual cortex. We have used a detailed model to show that there are preferred combinations of the number of thalamic afferents and the number of synapses per afferent that maximize the output reliability and spike-timing precision of cortical neurons. This provides additional insights into how synchrony in thalamic spike trains can reduce trial-to-trial variability to produce highly reliable reporting of sensory events to the cortex. The same principles may apply to other converging pathways where temporally jittered spike trains can reliably drive the downstream neuron and improve temporal precision.
Collapse
|
35
|
Sehdev A, Szyszka P. Segregation of Unknown Odors From Mixtures Based on Stimulus Onset Asynchrony in Honey Bees. Front Behav Neurosci 2019; 13:155. [PMID: 31354447 PMCID: PMC6639674 DOI: 10.3389/fnbeh.2019.00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/25/2019] [Indexed: 01/14/2023] Open
Abstract
Animals use olfaction to search for distant objects. Unlike vision, where objects are spaced out, olfactory information mixes when it reaches olfactory organs. Therefore, efficient olfactory search requires segregating odors that are mixed with background odors. Animals can segregate known odors by detecting short differences in the arrival of mixed odorants (stimulus onset asynchrony). However, it is unclear whether animals can also use stimulus onset asynchrony to segregate odorants that they had no previous experience with and which have no innate or learned relevance (unknown odorants). Using behavioral experiments in honey bees, we here show that stimulus onset asynchrony also improves segregation of those unknown odorants. The stimulus onset asynchrony necessary to segregate unknown odorants is in the range of seconds, which is two orders of magnitude larger than the previously reported stimulus asynchrony sufficient for segregating known odorants. We propose that for unknown odorants, segregating odorant A from a mixture with B requires sensory adaptation to B.
Collapse
Affiliation(s)
- Aarti Sehdev
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
- Department of Zoology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
36
|
Frechter S, Bates AS, Tootoonian S, Dolan MJ, Manton J, Jamasb AR, Kohl J, Bock D, Jefferis G. Functional and anatomical specificity in a higher olfactory centre. eLife 2019; 8:44590. [PMID: 31112127 PMCID: PMC6550879 DOI: 10.7554/elife.44590] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
Most sensory systems are organized into parallel neuronal pathways that process distinct aspects of incoming stimuli. In the insect olfactory system, second order projection neurons target both the mushroom body, required for learning, and the lateral horn (LH), proposed to mediate innate olfactory behavior. Mushroom body neurons form a sparse olfactory population code, which is not stereotyped across animals. In contrast, odor coding in the LH remains poorly understood. We combine genetic driver lines, anatomical and functional criteria to show that the Drosophila LH has ~1400 neurons and >165 cell types. Genetically labeled LHNs have stereotyped odor responses across animals and on average respond to three times more odors than single projection neurons. LHNs are better odor categorizers than projection neurons, likely due to stereotyped pooling of related inputs. Our results reveal some of the principles by which a higher processing area can extract innate behavioral significance from sensory stimuli.
Collapse
Affiliation(s)
- Shahar Frechter
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Sina Tootoonian
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom.,Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Michael-John Dolan
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Janelia Research Campus, Howard Hughes Medical Institute, Chevy Chase, United States
| | - James Manton
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | - Johannes Kohl
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Davi Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Chevy Chase, United States
| | - Gregory Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.,Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
Groschner LN, Miesenböck G. Mechanisms of Sensory Discrimination: Insights from Drosophila Olfaction. Annu Rev Biophys 2019; 48:209-229. [PMID: 30786228 DOI: 10.1146/annurev-biophys-052118-115655] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
All an animal can do to infer the state of its environment is to observe the sensory-evoked activity of its own neurons. These inferences about the presence, quality, or similarity of objects are probabilistic and inform behavioral decisions that are often made in close to real time. Neural systems employ several strategies to facilitate sensory discrimination: Biophysical mechanisms separate the neuronal response distributions in coding space, compress their variances, and combine information from sequential observations. We review how these strategies are implemented in the olfactory system of the fruit fly. The emerging principles of odor discrimination likely apply to other neural circuits of similar architecture.
Collapse
Affiliation(s)
- Lukas N Groschner
- Centre for Neural Circuits and Behavior, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Gero Miesenböck
- Centre for Neural Circuits and Behavior, University of Oxford, Oxford OX1 3SR, United Kingdom;
| |
Collapse
|
38
|
Olfactory Object Recognition Based on Fine-Scale Stimulus Timing in Drosophila. iScience 2019; 13:113-124. [PMID: 30826726 PMCID: PMC6402261 DOI: 10.1016/j.isci.2019.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 01/31/2023] Open
Abstract
Odorants of behaviorally relevant objects (e.g., food sources) intermingle with those from other sources. Therefore to determine whether an odor source is good or bad—without actually visiting it—animals first need to segregate the odorants from different sources. To do so, animals could use temporal stimulus cues, because odorants from one source exhibit correlated fluctuations, whereas odorants from different sources are less correlated. However, the behaviorally relevant timescales of temporal stimulus cues for odor source segregation remain unclear. Using behavioral experiments with free-flying flies, we show that (1) odorant onset asynchrony increases flies' attraction to a mixture of two odorants with opposing innate or learned valence and (2) attraction does not increase when the attractive odorant arrives first. These data suggest that flies can use stimulus onset asynchrony for odor source segregation and imply temporally precise neural mechanisms for encoding odors and for segregating them into distinct objects. Flies can detect whether two mixed odorants arrive synchronously or asynchronously This temporal sensitivity occurs for odorants with innate and learned valences Flies' behavior suggests use of odor onset asynchrony for odor source segregation
Collapse
|
39
|
Horne JA, Langille C, McLin S, Wiederman M, Lu Z, Xu CS, Plaza SM, Scheffer LK, Hess HF, Meinertzhagen IA. A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v. eLife 2018; 7:e37550. [PMID: 30382940 PMCID: PMC6234030 DOI: 10.7554/elife.37550] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
Using FIB-SEM we report the entire synaptic connectome of glomerulus VA1v of the right antennal lobe in Drosophila melanogaster. Within the glomerulus we densely reconstructed all neurons, including hitherto elusive local interneurons. The fruitless-positive, sexually dimorphic VA1v included >11,140 presynaptic sites with ~38,050 postsynaptic dendrites. These connected input olfactory receptor neurons (ORNs, 51 ipsilateral, 56 contralateral), output projection neurons (18 PNs), and local interneurons (56 of >150 previously reported LNs). ORNs are predominantly presynaptic and PNs predominantly postsynaptic; newly reported LN circuits are largely an equal mixture and confer extensive synaptic reciprocity, except the newly reported LN2V with input from ORNs and outputs mostly to monoglomerular PNs, however. PNs were more numerous than previously reported from genetic screens, suggesting that the latter failed to reach saturation. We report a matrix of 192 bodies each having >50 connections; these form 88% of the glomerulus' pre/postsynaptic sites.
Collapse
Affiliation(s)
- Jane Anne Horne
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Carlie Langille
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Sari McLin
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Meagan Wiederman
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
| | - Zhiyuan Lu
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| | - Ian A Meinertzhagen
- Department of Psychology and NeuroscienceLife Sciences Centre, Dalhousie UniversityHalifaxCanada
- Janelia Research Campus, Howard Hughes Medical InstituteVirginiaUnited States
| |
Collapse
|
40
|
Jeanne JM, Fişek M, Wilson RI. The Organization of Projections from Olfactory Glomeruli onto Higher-Order Neurons. Neuron 2018; 98:1198-1213.e6. [PMID: 29909998 PMCID: PMC6051339 DOI: 10.1016/j.neuron.2018.05.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/19/2018] [Accepted: 05/04/2018] [Indexed: 11/27/2022]
Abstract
Each odorant receptor corresponds to a unique glomerulus in the brain. Projections from different glomeruli then converge in higher brain regions, but we do not understand the logic governing which glomeruli converge and which do not. Here, we use two-photon optogenetics to map glomerular connections onto neurons in the lateral horn, the region of the Drosophila brain that receives the majority of olfactory projections. We identify 39 morphological types of lateral horn neurons (LHNs) and show that different types receive input from different combinations of glomeruli. We find that different LHN types do not have independent inputs; rather, certain combinations of glomeruli converge onto many of the same LHNs and so are over-represented. Notably, many over-represented combinations are composed of glomeruli that prefer chemically dissimilar ligands whose co-occurrence indicates a behaviorally relevant "odor scene." The pattern of glomerulus-LHN connections thus represents a prediction of what ligand combinations will be most salient.
Collapse
Affiliation(s)
- James M Jeanne
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Mehmet Fişek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
41
|
Liang L, Fratzl A, Goldey G, Ramesh RN, Sugden AU, Morgan JL, Chen C, Andermann ML. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus. Cell 2018; 173:1343-1355.e24. [PMID: 29856953 DOI: 10.1016/j.cell.2018.04.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/31/2018] [Accepted: 04/27/2018] [Indexed: 11/26/2022]
Abstract
Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus.
Collapse
Affiliation(s)
- Liang Liang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Fratzl
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Glenn Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Rohan N Ramesh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur U Sugden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Josh L Morgan
- Department of Ophthalmology and Visual Sciences, Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chinfei Chen
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
High Precision of Spike Timing across Olfactory Receptor Neurons Allows Rapid Odor Coding in Drosophila. iScience 2018; 4:76-83. [PMID: 30240755 PMCID: PMC6147046 DOI: 10.1016/j.isci.2018.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/10/2023] Open
Abstract
In recent years, it has become evident that olfaction is a fast sense, and millisecond short differences in stimulus onsets are used by animals to analyze their olfactory environment. In contrast, olfactory receptor neurons are thought to be relatively slow and temporally imprecise. These observations have led to a conundrum: how, then, can an animal resolve fast stimulus dynamics and smell with high temporal acuity? Using parallel recordings from olfactory receptor neurons in Drosophila, we found hitherto unknown fast and temporally precise odorant-evoked spike responses, with first spike latencies (relative to odorant arrival) down to 3 ms and with a SD below 1 ms. These data provide new upper bounds for the speed of olfactory processing and suggest that the insect olfactory system could use the precise spike timing for olfactory coding and computation, which can explain insects' rapid processing of temporal stimuli when encountering turbulent odor plumes. Olfactory receptor neuron responses are fast and temporally precise Odor-evoked spikes can occur 3 ms after odorant arrival and jitter less than 1 ms First-spike timing varies over a wider concentration range than spike rate Neural network model demonstrates the plausibility of a spike-timing code for odors
Collapse
|
43
|
Lüdke A, Raiser G, Nehrkorn J, Herz AVM, Galizia CG, Szyszka P. Calcium in Kenyon Cell Somata as a Substrate for an Olfactory Sensory Memory in Drosophila. Front Cell Neurosci 2018; 12:128. [PMID: 29867361 PMCID: PMC5960692 DOI: 10.3389/fncel.2018.00128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
Animals can form associations between temporally separated stimuli. To do so, the nervous system has to retain a neural representation of the first stimulus until the second stimulus appears. The neural substrate of such sensory stimulus memories is unknown. Here, we search for a sensory odor memory in the insect olfactory system and characterize odorant-evoked Ca2+ activity at three consecutive layers of the olfactory system in Drosophila: in olfactory receptor neurons (ORNs) and projection neurons (PNs) in the antennal lobe, and in Kenyon cells (KCs) in the mushroom body. We show that the post-stimulus responses in ORN axons, PN dendrites, PN somata, and KC dendrites are odor-specific, but they are not predictive of the chemical identity of past olfactory stimuli. However, the post-stimulus responses in KC somata carry information about the identity of previous olfactory stimuli. These findings show that the Ca2+ dynamics in KC somata could encode a sensory memory of odorant identity and thus might serve as a basis for associations between temporally separated stimuli.
Collapse
Affiliation(s)
- Alja Lüdke
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Georg Raiser
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, Konstanz, Germany
| | - Johannes Nehrkorn
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - Andreas V. M. Herz
- Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Bernstein Center for Computational Neuroscience, Munich, Germany
| | - C. Giovanni Galizia
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| | - Paul Szyszka
- Department of Biology, Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
44
|
Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe. Cell Rep 2018; 16:3401-3413. [PMID: 27653699 DOI: 10.1016/j.celrep.2016.08.063] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 07/15/2016] [Accepted: 08/18/2016] [Indexed: 11/21/2022] Open
Abstract
Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs) innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique.
Collapse
|
45
|
Gorur-Shandilya S, Demir M, Long J, Clark DA, Emonet T. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. eLife 2017; 6:e27670. [PMID: 28653907 PMCID: PMC5524537 DOI: 10.7554/elife.27670] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Junjiajia Long
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| |
Collapse
|
46
|
Tobin WF, Wilson RI, Lee WCA. Wiring variations that enable and constrain neural computation in a sensory microcircuit. eLife 2017; 6. [PMID: 28530904 PMCID: PMC5440167 DOI: 10.7554/elife.24838] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/23/2017] [Indexed: 11/13/2022] Open
Abstract
Neural network function can be shaped by varying the strength of synaptic connections. One way to achieve this is to vary connection structure. To investigate how structural variation among synaptic connections might affect neural computation, we examined primary afferent connections in the Drosophila olfactory system. We used large-scale serial section electron microscopy to reconstruct all the olfactory receptor neuron (ORN) axons that target a left-right pair of glomeruli, as well as all the projection neurons (PNs) postsynaptic to these ORNs. We found three variations in ORN→PN connectivity. First, we found a systematic co-variation in synapse number and PN dendrite size, suggesting total synaptic conductance is tuned to postsynaptic excitability. Second, we discovered that PNs receive more synapses from ipsilateral than contralateral ORNs, providing a structural basis for odor lateralization behavior. Finally, we found evidence of imprecision in ORN→PN connections that can diminish network performance. DOI:http://dx.doi.org/10.7554/eLife.24838.001
Collapse
Affiliation(s)
- William F Tobin
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | |
Collapse
|
47
|
Schröter M, Paulsen O, Bullmore ET. Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nat Rev Neurosci 2017; 18:131-146. [PMID: 28148956 DOI: 10.1038/nrn.2016.182] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defining the organizational principles of neuronal networks at the cellular scale, or micro-connectomics, is a key challenge of modern neuroscience. In this Review, we focus on graph theoretical parameters of micro-connectome topology, often informed by economical principles that conceptually originated with Ramón y Cajal's conservation laws. First, we summarize results from studies in intact small organisms and in samples from larger nervous systems. We then evaluate the evidence for an economical trade-off between biological cost and functional value in the organization of neuronal networks. Various results suggest that many aspects of neuronal network organization are indeed the outcome of competition between these two fundamental selection pressures.
Collapse
Affiliation(s)
- Manuel Schröter
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,Department of Biosystems Science and Engineering, Bio Engineering Laboratory, ETH Zurich, Mattenstrasse 26, Basel CH-4058, Switzerland
| | - Ole Paulsen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Physiological Laboratory, Downing Street, Cambridge CB2 3EG, UK
| | - Edward T Bullmore
- Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,ImmunoPsychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage SG1 2NY, UK.,Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Road, Fulbourn, Cambridge CB21 5HH, UK
| |
Collapse
|
48
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
49
|
I Want It All and I Want It Now: How a Neural Circuit Encodes Odor with Speed and Accuracy. Neuron 2015; 88:852-854. [PMID: 26637793 DOI: 10.1016/j.neuron.2015.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A study by Jeanne and Wilson (2015) describes a circuit and determines the distinct neural circuit mechanisms that allow a signal to be represented with both speed and accuracy in the Drosophila olfactory system.
Collapse
|