1
|
Patton AP, Krogager TP, Maywood ES, Smyllie NJ, Morris EL, Skehel M, Hastings MH. Multi-Omic Analysis Reveals Astrocytic Annexin-A2 as Critical for Network-Level Circadian Timekeeping in the Suprachiasmatic Nucleus. Glia 2025; 73:1483-1501. [PMID: 40171808 PMCID: PMC12121465 DOI: 10.1002/glia.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
The mammalian suprachiasmatic nucleus (SCN) orchestrates daily (circadian) rhythms of physiology and behavior by broadcasting timing cues generated autonomously by its mutually reinforcing network of ~10,000 neurons and ~3000 astrocytes. Although astrocytic control of extracellular glutamate and GABA has been implicated in driving circadian oscillations in SCN gene expression and neuronal activity, the full scale of the network-level signaling mechanisms is unknown. To understand better how this astrocyte-neuron network operates, we adopted a multi-omics approach, first using SILAC-based mass spectrometry to generate an SCN proteome where ~7% of identified proteins were circadian. This circadian proteome was analyzed bioinformatically alongside existing single-cell RNAseq transcriptomic data to identify the cell-types and processes to which they contribute. This highlighted "S100 protein binding," tracked to astrocytes, and revealed annexin-A2 (Anxa2) as an astrocyte-enriched circadian protein for further investigation. We show that Anxa2 and its partner S100a10 are co-expressed and enriched in SCN astrocytes. We also show that pharmacological disruption of their association acutely and reversibly dysregulated the circadian cycle of astrocytic calcium levels and progressively compromised SCN neuronal oscillations. Anxa2 and S100a10 interaction therefore constitutes an astrocytic cellular signaling axis that regulates circadian neuronal excitability and ultimately SCN network coherence necessary for circadian timekeeping.
Collapse
Affiliation(s)
- Andrew P. Patton
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Toke P. Krogager
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Elizabeth S. Maywood
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Nicola J. Smyllie
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Emma L. Morris
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
- Department for Neural Systems and CodingMax Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Mark Skehel
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Proteomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Michael H. Hastings
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
2
|
Filipovská E, Skálová K, Spišská V, Mendoza J, Bendová Z. Stat3 Silencing Affects Circadian Clock Gene Expression and Lipopolysaccharide Response in the Suprachiasmatic Nucleus, Cortex, and Glioblastoma Cell Cultures. FASEB J 2025; 39:e70577. [PMID: 40353946 DOI: 10.1096/fj.202403177rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/06/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
In mammals, the suprachiasmatic nucleus (SCN) serves as the central circadian pacemaker, regulating rhythms essential for physiological processes. STAT3, a transcription factor primarily involved in immune signaling, exhibits circadian rhythmicity in SCN astrocytes. This study examined the role of STAT3 in circadian regulation across several cell types, including primary cultures of rat SCN and cortex, SCN cells and organotypic SCN slices from PER2::LUC mice, and C6 glioblastoma cells. Furthermore, the involvement of STAT3 in inflammatory responses was investigated in SCN and cortical primary cultures. STAT3 silencing enhanced Bmal1 expression across all tested cell types, disrupted Bmal1 rhythmicity in C6 cells, and reduced the amplitude of the PER2-driven rhythm in bioluminescence in SCN primary cells and organotypic cultures. In SCN cells, STAT3 silencing also attenuated its own expression and Gfap, whereas in cortical cells, it exhibited broader effects. Under LPS stimulation, STAT3 silencing in SCN cells reduced most LPS-induced genes, including inflammatory and oxidative stress markers, while showing variable effects in cortical cells. These findings indicate that while the role of STAT3 in the circadian clockwork appears consistent across cell types, its involvement in functional gene expression and immune responses may vary depending on the tissue and differ between SCN and cortical primary cells.
Collapse
Affiliation(s)
- Eva Filipovská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Kateřina Skálová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Veronika Spišská
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, CNRS UPR-3212, Strasbourg, France
| | - Zdeňka Bendová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Bellier F, Walter A, Lecoin L, Chauveau F, Rouach N, Rancillac A. Astrocytes at the heart of sleep: from genes to network dynamics. Cell Mol Life Sci 2025; 82:207. [PMID: 40397158 PMCID: PMC12095758 DOI: 10.1007/s00018-025-05671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 05/22/2025]
Abstract
Astrocytes have transcended their role from mere structural scaffolds to pivotal regulators of neural circuitry and sleep-wake dynamics. The strategic proximity of their fine processes to blood vessels and synapses positions them as key players in neurobiology, contributing to the tripartite synapse concept. Gap-junction proteins also enable astrocytes to form an extensive network interacting with neuronal assemblies to influence sleep physiology. Recent advances in genetic engineering, neuroimaging and molecular biology have deepened our understanding of astrocytic functions. This review highlights the different mechanisms by which astrocytes regulate sleep, notably through transcriptomic and morphological changes, as well as gliotransmission, whereby intracellular calcium (Ca2+) dynamics plays a significant role in modulating the sleep-wake cycle. In vivo optogenetic stimulation of astrocytes indeed induces ATP release, which is subsequently degraded into adenosine, modulating neuronal excitability in sleep-wake regulatory brain regions. Astrocytes also participate in synaptic plasticity, potentially modulating sleep-associated downscaling, a process essential for memory consolidation and preventing synaptic saturation. Although astrocytic involvement in synaptic maintenance is well supported, the precise molecular mechanisms linking these processes to sleep regulation remain to be elucidated. By highlighting astrocytes' multiple roles in sleep physiology, these insights deepen our understanding of sleep mechanisms and pave the way for improving sleep quality.
Collapse
Affiliation(s)
- Félix Bellier
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
- IRBA (Institut de Recherche Biomédicale Des Armées), Brétigny-sur-Orge, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
| | - Laure Lecoin
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
| | - Fréderic Chauveau
- IRBA (Institut de Recherche Biomédicale Des Armées), Brétigny-sur-Orge, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France
| | - Armelle Rancillac
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology-CIRB, Collège de France, CNRS UMR 7241/Inserm U1050, Université PSL, PSL-NEURO, 11, Place Marcelin Berthelot, 75005, Paris, France.
| |
Collapse
|
4
|
Imrie G, Farhy-Tselnicker I. Astrocyte regulation of behavioral outputs: the versatile roles of calcium. Front Cell Neurosci 2025; 19:1606265. [PMID: 40443710 PMCID: PMC12119555 DOI: 10.3389/fncel.2025.1606265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Accepted: 04/25/2025] [Indexed: 06/02/2025] Open
Abstract
Behavior arises from coordinated brain-wide neural and glial networks, enabling organisms to perceive, interpret, and respond to stimuli. Astrocytes play an important role in shaping behavioral output, yet the underlying molecular mechanisms are not fully understood. Astrocytes respond to intrinsic and extrinsic cues with calcium (Ca2+) fluctuations, which are highly heterogeneous across spatio-temporal scales, contexts, and brain regions. This heterogeneity allows astrocytes to exert dynamic regulatory effects on neuronal function but has made it challenging to understand the precise mechanisms and pathways linking astrocytic Ca2+ to specific behavioral outcomes, and the functional relevance of these signals remains unclear. Here, we review recent literature uncovering roles for astrocytic Ca2+ signaling in a wide array of behaviors, including cognitive, homeostatic, and affective focusing on its physiological roles, and potential pathological implications. We specifically highlight how different types of astrocytic Ca2+ signals are linked to distinct behavioral outcomes and discuss limitations and unanswered questions that remain to be addressed.
Collapse
Affiliation(s)
- Gillian Imrie
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Isabella Farhy-Tselnicker
- Department of Biology, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, College Station, TX, United States
- Center for Biological Clocks Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Hein ZM, Che Mohd Nassir CMN, Che Ramli MD, Jaffer U, Mehat MZ, Mustapha M, Abdul Hamid H. Cerebral small vessel disease: The impact of glymphopathy and sleep disorders. J Cereb Blood Flow Metab 2025:271678X251333933. [PMID: 40322968 PMCID: PMC12052786 DOI: 10.1177/0271678x251333933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 05/08/2025]
Abstract
The glymphatic system, a vital brain perivascular network for waste clearance, hinges on the functionality of the aquaporin 4 (AQP4) water channel. Alarmingly, AQP4 single nucleotide polymorphisms (SNPs) are linked to impaired glymphatic clearance, or glymphopathy, which contributes to sleep disturbances and various age-related neurodegenerative diseases. Despite the critical role of glymphopathy and sleep disturbances in cerebral small vessel disease (CSVD) - a silent precursor to age-related neurodegenerative disorders - their interplay remains underexplored. CSVD is a major cause of stroke and dementia, yet its pathogenesis is not fully understood. Emerging evidence implicates glymphopathy and sleep disorders as pivotal factors in age-related CSVD, exacerbating the condition by hindering waste removal and compromising blood-brain barrier (BBB) integrity. Advanced imaging techniques promise to enhance diagnosis and monitoring, while lifestyle modifications and personalised medicine present promising treatment avenues. This narrative review underscores the need for a multidisciplinary approach to understanding glymphopathy and sleep disorders in CSVD. By exploring their roles, emphasising the necessity for longitudinal studies, and discussing potential therapeutic interventions, this paper aims to pave the way for new research and therapeutic directions in CSVD management.
Collapse
Affiliation(s)
- Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | | | | | - Usman Jaffer
- Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Selangor, Malaysia
| | - Muzaimi Mustapha
- Department of Neuroscience, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Brain and Mental Health Research Advancement and Innovation Networks (PUTRA BRAIN), Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
6
|
Correa‐da‐Silva F, Berkhout JB, Schouten P, Sinnema M, Stumpel CTRM, Curfs LMG, Höybye C, Mahfouz A, Meijer OC, Pereira AM, Fliers E, Swaab DF, Kalsbeek A, Yi C. Selective changes in vasopressin neurons and astrocytes in the suprachiasmatic nucleus of Prader-Willi syndrome subjects. J Neuroendocrinol 2025; 37:e70015. [PMID: 40055943 PMCID: PMC12045672 DOI: 10.1111/jne.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 05/03/2025]
Abstract
The hypothalamic suprachiasmatic nucleus (SCN) hosts the central circadian pacemaker and regulates daily rhythms in physiology and behavior. The SCN is composed of peptidergic neuron populations expressing arginine vasopressin (AVP) and vasoactive intestinal polypeptide (VIP), as well as glial cells. Patients with Prader-Willi Syndrome (PWS) commonly experience circadian disturbances, which are particularly evident in their sleep/wake patterns. Using publicly available single-cell RNA sequencing data, we assessed the cell-type specificity of PWS-causative genes in murine SCN, which revealed the differential presence of PWS-related genes in glial and neural subpopulations. We then investigated neurons and glial cells in the SCN using immunohistochemistry in the postmortem hypothalami of PWS subjects and matched controls. We profiled neural populations characterized by AVP and VIP, astroglia characterized by glial fibrillary acid protein (GFAP), and microglia marked by ionized calcium-binding adapter molecule 1 (Iba1) and NADPH oxidase 2 (NOX2). Our analysis revealed an increased total number, neuronal density, and relative staining intensity of AVP-containing neurons in the PWS compared to controls while VIP-containing cells were unaltered. In contrast, GFAP-expressing astroglial cells were significantly lower in PWS subjects. Moreover, we did not detect any differences in microglia between PWS subjects and controls. Collectively, our findings show that PWS selectively affects AVP-containing neurons and GFAP-expressing astrocytes in the SCN. As each of these cell populations can affect the daily rhythmicity of the SCN biological clock machinery, the disruption of these cells may contribute to the circadian disturbances in patients with PWS.
Collapse
Affiliation(s)
- Felipe Correa‐da‐Silva
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Department of Clinical Chemistry, Laboratory of EndocrinologyAmsterdam University Medical Center, Location AMCAmsterdamThe Netherlands
- Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Jari B. Berkhout
- Dept. of Medicine Div. EndocrinologyLeiden University Medical CentreLeidenThe Netherlands
| | - Pim Schouten
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
| | - Margje Sinnema
- Department of Clinical GeneticsMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | - Leopold M. G. Curfs
- Governor Kremers CentreMaastricht University Medical CentreMaastrichtThe Netherlands
| | - Charlotte Höybye
- Department of Endocrinology and Department of Molecular Medicine and SurgeryKarolinska University Hospital and Karolinska InstituteStockholmSweden
| | - Ahmed Mahfouz
- Delft Bioinformatics LabTechnical University DelftDelftThe Netherlands
- Dept. of Human GeneticsLeiden University Medical CentreLeidenThe Netherlands
| | - Onno C. Meijer
- Dept. of Medicine Div. EndocrinologyLeiden University Medical CentreLeidenThe Netherlands
| | - Alberto M. Pereira
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
| | - Dick F. Swaab
- Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Department of Clinical Chemistry, Laboratory of EndocrinologyAmsterdam University Medical Center, Location AMCAmsterdamThe Netherlands
- Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
| | - Chun‐Xia Yi
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Department of Clinical Chemistry, Laboratory of EndocrinologyAmsterdam University Medical Center, Location AMCAmsterdamThe Netherlands
- Netherlands Institute for NeuroscienceAmsterdamThe Netherlands
| |
Collapse
|
7
|
Helfrich-Förster C, Reinhard N. Mutual coupling of neurons in the circadian master clock: What we can learn from fruit flies. Neurobiol Sleep Circadian Rhythms 2025; 18:100112. [PMID: 39906412 PMCID: PMC11791320 DOI: 10.1016/j.nbscr.2025.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Circadian master clocks in the brain consist of multiple neurons that are organized into populations with different morphology, physiology, and neuromessenger content and presumably different functions. In most animals, these master clocks are distributed bilaterally, located in close proximity to the visual system, and synchronized by the eyes with the light-dark cycles of the environment. In mammals and cockroaches, each of the two master clocks consists of a core region that receives information from the eyes and a shell region from which most of the output projections originate, whereas in flies and several other insects, the master clocks are distributed in lateral and dorsal brain regions. In all cases, morning and evening clock neurons seem to exist, and the communication between them and other populations of clock neurons, as well as the connection across the two brain hemispheres, is a prerequisite for normal rhythmic function. Phenomena such as rhythm splitting, and internal desynchronization are caused by the "decoupling" of the master clocks in the two brain hemispheres or by the decoupling of certain clock neurons within the master clock of one brain hemisphere. Since the master clocks in flies contain relatively few neurons that are well characterized at the individual level, the fly is particularly well suited to study the communication between individual clock neurons. Here, we review the organization of the bilateral master clocks in the fly brain, with a focus on synaptic and paracrine connections between the multiple clock neurons, in comparison with other insects and mammals.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
8
|
Fan Y, Tian Y, Han J. The Glutamate-gated Chloride Channel Facilitates Sleep by Enhancing the Excitability of Two Pairs of Neurons in the Ventral Nerve Cord of Drosophila. Neurosci Bull 2025:10.1007/s12264-025-01397-1. [PMID: 40304877 DOI: 10.1007/s12264-025-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/12/2025] [Indexed: 05/02/2025] Open
Abstract
Sleep, an essential and evolutionarily conserved behavior, is regulated by numerous neurotransmitter systems. In mammals, glutamate serves as the wake-promoting signaling agent, whereas in Drosophila, it functions as the sleep-promoting signal. However, the precise molecular and cellular mechanisms through which glutamate promotes sleep remain elusive. Our study reveals that disruption of glutamate signaling significantly diminishes nocturnal sleep, and a neural cell-specific knockdown of the glutamate-gated chloride channel (GluClα) markedly reduces nocturnal sleep. We identified two pairs of neurons in the ventral nerve cord (VNC) that receive glutamate signaling input, and the GluClα derived from these neurons is crucial for sleep promotion. Furthermore, we demonstrated that GluClα mediates the glutamate-gated inhibitory input to these VNC neurons, thereby promoting sleep. Our findings elucidate that GluClα enhances nocturnal sleep by mediating the glutamate-gated inhibitory input to two pairs of VNC neurons, providing insights into the mechanism of sleep promotion in Drosophila.
Collapse
Affiliation(s)
- Yaqian Fan
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Yao Tian
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| | - Junhai Han
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
9
|
Lines J, Corkrum M, Aguilar J, Araque A. The Duality of Astrocyte Neuromodulation: Astrocytes Sense Neuromodulators and Are Neuromodulators. J Neurochem 2025; 169:e70054. [PMID: 40191899 PMCID: PMC11978396 DOI: 10.1111/jnc.70054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/10/2025]
Abstract
Neuromodulation encompasses different processes that regulate neuronal and network function. Classical neuromodulators originating from long-range nuclei, such as acetylcholine, norepinephrine, or dopamine, act with a slower time course and wider spatial range than fast synaptic transmission and action potential firing. Accumulating evidence in vivo indicates that astrocytes, which are known to actively participate in synaptic function at tripartite synapses, are also involved in neuromodulatory processes. The present article reviews recent findings obtained in vivo indicating that astrocytes express receptors for neuromodulators that elevate their internal calcium and stimulate the release of gliotransmitters, which regulate synaptic and network function, and hence mediate, at least partially, the effects of neuromodulators. In addition, we propose that astrocytes act in local support of neuromodulators by spatially and temporally integrating neuronal and neuromodulatory signals to regulate neural network function. The presence of astrocyte-neuron hysteresis loops suggests astrocyte-neuron interaction at tripartite synapses scales up to astrocyte-neuronal networks that modulate neural network function. We finally propose that astrocytes sense the environmental conditions, including neuromodulators and network function states, and provide homeostatic control that maximizes the dynamic range of neural network activity. In summary, we propose that astrocytes are critical in mediating the effects of neuromodulators, and they also act as neuromodulators to provide neural network homeostasis thus optimizing information processing in the brain. Hence, astrocytes sense ongoing neuronal activity along with neuromodulators and, acting as neuromodulators, inform the neurons about the state of the internal system and the external world.
Collapse
Affiliation(s)
- Justin Lines
- Nash Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Corkrum
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Juan Aguilar
- Experimental Neurophysiology. Hospital Nacional de Parapléjicos. SESCAM. Finca de la Peraleda, S/N, 45071 Toledo, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM)
| | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Paul JR, Rhoads MK, Elam A, Pollock DM, Gamble KL. High-Salt Diet Increases Suprachiasmatic Neuronal Excitability Through Endothelin Receptor Type B Signaling. FUNCTION 2025; 6:zqaf014. [PMID: 40042980 PMCID: PMC11940741 DOI: 10.1093/function/zqaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 03/02/2025] [Indexed: 03/28/2025] Open
Abstract
Circadian rhythms are 24-h oscillations in behavioral and biological processes such as blood pressure and sodium excretion. Endothelin B (ETB) receptor has been connected to the molecular clock in peripheral tissues and plays a key role in the regulation of sodium excretion, especially in response to a high-salt diet. However, little is known about the role of ETB in the primary circadian pacemaker in the brain, the suprachiasmatic nucleus (SCN), despite recent reports showing its enrichment in SCN astrocytes. In this study, we tested the hypothesis that high-salt diet (4.0% NaCl) impacts the circadian system via the ETB receptor at the behavioral, molecular, and physiological levels in C57BL/6 mice. Two weeks of high-salt diet feeding changed the organization of nighttime wheel-running activity, as well as increased the SCN expression of ETB mRNA determined by fluorescence in situ hybridization at night. Neuronal excitability determined using loose-patch electrophysiology was also elevated at night. This high-salt diet-induced increase in SCN activity was ameliorated by ex vivo bath application of an ETB antagonist and could be mimicked with acute treatment of endothelin-3. Finally, we found that the excitatory effects of endothelin-3 were blocked with co-application of an N-methyl-D-aspartate (NMDA) receptor antagonist, suggesting that glutamate mediates endothelin-induced neuronal excitability in the SCN. Together, our data demonstrate the presence of functional ETB receptors in SCN astrocytes and point to a novel role for endothelin signaling in mediating neuronal responses to a dietary sodium intake.
Collapse
Affiliation(s)
- Jodi R Paul
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Megan K Rhoads
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Anna Elam
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - David M Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, 35233, USA
| | - Karen L Gamble
- Division of Behavioral Neurobiology, Department of Psychiatry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
11
|
Carvalhas-Almeida C, Sehgal A. Glia: the cellular glue that binds circadian rhythms and sleep. Sleep 2025; 48:zsae314. [PMID: 39812780 PMCID: PMC11893543 DOI: 10.1093/sleep/zsae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/19/2024] [Indexed: 01/16/2025] Open
Abstract
Glia are increasingly appreciated as serving an important function in the control of sleep and circadian rhythms. Glial cells in Drosophila and mammals regulate daily rhythms of locomotor activity and sleep as well as homeostatic rebound following sleep deprivation. In addition, they contribute to proposed functions of sleep, with different functions mapping to varied glial subtypes. Here, we discuss recent findings in Drosophila and rodent models establishing a role of glia in circadian or sleep regulation of synaptic plasticity, brain metabolism, removal of cellular debris, and immune challenges. These findings underscore the relevance of glia for benefits attributed to sleep and have implications for understanding the neurobiological mechanisms underlying sleep and associated disorders.
Collapse
Affiliation(s)
- Catarina Carvalhas-Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Nam YR, Kang M, Kim M, Seok MJ, Yang Y, Han YE, Oh SJ, Kim DG, Son H, Chang MY, Lee SH. Preparation of human astrocytes with potent therapeutic functions from human pluripotent stem cells using ventral midbrain patterning. J Adv Res 2025; 69:181-196. [PMID: 38521186 PMCID: PMC11954835 DOI: 10.1016/j.jare.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/16/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Astrocytes are glial-type cells that protect neurons from toxic insults and support neuronal functions and metabolism in a healthy brain. Leveraging these physiological functions, transplantation of astrocytes or their derivatives has emerged as a potential therapeutic approach for neurodegenerative disorders. METHODS To substantiate the clinical application of astrocyte-based therapy, we aimed to prepare human astrocytes with potent therapeutic capacities from human pluripotent stem cells (hPSCs). To that end, we used ventral midbrain patterning during the differentiation of hPSCs into astrocytes, based on the roles of midbrain-specific factors in potentiating glial neurotrophic/anti-inflammatory activity. To assess the therapeutic effects of human midbrain-type astrocytes, we transplanted them into mouse models of Parkinson's disease (PD) and Alzheimer's disease (AD). RESULTS Through a comprehensive series of in-vitro and in-vivo experiments, we were able to establish that the midbrain-type astrocytes exhibited the abilities to effectively combat oxidative stress, counter excitotoxic glutamate, and manage pathological protein aggregates. Our strategy for preparing midbrain-type astrocytes yielded promising results, demonstrating the strong therapeutic potential of these cells in various neurotoxic contexts. Particularly noteworthy is their efficacy in PD and AD-specific proteopathic conditions, in which the midbrain-type astrocytes outperformed forebrain-type astrocytes derived by the same organoid-based method. CONCLUSION The enhanced functions of the midbrain-type astrocytes extended to their ability to release signaling molecules that inhibited neuronal deterioration and senescence while steering microglial cells away from a pro-inflammatory state. This success was evident in both in-vitro studies using human cells and in-vivo experiments conducted in mouse models of PD and AD. In the end, our human midbrain-type astrocytes demonstrated remarkable effectiveness in alleviating neurodegeneration, neuroinflammation, and the pathologies associated with the accumulation of α-synuclein and Amyloid β proteins.
Collapse
Affiliation(s)
- Ye Rim Nam
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Minji Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Min Jong Seok
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Yunseon Yang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Young Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Do Gyeong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea
| | - Hyeon Son
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea
| | - Mi-Yoon Chang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Premedicine, College of Medicine, Hanyang University, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| | - Sang-Hun Lee
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea; Biomedical Research Institute, Hanyang University, Seoul, Korea; Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Korea.
| |
Collapse
|
13
|
Korkmaz H, Anstötz M, Wellinghof T, Fazari B, Hallenberger A, Bergmann AK, Niggetiedt E, Güven FD, Tundo-Lavalle F, Purath FFA, Bochinsky K, Gremer L, Willbold D, von Gall C, Ali AAH. Loss of Bmal1 impairs the glutamatergic light input to the SCN in mice. Front Cell Neurosci 2025; 19:1538985. [PMID: 40083633 PMCID: PMC11903712 DOI: 10.3389/fncel.2025.1538985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Glutamate represents the dominant neurotransmitter that conveys the light information to the brain, including the suprachiasmatic nucleus (SCN), the central pacemaker for the circadian system. The neuronal and astrocytic glutamate transporters are crucial for maintaining efficient glutamatergic signaling. In the SCN, glutamatergic nerve terminals from the retina terminate on vasoactive intestinal polypeptide (VIP) neurons, which are essential for circadian functions. To date, little is known about the role of the core circadian clock gene, Bmal1, in glutamatergic neurotransmission of light signal to various brain regions. Methods The aim of this study was to further elucidate the role of Bmal1 in glutamatergic neurotransmission from the retina to the SCN. We therefore examined the spontaneous rhythmic locomotor activity, neuronal and glial glutamate transporters, as well as the ultrastructure of the synapse between the retinal ganglion cells (RGCs) and the SCN in adult male Bmal1-/- mice. Results We found that the deletion of Bmal1 affects the light-mediated behavior in mice, decreases the retinal thickness and affects the vesicular glutamate transporters (vGLUT1, 2) in the retina. Within the SCN, the immunoreaction of vGLUT1, 2, glial glutamate transporters (GLAST) and VIP was decreased while the glutamate concentration was elevated. At the ultrastructure level, the presynaptic terminals were enlarged and the distance between the synaptic vesicles and the synaptic cleft was increased, indicative of a decrease in the readily releasable pool at the excitatory synapses in Bmal1-/-. Conclusion Our data suggests that Bmal1 deletion affects the glutamate transmission in the retina and the SCN and affects the behavioral responses to light.
Collapse
Affiliation(s)
- Hüseyin Korkmaz
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Max Anstötz
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Tim Wellinghof
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Benedetta Fazari
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Angelika Hallenberger
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Niggetiedt
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Fatma Delâl Güven
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Fathima Faiba A. Purath
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Kevin Bochinsky
- Jülich Research Center, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Jülich, Germany
| | - Lothar Gremer
- Jülich Research Center, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Jülich Research Center, Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Jülich, Germany
- Institute of Physical Biology, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Charlotte von Gall
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
| | - Amira A. H. Ali
- Faculty of Medicine, Institute of Anatomy II, Heinrich Heine University, Düsseldorf, Germany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Smyllie NJ, Hastings MH, Patton AP. Neuron-Astrocyte Interactions and Circadian Timekeeping in Mammals. Neuroscientist 2025; 31:65-79. [PMID: 38602223 PMCID: PMC7616557 DOI: 10.1177/10738584241245307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Almost every facet of our behavior and physiology varies predictably over the course of day and night, anticipating and adapting us to their associated opportunities and challenges. These rhythms are driven by endogenous biological clocks that, when deprived of environmental cues, can continue to oscillate within a period of approximately 1 day, hence circa-dian. Normally, retinal signals synchronize them to the cycle of light and darkness, but disruption of circadian organization, a common feature of modern lifestyles, carries considerable costs to health. Circadian timekeeping pivots around a cell-autonomous molecular clock, widely expressed across tissues. These cellular timers are in turn synchronized by the principal circadian clock of the brain: the hypothalamic suprachiasmatic nucleus (SCN). Intercellular signals make the SCN network a very powerful pacemaker. Previously, neurons were considered the sole SCN timekeepers, with glial cells playing supportive roles. New discoveries have revealed, however, that astrocytes are active partners in SCN network timekeeping, with their cell-autonomous clock regulating extracellular glutamate and GABA concentrations to control circadian cycles of SCN neuronal activity. Here, we introduce circadian timekeeping at the cellular and SCN network levels before focusing on the contributions of astrocytes and their mutual interaction with neurons in circadian control in the brain.
Collapse
Affiliation(s)
- Nicola J. Smyllie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| | | | - Andrew P. Patton
- Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| |
Collapse
|
15
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Niepokny TD, Frey-Burkart H, Mintz EM. Temporal and spatial layout of endocannabinoid system components in the mouse suprachiasmatic nucleus. Neuroscience 2025; 564:179-193. [PMID: 39571963 DOI: 10.1016/j.neuroscience.2024.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Environmental light serves as the main entraining signal for the central circadian pacemaker, the suprachiasmatic nucleus of the hypothalamus (SCN). To shift clock timing with the changing environment, minute adjustments are necessary and the endocannabinoid system (ECS) acts as a neuromodulatory signaling mechanism in the SCN. These systems exert bidirectional effects on one another, still, limited knowledge exists about the role of endocannabinoids in circadian rhythm regulation. Therefore, we investigated the temporal and spatial molecular layouts of the ECS in the SCN of male and female C57BL/6J mice. We utilized laser capture microdissection and quantitative RT-PCR to investigate the ECS temporal layout in the SCN, detected 13 of 19 examined ECS components, and followed up with two 24-hour time course experiments, one under 12:12 light/dark and one under constant dark conditions. All enzymatic machinery related to endocannabinoid synthesis and degradation investigated were found present; however, only cannabinoid receptor 1 (Cnr1) was detected from the 6 ECS related receptors investigated. Cosinor analysis revealed circadian rhythms in many components in both sexes and lighting conditions. Next, we investigated the spatial localization of ECS components in the SCN with RNAscope in situ hybridization. Some genes, such as Cnr1, were more highly expressed in neurons with others, such as Fabp7, were elevated in astrocytes. Cnr1 levels were highest in neurons that do not express the neuropeptides Avp or Vip, and lowest in Vip neurons. Our results support the idea that locally regulated ECS signaling through neuronal CB1 modulates circadian clock function.
Collapse
Affiliation(s)
- Timothy D Niepokny
- School of Biomedical Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA
| | - Hunter Frey-Burkart
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; School of Biomedical Sciences, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA; Brain Health Research Institute, Kent State University, 1275 University Esplanade, Kent, OH 44242, USA.
| |
Collapse
|
17
|
Ness N, Díaz-Clavero S, Hoekstra MMB, Brancaccio M. Rhythmic astrocytic GABA production synchronizes neuronal circadian timekeeping in the suprachiasmatic nucleus. EMBO J 2025; 44:356-381. [PMID: 39623138 PMCID: PMC11731042 DOI: 10.1038/s44318-024-00324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 01/15/2025] Open
Abstract
Astrocytes of the suprachiasmatic nucleus (SCN) can regulate sleep-wake cycles in mammals. However, the nature of the information provided by astrocytes to control circadian patterns of behavior is unclear. Neuronal circadian activity across the SCN is organized into spatiotemporal waves that govern seasonal adaptations and timely engagement of behavioral outputs. Here, we show that astrocytes across the mouse SCN exhibit instead a highly uniform, pulse-like nighttime activity. We find that rhythmic astrocytic GABA production via polyamine degradation provides an inhibitory nighttime tone required for SCN circuit synchrony, thereby acting as an internal astrocyte zeitgeber (or "astrozeit"). We further identify synaptic GABA and astrocytic GABA as two key players underpinning coherent spatiotemporal circadian patterns of SCN neuronal activity. In describing a new mechanism by which astrocytes contribute to circadian timekeeping, our work provides a general blueprint for understanding how astrocytes encode temporal information underlying complex behaviors in mammals.
Collapse
Affiliation(s)
- Natalie Ness
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Sandra Díaz-Clavero
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Marieke M B Hoekstra
- Department of Brain Science, Imperial College London, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Marco Brancaccio
- Department of Brain Science, Imperial College London, London, UK.
- UK Dementia Research Institute at Imperial College London, London, UK.
| |
Collapse
|
18
|
Liu YJ, Swaab DF, Zhou JN. Sleep-wake modulation and pathogenesis of Alzheimer disease: Suggestions for postponement and treatment. HANDBOOK OF CLINICAL NEUROLOGY 2025; 206:211-229. [PMID: 39864928 DOI: 10.1016/b978-0-323-90918-1.00001-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sleep-wake disorders are recognized as one of the earliest symptoms of Alzheimer disease (AD). Accumulating evidence has highlighted a significant association between sleep-wake disorders and AD pathogenesis, suggesting that sleep-wake modulation could be a promising approach for postponing AD onset. The suprachiasmatic nucleus (SCN) and the pineal hormone melatonin are major central modulating components of the circadian rhythm system. Cerebrospinal fluid (CSF) melatonin levels are dramatically decreased in AD. Interestingly, the number of neurofibrillary tangles in the hippocampus, which is one of the two major neuropathologic AD biomarkers, increases in parallel with the decrease in CSF melatonin levels. Furthermore, a decrease in salivary melatonin levels in middle-aged persons is a significant risk factor for the onset of the early stages of AD. Moreover, the disappearance of rhythmic fluctuations in melatonin may be one of the best biomarkers for AD diagnosis. Light therapy combined with melatonin supplementation is the recommended first-line treatment for sleep-wake disorders in AD patients and may be beneficial for ameliorating cognitive impairment. Sleep-wake cycle modulation based on AD risk gene presence is a promising early intervention for AD onset postponement.
Collapse
Affiliation(s)
- Ya-Jing Liu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Dick F Swaab
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
19
|
Speggiorin M, Chiavegato A, Zonta M, Gómez-Gonzalo M. Characterization of the Astrocyte Calcium Response to Norepinephrine in the Ventral Tegmental Area. Cells 2024; 14:24. [PMID: 39791726 PMCID: PMC11720743 DOI: 10.3390/cells14010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Astrocytes from different brain regions respond with Ca2+ elevations to the catecholamine norepinephrine (NE). However, whether this noradrenergic-mediated signaling is present in astrocytes from the ventral tegmental area (VTA), a dopaminergic circuit receiving noradrenergic inputs, has not yet been investigated. To fill in this gap, we applied a pharmacological approach along with two-photon microscopy and an AAV strategy to express a genetically encoded calcium indicator in VTA astrocytes. We found that VTA astrocytes from both female and male young adult mice showed a strong Ca2+ response to NE at both soma and processes. Our results revealed that Gq-coupled α1 adrenergic receptors, which elicit the production of IP3, are the main mediators of the astrocyte response. In mice lacking the IP3 receptor type-2 (IP3R2-/- mice), we found that the astrocyte response to NE, even if reduced, is still present. We also found that in IP3R2-/- astrocytes, the residual Ca2+ elevations elicited by NE depend on the release of Ca2+ from the endoplasmic reticulum, through IP3Rs different from IP3R2. In conclusion, our results reveal VTA astrocytes as novel targets of the noradrenergic signaling, opening to new interpretations of the cellular and molecular mechanisms that mediate the NE effects in the VTA.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/drug effects
- Ventral Tegmental Area/metabolism
- Ventral Tegmental Area/drug effects
- Norepinephrine/pharmacology
- Norepinephrine/metabolism
- Calcium/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Mice
- Male
- Female
- Calcium Signaling/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-1/genetics
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/drug effects
Collapse
Affiliation(s)
- Michele Speggiorin
- Department of Biomedical Sciences, Università degli Studi di Padova, 35131 Padova, Italy; (M.S.); (A.C.)
| | - Angela Chiavegato
- Department of Biomedical Sciences, Università degli Studi di Padova, 35131 Padova, Italy; (M.S.); (A.C.)
| | - Micaela Zonta
- Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, Section of Padova, National Research Council (CNR), 35131 Padova, Italy;
| |
Collapse
|
20
|
Jenkins AK, Ketchesin KD, Becker-Krail DD, McClung CA. Molecular Rhythmicity in Glia: Importance for Brain Health and Relevance to Psychiatric Disease. Biol Psychiatry 2024; 96:909-918. [PMID: 38735357 PMCID: PMC11550267 DOI: 10.1016/j.biopsych.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Circadian rhythms are approximate 24-hour rhythms present in nearly all aspects of human physiology, including proper brain function. These rhythms are produced at the cellular level through a transcriptional-translational feedback loop known as the molecular clock. Diurnal variation in gene expression has been demonstrated in brain tissue from multiple species, including humans, in both cortical and subcortical regions. Interestingly, these rhythms in gene expression have been shown to be disrupted across psychiatric disorders and may be implicated in their underlying pathophysiology. However, little is known regarding molecular rhythms in specific cell types in the brain and how they might be involved in psychiatric disease. Although glial cells (e.g., astrocytes, microglia, and oligodendrocytes) have been historically understudied compared to neurons, evidence of the molecular clock is found within each of these cell subtypes. Here, we review the current literature, which suggests that molecular rhythmicity is essential to functional physiologic outputs from each glial subtype. Furthermore, disrupted molecular rhythms within these cells and the resultant functional deficits may be relevant to specific phenotypes across psychiatric illnesses. Given that circadian rhythm disruptions have been so integrally tied to psychiatric disease, the molecular mechanisms governing these associations could represent exciting new avenues for future research and potential novel pharmacologic targets for treatment.
Collapse
Affiliation(s)
- Aaron K Jenkins
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kyle D Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darius D Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Colleen A McClung
- Translational Neuroscience Program, Department of Psychiatry, and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
21
|
Ryu JE, Shim KW, Roh HW, Park M, Lee JH, Kim EY. Circadian regulation of endoplasmic reticulum calcium response in cultured mouse astrocytes. eLife 2024; 13:RP96357. [PMID: 39601391 PMCID: PMC11602189 DOI: 10.7554/elife.96357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The circadian clock, an internal time-keeping system orchestrates 24 hr rhythms in physiology and behavior by regulating rhythmic transcription in cells. Astrocytes, the most abundant glial cells, play crucial roles in CNS functions, but the impact of the circadian clock on astrocyte functions remains largely unexplored. In this study, we identified 412 circadian rhythmic transcripts in cultured mouse cortical astrocytes through RNA sequencing. Gene Ontology analysis indicated that genes involved in Ca2+ homeostasis are under circadian control. Notably, Herpud1 (Herp) exhibited robust circadian rhythmicity at both mRNA and protein levels, a rhythm disrupted in astrocytes lacking the circadian transcription factor, BMAL1. HERP regulated endoplasmic reticulum (ER) Ca2+ release by modulating the degradation of inositol 1,4,5-trisphosphate receptors (ITPRs). ATP-stimulated ER Ca2+ release varied with the circadian phase, being more pronounced at subjective night phase, likely due to the rhythmic expression of ITPR2. Correspondingly, ATP-stimulated cytosolic Ca2+ increases were heightened at the subjective night phase. This rhythmic ER Ca2+ response led to circadian phase-dependent variations in the phosphorylation of Connexin 43 (Ser368) and gap junctional communication. Given the role of gap junction channel (GJC) in propagating Ca2+ signals, we suggest that this circadian regulation of ER Ca2+ responses could affect astrocytic modulation of synaptic activity according to the time of day. Overall, our study enhances the understanding of how the circadian clock influences astrocyte function in the CNS, shedding light on their potential role in daily variations of brain activity and health.
Collapse
Affiliation(s)
- Ji Eun Ryu
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Brain Science, Ajou University School of MedicineSuwonRepublic of Korea
| | - Kyu-Won Shim
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Hyun Woong Roh
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Psychiatry, Ajou University School of MedicineSuwonRepublic of Korea
| | - Minsung Park
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Brain Science, Ajou University School of MedicineSuwonRepublic of Korea
| | - Jae-Hyung Lee
- Department of Oral Microbiology, College of Dentistry, Kyung Hee UniversitySeoulRepublic of Korea
| | - Eun Young Kim
- Neuroscience Graduate Program, Department of Biomedical Sciences, Ajou University Graduate School of MedicineSuwonRepublic of Korea
- Department of Brain Science, Ajou University School of MedicineSuwonRepublic of Korea
| |
Collapse
|
22
|
Zhao Q, Yokomizo S, Perle SJ, Lee YF, Zhou H, Miller MR, Li H, Gerashchenko D, Gomperts SN, Bacskai BJ, Kastanenka KV. Optogenetic targeting of cortical astrocytes selectively improves NREM sleep in an Alzheimer's disease mouse model. Sci Rep 2024; 14:23044. [PMID: 39362954 PMCID: PMC11450172 DOI: 10.1038/s41598-024-73082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition marked by memory impairments and distinct histopathological features such as amyloid-beta (Aβ) accumulations. Alzheimer's patients experience sleep disturbances at early stages of the disease. APPswe/PS1dE9 (APP) mice exhibit sleep disruptions, including reductions in non-rapid eye movement (NREM) sleep, that contribute to their disease progression. In addition, astrocytic calcium transients associated with a sleep-dependent brain rhythm, slow oscillations prevalent during NREM sleep, are disrupted in APP mice. However, at present it is unclear whether restoration of circuit function by targeting astrocytic activity could improve sleep in APP mice. To that end, APP mice expressing channelrhodopsin-2 (ChR2) targeted to astrocytes underwent optogenetic stimulation at the slow oscillation frequency. Optogenetic stimulation of astrocytes significantly increased NREM sleep duration but not duration of rapid eye movement (REM) sleep. Optogenetic treatment increased delta power and reduced sleep fragmentation in APP mice. Thus, optogenetic activation of astrocytes increased sleep quantity and improved sleep quality in an AD mouse model. Astrocytic activity provides a novel therapeutic avenue to pursue for enhancing sleep and slowing AD progression.
Collapse
Affiliation(s)
- Qiuchen Zhao
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Shinya Yokomizo
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Stephen J Perle
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Heng Zhou
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Morgan R Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Hanyan Li
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - Stephen N Gomperts
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian J Bacskai
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Ksenia V Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
23
|
Ahrens MB, Khakh BS, Poskanzer KE. Astrocyte Calcium Signaling. Cold Spring Harb Perspect Biol 2024; 16:a041353. [PMID: 38768971 PMCID: PMC11444304 DOI: 10.1101/cshperspect.a041353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system and participate in well-established functional and morphological interactions with neurons, blood vessels, and other glia. These ubiquitous cells display rich intracellular Ca2+ signaling, which has now been studied for over 30 years. In this review, we provide a summary and perspective of recent progress concerning the study of astrocyte intracellular Ca2+ signaling as well as discussion of its potential functions. Progress has occurred in the areas of imaging, silencing, activating, and analyzing astrocyte Ca2+ signals. These insights have collectively permitted exploration of the relationships of astrocyte Ca2+ signals to neural circuit function and behavior in a variety of species. We summarize these aspects along with a framework for mechanistically interpreting behavioral studies to identify directly causal effects. We finish by providing a perspective on new avenues of research concerning astrocyte Ca2+ signaling.
Collapse
Affiliation(s)
- Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA
| | - Baljit S Khakh
- Department of Physiology and Department of Neurobiology, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kira E Poskanzer
- Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, California 94143, USA
| |
Collapse
|
24
|
DePoy LM, Petersen KA, Zong W, Ketchesin KD, Matthaei RC, Yin R, Perez MS, Vadnie CA, Becker-Krail D, Scott MR, Tseng GC, McClung CA. Cell-type and sex-specific rhythmic gene expression in the nucleus accumbens. Mol Psychiatry 2024; 29:3117-3127. [PMID: 38678086 PMCID: PMC11449664 DOI: 10.1038/s41380-024-02569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Circadian rhythms are critical for human health and are highly conserved across species. Disruptions in these rhythms contribute to many diseases, including psychiatric disorders. Previous results suggest that circadian genes modulate behavior through specific cell types in the nucleus accumbens (NAc), particularly dopamine D1-expressing medium spiny neurons (MSNs). However, diurnal rhythms in transcript expression have not been investigated in NAc MSNs. In this study we identified and characterized rhythmic transcripts in D1- and D2-expressing neurons and compared rhythmicity results to homogenate as well as astrocyte samples taken from the NAc of male and female mice. We find that all cell types have transcripts with diurnal rhythms and that top rhythmic transcripts are largely core clock genes, which peak at approximately the same time of day in each cell type and sex. While clock-controlled rhythmic transcripts are enriched for protein regulation pathways across cell type, cell signaling and signal transduction related processes are most commonly enriched in MSNs. In contrast to core clock genes, these clock-controlled rhythmic transcripts tend to reach their peak in expression about 2-h later in females than males, suggesting diurnal rhythms in reward may be delayed in females. We also find sex differences in pathway enrichment for rhythmic transcripts peaking at different times of day. Protein folding and immune responses are enriched in transcripts that peak in the dark phase, while metabolic processes are primarily enriched in transcripts that peak in the light phase. Importantly, we also find that several classic markers used to categorize MSNs are rhythmic in the NAc. This is critical since the use of rhythmic markers could lead to over- or under-enrichment of targeted cell types depending on the time at which they are sampled. This study greatly expands our knowledge of how individual cell types contribute to rhythms in the NAc.
Collapse
Affiliation(s)
- Lauren M DePoy
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Kaitlyn A Petersen
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Kyle D Ketchesin
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Ross C Matthaei
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
| | - RuoFei Yin
- Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Megan S Perez
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Department of Human Genetics, School of Public Health, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Chelsea A Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, 43015, Delaware, OH, USA
| | - Darius Becker-Krail
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Madeline R Scott
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - George C Tseng
- Department of Biostatistics, University of Pittsburgh, 15261, Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, 15219, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, 15261, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Xu S, Jia M, Guo J, He J, Chen X, Xu Y, Hu W, Wu D, Wu C, Ji X. Ticking Brain: Circadian Rhythm as a New Target for Cerebroprotection. Stroke 2024; 55:2385-2396. [PMID: 39011642 DOI: 10.1161/strokeaha.124.046684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.
Collapse
Affiliation(s)
- Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Jiaqi Guo
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Jiachen He
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Xi Chen
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Yi Xu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital (X.J.), Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Burns JN, Jenkins AK, Yin R, Zong W, Vadnie CA, DePoy LM, Petersen KA, Tsyglakova M, Scott MR, Tseng GC, Huang YH, McClung CA. Molecular and cellular rhythms in excitatory and inhibitory neurons in the mouse prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.601880. [PMID: 39005410 PMCID: PMC11245095 DOI: 10.1101/2024.07.05.601880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Previous studies have shown that there are rhythms in gene expression in the mouse prefrontal cortex (PFC); however, the contribution of different cell types and potential variation by sex has not yet been determined. Of particular interest are excitatory pyramidal cells and inhibitory parvalbumin (PV) interneurons, as interactions between these cell types are essential for regulating the excitation/inhibition balance and controlling many of the cognitive functions regulated by the PFC. In this study, we identify cell-type specific rhythms in the translatome of PV and pyramidal cells in the mouse PFC and assess diurnal rhythms in PV cell electrophysiological properties. We find that while core molecular clock genes are conserved and synchronized between cell types, pyramidal cells have nearly twice as many rhythmic transcripts as PV cells (35% vs. 18%). Rhythmic transcripts in pyramidal cells also show a high degree of overlap between sexes, both in terms of which transcripts are rhythmic and in the biological processes associated with them. Conversely, in PV cells, rhythmic transcripts from males and females are largely distinct. Moreover, we find sex-specific effects of phase on action potential properties in PV cells that are eliminated by environmental circadian disruption. Together, this study demonstrates that rhythms in gene expression and electrophysiological properties in the mouse PFC vary by both cell type and sex. Moreover, the biological processes associated with these rhythmic transcripts may provide insight into the unique functions of rhythms in these cells, as well as their selective vulnerabilities to circadian disruption.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - RuoFei Yin
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Wei Zong
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH 43015
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Kaitlyn A Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Mariya Tsyglakova
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yanhua H. Huang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
27
|
Langiu M, Dehghani F, Hohmann U, Bechstein P, Rawashdeh O, Rami A, Maronde E. Adrenergic Agonists Activate Transcriptional Activity in Immortalized Neuronal Cells From the Mouse Suprachiasmatic Nucleus. J Pineal Res 2024; 76:e12999. [PMID: 39092782 DOI: 10.1111/jpi.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
The suprachiasmatic nucleus of the hypothalamus (SCN) houses the central circadian oscillator of mammals. The main neurotransmitters produced in the SCN are γ-amino-butyric acid, arginine-vasopressin (AVP), vasoactive intestinal peptide (VIP), pituitary-derived adenylate cyclase-activating peptide (PACAP), prokineticin 2, neuromedin S, and gastrin-releasing peptide (GRP). Apart from these, catecholamines and their receptors were detected in the SCN as well. In this study, we confirmed the presence of β-adrenergic receptors in SCN and a mouse SCN-derived immortalized cell line by immunohistochemical, immuno-cytochemical, and pharmacological techniques. We then characterized the effects of β-adrenergic agonists and antagonists on cAMP-regulated element (CRE) signaling. Moreover, we investigated the interaction of β-adrenergic signaling with substances influencing parallel signaling pathways. Our findings have potential implications on the role of stress (elevated adrenaline) on the biological clock and may explain some of the side effects of β-blockers applied as anti-hypertensive drugs.
Collapse
Affiliation(s)
- Monica Langiu
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Philipp Bechstein
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| | - Oliver Rawashdeh
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Abdelhaq Rami
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| | - Erik Maronde
- Institute for Anatomy II, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
28
|
Zheng J, Wu M, Pang Y, Liu Q, Liu Y, Jin X, Tang J, Bao L, Niu Y, Zheng Y, Zhang R. Interior decorative volatile organic compounds exposure induces sleep disorders through aberrant branched chain amino acid transaminase 2 mediated glutamatergic signaling resulting from a neuroinflammatory cascade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173254. [PMID: 38761924 DOI: 10.1016/j.scitotenv.2024.173254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/16/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Air pollution has been recognized as a contributing factor to sleep disorders (SD), which have been correlated with an elevated susceptibility to a variety of human diseases. Nevertheless, research has not definitively established a connection between SD and interior decorative volatile organic compounds (ID-VOCs), a significant indoor air pollutant. In this study, we employed a mouse model exposed to ID-VOCs to explore the impacts of ID-VOCs exposure on sleep patterns and the potential underlying mechanism. Of the 23 key compositions of ID-VOCs identified, aromatic hydrocarbons were found to be the most prevalent. Exposure to ID-VOCs in mice resulted in SD, characterized by prolonged wake fullness and decreased sleep during the light period. ID-VOCs exposure triggered neuroinflammatory responses in the suprachiasmatic nucleus (SCN), with microglia activation leading to the overproduction of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), and complement component 1q (C1q), ultimately inducing A1 astrocytes. Consequently, the upregulation of branched chain amino acid transaminase 2 (BCAT2) in A1 astrocytes resulted in elevated extracellular glutamate and disruption of the wake-sleep transition mechanism, which might be the toxicological mechanism of SD caused by ID-VOCs.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei, PR China
| | - Mengqi Wu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yan Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; School of Public Health, Inner Mongolia Medical University, Hohhot 010000, Inner Mongolia, PR China
| | - Xiaoting Jin
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
29
|
Curtis L, Piggins HD. Diverse genetic alteration dysregulates neuropeptide and intracellular signalling in the suprachiasmatic nuclei. Eur J Neurosci 2024; 60:3921-3945. [PMID: 38924215 DOI: 10.1111/ejn.16443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
In mammals, intrinsic 24 h or circadian rhythms are primarily generated by the suprachiasmatic nuclei (SCN). Rhythmic daily changes in the transcriptome and proteome of SCN cells are controlled by interlocking transcription-translation feedback loops (TTFLs) of core clock genes and their proteins. SCN cells function as autonomous circadian oscillators, which synchronize through intercellular neuropeptide signalling. Physiological and behavioural rhythms can be severely disrupted by genetic modification of a diverse range of genes and proteins in the SCN. With the advent of next generation sequencing, there is unprecedented information on the molecular profile of the SCN and how it is affected by genetically targeted alteration. However, whether the expression of some genes is more readily affected by genetic alteration of the SCN is unclear. Here, using publicly available datasets from recent RNA-seq assessments of the SCN from genetically altered and control mice, we evaluated whether there are commonalities in transcriptome dysregulation. This was completed for four different phases across the 24 h cycle and was augmented by Gene Ontology Molecular Function (GO:MF) and promoter analysis. Common differentially expressed genes (DEGs) and/or enriched GO:MF terms included signalling molecules, their receptors, and core clock components. Finally, examination of the JASPAR database indicated that E-box and CRE elements in the promoter regions of several commonly dysregulated genes. From this analysis, we identify differential expression of genes coding for molecules involved in SCN intra- and intercellular signalling as a potential cause of abnormal circadian rhythms.
Collapse
Affiliation(s)
- Lucy Curtis
- School of Biological Sciences, University of Bristol, Bristol, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Evans JA, Schwartz WJ. On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:503-511. [PMID: 37481773 PMCID: PMC10924288 DOI: 10.1007/s00359-023-01659-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Decades have now passed since Colin Pittendrigh first proposed a model of a circadian clock composed of two coupled oscillators, individually responsive to the rising and setting sun, as a flexible solution to the challenge of behavioral and physiological adaptation to the changing seasons. The elegance and predictive power of this postulation has stimulated laboratories around the world in searches to identify and localize such hypothesized evening and morning oscillators, or sets of oscillators, in insects, rodents, and humans, with experimental designs and approaches keeping pace over the years with technological advances in biology and neuroscience. Here, we recount the conceptual origin and highlight the subsequent evolution of this dual oscillator model for the circadian clock in the mammalian suprachiasmatic nucleus; and how, despite our increasingly sophisticated view of this multicellular pacemaker, Pittendrigh's binary conception has remained influential in our clock models and metaphors.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, WI, USA.
| | - William J Schwartz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Sriram S, Carstens K, Dewing W, Fiacco TA. Astrocyte regulation of extracellular space parameters across the sleep-wake cycle. Front Cell Neurosci 2024; 18:1401698. [PMID: 38988660 PMCID: PMC11233815 DOI: 10.3389/fncel.2024.1401698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Multiple subfields of neuroscience research are beginning to incorporate astrocytes into current frameworks of understanding overall brain physiology, neuronal circuitry, and disease etiology that underlie sleep and sleep-related disorders. Astrocytes have emerged as a dynamic regulator of neuronal activity through control of extracellular space (ECS) volume and composition, both of which can vary dramatically during different levels of sleep and arousal. Astrocytes are also an attractive target of sleep research due to their prominent role in the glymphatic system, a method by which toxic metabolites generated during wakefulness are cleared away. In this review we assess the literature surrounding glial influences on fluctuations in ECS volume and composition across the sleep-wake cycle. We also examine mechanisms of astrocyte volume regulation in glymphatic solute clearance and their role in sleep and wake states. Overall, findings highlight the importance of astrocytes in sleep and sleep research.
Collapse
Affiliation(s)
- Sandhya Sriram
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Kaira Carstens
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| | - Wayne Dewing
- Undergraduate Major in Neuroscience, University of California, Riverside, Riverside, CA, United States
| | - Todd A Fiacco
- Interdepartmental Graduate Program in Neuroscience, University of California, Riverside, Riverside, CA, United States
- Department of Biochemistry and Molecular Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
32
|
Otsuka K, Beaty LA, Sato M, Shitakura K, Kikuchi T, Okajima K, Terada S, Cornelissen G. Chronobioethics: Symphony of biological clocks observed by 7-day/24-hour ambulatory blood pressure monitoring and cardiovascular health. Biomed J 2024:100753. [PMID: 38906327 DOI: 10.1016/j.bj.2024.100753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND The high prevalence of desynchronized biological rhythms is becoming a primary public health concern. We assess complex and diverse inter-modulations among multi-frequency rhythms present in blood pressure (BP) and heart rate (HR). SUBJECTS and Methods: We performed 7-day/24-hour Ambulatory BP Monitoring in 220 (133 women) residents (23 to 74 years) of a rural Japanese town in Kochi Prefecture under everyday life conditions. RESULTS A symphony of biological clocks contributes to the preservation of a synchronized circadian system. (1) Citizens with an average 12.02-h period had fewer vascular variability disorders than those with shorter (11.37-h) or longer (12.88-h) periods (P<0.05), suggesting that the circasemidian rhythm is potentially important for human health. (2) An appropriate BP-HR coupling promoted healthier circadian profiles than a phase-advanced BP: lower 7-day nighttime SBP (106.8 vs. 112.9 mmHg, P=0.0469), deeper nocturnal SBP dip (20.5% vs. 16.8%, P=0.0101), and less frequent incidence of masked non-dipping (0.53 vs. 0.86, P=0.0378), identifying the night as an important time window. CONCLUSION Adaptation to irregular schedules in everyday life occurs unconsciously at night, probably initiated from the brain default mode network, in coordination with the biological clock system, including a reinforced about 12-hour clock, as "a biological clock-guided core integration system".
Collapse
Affiliation(s)
- Kuniaki Otsuka
- Department of Chronomics and Gerontology, Tokyo Women's Medical University, Tokyo, Japan; Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA.
| | - Larry A Beaty
- Halberg Chronobiology Center, University of Minnesota, Minneapolis, MN, USA
| | - Madoka Sato
- Department of Medicine, Jyoban Hospital, Fukushima, Japan
| | - Kazunobu Shitakura
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Tomoko Kikuchi
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Kiyotaka Okajima
- Cardiovascular Internal Medicine, Higashi Omiya General Hospital, Saitama, Japan
| | - Shigehiko Terada
- Advanced Medical Center, Shonan Kamukura General Hospital, Kanagawa, Japan
| | | |
Collapse
|
33
|
Bonnefont X. Cell Signaling in the Circadian Pacemaker: New Insights from in vivo Imaging. Neuroendocrinology 2024; 115:103-110. [PMID: 38754404 DOI: 10.1159/000539344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND "One for all, and all for one," the famous rallying cry of the Three Musketeers, in Alexandre Dumas's popular novel, certainly applies to the 20,000 cells composing the suprachiasmatic nuclei (SCN). These cells work together to form the central clock that coordinates body rhythms in tune with the day-night cycle. Like virtually every body cell, individual SCN cells exhibit autonomous circadian oscillations, but this rhythmicity only reaches a high level of precision and robustness when the cells are coupled with their neighbors. Therefore, understanding the functional network organization of SCN cells beyond their core rhythmicity is an important issue in circadian biology. SUMMARY The present review summarizes the main results from our recent study demonstrating the feasibility of recording SCN cells in freely moving mice and the significance of variations in intracellular calcium over several timescales. KEY MESSAGE We discuss how in vivo imaging at the cell level will be pivotal to interrogate the mammalian master clock, in an integrated context that preserves the SCN network organization, with intact inputs and outputs.
Collapse
Affiliation(s)
- Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
34
|
Hoekstra MMB, Ness N, Badia-Soteras A, Brancaccio M. Bmal1 integrates circadian function and temperature sensing in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2024; 121:e2316646121. [PMID: 38625943 PMCID: PMC11047078 DOI: 10.1073/pnas.2316646121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Circadian regulation and temperature dependency are important orchestrators of molecular pathways. How the integration between these two drivers is achieved, is not understood. We monitored circadian- and temperature-dependent effects on transcription dynamics of cold-response protein RNA Binding Motif 3 (Rbm3). Temperature changes in the mammalian master circadian pacemaker, the suprachiasmatic nucleus (SCN), induced Rbm3 transcription and regulated its circadian periodicity, whereas the core clock gene Per2 was unaffected. Rbm3 induction depended on a full Brain And Muscle ARNT-Like Protein 1 (Bmal1) complement: reduced Bmal1 erased Rbm3 responses and weakened SCN circuit resilience to temperature changes. By focusing on circadian and temperature dependency, we highlight weakened transmission between core clock and downstream pathways as a potential route for reduced circadian resilience.
Collapse
Affiliation(s)
- Marieke M. B. Hoekstra
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| | - Natalie Ness
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| | - Aina Badia-Soteras
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| | - Marco Brancaccio
- Department of Brain Science, Imperial College London, LondonW12 0NN, United Kingdom
- Department of Brain Sciences, United Kingdom Dementia Research Institute at Imperial College London, LondonW12 0NN, United Kingdom
| |
Collapse
|
35
|
Sumová A, Sládek M. Circadian Disruption as a Risk Factor for Development of Cardiovascular and Metabolic Disorders - From Animal Models to Human Population. Physiol Res 2024; 73:S321-S334. [PMID: 38634651 PMCID: PMC11412342 DOI: 10.33549/physiolres.935304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The lifestyle of human society is drifting apart from the natural environmental cycles that have influenced it since its inception. These cycles were fundamental in structuring the daily lives of people in the pre-industrial era, whether they were seasonal or daily. Factors that disrupt the regularity of human behaviour and its alignment with solar cycles, such as late night activities accompanied with food intake, greatly disturb the internal temporal organization in the body. This is believed to contribute to the rise of the so-called diseases of civilization. In this review, we discuss the connection between misalignment in daily (circadian) regulation and its impact on health, with a focus on cardiovascular and metabolic disorders. Our aim is to review selected relevant research findings from laboratory and human studies to assess the extent of evidence for causality between circadian clock disruption and pathology. Keywords: Circadian clock, Chronodisruption, Metabolism, Cardiovascular disorders, Spontaneously hypertensive rat, Human, Social jetlag, Chronotype.
Collapse
Affiliation(s)
- A Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
36
|
Ferro A, Arshad A, Boyd L, Stanley T, Berisha A, Vrudhula U, Gomez AM, Borniger JC, Cheadle L. The cytokine receptor Fn14 is a molecular brake on neuronal activity that mediates circadian function in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587786. [PMID: 38617238 PMCID: PMC11014623 DOI: 10.1101/2024.04.02.587786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
To survive, organisms must adapt to a staggering diversity of environmental signals, ranging from sensory information to pathogenic infection, across the lifespan. At the same time, organisms intrinsically generate biological oscillations, such as circadian rhythms, without input from the environment. While the nervous system is well-suited to integrate extrinsic and intrinsic cues, how the brain balances these influences to shape biological function system-wide is not well understood at the molecular level. Here, we demonstrate that the cytokine receptor Fn14, previously identified as a mediator of sensory experience-dependent synaptic refinement during brain development, regulates neuronal activity and function in adult mice in a time-of-day-dependent manner. We show that a subset of excitatory pyramidal (PYR) neurons in the CA1 subregion of the hippocampus increase Fn14 expression when neuronal activity is heightened. Once expressed, Fn14 constrains the activity of these same PYR neurons, suggesting that Fn14 operates as a molecular brake on neuronal activity. Strikingly, differences in PYR neuron activity between mice lacking or expressing Fn14 were most robust at daily transitions between light and dark, and genetic ablation of Fn14 caused aberrations in circadian rhythms, sleep-wake states, and sensory-cued and spatial memory. At the cellular level, microglia contacted fewer, but larger, excitatory synapses in CA1 in the absence of Fn14, suggesting that these brain-resident immune cells may dampen neuronal activity by modifying synaptic inputs onto PYR neurons. Finally, mice lacking Fn14 exhibited heightened susceptibility to chemically induced seizures, implicating Fn14 in disorders characterized by hyperexcitation, such as epilepsy. Altogether, these findings reveal that cytokine receptors that mediates inflammation in the periphery, such as Fn14, can also play major roles in healthy neurological function in the adult brain downstream of both extrinsic and intrinsic cues.
Collapse
Affiliation(s)
- Austin Ferro
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Anosha Arshad
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Department of Neurobiology and Behavior, Stony Brook University Renaissance School of Medicine, Stony Brook, NY 11794, USA
| | - Leah Boyd
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Tess Stanley
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Uma Vrudhula
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | - Adrian M. Gomez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
| | | | - Lucas Cheadle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11740, USA
- Howard Hughes Medical Institute, Cold Spring Harbor, NY 11740, USA
| |
Collapse
|
37
|
Ono D, Weaver DR, Hastings MH, Honma KI, Honma S, Silver R. The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. J Biol Rhythms 2024; 39:135-165. [PMID: 38366616 PMCID: PMC7615910 DOI: 10.1177/07487304231225706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
It has been 50 years since the suprachiasmatic nucleus (SCN) was first identified as the central circadian clock and 25 years since the last overview of developments in the field was published in the Journal of Biological Rhythms. Here, we explore new mechanisms and concepts that have emerged in the subsequent 25 years. Since 1997, methodological developments, such as luminescent and fluorescent reporter techniques, have revealed intricate relationships between cellular and network-level mechanisms. In particular, specific neuropeptides such as arginine vasopressin, vasoactive intestinal peptide, and gastrin-releasing peptide have been identified as key players in the synchronization of cellular circadian rhythms within the SCN. The discovery of multiple oscillators governing behavioral and physiological rhythms has significantly advanced our understanding of the circadian clock. The interaction between neurons and glial cells has been found to play a crucial role in regulating these circadian rhythms within the SCN. Furthermore, the properties of the SCN network vary across ontogenetic stages. The application of cell type-specific genetic manipulations has revealed components of the functional input-output system of the SCN and their correlation with physiological functions. This review concludes with the high-risk effort of identifying open questions and challenges that lie ahead.
Collapse
Affiliation(s)
- Daisuke Ono
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - David R Weaver
- Department of Neurobiology and NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Michael H Hastings
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ken-Ichi Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Sato Honma
- Research and Education Center for Brain Science, Hokkaido University, Sapporo, Japan
- Center for Sleep and Circadian Rhythm Disorders, Sapporo Hanazono Hospital, Sapporo, Japan
| | - Rae Silver
- Stress Recognition and Response, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neuroscience & Behavior, Barnard College and Department of Psychology, Columbia University, New York City, New York, USA
| |
Collapse
|
38
|
Pushchina EV, Kapustyanov IA, Kluka GG. Adult Neurogenesis of Teleost Fish Determines High Neuronal Plasticity and Regeneration. Int J Mol Sci 2024; 25:3658. [PMID: 38612470 PMCID: PMC11012045 DOI: 10.3390/ijms25073658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024] Open
Abstract
Studying the properties of neural stem progenitor cells (NSPCs) in a fish model will provide new information about the organization of neurogenic niches containing embryonic and adult neural stem cells, reflecting their development, origin cell lines and proliferative dynamics. Currently, the molecular signatures of these populations in homeostasis and repair in the vertebrate forebrain are being intensively studied. Outside the telencephalon, the regenerative plasticity of NSPCs and their biological significance have not yet been practically studied. The impressive capacity of juvenile salmon to regenerate brain suggests that most NSPCs are likely multipotent, as they are capable of replacing virtually all cell lineages lost during injury, including neuroepithelial cells, radial glia, oligodendrocytes, and neurons. However, the unique regenerative profile of individual cell phenotypes in the diverse niches of brain stem cells remains unclear. Various types of neuronal precursors, as previously shown, are contained in sufficient numbers in different parts of the brain in juvenile Pacific salmon. This review article aims to provide an update on NSPCs in the brain of common models of zebrafish and other fish species, including Pacific salmon, and the involvement of these cells in homeostatic brain growth as well as reparative processes during the postraumatic period. Additionally, new data are presented on the participation of astrocytic glia in the functioning of neural circuits and animal behavior. Thus, from a molecular aspect, zebrafish radial glia cells are seen to be similar to mammalian astrocytes, and can therefore also be referred to as astroglia. However, a question exists as to if zebrafish astroglia cells interact functionally with neurons, in a similar way to their mammalian counterparts. Future studies of this fish will complement those on rodents and provide important information about the cellular and physiological processes underlying astroglial function that modulate neural activity and behavior in animals.
Collapse
Affiliation(s)
- Evgeniya Vladislavovna Pushchina
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far East Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (I.A.K.); (G.G.K.)
| | | | | |
Collapse
|
39
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
40
|
Abstract
The brain is a complex organ, fundamentally changing across the day to perform basic functions like sleep, thought, and regulating whole-body physiology. This requires a complex symphony of nutrients, hormones, ions, neurotransmitters and more to be properly distributed across the brain to maintain homeostasis throughout 24 hours. These solutes are distributed both by the blood and by cerebrospinal fluid. Cerebrospinal fluid contents are distinct from the general circulation because of regulation at brain barriers including the choroid plexus, glymphatic system, and blood-brain barrier. In this review, we discuss the overlapping circadian (≈24-hour) rhythms in brain fluid biology and at the brain barriers. Our goal is for the reader to gain both a fundamental understanding of brain barriers alongside an understanding of the interactions between these fluids and the circadian timing system. Ultimately, this review will provide new insight into how alterations in these finely tuned clocks may lead to pathology.
Collapse
Affiliation(s)
- Velia S Vizcarra
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ryann M Fame
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
41
|
Licastro E, Pignataro G, Iliff JJ, Xiang Y, Lo EH, Hayakawa K, Esposito E. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 2024; 7:229. [PMID: 38402351 PMCID: PMC10894274 DOI: 10.1038/s42003-024-05911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.
Collapse
Affiliation(s)
- Ester Licastro
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yanxiao Xiang
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Elga Esposito
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
42
|
Choi J, Kang J, Kim T, Nehs CJ. Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia. Front Psychiatry 2024; 15:1358578. [PMID: 38419903 PMCID: PMC10899493 DOI: 10.3389/fpsyt.2024.1358578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Christa J. Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Harkany T, Tretiakov E, Varela L, Jarc J, Rebernik P, Newbold S, Keimpema E, Verkhratsky A, Horvath T, Romanov R. Molecularly stratified hypothalamic astrocytes are cellular foci for obesity. RESEARCH SQUARE 2024:rs.3.rs-3748581. [PMID: 38405925 PMCID: PMC10889077 DOI: 10.21203/rs.3.rs-3748581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Astrocytes safeguard the homeostasis of the central nervous system1,2. Despite their prominent morphological plasticity under conditions that challenge the brain's adaptive capacity3-5, the classification of astrocytes, and relating their molecular make-up to spatially devolved neuronal operations that specify behavior or metabolism, remained mostly futile6,7. Although it seems unexpected in the era of single-cell biology, the lack of a major advance in stratifying astrocytes under physiological conditions rests on the incompatibility of 'neurocentric' algorithms that rely on stable developmental endpoints, lifelong transcriptional, neurotransmitter, and neuropeptide signatures for classification6-8 with the dynamic functional states, anatomic allocation, and allostatic plasticity of astrocytes1. Simplistically, therefore, astrocytes are still grouped as 'resting' vs. 'reactive', the latter referring to pathological states marked by various inducible genes3,9,10. Here, we introduced a machine learning-based feature recognition algorithm that benefits from the cumulative power of published single-cell RNA-seq data on astrocytes as a reference map to stepwise eliminate pleiotropic and inducible cellular features. For the healthy hypothalamus, this walk-back approach revealed gene regulatory networks (GRNs) that specified subsets of astrocytes, and could be used as landmarking tools for their anatomical assignment. The core molecular censuses retained by astrocyte subsets were sufficient to stratify them by allostatic competence, chiefly their signaling and metabolic interplay with neurons. Particularly, we found differentially expressed mitochondrial genes in insulin-sensing astrocytes and demonstrated their reciprocal signaling with neurons that work antagonistically within the food intake circuitry. As a proof-of-concept, we showed that disrupting Mfn2 expression in astrocytes reduced their ability to support dynamic circuit reorganization, a time-locked feature of satiety in the hypothalamus, thus leading to obesity in mice. Overall, our results suggest that astrocytes in the healthy brain are fundamentally more heterogeneous than previously thought and topologically mirror the specificity of local neurocircuits.
Collapse
Affiliation(s)
- Tibor Harkany
- Center for Brain Research, Medical University of Vienna
| | | | | | - Jasna Jarc
- Center for Brain Research, Medical University of Vienna
| | | | | | - Erik Keimpema
- Medical University of Vienna, Center for Brain Research
| | | | | | | |
Collapse
|
44
|
Naveed M, Chao OY, Hill JW, Yang YM, Huston JP, Cao R. Circadian neurogenetics and its implications in neurophysiology, behavior, and chronomedicine. Neurosci Biobehav Rev 2024; 157:105523. [PMID: 38142983 PMCID: PMC10872425 DOI: 10.1016/j.neubiorev.2023.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
The circadian rhythm affects multiple physiological processes, and disruption of the circadian system can be involved in a range of disease-related pathways. The genetic underpinnings of the circadian rhythm have been well-studied in model organisms. Significant progress has been made in understanding how clock genes affect the physiological functions of the nervous system. In addition, circadian timing is becoming a key factor in improving drug efficacy and reducing drug toxicity. The circadian biology of the target cell determines how the organ responds to the drug at a specific time of day, thus regulating pharmacodynamics. The current review brings together recent advances that have begun to unravel the molecular mechanisms of how the circadian clock affects neurophysiological and behavioral processes associated with human brain diseases. We start with a brief description of how the ubiquitous circadian rhythms are regulated at the genetic, cellular, and neural circuit levels, based on knowledge derived from extensive research on model organisms. We then summarize the latest findings from genetic studies of human brain disorders, focusing on the role of human clock gene variants in these diseases. Lastly, we discuss the impact of common dietary factors and medications on human circadian rhythms and advocate for a broader application of the concept of chronomedicine.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA; Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Ruifeng Cao
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
45
|
Wu Q, Ren Q, Wang X, Bai H, Tian D, Gao G, Wang F, Yu P, Chang Y. Cellular iron depletion enhances behavioral rhythm by limiting brain Per1 expression in mice. CNS Neurosci Ther 2024; 30:e14592. [PMID: 38385622 PMCID: PMC10883092 DOI: 10.1111/cns.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
AIMS Disturbances in the circadian rhythm are positively correlated with the processes of aging and related neurodegenerative diseases, which are also associated with brain iron accumulation. However, the role of brain iron in regulating the biological rhythm is poorly understood. In this study, we investigated the impact of brain iron levels on the spontaneous locomotor activity of mice with altered brain iron levels and further explored the potential mechanisms governing these effects in vitro. RESULTS Our results revealed that conditional knockout of ferroportin 1 (Fpn1) in cerebral microvascular endothelial cells led to brain iron deficiency, subsequently resulting in enhanced locomotor activity and increased expression of clock genes, including the circadian locomotor output cycles kaput protein (Clock) and brain and muscle ARNT-like 1 (Bmal1). Concomitantly, the levels of period circadian regulator 1 (PER1), which functions as a transcriptional repressor in regulating biological rhythm, were decreased. Conversely, the elevated brain iron levels in APP/PS1 mice inhibited autonomous rhythmic activity. Additionally, our findings demonstrate a significant decrease in serum melatonin levels in Fpn1cdh5 -CKO mice compared with the Fpn1flox/flox group. In contrast, APP/PS1 mice with brain iron deposition exhibited higher serum melatonin levels than the WT group. Furthermore, in the human glioma cell line, U251, we observed reduced PER1 expression upon iron limitation by deferoxamine (DFO; iron chelator) or endogenous overexpression of FPN1. When U251 cells were made iron-replete by supplementation with ferric ammonium citrate (FAC) or increased iron import through transferrin receptor 1 (TfR1) overexpression, PER1 protein levels were increased. Additionally, we obtained similar results to U251 cells in mouse cerebellar astrocytes (MA-c), where we collected cells at different time points to investigate the rhythmic expression of core clock genes and the impact of DFO or FAC treatment on PER1 protein levels. CONCLUSION These findings collectively suggest that altered iron levels influence the circadian rhythm by regulating PER1 expression and thereby modulating the molecular circadian clock. In conclusion, our study identifies the regulation of brain iron levels as a potential new target for treating age-related disruptions in the circadian rhythm.
Collapse
Affiliation(s)
- Qiong Wu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
- Hebei Key Laboratory of Chinese Medicine Research on Cardio‐Cerebrovascular Disease, College of Basic MedicineHebei University of Chinese MedicineShijiazhuangHebei ProvinceChina
| | - Qiuyang Ren
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Xin Wang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Huiyuan Bai
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Dandan Tian
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Guofen Gao
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Fudi Wang
- School of Public HealthZhejiang University School of MedicineHangzhouZhejiangChina
| | - Peng Yu
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| | - Yan‐Zhong Chang
- Laboratory of Molecular Iron Metabolism, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life SciencesHebei Normal UniversityShijiazhuangChina
| |
Collapse
|
46
|
Son G, Neylan TC, Grinberg LT. Neuronal and glial vulnerability of the suprachiasmatic nucleus in tauopathies: evidence from human studies and animal models. Mol Neurodegener 2024; 19:4. [PMID: 38195580 PMCID: PMC10777507 DOI: 10.1186/s13024-023-00695-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024] Open
Abstract
Tauopathies, a group of neurodegenerative diseases that includes Alzheimer's disease, commonly lead to disturbances in sleep-wake patterns and circadian rhythm disorders. The circadian rhythm, a recurring 24-hour cycle governing human biological activity, is regulated by the hypothalamic suprachiasmatic nucleus (SCN) and endogenous transcriptional-translational feedback loops. Surprisingly, little attention has been given to investigating tauopathy-driven neuropathology in the SCN and the repercussions of SCN and circadian gene dysfunction in the human brain affected by tauopathies. This review aims to provide an overview of the current literature on the vulnerability of the SCN in tauopathies in humans. Emphasis is placed on elucidating the neuronal and glial changes contributing to the widespread disruption of the molecular circadian clock. Furthermore, this review identifies areas of knowledge requiring further investigation.
Collapse
Affiliation(s)
- Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas C Neylan
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
47
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
48
|
Comas M, De Pietri Tonelli D, Berdondini L, Astiz M. Ontogeny of the circadian system: a multiscale process throughout development. Trends Neurosci 2024; 47:36-46. [PMID: 38071123 DOI: 10.1016/j.tins.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/02/2023] [Accepted: 11/12/2023] [Indexed: 01/12/2024]
Abstract
The 24 h (circadian) timing system develops in mammals during the perinatal period. It carries out the essential task of anticipating daily recurring environmental changes to identify the best time of day for each molecular, cellular, and systemic process. Although significant knowledge has been acquired about the organization and function of the adult circadian system, relatively little is known about its ontogeny. During the perinatal period, the circadian system progressively gains functionality under the influence of the early environment. This review explores current evidence on the development of the circadian clock in mammals, highlighting the multilevel complexity of the process and the importance of gaining a better understanding of its underlying biology.
Collapse
Affiliation(s)
- Maria Comas
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain
| | | | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy
| | - Mariana Astiz
- Circadian Physiology of Neurons and Glia Laboratory, Achucarro Basque Center for Neuroscience, 48940 Leioa, Basque Country, Spain; Ikerbasque - Basque Foundation for Science, Bilbao, Spain; Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany.
| |
Collapse
|
49
|
Gorbachevskii AV, Kicherova OA, Reikhert LI. [The role of astrocytes, circadian rhythms and light pollution in the pathogenesis of Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:20-25. [PMID: 39072562 DOI: 10.17116/jnevro202412406120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Currently, more and more importance is being attached to the interaction of brain neurons with astrocytes in order to study the pathogenesis, and in the future, to develop methods for the prevention, early diagnosis and treatment of neurodegenerative diseases of the brain. In this review article, the authors attempt to demonstrate the role of astrocytes, disturbances in circadian rhythms, sleep-wake patterns, and light pollution in the development of Alzheimer's disease. Based on the analysis of literature data, possible mechanisms of synchronization and desynchronization of these processes are presented.
Collapse
|
50
|
Enoki R, Kon N, Shimizu K, Kobayashi K, Hiro S, Chang CP, Nakane T, Ishii H, Sakamoto J, Yamaguchi Y, Nemoto T. Cold-induced suspension and resetting of Ca 2+ and transcriptional rhythms in the suprachiasmatic nucleus neurons. iScience 2023; 26:108390. [PMID: 38077129 PMCID: PMC10700853 DOI: 10.1016/j.isci.2023.108390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 05/09/2025] Open
Abstract
Does the circadian clock keep running under such hypothermic states as daily torpor and hibernation? This fundamental question has been a research subject for decades but has remained unsettled. We addressed this subject by monitoring the circadian rhythm of clock gene transcription and intracellular Ca2+ in the neurons of the suprachiasmatic nucleus (SCN), master circadian clock, in vitro under a cold environment. We discovered that the transcriptional and Ca2+ rhythms are maintained at 22°C-28°C, but suspended at 15°C, accompanied by a large Ca2+ increase. Rewarming instantly resets the Ca2+ rhythms, while transcriptional rhythms reach a stable phase after the transient state and recover their phase relationship with the Ca2+ rhythm. We conclude that SCN neurons remain functional under moderate hypothermia but stop ticking in deep hypothermia and that the rhythms reset after rewarming. These data also indicate that stable Ca2+ oscillation precedes clock gene transcriptional rhythms in SCN neurons.
Collapse
Affiliation(s)
- Ryosuke Enoki
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Naohiro Kon
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan
- Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
- Suntory Rising Stars Encouragement Program in Life Sciences (SunRiSE), Suntory Foundation for Life Sciences, Kyoto 619-0284, Japan
| | - Kimiko Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kenta Kobayashi
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Sota Hiro
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Ching-Pu Chang
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tatsuto Nakane
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan
| | - Hirokazu Ishii
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Joe Sakamoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Yoshifumi Yamaguchi
- Hibernation Metabolism, Physiology and Development Group, Institute of Low-Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Inamori Research Institute for Science Fellowship (InaRIS), Kyoto, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
- School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Higashiyama 5-1, Myodaiji, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|