1
|
Budelli G, Ferreiro MJ, Bolatto C. Taking flight, the use of Drosophila melanogaster for neuroscience research in Uruguay. Neuroscience 2025; 573:104-119. [PMID: 40058485 DOI: 10.1016/j.neuroscience.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
The Sociedad de Neurociencias del Uruguay is celebrating its 30th anniversary, sustained by more than a century of neuroscience research in the country. During this time, different approaches and experimental organisms have been incorporated to study diverse aspects of neurobiology. One of these experimental animals, successfully used in a variety of biological fields, is the fruit fly Drosophila melanogaster. Although Drosophila has been a model organism for neuroscience research worldwide for many decades, its use in Uruguay for that purpose is relatively new and just taking flight. In this special issue article, we will describe some of the research lines that are currently using Drosophila for neuroscience studies, questioning a wide range of issues including thermoreception, neurodegenerative diseases such as Parkinson's, screening of bioactive compounds with a neuroprotective effect, and gene/protein function during development of the nervous system. The consolidation of these research lines has been achieved due to unique features of D. melanogaster as an experimental model. We will review the advantages of using Drosophila to study neurobiology and describe some of its useful genetic tools. Advantages such as having powerful genetics, highly conserved disease pathways, a complete connectome, very low comparative costs, easy maintenance, and the support of a collaborative community allowing access to a vast toolkit, all make D. melanogaster an ideal model organism for neuroscientists in countries with low levels of investment in research and development. This review focuses on the strengths and description of useful techniques to study neurobiology using Drosophila, from the perspective of a Latin-American experience.
Collapse
Affiliation(s)
- Gonzalo Budelli
- Unidad Académica de Biofísica, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay.
| | - María José Ferreiro
- Departamento de Neurofarmacología Experimental, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| | - Carmen Bolatto
- Unidad Académica de Histología y Embriología, Facultad de Medicina, Universidad de la República (UdelaR), Montevideo, Uruguay; Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Ministerio de Educación y Cultura (MEC), Montevideo, Uruguay
| |
Collapse
|
2
|
Liang SY, Li LJ, Huang YR, Zhu J, Cui F, Du XY, Zhang L, Jia YB, Hou SJ, Niu XY, Yang JJ, Lu S, Liu RT. In Situ synNotch-Programmed Astrocytes Sense and Attenuate Neuronal Apoptosis. Int J Mol Sci 2025; 26:4343. [PMID: 40362583 PMCID: PMC12072468 DOI: 10.3390/ijms26094343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Neuronal apoptosis is an early and critical pathological hallmark of many chronic neurodegenerative diseases, often occurring silently long before the appearance of overt clinical symptoms. In this study, we engineered astrocytes utilizing a dual-biomarker recognition synNotch system (dual-synNotch). This system is designed to specifically identify neuronal apoptosis through the 'AND Gate' activation mechanism, which is triggered by the simultaneous sensing of the apoptotic signal phosphatidylserine (PS) and the neuronal signal ganglioside Gt1b. Upon detection of these neuronal apoptotic signals, the synNotch receptors are activated, inducing the expression of two key molecules: secreted Gaussia luciferase (GLuc), a highly detectable reporter that can cross the blood-brain barrier (BBB), and brain-derived neurotrophic factor (BDNF), a neuroprotective molecule that promotes neuronal survival by inhibiting apoptosis and enhancing memory and cognitive function. This engineered system effectively converts and amplifies early, imperceptible neuronal apoptotic signals into detectable outputs, enabling convenient in vitro monitoring and diagnosis. Therefore, it represents a promising strategy for the early detection and intervention of neurodegenerative diseases associated with neuronal apoptosis.
Collapse
Affiliation(s)
- Shi-Yu Liang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Jie Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Ya-Ru Huang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Jie Zhu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Fang Cui
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Xiao-Yu Du
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Lun Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Ying-Bo Jia
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Sheng-Jie Hou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Xiao-Yun Niu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Jin-Ju Yang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Shuai Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| | - Rui-Tian Liu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (S.-Y.L.); (L.-J.L.)
| |
Collapse
|
3
|
Lee WP, Chiang MH, Chao YP, Wang YF, Chen YL, Lin YC, Jenq SY, Lu JW, Fu TF, Liang JY, Yang KC, Chang LY, Wu T, Wu CL. Dynamics of two distinct memory interactions during water seeking in Drosophila. Proc Natl Acad Sci U S A 2025; 122:e2422028122. [PMID: 40244670 PMCID: PMC12036989 DOI: 10.1073/pnas.2422028122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Forming and forgetting memories shape our self-awareness and help us face future challenges. Therefore, understanding how memories are formed and how different memories interact in the brain is important. Previous studies have shown that thirsty flies sense humidity through ionotropic receptors, which help them locate water sources. Here, we showed that thirsty flies can be trained to associate specific odors with humidity to form a humidity memory that lasts for 30 min after association. Humidity memory formation requires the Ir93a and Ir40a ionotropic receptors, which are essential for environmental humidity sensing. Water memory takes precedence, leading to the forgetting of humidity memory by activating a small subset of dopaminergic neurons called protocerebral anterior medial (PAM)-γ4, that project to the restricted region of the mushroom body (MB) γ lobes. Adult-stage-specific silencing of Dop2R dopaminergic receptors in MB γ neurons prolongs humidity memory for 3 h. Live-brain calcium imaging and dopamine sensor studies revealed significantly increased PAM-γ4 neural activity after odor/humidity association, suggesting its role in forgetting the humidity memory. Our results suggest that overlapping neural circuits are responsible for the acquisition of water memory and forgetting humidity memory in thirsty flies.
Collapse
Affiliation(s)
- Wang-Pao Lee
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Meng-Hsuan Chiang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Yi-Ping Chao
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan33302, Taiwan
| | - Ying-Fong Wang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Yan-Lin Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
| | - Shan-Yun Jenq
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Jun-Wei Lu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chi Nan University, Nantou54561, Taiwan
| | - Jia-Yu Liang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Kai-Cing Yang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
| | - Li-Yun Chang
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei 23651 City, Taiwan
| | - Chia-Lin Wu
- Department of Biochemistry, Chang Gung University, Taoyuan33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu30013, Taiwan
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei 23651 City, Taiwan
| |
Collapse
|
4
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2025; 40:120-142. [PMID: 39529231 PMCID: PMC11915775 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Nässel DR. What Drosophila can tell us about state-dependent peptidergic signaling in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104275. [PMID: 39956367 DOI: 10.1016/j.ibmb.2025.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
Plasticity in animal behavior and physiology is largely due to modulatory and regulatory signaling with neuropeptides and peptide hormones (collectively abbreviated NPHs). The NPHs constitute a very large and versatile group of signaling substances that partake at different regulatory levels in most daily activities of an organism. This review summarizes key principles in NPH actions in the brain and in interorgan signaling, with focus on Drosophila. NPHs are produced by neurons, neurosecretory cells (NSCs) and other endocrine cells in NPH-specific and stereotypic patterns. Most of the NPHs have multiple (pleiotropic) functions and target several different neuronal circuits and/or peripheral tissues. Such divergent NPH signaling ensures orchestration of behavior and physiology in state-dependent manners. Conversely, many neurons, circuits, NSCs, or other cells, are targeted by multiple NPHs. This convergent signaling commonly conveys various signals reporting changes in the external and internal environment to central neurons/circuits. As an example of wider functional convergence, 26 different Drosophila NPHs act at many different levels to regulate food search and feeding. Convergence is also seen in hormonal regulation of peripheral functions. For instance, multiple NPHs target renal tubules to ensure osmotic homeostasis. Interestingly, several of the same osmoregulatory NPHs also regulate feeding, metabolism and stress. However, for some NPHs the cellular distribution and functions suggests multiple unrelated functions that are restricted to specific circuits. Thus, NPH signaling follows distinct patterns for each specific NPH, but taken together they form overlapping networks that modulate behavior and physiology.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
6
|
Zhang X, Mille-Fragoso LS, Kaseniit KE, Lee AP, Zhang M, Call CC, Hu Y, Xie Y, Gao XJ. Post-transcriptional modular synthetic receptors. Nat Chem Biol 2025:10.1038/s41589-025-01872-w. [PMID: 40155716 DOI: 10.1038/s41589-025-01872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025]
Abstract
Inspired by the power of transcriptional synthetic receptors and hoping to complement them to expand the toolbox for cell engineering, we establish LIDAR (Ligand-Induced Dimerization-Activating RNA editing), a modular post-transcriptional synthetic receptor platform that harnesses RNA editing by adenosine deaminases acting on RNA. LIDAR is compatible with various receptor architectures in different cellular contexts and enables the sensing of diverse ligands and the production of functional outputs. Furthermore, LIDAR can sense orthogonal signals in the same cell and produce synthetic spatial patterns, potentially enabling the programming of complex multicellular behaviors. Lastly, LIDAR is compatible with compact encoding and can be delivered as synthetic mRNA. Thus, LIDAR expands the family of synthetic receptors, holding the promise to empower basic research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Luis S Mille-Fragoso
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - K Eerik Kaseniit
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Arden P Lee
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Connor C Call
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yixin Hu
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yunxin Xie
- The Chinese Undergraduate Visiting Research (UGVR) Program, Stanford, CA, USA
| | - Xiaojing J Gao
- Stanford Bio-X, Stanford University, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Deluca A, Bascom B, Key Planas DA, Kocher MA, Torres M, Arbeitman MN. Contribution of neurons that express fruitless and Clock transcription factors to behavioral rhythms and courtship. iScience 2025; 28:112037. [PMID: 40104074 PMCID: PMC11914808 DOI: 10.1016/j.isci.2025.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 12/16/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
Animals need to integrate information across neuronal networks that direct reproductive behaviors and circadian rhythms. The Drosophila master regulatory transcription factors that direct courtship and circadian rhythms are co-expressed. We find sex differences in the number of these fruitless (fru) and Clock (Clk)-expressing neurons (fru ∩ Clk neurons) regulated by male-specific Fru. We assign the fru ∩ Clk neurons to the electron microscopy connectome and to subtypes of clock neurons. We discover sex differences in fru-expressing neurons that are post-synaptic targets of Clk-expressing neurons. When fru ∩ Clk neurons are activated or silenced, we observe a male-specific shortening of period length. Activation of fru ∩ Clk neurons also changes the rate a courtship behavior is performed. We examine male courtship behavior over 24 h and find courtship activities peak at lights-on. These results reveal how neurons that subserve the two processes can impact behavioral outcomes in a sex-specific manner.
Collapse
Affiliation(s)
- Anthony Deluca
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Brooke Bascom
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Daniela A. Key Planas
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Matthew A. Kocher
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Marielise Torres
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Michelle N. Arbeitman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
8
|
Xu C, Li Z, Luo L. Protocol for cell-type-specific single-cell labeling and manipulation in Drosophila using a sparse driver system. STAR Protoc 2025; 6:103694. [PMID: 40073018 PMCID: PMC11950737 DOI: 10.1016/j.xpro.2025.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Here, we present a protocol for cell-type-specific single-cell labeling and manipulation in Drosophila using a sparse driver system. We describe steps for generating constructs and fly lines, titrating heat-shocked durations for precise temporal control and desired sparsity, and co-expressing multiple transgenes for experiments. We demonstrate that this generalizable toolkit enables tunable sparsity, multi-color staining, single-cell trans-synaptic tracing, single-cell manipulation, and cell-autonomous gene function analysis. For complete details on the use and execution of this protocol, please refer to Xu et al.1.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA.
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Ehrhardt E, Whitehead SC, Namiki S, Minegishi R, Siwanowicz I, Feng K, Otsuna H, FlyLight Project Team, Meissner GW, Stern D, Truman J, Shepherd D, Dickinson MH, Ito K, Dickson BJ, Cohen I, Card GM, Korff W. Single-cell type analysis of wing premotor circuits in the ventral nerve cord of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.05.31.542897. [PMID: 37398009 PMCID: PMC10312520 DOI: 10.1101/2023.05.31.542897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
To perform most behaviors, animals must send commands from higher-order processing centers in the brain to premotor circuits that reside in ganglia distinct from the brain, such as the mammalian spinal cord or insect ventral nerve cord. How these circuits are functionally organized to generate the great diversity of animal behavior remains unclear. An important first step in unraveling the organization of premotor circuits is to identify their constituent cell types and create tools to monitor and manipulate these with high specificity to assess their functions. This is possible in the tractable ventral nerve cord of the fly. To generate such a toolkit, we used a combinatorial genetic technique (split-GAL4) to create 195 sparse transgenic driver lines targeting 196 individual cell types in the ventral nerve cord. These included wing and haltere motoneurons, modulatory neurons, and interneurons. Using a combination of behavioral, developmental, and anatomical analyses, we systematically characterized the cell types targeted in our collection. In addition, we identified correspondences between the cells in this collection and a recent connectomic data set of the ventral nerve cord. Taken together, the resources and results presented here form a powerful toolkit for future investigations of neuronal circuits and connectivity of premotor circuits while linking them to behavioral outputs.
Collapse
Affiliation(s)
- Erica Ehrhardt
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Samuel C Whitehead
- Physics Department, Cornell University, 509 Clark Hall, Ithaca, New York 14853, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Shigehiro Namiki
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Ryo Minegishi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Igor Siwanowicz
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Kai Feng
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - FlyLight Project Team
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Geoffrey W Meissner
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - David Stern
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Jim Truman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - David Shepherd
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building, Southampton SO17 1BJ
| | - Michael H Dickinson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- California Institute of Technology, 1200 E California Blvd, Pasadena, California 91125, USA
| | - Kei Ito
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Institute of Zoology, University of Cologne, Zülpicher Str 47b, 50674 Cologne, Germany
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
- Queensland Brain Institute, University of Queensland, 79 Upland Rd, Brisbane, QLD, 4072, Australia
| | - Itai Cohen
- Physics Department, Cornell University, 509 Clark Hall, Ithaca, New York 14853, USA
| | - Gwyneth M Card
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| | - Wyatt Korff
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Dr, Ashburn, Virginia 20147, USA
| |
Collapse
|
10
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. Sci Rep 2025; 15:5278. [PMID: 39939650 PMCID: PMC11821855 DOI: 10.1038/s41598-025-89088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ), the primary taste region of the fly brain. We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We analyze interconnections within and between taste pathways, characterize modality-dependent differences in taste neuron properties, identify other types of inputs onto taste pathways, and use computational simulations to relate neuronal connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R Walker
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
11
|
Huda A, Vaden TJ, Bai H, Rawls RT, Peppers RJ, Monck CF, Holley HD, Castaneda AN, Ni L. Behavioral Assays for Optogenetic Manipulation of Neural Circuits in Drosophila melanogaster. J Vis Exp 2025:10.3791/67964. [PMID: 39995158 PMCID: PMC12051042 DOI: 10.3791/67964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Optogenetics has become a fundamental technique in neuroscience, enabling precise control of neuronal activity through light stimulation. This study introduces easy-to-implement setups for applying optogenetic methods in Drosophila melanogaster. Two optogenetic tools, CsChrimson, a red-light-activated cation channel, and GtACR2, a blue-light-activated anion channel, were employed in four experimental approaches. Three of these approaches involve single-fly experiments: (1) a blue-light optogenetic thermotactic positional preference assay targeting temperature-sensitive heating cells, (2) a red-light optogenetic positional preference assay activating bitter sensing neurons, and (3) a proboscis extension response assay activating the sweet-sensing neurons. The fourth approach (4) is a fly maze setup to assess avoidance behaviors using multiple flies. The ability to manipulate neural activity temporally and spatially offers powerful insights into sensory processing and decision-making, underscoring the potential of optogenetics to advance our knowledge of neural function. These methods provide an accessible and robust framework for future research in neuroscience to enhance the understanding of specific neural pathways and their behavioral outcomes.
Collapse
Affiliation(s)
| | | | - Hua Bai
- School of Neuroscience, Virginia Tech
| | | | | | | | | | - Allison N Castaneda
- School of Neuroscience, Virginia Tech; Fairfax County Public Schools, Westfield High School
| | - Lina Ni
- School of Neuroscience, Virginia Tech;
| |
Collapse
|
12
|
Nässel DR. A brief history of insect neuropeptide and peptide hormone research. Cell Tissue Res 2025; 399:129-159. [PMID: 39653844 PMCID: PMC11787221 DOI: 10.1007/s00441-024-03936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/14/2024] [Indexed: 02/02/2025]
Abstract
This review briefly summarizes 50 years of research on insect neuropeptide and peptide hormone (collectively abbreviated NPH) signaling, starting with the sequencing of proctolin in 1975. The first 25 years, before the sequencing of the Drosophila genome, were characterized by efforts to identify novel NPHs by biochemical means, mapping of their distribution in neurons, neurosecretory cells, and endocrine cells of the intestine. Functional studies of NPHs were predominantly dealing with hormonal aspects of peptides and many employed ex vivo assays. With the annotation of the Drosophila genome, and more specifically of the NPHs and their receptors in Drosophila and other insects, a new era followed. This started with matching of NPH ligands to orphan receptors, and studies to localize NPHs with improved detection methods. Important advances were made with introduction of a rich repertoire of innovative molecular genetic approaches to localize and interfere with expression or function of NPHs and their receptors. These methods enabled cell- or circuit-specific interference with NPH signaling for in vivo assays to determine roles in behavior and physiology, imaging of neuronal activity, and analysis of connectivity in peptidergic circuits. Recent years have seen a dramatic increase in reports on the multiple functions of NPHs in development, physiology and behavior. Importantly, we can now appreciate the pleiotropic functions of NPHs, as well as the functional peptidergic "networks" where state dependent NPH signaling ensures behavioral plasticity and systemic homeostasis.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, S-10691, Stockholm, Sweden.
| |
Collapse
|
13
|
Züfle P, Batista LL, Brandão SC, D’Uva G, Daniel C, Martelli C. Impact of developmental temperature on neural growth, connectivity, and function. SCIENCE ADVANCES 2025; 11:eadp9587. [PMID: 39813340 PMCID: PMC11734716 DOI: 10.1126/sciadv.adp9587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Environmental temperature dictates the developmental pace of poikilothermic animals. In Drosophila, slower development at lower temperatures results in higher brain connectivity, but the generality of such scaling across temperatures and brain regions and its impact on function are unclear. Here, we show that brain connectivity scales continuously across temperatures, in agreement with a first-principle model that postulates different metabolic constraints for the growth of the brain and the organism. The model predicts brain wiring under temperature cycles and the nonuniform temporal scaling of neural development across temperatures. Developmental temperature has notable effects on odor-driven behavior. Dissecting the circuit architecture and function of neurons in the olfactory pathway, we demonstrate that developmental temperature does not alter odor encoding in first- and second-order neurons, but it shifts the specificity of connections onto third-order neurons that mediate innate behaviors. We conclude that while some circuit computations are robust to the effects of developmental temperature on wiring, others exhibit phenotypic plasticity with possible adaptive advantages.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlotta Martelli
- Johannes Gutenberg University, Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Mainz, Germany
| |
Collapse
|
14
|
Coomer CE, Naumova D, Talay M, Zolyomi B, Snell NJ, Sorkaç A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, McLean DL, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. Nat Neurosci 2025; 28:189-200. [PMID: 39702668 DOI: 10.1038/s41593-024-01815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/30/2024] [Indexed: 12/21/2024]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function, is a central goal of neuroscience research. Here we report the in vivo mapping of connections between presynaptic and postsynaptic partners in zebrafish, by adapting the trans-Tango genetic approach that was first developed for anterograde transsynaptic tracing in Drosophila. Neural connections were visualized between synaptic partners in larval retina, brain and spinal cord and followed over development. The specificity of labeling was corroborated by functional experiments in which optogenetic activation of presynaptic spinal cord interneurons elicited responses in known motor neuronal postsynaptic targets, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator or by electrophysiology. Transsynaptic signaling through trans-Tango reveals synaptic connections in the zebrafish nervous system, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
Affiliation(s)
- Cagney E Coomer
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Daria Naumova
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Bence Zolyomi
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Nathaniel J Snell
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jean Michel Chanchu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana Roman
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jennifer Li
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Drew Robson
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Sun J, Rojo-Cortes F, Ulian-Benitez S, Forero MG, Li G, Singh DND, Wang X, Cachero S, Moreira M, Kavanagh D, Jefferis GSXE, Croset V, Hidalgo A. A neurotrophin functioning with a Toll regulates structural plasticity in a dopaminergic circuit. eLife 2024; 13:RP102222. [PMID: 39704728 DOI: 10.7554/elife.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Experience shapes the brain as neural circuits can be modified by neural stimulation or the lack of it. The molecular mechanisms underlying structural circuit plasticity and how plasticity modifies behaviour are poorly understood. Subjective experience requires dopamine, a neuromodulator that assigns a value to stimuli, and it also controls behaviour, including locomotion, learning, and memory. In Drosophila, Toll receptors are ideally placed to translate experience into structural brain change. Toll-6 is expressed in dopaminergic neurons (DANs), raising the intriguing possibility that Toll-6 could regulate structural plasticity in dopaminergic circuits. Drosophila neurotrophin-2 (DNT-2) is the ligand for Toll-6 and Kek-6, but whether it is required for circuit structural plasticity was unknown. Here, we show that DNT-2-expressing neurons connect with DANs, and they modulate each other. Loss of function for DNT-2 or its receptors Toll-6 and kinase-less Trk-like kek-6 caused DAN and synapse loss, impaired dendrite growth and connectivity, decreased synaptic sites, and caused locomotion deficits. In contrast, over-expressed DNT-2 increased DAN cell number, dendrite complexity, and promoted synaptogenesis. Neuronal activity modified DNT-2, increased synaptogenesis in DNT-2-positive neurons and DANs, and over-expression of DNT-2 did too. Altering the levels of DNT-2 or Toll-6 also modified dopamine-dependent behaviours, including locomotion and long-term memory. To conclude, a feedback loop involving dopamine and DNT-2 highlighted the circuits engaged, and DNT-2 with Toll-6 and Kek-6 induced structural plasticity in this circuit modifying brain function and behaviour.
Collapse
Affiliation(s)
- Jun Sun
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Francisca Rojo-Cortes
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Suzana Ulian-Benitez
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Manuel G Forero
- Semillero Lún, Grupo D+Tec, Universidad de Ibagué, Ibagué, Colombia
| | - Guiyi Li
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Deepanshu N D Singh
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaocui Wang
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Marta Moreira
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Dean Kavanagh
- Institute of Biomedical Research, University of Birmingham, Birmingham, United Kingdom
| | | | - Vincent Croset
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Alicia Hidalgo
- Birmingham Centre for Neurogenetics, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Jeong J, Kwon K, Geisseova TK, Lee J, Kwon T, Lim C. Drosulfakinin signaling encodes early-life memory for adaptive social plasticity. eLife 2024; 13:e103973. [PMID: 39692597 PMCID: PMC11706606 DOI: 10.7554/elife.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Drosophila establishes social clusters in groups, yet the underlying principles remain poorly understood. Here, we performed a systemic analysis of social network behavior (SNB) that quantifies individual social distance (SD) in a group over time. The SNB assessment in 175 inbred strains from the Drosophila Genetics Reference Panel showed a tight association of short SD with long developmental time, low food intake, and hypoactivity. The developmental inferiority in short-SD individuals was compensated by their group culturing. By contrast, developmental isolation silenced the beneficial effects of social interactions in adults and blunted the plasticity of SNB under physiological challenges. Transcriptome analyses revealed genetic diversity for SD traits, whereas social isolation reprogrammed select genetic pathways, regardless of SD phenotypes. In particular, social deprivation suppressed the expression of the neuropeptide Drosulfakinin (Dsk) in three pairs of adult brain neurons. Male-specific DSK signaling to cholecystokinin-like receptor 17D1 mediated the SNB plasticity. In fact, transgenic manipulations of the DSK neuron activity were sufficient to imitate the state of social experience. Given the functional conservation of mammalian Dsk homologs, we propose that animals may have evolved a dedicated neural mechanism to encode early-life experience and transform group properties adaptively.
Collapse
Affiliation(s)
- Jiwon Jeong
- Department of Biological Sciences, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Kujin Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Terezia Klaudia Geisseova
- Department of Biological Sciences, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Jongbin Lee
- Research Center for Cellular Identity, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Graduate School of Health Science and Technology, Ulsan National Institute of Science and TechnologyUlsanRepublic of Korea
| | - Chunghun Lim
- Research Center for Cellular Identity, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
- Graduate School of Stem Cell and Regenerative Biology, Korea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
| |
Collapse
|
17
|
Reinhard N, Fukuda A, Manoli G, Derksen E, Saito A, Möller G, Sekiguchi M, Rieger D, Helfrich-Förster C, Yoshii T, Zandawala M. Synaptic connectome of the Drosophila circadian clock. Nat Commun 2024; 15:10392. [PMID: 39638801 PMCID: PMC11621569 DOI: 10.1038/s41467-024-54694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
The circadian clock and its output pathways play a pivotal role in optimizing daily processes. To obtain insights into how diverse rhythmic physiology and behaviors are orchestrated, we have generated a comprehensive connectivity map of an animal circadian clock using the Drosophila FlyWire brain connectome. Intriguingly, we identified additional dorsal clock neurons, thus showing that the Drosophila circadian network contains ~240 instead of 150 neurons. We revealed extensive contralateral synaptic connectivity within the network and discovered novel indirect light input pathways to the clock neurons. We also elucidated pathways via which the clock modulates descending neurons that are known to regulate feeding and reproductive behaviors. Interestingly, we observed sparse monosynaptic connectivity between clock neurons and downstream higher-order brain centers and neurosecretory cells known to regulate behavior and physiology. Therefore, we integrated single-cell transcriptomics and receptor mapping to decipher putative paracrine peptidergic signaling by clock neurons. Our analyses identified additional novel neuropeptides expressed in clock neurons and suggest that peptidergic signaling significantly enriches interconnectivity within the clock network.
Collapse
Affiliation(s)
- Nils Reinhard
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Ayumi Fukuda
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Giulia Manoli
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Emilia Derksen
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Aika Saito
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Gabriel Möller
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Manabu Sekiguchi
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Dirk Rieger
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Am Hubland, Würzburg, Germany.
- Department of Biochemistry and Molecular Biology and Integrative Neuroscience Program, University of Nevada Reno, Reno, NV, USA.
| |
Collapse
|
18
|
Xu C, Luo L. The sparse driver system for in vivo single-cell labeling and manipulation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626507. [PMID: 39677673 PMCID: PMC11642855 DOI: 10.1101/2024.12.02.626507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
In this protocol, we introduce a sparse driver system for cell-type specific single-cell labeling and manipulation in Drosophila, enabling complete and simultaneous expression of multiple transgenes in the same cells. The system precisely controls expression probability and sparsity via mutant FRT sites with reduced recombination efficiency and tunable FLP levels adjusted by heat-shock durations. We demonstrate that this generalizable toolkit enables tunable sparsity, multi-color staining, single-cell trans-synaptic tracing, single-cell manipulation, and in vivo analysis of cell-autonomous gene function. For details on the use and execution of this protocol, please refer to Xu et al. 2024.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Biology Graduate Program, Stanford University, CA 94305, USA
- Lead contact
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Luo Y, Talross GJS, Carlson JR. Function and evolution of Ir52 receptors in mate detection in Drosophila. Curr Biol 2024; 34:5395-5408.e6. [PMID: 39471807 PMCID: PMC11614688 DOI: 10.1016/j.cub.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/11/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Identifying a suitable mating partner is an ancient and critical biological problem. How a fruit fly distinguishes a fly of the same species from flies of innumerable related species remains unclear. We analyze the Ir52 receptors, expressed in taste neurons on the fly legs and encoded by a cluster of genes. We find that the cluster shows dynamic evolution, rapidly expanding and contracting over evolutionary time. We develop a novel in vivo expression system and find that Ir52 receptors respond differently to pheromone extracts of different fly species. The receptors are activated by some compounds and inhibited by others, with different receptors showing distinct response profiles. Circuit mapping shows that Ir52 neurons are pre-synaptic to sexually dimorphic neurons that overlap with neurons acting in courtship behavior. Our results support a model in which Ir52 receptors detect information about the species of a potential mating partner.
Collapse
Affiliation(s)
- Yichen Luo
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
20
|
Zhang X, Mille-Fragoso LS, Eerik Kaseniit K, Lee AP, Zhang M, Call CC, Hu Y, Xie Y, Gao XJ. Post-Transcriptional Modular Synthetic Receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592453. [PMID: 38746461 PMCID: PMC11092781 DOI: 10.1101/2024.05.03.592453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Inspired by the power of transcriptional synthetic receptors and hoping to complement them to expand the toolbox for cell engineering, we establish LIDAR (Ligand-Induced Dimerization Activating RNA editing), a modular post-transcriptional synthetic receptor platform that harnesses RNA editing by ADAR. LIDAR is compatible with various receptor architectures in different cellular contexts, and enables the sensing of diverse ligands and the production of functional outputs. Furthermore, LIDAR can sense orthogonal signals in the same cell and produce synthetic spatial patterns, potentially enabling the programming of complex multicellular behaviors. Finally, LIDAR is compatible with compact encoding and can be delivered as synthetic mRNA. Thus, LIDAR expands the family of synthetic receptors, holding the promise to empower basic research and therapeutic applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Bioengineering, Stanford University; Stanford, 94305, USA
- Sarafan ChEM-H, Stanford University; Stanford, 94305, USA
| | - Luis S. Mille-Fragoso
- Department of Bioengineering, Stanford University; Stanford, 94305, USA
- Sarafan ChEM-H, Stanford University; Stanford, 94305, USA
- Stanford Bio-X, Stanford University; Stanford, 94305, USA
| | - K. Eerik Kaseniit
- Department of Bioengineering, Stanford University; Stanford, 94305, USA
- Stanford Bio-X, Stanford University; Stanford, 94305, USA
| | - Arden P. Lee
- Sarafan ChEM-H, Stanford University; Stanford, 94305, USA
| | - Meng Zhang
- Department of Chemical Engineering, Stanford University; Stanford, 94305, USA
| | - Connor C. Call
- Department of Chemical Engineering, Stanford University; Stanford, 94305, USA
| | - Yixin Hu
- Department of Biology, Stanford University; Stanford, 94305, USA
| | - Yunxin Xie
- Department of Chemical Engineering, Stanford University; Stanford, 94305, USA
- The Chinese Undergraduate Visiting Research (UGVR) Program; Stanford, 94305, USA
| | - Xiaojing J. Gao
- Department of Chemical Engineering, Stanford University; Stanford, 94305, USA
- Sarafan ChEM-H, Stanford University; Stanford, 94305, USA
- Stanford Bio-X, Stanford University; Stanford, 94305, USA
| |
Collapse
|
21
|
Dai X, Le JQ, Ma D, Rosbash M. Four SpsP neurons are an integrating sleep regulation hub in Drosophila. SCIENCE ADVANCES 2024; 10:eads0652. [PMID: 39576867 PMCID: PMC11584021 DOI: 10.1126/sciadv.ads0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
Sleep is essential and highly conserved, yet its regulatory mechanisms remain largely unknown. To identify sleep drive neurons, we imaged Drosophila brains with calcium-modulated photoactivatable ratiometric integrator (CaMPARI). The results indicate that the activity of the protocerebral bridge (PB) correlates with sleep drive. We further identified a key three-layer PB circuit, EPG-SpsP-PEcG, in which the four SpsP neurons in the PB respond to ellipsoid body (EB) signals from EPG neurons and send signals back to the EB through PEcG neurons. This circuit is strengthened by sleep deprivation, indicating a plasticity response to sleep drive. SpsP neurons also receive inputs from the sensorimotor brain region, suggesting that they may encode sleep drive by integrating sensorimotor and navigation cues. Together, our experiments show that the four SpsP neurons and their sleep regulatory circuit play an important and dynamic role in sleep regulation.
Collapse
Affiliation(s)
- Xihuimin Dai
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Jasmine Quynh Le
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| | - Dingbang Ma
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Michael Rosbash
- Howard Hughes Medical Institute, Brandeis University, Waltham MA 02454, USA
| |
Collapse
|
22
|
Yan L, Wu L, Wiggin TD, Su X, Yan W, Li H, Li L, Lu Z, Li Y, Meng Z, Guo F, Li F, Griffith LC, Liu C. Brief disruption of activity in a subset of dopaminergic neurons during consolidation impairs long-term memory by fragmenting sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.23.563499. [PMID: 37961167 PMCID: PMC10634733 DOI: 10.1101/2023.10.23.563499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, Drosophila melanogaster , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM. Interestingly, these brief changes in activity using female flies result in sleep loss and fragmentation, especially at night. Pharmacological rescue of sleep after manipulation restores LTM. A specific subset of PAM-DANs (PAM-α1) that synapse onto DPM neurons specify the microcircuit that links sleep and memory. PAM-DANs, including PAM-α1, form functional synapses onto DPM mainly via multiple dopamine receptor subtypes. This PAM-α1 to DPM microcircuit exhibits a synchronized, transient, post-training increase in activity during the critical memory consolidation window, suggesting an effect of this microcircuit on maintaining the sleep necessary for LTM consolidation. Our results provide a new cellular and circuit basis for the complex relationship between sleep and memory.
Collapse
|
23
|
Crown AM, Wu AH, Hofflander L, Barnea G. Continuous integration of heading and goal directions guides steering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620060. [PMID: 39484507 PMCID: PMC11527344 DOI: 10.1101/2024.10.24.620060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Navigating animals must integrate a diverse array of sensory cues into a single locomotor decision. Insects perform intricate navigational feats using a brain region termed the central complex in which an animal's heading direction is transformed through several layers of circuitry to elicit goal-directed locomotion. These transformations occur mostly in the fan-shaped body (FB), a major locus of multi-sensory integration in the central complex. Key aspects of these sensorimotor computations have been extensively characterized by functional studies, leveraging the genetic tools available in the fruit fly. However, our understanding of how neuronal activity in the FB dictates locomotor behaviors during navigation remains enigmatic. Here, we manipulate the activity of two key neuronal populations that input into the FB-the PFNa and PFNd neurons-used to encode the direction of two complex navigational cues: wind plumes and optic flow, respectively. We find that flies presented with unidirectional optic flow steer along curved walking trajectories, but silencing PFNd neurons abolishes this curvature. We next use optogenetic activation to introduce a fictive heading signal in the PFNs to establish the causal relationship between their activity and steering behavior. Our studies reveal that the central complex guides locomotion by summing the PFN-borne directional signals and shifting movement trajectories left or right accordingly. Based on these results, we propose a model of central complex-mediated locomotion wherein the fly achieves fine-grained control of sensory-guided steering by continuously integrating its heading and goal directions over time.
Collapse
Affiliation(s)
- Anthony M Crown
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Annie H Wu
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Lindsey Hofflander
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI 02912, USA; Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
24
|
Fisher JD, Crown AM, Sorkaç A, Martinez-Machado S, Snell NJ, Vishwanath N, Monje S, Vo A, Wu AH, Moșneanu RA, Okoro AM, Savaş D, Nkera B, Iturralde P, Kumari A, Chou-Freed C, Hartmann GG, Talay M, Barnea G. Convergent olfactory circuits for courtship in Drosophila revealed by ds-Tango. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619891. [PMID: 39484479 PMCID: PMC11527207 DOI: 10.1101/2024.10.23.619891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Animals exhibit sex-specific behaviors that are governed by sexually dimorphic circuits. One such behavior in male Drosophila melanogaster, courtship, is regulated by various sensory modalities, including olfaction. Here, we reveal how sexually dimorphic olfactory pathways in male flies converge at the third-order, onto lateral horn output neurons, to regulate courtship. To achieve this, we developed ds-Tango, a modified version of the monosynaptic tracing and manipulation tool trans-Tango. In ds-Tango, two distinct configurations of trans-Tango are positioned in series, thus providing selective genetic access not only to the monosynaptic partners of starter neurons but also to their disynaptic connections. Using ds-Tango, we identified a node of convergence for three sexually dimorphic olfactory pathways. Silencing this node results in deficits in sex recognition of potential partners. Our results identify lateral horn output neurons required for proper courtship behavior in male flies and establish ds-Tango as a tool for disynaptic circuit tracing.
Collapse
Affiliation(s)
- John D. Fisher
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Anthony M. Crown
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- These authors contributed equally
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Sasha Martinez-Machado
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Neurology, Rhode Island Hospital, Providence, RI, USA
| | - Nathaniel J. Snell
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Nanite Inc., Boston, MA, USA
| | - Neel Vishwanath
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Plastic and Reconstructive Surgery, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Silas Monje
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - An Vo
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Cognitive and Psychological Sciences, Brown University, Providence, RI, USA
| | - Annie H. Wu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Rareș A. Moșneanu
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Angel M. Okoro
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Doruk Savaş
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Bahati Nkera
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Pablo Iturralde
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Aastha Kumari
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Cambria Chou-Freed
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Department of Department of Cell and Tissue Biology, UCSF, San Francisco, CA, USA
| | - Griffin G. Hartmann
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Cancer Biology Program, Stanford University, Stanford, CA, USA
| | - Mustafa Talay
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Present Address: Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA,, USA
| | - Gilad Barnea
- Department of Neuroscience, Brown University, Providence, RI, USA
- Carney Institute for Brain Science, Brown University, Providence, RI, USA
| |
Collapse
|
25
|
Jacobs RV, Wang CX, Nguyen L, Pruitt TJ, Wang P, Lozada-Perdomo FV, Deere JU, Liphart HA, Devineni AV. Overlap and divergence of neural circuits mediating distinct behavioral responses to sugar. Cell Rep 2024; 43:114782. [PMID: 39306846 DOI: 10.1016/j.celrep.2024.114782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/31/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
How do neural circuits coordinate multiple behavioral responses to a single sensory cue? Here, we investigate how sweet taste drives appetitive behaviors in Drosophila, including feeding, locomotor suppression, spatial preference, and associative learning. We find that neural circuits mediating different innate responses to sugar are partially overlapping and diverge at the second and third layers. Connectomic analyses reveal distinct subcircuits that mediate different behaviors. Connectome-based simulations of neuronal activity predict that second-order sugar neurons act synergistically to promote downstream activity and that bitter input overrides the sugar circuit through multiple pathways acting at third- and fourth-order neurons. Consistent with the latter prediction, optogenetic experiments suggest that bitter input inhibits third- and fourth-order sugar neurons to override the sugar pathway, whereas hunger and diet act earlier in the circuit to modulate behavior. Together, these studies provide insight into how circuits are organized to drive diverse behavioral responses to a single stimulus.
Collapse
Affiliation(s)
- Ruby V Jacobs
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Crystal X Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Lam Nguyen
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Trinity J Pruitt
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Panxi Wang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Julia U Deere
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hannah A Liphart
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA 30322, USA; Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Pokusaeva VO, Satapathy R, Symonova O, Joesch M. Bilateral interactions of optic-flow sensitive neurons coordinate course control in flies. Nat Commun 2024; 15:8830. [PMID: 39396050 PMCID: PMC11470938 DOI: 10.1038/s41467-024-53173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2024] [Indexed: 10/14/2024] Open
Abstract
Animals rely on compensatory actions to maintain stability and navigate their environment efficiently. These actions depend on global visual motion cues known as optic-flow. While the optomotor response has been the traditional focus for studying optic-flow compensation in insects, its simplicity has been insufficient to determine the role of the intricate optic-flow processing network involved in visual course control. Here, we reveal a series of course control behaviours in Drosophila and link them to specific neural circuits. We show that bilateral electrical coupling of optic-flow-sensitive neurons in the fly's lobula plate are required for a proper course control. This electrical interaction works alongside chemical synapses within the HS-H2 network to control the dynamics and direction of turning behaviours. Our findings reveal how insects use bilateral motion cues for navigation, assigning a new functional significance to the HS-H2 network and suggesting a previously unknown role for gap junctions in non-linear operations.
Collapse
Affiliation(s)
- Victoria O Pokusaeva
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Roshan Satapathy
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Olga Symonova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
27
|
Timalsina B, Lee S, Kaang BK. Advances in the labelling and selective manipulation of synapses. Nat Rev Neurosci 2024; 25:668-687. [PMID: 39174832 DOI: 10.1038/s41583-024-00851-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy.
Collapse
Affiliation(s)
- Binod Timalsina
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Sangkyu Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Bong-Kiun Kaang
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, South Korea.
| |
Collapse
|
28
|
Shiozaki HM, Wang K, Lillvis JL, Xu M, Dickson BJ, Stern DL. Activity of nested neural circuits drives different courtship songs in Drosophila. Nat Neurosci 2024; 27:1954-1965. [PMID: 39198658 PMCID: PMC11452343 DOI: 10.1038/s41593-024-01738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 07/25/2024] [Indexed: 09/01/2024]
Abstract
Motor systems implement diverse motor programs to pattern behavioral sequences, yet how different motor actions are controlled on a moment-by-moment basis remains unclear. Here, we investigated the neural circuit mechanisms underlying the control of distinct courtship songs in Drosophila. Courting males rapidly alternate between two types of song: pulse and sine. By recording calcium signals in the ventral nerve cord in singing flies, we found that one neural population is active during both songs, whereas an expanded neural population, which includes neurons from the first population, is active during pulse song. Brain recordings showed that this nested activation pattern is present in two descending pathways required for singing. Connectomic analysis reveals that these two descending pathways provide structured input to ventral nerve cord neurons in a manner consistent with their activation patterns. These results suggest that nested premotor circuit activity, directed by distinct descending signals, enables rapid switching between motor actions.
Collapse
Affiliation(s)
- Hiroshi M Shiozaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Joshua L Lillvis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Min Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - David L Stern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
29
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613080. [PMID: 39314399 PMCID: PMC11419157 DOI: 10.1101/2024.09.14.613080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ). We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We characterize interconnections between taste pathways, identify modality-dependent differences in taste neuron properties, and use computational simulations to relate connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R. Walker
- Department of Biology, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- These authors contributed equally
| | - Anita V. Devineni
- Department of Biology, Emory University, Atlanta GA 30322
- Neuroscience Graduate Program, Emory University, Atlanta GA 30322
- Lead contact
| |
Collapse
|
30
|
Xu C, Li Z, Lyu C, Hu Y, McLaughlin CN, Wong KKL, Xie Q, Luginbuhl DJ, Li H, Udeshi ND, Svinkina T, Mani DR, Han S, Li T, Li Y, Guajardo R, Ting AY, Carr SA, Li J, Luo L. Molecular and cellular mechanisms of teneurin signaling in synaptic partner matching. Cell 2024; 187:5081-5101.e19. [PMID: 38996528 PMCID: PMC11833509 DOI: 10.1016/j.cell.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/20/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.
Collapse
Affiliation(s)
- Chuanyun Xu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Zhuoran Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Cheng Lyu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yixin Hu
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Colleen N McLaughlin
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenneth Kin Lam Wong
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Qijing Xie
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - David J Luginbuhl
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Namrata D Udeshi
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tanya Svinkina
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shuo Han
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Tongchao Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yang Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Ricardo Guajardo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Chan Zuckerberg Biohub, Stanford University, Stanford, CA 94305, USA
| | - Steven A Carr
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Biology Graduate Program, Stanford University, Stanford, CA 94305, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Lebek T, Malaguti M, Boezio GL, Zoupi L, Briscoe J, Elfick A, Lowell S. PUFFFIN: an ultra-bright, customisable, single-plasmid system for labelling cell neighbourhoods. EMBO J 2024; 43:4110-4135. [PMID: 38997504 PMCID: PMC11405414 DOI: 10.1038/s44318-024-00154-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
Cell communication coordinates developmental processes, maintains homeostasis, and contributes to disease. Therefore, understanding the relationship between cells in a shared environment is crucial. Here we introduce Positive Ultra-bright Fluorescent Fusion For Identifying Neighbours (PUFFFIN), a cell neighbour-labelling system based upon secretion and uptake of positively supercharged fluorescent protein s36GFP. We fused s36GFP to mNeonGreen or to a HaloTag, facilitating ultra-bright, sensitive, colour-of-choice labelling. Secretor cells transfer PUFFFIN to neighbours while retaining nuclear mCherry, making identification, isolation, and investigation of live neighbours straightforward. PUFFFIN can be delivered to cells, tissues, or embryos on a customisable single-plasmid construct composed of interchangeable components with the option to incorporate any transgene. This versatility enables the manipulation of cell properties, while simultaneously labelling surrounding cells, in cell culture or in vivo. We use PUFFFIN to ask whether pluripotent cells adjust the pace of differentiation to synchronise with their neighbours during exit from naïve pluripotency. PUFFFIN offers a simple, sensitive, customisable approach to profile non-cell-autonomous responses to natural or induced changes in cell identity or behaviour.
Collapse
Affiliation(s)
- Tamina Lebek
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK
- Centre for Engineering Biology, Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FF, UK
| | | | - Lida Zoupi
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, The University of Edinburgh, Edinburgh, EH8 9XD, UK
| | | | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Edinburgh, EH8 3DW, UK
- UK Centre for Mammalian Synthetic Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
32
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
33
|
Bonanno SL, Sanfilippo P, Eamani A, Sampson MM, Kandagedon B, Li K, Burns GD, Makar ME, Zipursky SL, Krantz DE. Constitutive and Conditional Epitope Tagging of Endogenous G-Protein-Coupled Receptors in Drosophila. J Neurosci 2024; 44:e2377232024. [PMID: 38937100 PMCID: PMC11326870 DOI: 10.1523/jneurosci.2377-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024] Open
Abstract
To visualize the cellular and subcellular localization of neuromodulatory G-protein-coupled receptors in Drosophila, we implement a molecular strategy recently used to add epitope tags to ionotropic receptors at their endogenous loci. Leveraging evolutionary conservation to identify sites more likely to permit insertion of a tag, we generated constitutive and conditional tagged alleles for Drosophila 5-HT1A, 5-HT2A, 5-HT2B, Oct β 1R, Oct β 2R, two isoforms of OAMB, and mGluR The conditional alleles allow for the restricted expression of tagged receptor in specific cell types, an option not available for any previous reagents to label these proteins. We show expression patterns for these receptors in female brains and that 5-HT1A and 5-HT2B localize to the mushroom bodies (MBs) and central complex, respectively, as predicted by their roles in sleep. By contrast, the unexpected enrichment of Octβ1R in the central complex and of 5-HT1A and 5-HT2A to nerve terminals in lobular columnar cells in the visual system suggest new hypotheses about their functions at these sites. Using an additional tagged allele of the serotonin transporter, a marker of serotonergic tracts, we demonstrate diverse spatial relationships between postsynaptic 5-HT receptors and presynaptic 5-HT neurons, consistent with the importance of both synaptic and volume transmission. Finally, we use the conditional allele of 5-HT1A to show that it localizes to distinct sites within the MBs as both a postsynaptic receptor in Kenyon cells and a presynaptic autoreceptor.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Piero Sanfilippo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - Aditya Eamani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Maureen M Sampson
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Binu Kandagedon
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Kenneth Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Giselle D Burns
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Marylyn E Makar
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - S Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Howard Hughes Medical Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
34
|
Catterson JH, Mouofo EN, López De Toledo Soler I, Lean G, Dlamini S, Liddell P, Voong G, Katsinelos T, Wang YC, Schoovaerts N, Verstreken P, Spires-Jones TL, Durrant CS. Drosophila appear resistant to trans-synaptic tau propagation. Brain Commun 2024; 6:fcae256. [PMID: 39130515 PMCID: PMC11316205 DOI: 10.1093/braincomms/fcae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly, prompting extensive efforts to pinpoint novel therapeutic targets for effective intervention. Among the hallmark features of Alzheimer's disease is the development of neurofibrillary tangles comprised of hyperphosphorylated tau protein, whose progressive spread throughout the brain is associated with neuronal death. Trans-synaptic propagation of tau has been observed in mouse models, and indirect evidence for tau spread via synapses has been observed in human Alzheimer's disease. Halting tau propagation is a promising therapeutic target for Alzheimer's disease; thus, a scalable model system to screen for modifiers of tau spread would be very useful for the field. To this end, we sought to emulate the trans-synaptic spread of human tau in Drosophila melanogaster. Employing the trans-Tango circuit mapping technique, we investigated whether tau spreads between synaptically connected neurons. Immunohistochemistry and confocal imaging were used to look for tau propagation. Examination of hundreds of flies expressing four different human tau constructs in two distinct neuronal populations reveals a robust resistance in Drosophila to the trans-synaptic spread of human tau. This resistance persisted in lines with concurrent expression of amyloid-β, in lines with global human tau knock-in to provide a template for human tau in downstream neurons, and with manipulations of temperature. These negative data are important for the field as we establish that Drosophila expressing human tau in subsets of neurons are unlikely to be useful to perform screens to find mechanisms to reduce the trans-synaptic spread of tau. The inherent resistance observed in Drosophila may serve as a valuable clue, offering insights into strategies for impeding tau spread in future studies.
Collapse
Affiliation(s)
- James H Catterson
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Edmond N Mouofo
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | | | - Gillian Lean
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Stella Dlamini
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Phoebe Liddell
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Graham Voong
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Taxiarchis Katsinelos
- Schaller Research Group at the University of Heidelberg and the DKFZ, German Cancer Research Center, Proteostasis in Neurodegenerative Disease (B180), INF 581, 69120 Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, INF 234, 69120 Heidelberg, Germany
| | - Yu-Chun Wang
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Nils Schoovaerts
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, Department of Neurosciences, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh EH8 9XD, UK
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|
35
|
Rohrbach EW, Asuncion JD, Meera P, Kralovec M, Deshpande SA, Schweizer FE, Krantz DE. Heterogeneity in the projections and excitability of tyraminergic/octopaminergic neurons that innervate the Drosophila reproductive tract. Front Mol Neurosci 2024; 17:1374896. [PMID: 39156129 PMCID: PMC11327148 DOI: 10.3389/fnmol.2024.1374896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 08/20/2024] Open
Abstract
Aminergic nuclei in mammals are generally composed of relatively small numbers of cells with broad projection patterns. Despite the gross similarity of many individual neurons, recent transcriptomic, anatomic and behavioral studies suggest previously unsuspected diversity. Smaller clusters of aminergic neurons in the model organism Drosophila melanogaster provide an opportunity to explore the ramifications of neuronal diversity at the level of individual cells. A group of approximately 10 tyraminergic/octopaminergic neurons innervates the female reproductive tract in flies and has been proposed to regulate multiple activities required for fertility. The projection patterns of individual neurons within the cluster are not known and it remains unclear whether they are functionally heterogenous. Using a single cell labeling technique, we show that each region of the reproductive tract is innervated by a distinct subset of tyraminergic/octopaminergic cells. Optogenetic activation of one subset stimulates oviduct contractions, indicating that the cluster as a whole is not required for this activity, and underscoring the potential for functional diversity across individual cells. Using whole cell patch clamp, we show that two adjacent and morphologically similar cells are tonically inhibited, but each responds differently to injection of current or activation of the inhibitory GluCl receptor. GluCl appears to be expressed at relatively low levels in tyraminergic/octopaminergic neurons within the cluster, suggesting that it may regulate their excitability via indirect pathways. Together, our data indicate that specific tyraminergic/octopaminergic cells within a relatively homogenous cluster have heterogenous properties and provide a platform for further studies to determine the function of each cell.
Collapse
Affiliation(s)
- Ethan W. Rohrbach
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - James D. Asuncion
- Medical Scientist Training Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Pratap Meera
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Mason Kralovec
- UCLA College of Arts and Sciences, Los Angeles, CA, United States
| | - Sonali A. Deshpande
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Felix E. Schweizer
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - David E. Krantz
- Interdepartmental Program in Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center for Neuropharmacology, Gonda (Goldschmied) Neuroscience and Genetics Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
36
|
Kubrak O, Jørgensen AF, Koyama T, Lassen M, Nagy S, Hald J, Mazzoni G, Madsen D, Hansen JB, Larsen MR, Texada MJ, Hansen JL, Halberg KV, Rewitz K. LGR signaling mediates muscle-adipose tissue crosstalk and protects against diet-induced insulin resistance. Nat Commun 2024; 15:6126. [PMID: 39033139 PMCID: PMC11271308 DOI: 10.1038/s41467-024-50468-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/04/2024] [Indexed: 07/23/2024] Open
Abstract
Obesity impairs tissue insulin sensitivity and signaling, promoting type-2 diabetes. Although improving insulin signaling is key to reversing diabetes, the multi-organ mechanisms regulating this process are poorly defined. Here, we screen the secretome and receptome in Drosophila to identify the hormonal crosstalk affecting diet-induced insulin resistance and obesity. We discover a complex interplay between muscle, neuronal, and adipose tissues, mediated by Bone Morphogenetic Protein (BMP) signaling and the hormone Bursicon, that enhances insulin signaling and sugar tolerance. Muscle-derived BMP signaling, induced by sugar, governs neuronal Bursicon signaling. Bursicon, through its receptor Rickets, a Leucine-rich-repeat-containing G-protein coupled receptor (LGR), improves insulin secretion and insulin sensitivity in adipose tissue, mitigating hyperglycemia. In mouse adipocytes, loss of the Rickets ortholog LGR4 blunts insulin responses, showing an essential role of LGR4 in adipocyte insulin sensitivity. Our findings reveal a muscle-neuronal-fat-tissue axis driving metabolic adaptation to high-sugar conditions, identifying LGR4 as a critical mediator in this regulatory network.
Collapse
Affiliation(s)
- Olga Kubrak
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Anne F Jørgensen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Mette Lassen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Jacob Hald
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | | | - Dennis Madsen
- Novo Nordisk, Novo Nordisk Park, 2760, Maaløv, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Martin Røssel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230, Odense, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | | | - Kenneth V Halberg
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Copenhagen O, Denmark.
| |
Collapse
|
37
|
Meschi E, Duquenoy L, Otto N, Dempsey G, Waddell S. Compensatory enhancement of input maintains aversive dopaminergic reinforcement in hungry Drosophila. Neuron 2024; 112:2315-2332.e8. [PMID: 38795709 DOI: 10.1016/j.neuron.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Hungry animals need compensatory mechanisms to maintain flexible brain function, while modulation reconfigures circuits to prioritize resource seeking. In Drosophila, hunger inhibits aversively reinforcing dopaminergic neurons (DANs) to permit the expression of food-seeking memories. Multitasking the reinforcement system for motivation potentially undermines aversive learning. We find that chronic hunger mildly enhances aversive learning and that satiated-baseline and hunger-enhanced learning require endocrine adipokinetic hormone (AKH) signaling. Circulating AKH influences aversive learning via its receptor in four neurons in the ventral brain, two of which are octopaminergic. Connectomics revealed AKH receptor-expressing neurons to be upstream of several classes of ascending neurons, many of which are presynaptic to aversively reinforcing DANs. Octopaminergic modulation of and output from at least one of these ascending pathways is required for shock- and bitter-taste-reinforced aversive learning. We propose that coordinated enhancement of input compensates for hunger-directed inhibition of aversive DANs to preserve reinforcement when required.
Collapse
Affiliation(s)
- Eleonora Meschi
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lucille Duquenoy
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Nils Otto
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Georgia Dempsey
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Scott Waddell
- University of Oxford, Centre for Neural Circuits and Behaviour, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
38
|
Li X, Yang Y, Bai X, Wang X, Tan H, Chen Y, Zhu Y, Liu Q, Wu MN, Li Y. A brain-derived insulin signal encodes protein satiety for nutrient-specific feeding inhibition. Cell Rep 2024; 43:114282. [PMID: 38795342 PMCID: PMC11220824 DOI: 10.1016/j.celrep.2024.114282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 05/27/2024] Open
Abstract
The suppressive effect of insulin on food intake has been documented for decades. However, whether insulin signals can encode a certain type of nutrients to regulate nutrient-specific feeding behavior remains elusive. Here, we show that in female Drosophila, a pair of dopaminergic neurons, tritocerebrum 1-dopaminergic neurons (T1-DANs), are directly activated by a protein-intake-induced insulin signal from insulin-producing cells (IPCs). Intriguingly, opto-activating IPCs elicits feeding inhibition for both protein and sugar, while silencing T1-DANs blocks this inhibition only for protein food. Elevating insulin signaling in T1-DANs or opto-activating these neurons is sufficient to mimic protein satiety. Furthermore, this signal is conveyed to local neurons of the protocerebral bridge (PB-LNs) and specifically suppresses protein intake. Therefore, our findings reveal that a brain-derived insulin signal encodes protein satiety and suppresses feeding behavior in a nutrient-specific manner, shedding light on the functional specificity of brain insulin signals in regulating behaviors.
Collapse
Affiliation(s)
- Xiaoyu Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobing Bai
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Xiaotong Wang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houqi Tan
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbo Chen
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Zhu
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China
| | - Qili Liu
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark N Wu
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center for Education and Research, Beijing 100190, China.
| |
Collapse
|
39
|
Jonaitis J, Hibbard KL, McCafferty Layte K, Hiramoto A, Cardona A, Truman JW, Nose A, Zwart MF, Pulver SR. STEERING FROM THE REAR: COORDINATION OF CENTRAL PATTERN GENERATORS UNDERLYING NAVIGATION BY ASCENDING INTERNEURONS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.598162. [PMID: 38948859 PMCID: PMC11212907 DOI: 10.1101/2024.06.17.598162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Understanding how animals coordinate movements to achieve goals is a fundamental pursuit in neuroscience. Here we explore how neurons that reside in posterior lower-order regions of a locomotor system project to anterior higher-order regions to influence steering and navigation. We characterized the anatomy and functional role of a population of ascending interneurons in the ventral nerve cord of Drosophila larvae. Through electron microscopy reconstructions and light microscopy, we determined that the cholinergic 19f cells receive input primarily from premotor interneurons and synapse upon a diverse array of postsynaptic targets within the anterior segments including other 19f cells. Calcium imaging of 19f activity in isolated central nervous system (CNS) preparations in relation to motor neurons revealed that 19f neurons are recruited into most larval motor programmes. 19f activity lags behind motor neuron activity and as a population, the cells encode spatio-temporal patterns of locomotor activity in the larval CNS. Optogenetic manipulations of 19f cell activity in isolated CNS preparations revealed that they coordinate the activity of central pattern generators underlying exploratory headsweeps and forward locomotion in a context and location specific manner. In behaving animals, activating 19f cells suppressed exploratory headsweeps and slowed forward locomotion, while inhibition of 19f activity potentiated headsweeps, slowing forward movement. Inhibiting activity in 19f cells ultimately affected the ability of larvae to remain in the vicinity of an odor source during an olfactory navigation task. Overall, our findings provide insights into how ascending interneurons monitor motor activity and shape interactions amongst rhythm generators underlying complex navigational tasks.
Collapse
Affiliation(s)
- Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | | | | | - Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge UK
| | - James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Maarten F. Zwart
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| | - Stefan R. Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Centre of Biophotonics, University of St Andrews, St Andrews, UK
- Institute for Behavioural and Neural Sciences, University of St Andrews, St Andrews, UK
| |
Collapse
|
40
|
Deluca A, Bascom B, Key Planas DA, Kocher MA, Torres M, Arbeitman MN. Contribution of neurons that express fruitless and Clock transcription factors to behavioral rhythms and courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598537. [PMID: 38915619 PMCID: PMC11195222 DOI: 10.1101/2024.06.12.598537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Animals need to integrate information across neuronal networks that direct reproductive behaviors and circadian rhythms. In Drosophila, the master regulatory transcription factors that direct courtship behaviors and circadian rhythms are co-expressed in a small set of neurons. In this study we investigate the role of these neurons in both males and females. We find sex-differences in the number of these fruitless and Clock -expressing neurons ( fru ∩ Clk neurons) that is regulated by male-specific Fru. We assign the fru ∩ Clk neurons to the electron microscopy connectome that provides high resolution structural information. We also discover sex-differences in the number of fru -expressing neurons that are post-synaptic targets of Clk -expressing neurons, with more post-synaptic targets in males. When fru ∩ Clk neurons are activated or silenced, males have a shorter period length. Activation of fru ∩ Clk neurons also changes the rate a courtship behavior is performed. We find that activation and silencing fru ∩ Clk neurons impacts the molecular clock in the sLNv master pacemaker neurons, in a cell-nonautonomous manner. These results reveal how neurons that subserve the two processes, reproduction and circadian rhythms, can impact behavioral outcomes in a sex-specific manner.
Collapse
|
41
|
Ehrlich A, Xu AA, Luminari S, Kidd S, Treiber CD, Russo J, Blau J. Tango-seq: overlaying transcriptomics on connectomics to identify neurons downstream of Drosophila clock neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595372. [PMID: 38826334 PMCID: PMC11142192 DOI: 10.1101/2024.05.22.595372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Knowing how neural circuits change with neuronal plasticity and differ between individuals is important to fully understand behavior. Connectomes are typically assembled using electron microscopy, but this is low throughput and impractical for analyzing plasticity or mutations. Here, we modified the trans-Tango genetic circuit-tracing technique to identify neurons synaptically downstream of Drosophila s-LNv clock neurons, which show 24hr plasticity rhythms. s-LNv target neurons were labeled specifically in adult flies using a nuclear reporter gene, which facilitated their purification and then single cell sequencing. We call this Tango-seq, and it allows transcriptomic data - and thus cell identity - to be overlayed on top of anatomical data. We found that s-LNvs preferentially make synaptic connections with a subset of the CNMa+ DN1p clock neurons, and that these are likely plastic connections. We also identified synaptic connections between s-LNvs and mushroom body Kenyon cells. Tango-seq should be a useful addition to the connectomics toolkit.
Collapse
Affiliation(s)
- Alison Ehrlich
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Angelina A Xu
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Sofia Luminari
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Simon Kidd
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Christoph D Treiber
- Centre for Neural Circuits and Behaviour, University of Oxford, UK
- Current address: Department of Biology, University of Oxford, UK
| | - Jordan Russo
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - Justin Blau
- Department of Biology, New York University, 100 Washington Square East, New York, NY 10003, USA
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
42
|
Mao R, Yu J, Deng B, Dai X, Du Y, Du S, Zhang W, Rao Y. Conditional chemoconnectomics (cCCTomics) as a strategy for efficient and conditional targeting of chemical transmission. eLife 2024; 12:RP91927. [PMID: 38686992 PMCID: PMC11060718 DOI: 10.7554/elife.91927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.
Collapse
Affiliation(s)
- Renbo Mao
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
- National Institute of Biological Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Jianjun Yu
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Bowen Deng
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Xihuimin Dai
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Yuyao Du
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Sujie Du
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Wenxia Zhang
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| | - Yi Rao
- Laboratory of Neurochemical Biology, Chinese Institute for Brain ResearchBeijingChina
- PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Department of Chemical Biology, College of Chemistry and Chemical Engineering, School of Pharmaceutical Sciences, Peking UniversityBeijingChina
- Chinese Institutes for Medical Research, Capital Medical University; Changping LaboratoryChangpingChina
- Research Unit of Medical Neurobiology, Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
43
|
Gao J, Zhang S, Deng P, Wu Z, Lemaitre B, Zhai Z, Guo Z. Dietary L-Glu sensing by enteroendocrine cells adjusts food intake via modulating gut PYY/NPF secretion. Nat Commun 2024; 15:3514. [PMID: 38664401 PMCID: PMC11045819 DOI: 10.1038/s41467-024-47465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.
Collapse
Affiliation(s)
- Junjun Gao
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Zhang
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Deng
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhigang Wu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, PR China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Zongzhao Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, PR China.
| | - Zheng Guo
- Department of Medical Genetics, School of Basic Medicine, Institute for Brain Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
44
|
Wang W. Protein-Based Tools for Studying Neuromodulation. ACS Chem Biol 2024; 19:788-797. [PMID: 38581649 PMCID: PMC11129172 DOI: 10.1021/acschembio.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Neuromodulators play crucial roles in regulating neuronal activity and affecting various aspects of brain functions, including learning, memory, cognitive functions, emotional states, and pain modulation. In this Account, we describe our group's efforts in designing sensors and tools for studying neuromodulation. Our lab focuses on developing new classes of integrators that can detect neuromodulators across the whole brain while leaving a mark for further imaging analysis at high spatial resolution. Our lab also designed chemical- and light-dependent protein switches for controlling peptide activity to potentially modulate the endogenous receptors of the neuromodulatory system in order to study the causal effects of selective neuronal pathways.
Collapse
Affiliation(s)
- Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
45
|
Li H, Li Z, Yuan X, Tian Y, Ye W, Zeng P, Li XM, Guo F. Dynamic encoding of temperature in the central circadian circuit coordinates physiological activities. Nat Commun 2024; 15:2834. [PMID: 38565846 PMCID: PMC10987497 DOI: 10.1038/s41467-024-47278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The circadian clock regulates animal physiological activities. How temperature reorganizes circadian-dependent physiological activities remains elusive. Here, using in-vivo two-photon imaging with the temperature control device, we investigated the response of the Drosophila central circadian circuit to temperature variation and identified that DN1as serves as the most sensitive temperature-sensing neurons. The circadian clock gate DN1a's diurnal temperature response. Trans-synaptic tracing, connectome analysis, and functional imaging data reveal that DN1as bidirectionally targets two circadian neuronal subsets: activity-related E cells and sleep-promoting DN3s. Specifically, behavioral data demonstrate that the DN1a-E cell circuit modulates the evening locomotion peak in response to cold temperature, while the DN1a-DN3 circuit controls the warm temperature-induced nocturnal sleep reduction. Our findings systematically and comprehensively illustrate how the central circadian circuit dynamically integrates temperature and light signals to effectively coordinate wakefulness and sleep at different times of the day, shedding light on the conserved neural mechanisms underlying temperature-regulated circadian physiology in animals.
Collapse
Affiliation(s)
- Hailiang Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyi Li
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xin Yuan
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Tian
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Ye
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Pengyu Zeng
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
- Department of Neurobiology and Department of Psychiatry of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Guo
- Department of Neurobiology, Department of Neurology of Sir Run Run Shaw Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
46
|
Doszyn O, Dulski T, Zmorzynska J. Diving into the zebrafish brain: exploring neuroscience frontiers with genetic tools, imaging techniques, and behavioral insights. Front Mol Neurosci 2024; 17:1358844. [PMID: 38533456 PMCID: PMC10963419 DOI: 10.3389/fnmol.2024.1358844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
The zebrafish (Danio rerio) is increasingly used in neuroscience research. Zebrafish are relatively easy to maintain, and their high fecundity makes them suitable for high-throughput experiments. Their small, transparent embryos and larvae allow for easy microscopic imaging of the developing brain. Zebrafish also share a high degree of genetic similarity with humans, and are amenable to genetic manipulation techniques, such as gene knockdown, knockout, or knock-in, which allows researchers to study the role of specific genes relevant to human brain development, function, and disease. Zebrafish can also serve as a model for behavioral studies, including locomotion, learning, and social interactions. In this review, we present state-of-the-art methods to study the brain function in zebrafish, including genetic tools for labeling single neurons and neuronal circuits, live imaging of neural activity, synaptic dynamics and protein interactions in the zebrafish brain, optogenetic manipulation, and the use of virtual reality technology for behavioral testing. We highlight the potential of zebrafish for neuroscience research, especially regarding brain development, neuronal circuits, and genetic-based disorders and discuss its certain limitations as a model.
Collapse
Affiliation(s)
| | | | - J. Zmorzynska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw (IIMCB), Warsaw, Poland
| |
Collapse
|
47
|
Gautham AK, Miner LE, Franco MN, Thornquist SC, Crickmore MA. Molecular control of temporal integration matches decision-making to motivational state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582988. [PMID: 38496671 PMCID: PMC10942309 DOI: 10.1101/2024.03.01.582988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Motivations bias our responses to stimuli, producing behavioral outcomes that match our needs and goals. We describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate toward a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges. We show that a set of Copulation Decision Neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signaling restricts CDN integration time by potentiating CaMKII activation in response to stimulatory inputs, imposing a high threshold for changing behaviors. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviors. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.
Collapse
Affiliation(s)
- Aditya K. Gautham
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Lauren E. Miner
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Marco N. Franco
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - Michael A. Crickmore
- FM Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
48
|
Castaneda AN, Huda A, Whitaker IBM, Reilly JE, Shelby GS, Bai H, Ni L. Functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango in Drosophila (FLIPSOT). PLoS Genet 2024; 20:e1011190. [PMID: 38483970 PMCID: PMC10965055 DOI: 10.1371/journal.pgen.1011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/26/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
A population of neurons interconnected by synapses constitutes a neural circuit, which performs specific functions upon activation. It is essential to identify both anatomical and functional entities of neural circuits to comprehend the components and processes necessary for healthy brain function and the changes that characterize brain disorders. To date, few methods are available to study these two aspects of a neural circuit simultaneously. In this study, we developed FLIPSOT, or functional labeling of individualized postsynaptic neurons using optogenetics and trans-Tango. FLIPSOT uses (1) trans-Tango to access postsynaptic neurons genetically, (2) optogenetic approaches to activate (FLIPSOTa) or inhibit (FLIPSOTi) postsynaptic neurons in a random and sparse manner, and (3) fluorescence markers tagged with optogenetic genes to visualize these neurons. Therefore, FLIPSOT allows using a presynaptic driver to identify the behavioral function of individual postsynaptic neurons. It is readily applied to identify functions of individual postsynaptic neurons and has the potential to be adapted for use in mammalian circuits.
Collapse
Affiliation(s)
- Allison N. Castaneda
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ainul Huda
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Iona B. M. Whitaker
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Julianne E. Reilly
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Grace S. Shelby
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Hua Bai
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Lina Ni
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
49
|
Zhao H, Jiang X, Ma M, Xing L, Ji X, Pan Y. A neural pathway for social modulation of spontaneous locomotor activity (SoMo-SLA) in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2314393121. [PMID: 38394240 PMCID: PMC10907233 DOI: 10.1073/pnas.2314393121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Social enrichment or social isolation affects a range of innate behaviors, such as sex, aggression, and sleep, but whether there is a shared mechanism is not clear. Here, we report a neural mechanism underlying social modulation of spontaneous locomotor activity (SoMo-SLA), an internal-driven behavior indicative of internal states. We find that social enrichment specifically reduces spontaneous locomotor activity in male flies. We identify neuropeptides Diuretic hormone 44 (DH44) and Tachykinin (TK) to be up- and down-regulated by social enrichment and necessary for SoMo-SLA. We further demonstrate a sexually dimorphic neural circuit, in which the male-specific P1 neurons encoding internal states form positive feedback with interneurons coexpressing doublesex (dsx) and Tk to promote locomotion, while P1 neurons also form negative feedback with interneurons coexpressing dsx and DH44 to inhibit locomotion. These two opposing neuromodulatory recurrent circuits represent a potentially common mechanism that underlies the social regulation of multiple innate behaviors.
Collapse
Affiliation(s)
- Huan Zhao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xinyu Jiang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Mingze Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Limin Xing
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong226019, China
| |
Collapse
|
50
|
Malaguti M, Lebek T, Blin G, Lowell S. Enabling neighbour labelling: using synthetic biology to explore how cells influence their neighbours. Development 2024; 151:dev201955. [PMID: 38165174 PMCID: PMC10820747 DOI: 10.1242/dev.201955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Cell-cell interactions are central to development, but exploring how a change in any given cell relates to changes in the neighbour of that cell can be technically challenging. Here, we review recent developments in synthetic biology and image analysis that are helping overcome this problem. We highlight the opportunities presented by these advances and discuss opportunities and limitations in applying them to developmental model systems.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tamina Lebek
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|