1
|
Carra S, Fabian B, Taghavi H, Milanetti E, Giliberti V, Ruocco G, Shepherd J, Vendruscolo M, Fuxreiter M. Virus-like particles of retroviral origin in protein aggregation and neurodegenerative diseases. Mol Aspects Med 2025; 103:101369. [PMID: 40398193 DOI: 10.1016/j.mam.2025.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025]
Abstract
A wide range of human diseases are associated with protein misfolding and amyloid aggregates. Recent studies suggest that in certain neurological disorders, including Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Dementia (FTD) and various tauopathies, protein aggregation may be promoted by virus-like particles (VLPs) formed by endogenous retroviruses (ERVs). The molecular mechanisms by which these VLPs contribute to protein aggregation, however, remain enigmatic. Here, we discuss possible molecular mechanisms of ERV-derived VLPs in the formation and spread of protein aggregates. An intriguing possibility is that liquid-like condensates may facilitate the formation of both protein aggregates and ERV-derived VLPs. We also describe how RNA chaperoning, and the encapsulation and trafficking of misfolded proteins, may contribute to protein homeostasis through the elimination of protein aggregates from cells. Based on these insights, we discuss future potential therapeutic opportunities.
Collapse
Affiliation(s)
- Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Balazs Fabian
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Hamed Taghavi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Edoardo Milanetti
- Department of Physics, Sapienza University, Rome, Italy; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Valeria Giliberti
- Department of Physics, Sapienza University, Rome, Italy; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Rome, Italy; Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - Monika Fuxreiter
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Department of Physics and Astronomy, University of Padova, Padova, Italy.
| |
Collapse
|
2
|
Andreo-Lopez J, Nuñez-Diaz C, Do Huynh K, Nguyen MMT, Da Cunha C, Cantero-Molina FJ, Campos-Moreno C, Zimbone S, Bellia F, Giuffrida ML, Trujillo-Estrada L, Garcia-Leon JA, Bettinetti-Luque M, Gamez N, Valdes C, Morales R, Forner S, Martini AC, Gutierrez A, LaFerla FM, Baglietto-Vargas D. Human and Mouse Alzheimer's Seeds Differentially Affect Amyloid Deposition and Microglia-Dependent Plaque Response in Aged Mice. Aging Cell 2025:e70094. [PMID: 40364523 DOI: 10.1111/acel.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/02/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative proteinopathy in which Aβ and tau misfold and aggregate into entities that structurally unsettle native proteins, mimicking a prion-like or "seeding" process. These Aβ and tau "seeds" can arrange in different conformations or strains that might display distinct pathogenic properties. Furthermore, recent evidence suggests that microglia play a key role in the amyloidogenic event and can modulate the propagation and aggregation processes. Here, we employed histological and molecular approaches to determine whether seeds from human AD brains compared to those from transgenic mice (3xTg-AD) are more prone to induce Aβ and tau aggregates in vivo, as well as potential differences in the microglial response to the plaque pathology. Brain homogenates were injected into the hippocampus of 3xTg-AD mice and hAβ-KI mice and examined at 18-20 months of age. The seeds from the human AD brain induced more aggressive amyloid pathology compared to seeds from aged 3xTg-AD mice. However, the AD seeds from aged transgenic mice triggered more tau pathology. Interestingly, such mice seeds impaired microglial clustering around plaques, leading to more severe neuritic pathology. Furthermore, the human AD seeds injected into the hippocampus of hAβ-KI mice were not able to induce plaque formation. These results suggest that multiple variables such as the AD seed, recipient model, and time are critical factors that can modulate the amyloid pathology onset and progression. Thus, more profound understanding of these factors will provide key insight into how amyloid and tau pathology progresses in AD.
Collapse
Affiliation(s)
- Juana Andreo-Lopez
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Cristina Nuñez-Diaz
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Kelly Do Huynh
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Marie Minh Thu Nguyen
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Francisco J Cantero-Molina
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Cynthia Campos-Moreno
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Stefania Zimbone
- Institute of Crystallography, National Research Council (CNR-IC), Catania, Italy
| | - Francesco Bellia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Laura Trujillo-Estrada
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Garcia-Leon
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Miriam Bettinetti-Luque
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
| | - Nazaret Gamez
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Catalina Valdes
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rodrigo Morales
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Centro Integrativo de Biologia y Quimica Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Stefania Forner
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Alessandra C Martini
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Antonia Gutierrez
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Frank M LaFerla
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - David Baglietto-Vargas
- Departamento de Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Facultad de Ciencias, Universidad de Malaga, Malaga, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Vanherle S, Janssen A, Gutiérrez de Ravé M, Janssen B, Lodder C, Botella Lucena P, Kessels S, Hardy J, Vandeput E, Wang Y, Stancu IC, Segal A, Kleinewietfeld M, Voets T, Brône B, Poovathingal S, Alpizar YA, Dewachter I. APOE deficiency inhibits amyloid-facilitated (A) tau pathology (T) and neurodegeneration (N), halting progressive ATN pathology in a preclinical model. Mol Psychiatry 2025:10.1038/s41380-025-03036-7. [PMID: 40307424 DOI: 10.1038/s41380-025-03036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 03/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
In AD, amyloid pathology (A) precedes progressive development of tau pathology (T) and neurodegeneration (N), with the latter (T/N) processes associated with symptom progression. Recent anti-amyloid beta (Aβ) clinical trials raise hope but indicate the need for multi-targeted therapies, to effectively halt clinical AD and ATN pathology progression. APOE-related putative protective mutations (including APOE3Christchurch, RELN-COLBOS) were recently identified in case reports with exceptionally high resilience to autosomal dominant AD. In these cases, Nature provided proof of concept for halting autosomal dominant AD and ATN progression in humans, despite a high amyloid load, and pointing to the APOE pathway as a potential target. This is further supported by the recent identification of APOE4 homozygosity as genetic AD. Here we studied the role of APOE in a preclinical model that robustly mimics amyloid-facilitated (A) tau pathology (T) and subsequent neurodegeneration (N), denoted as ATN model, generated by crossing 5xFAD (F +) and TauP301S (T +) mice. We show that APOE deficiency, markedly inhibited progression to tau pathology and tau-induced neurodegeneration in this ATN model, despite a high Aβ load, reminiscent of the high resilience ADAD case reports. Further study identified, despite increased Aβ load (W02 stained), a significant decrease in compacted, dense core plaques stained by ThioS in APOE deficient ATN mice. Furthermore, single-cell RNA sequencing (scRNA-seq) showed a crucial role of APOE in microglial conversion beyond homeostatic microglia to reactive and disease associated microglia (DAM) in this ATN preclinical model. Microglial elimination significantly decreased amyloid-driven tau pathology, in the presence of APOE, but not in APOE deficient mice. Together the data demonstrate that APOE deficiency inhibits amyloid-driven tau pathology and subsequent neurodegeneration, by pleiotropic effects including prevention of dense core plaque formation and halting conversion of homeostatic microglia. We here present a model recapitulating inhibition of amyloid-facilitated tau pathology by APOE deficiency despite high Aβ load, important for understanding the role of APOE, and APOE-dependent processes in ATN progression and its therapeutic exploitation in AD.
Collapse
Affiliation(s)
- Sarah Vanherle
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Art Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Manuel Gutiérrez de Ravé
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Bieke Janssen
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Chritica Lodder
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Pablo Botella Lucena
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Sofie Kessels
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Jana Hardy
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Eline Vandeput
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Yanyan Wang
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Ilie-Cosmin Stancu
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | - Andrei Segal
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research (IRC), Hasselt University, Diepenbeek, Belgium
- Department of Immunology and Infection, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Bert Brône
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Yeranddy A Alpizar
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Ilse Dewachter
- Department of Neurosciences, Biomedical Research Institute BIOMED, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
4
|
Dasadhikari S, Ghosh S, Pal S, Knowles TPJ, Garai K. A single fibril study reveals that ApoE inhibits the elongation of Aβ42 fibrils in an isoform-dependent manner. Commun Chem 2025; 8:133. [PMID: 40307479 PMCID: PMC12044155 DOI: 10.1038/s42004-025-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
ApoE-ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD), linked to increased amyloid-β (Aβ) deposition in the brain. In AD mouse models, microglial expression of apoE3 reduces amyloid plaque burden through enhanced phagocytosis, whereas apoE4 is associated with impaired Aβ clearance. However, the isoform-specific interactions of apoE with Aβ aggregates and the molecular mechanisms by which these isoforms influence Aβ aggregation and clearance remain poorly understood, which is critical for developing potential therapeutic interventions. Here, we employed TIRFM, superresolution microscopy, and single-molecule photobleaching techniques to investigate the isoform-specific effects of apoE on the rate constants of Aβ42 aggregation at the single-fibril level, as well as to quantify the binding affinity and specificity of apoE isoforms to individual Aβ fibril ends. Our results show that apoE4 is ca. 4-5 times less effective than apoE3 and apoE2 in inhibiting fibril elongation, while secondary nucleation is largely unaffected by any of the isoforms. Furthermore, apoE3 exhibits stronger and more specific binding to fibril ends compared to apoE4. These findings suggest that apoE4's reduced affinity for growing fibril ends may impair microglial clearance and increase amyloid deposition through a higher elongation rate in the brain of ApoE-ε4 carriers.
Collapse
Affiliation(s)
| | - Shamasree Ghosh
- TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500046, India
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-90187, Sweden
| | - Sudip Pal
- TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500046, India
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Kanchan Garai
- TIFR Centre for Interdisciplinary Sciences, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Belaidi AA, Bush AI, Ayton S. Apolipoprotein E in Alzheimer's disease: molecular insights and therapeutic opportunities. Mol Neurodegener 2025; 20:47. [PMID: 40275327 PMCID: PMC12023563 DOI: 10.1186/s13024-025-00843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Apolipoprotein E (APOE- gene; apoE- protein) is the strongest genetic modulator of late-onset Alzheimer's disease (AD), with its three major isoforms conferring risk for disease ε2 < ε3 < ε4. Emerging protective gene variants, such as APOE Christchurch and the COLBOS variant of REELIN, an alternative target of certain apoE receptors, offer novel insights into resilience against AD. In recent years, the role of apoE has been shown to extend beyond its primary function in lipid transport, influencing multiple biological processes, including amyloid-β (Aβ) aggregation, tau pathology, neuroinflammation, autophagy, cerebrovascular integrity and protection from lipid peroxidation and the resulting ferroptotic cell death. While the detrimental influence of apoE ε4 on these and other processes has been well described, the molecular mechanisms underpinning this disadvantage require further enunciation, particularly to realize therapeutic opportunities related to apoE. This review explores the multifaceted roles of apoE in AD pathogenesis, emphasizing recent discoveries and translational approaches to target apoE-mediated pathways. These findings underscore the potential for apoE-based therapeutic strategies to prevent or mitigate AD in genetically at-risk populations.
Collapse
Affiliation(s)
- Abdel Ali Belaidi
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Scott Ayton
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| |
Collapse
|
6
|
Campagna J, Chandra S, Teter B, Cohn W, Pham J, Kim YS, Jagodzinska B, Vadivel K, Alam P, Bilousova T, Young M, Elias C, Marcucci J, Flacau I, Jackman A, Padder S, Wi D, Zhu C, Spilman P, Jung ME, Bredesen DE, John V. Discovery of an ApoE4-targeted small-molecule SirT1 enhancer for the treatment of Alzheimer's disease. Sci Rep 2025; 15:14028. [PMID: 40269061 PMCID: PMC12019328 DOI: 10.1038/s41598-025-96131-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/26/2025] [Indexed: 04/25/2025] Open
Abstract
Decreased expression of sirtuin 1 (SirT1) has been implicated in Alzheimer's disease (AD), and as we previously reported, is related to transcriptional repression by the major risk factor for sporadic AD, apolipoprotein E4 (ApoE4). Herein we describe the discovery of an orally brain-permeable small-molecule, DDL-218, that enhanced SirT1 in ApoE4-expressing neuronal cells and a murine AD model. DDL-218 increased the transcription factor NFYb resulting in upregulation of PRMT5. Mechanistic and modeling studies show that binding of ApoE4 to the SirT1 gene promoter can be displaced by PRMT5 leading to increased SirT1 transcription. DDL-218 treatment elicited improvement in memory in the AD model, suggesting that DDL-218 enhancement of neurotrophic SirT1 in the brain has potential to modulate neuronal activity that may clinically provide an improvement in cognitive function and complement the current anti-Aβ antibody monotherapy. Our findings support further development of DDL-218 as a novel ApoE4-targeted therapeutic candidate for AD.
Collapse
Affiliation(s)
- Jesus Campagna
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Sujyoti Chandra
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Bruce Teter
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Whitaker Cohn
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Johnny Pham
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095, USA
| | - Young-Sug Kim
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095, USA
| | - Barbara Jagodzinska
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Kanagasabai Vadivel
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Parvez Alam
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Tina Bilousova
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Malaney Young
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chris Elias
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Juan Marcucci
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Ilinca Flacau
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Ainsley Jackman
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Samar Padder
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Dongwook Wi
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chunni Zhu
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Patricia Spilman
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Michael E Jung
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095, USA
| | - Dale E Bredesen
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Varghese John
- The Drug Discovery Lab, Department of Neurology, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Liu Q, Song S, Liu L, Hong W. In Vivo Seeding of Amyloid-β Protein and Implications in Modeling Alzheimer's Disease Pathology. Biomolecules 2025; 15:571. [PMID: 40305318 PMCID: PMC12024744 DOI: 10.3390/biom15040571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by extracellular plaques containing amyloid β-protein (Aβ) and intracellular neurofibrillary tangles formed by tau. Cerebral Aβ accumulation initiates a noxious cascade that leads to irreversible neuronal degeneration and memory impairment in older adults. Recent advances in Aβ seeding studies offer a promising avenue for exploring the mechanisms underlying amyloid deposition and the complex pathological features of AD. However, the extent to which inoculated Aβ seeds can induce reproducible and reliable pathological manifestations remains unclear due to significant variability across studies. In this review, we will discuss several factors that contribute to the induction or acceleration of amyloid deposition and consequent pathologies. Specifically, we focus on the diversity of host animals, sources and recipe of Aβ seeds, and inoculating strategies. By integrating these key aspects, this review aims to offer a comprehensive perspective on Aβ seeding in AD and provide guidance for modeling AD pathogenesis through the exogenous introduction of Aβ seeds.
Collapse
Affiliation(s)
- Qianmin Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Simin Song
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen 518055, China
| | - Lu Liu
- School of Biomedical Sciences, Hunan University, Changsha 410082, China;
| | - Wei Hong
- Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
8
|
Patel M, Pottier C, Fan KH, Cetin A, Johnson M, Ali M, Liu M, Gorijala P, Budde J, Shi R, Cohen AD, Becker JT, Snitz BE, Aizenstein H, Lopez OL, Morris JC, Kamboh MI, Cruchaga C. Whole-genome sequencing reveals the impact of lipid pathway and APOE genotype on brain amyloidosis. Hum Mol Genet 2025; 34:739-748. [PMID: 39927718 PMCID: PMC11973900 DOI: 10.1093/hmg/ddaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Amyloid-PET imaging tracks the accumulation of amyloid beta (Aβ) deposits in the brain. Amyloid plaques accumulation may begin 10 to 20 years before the individual experiences clinical symptoms associated with Alzheimer's diseases (ad). Recent large-scale genome-wide association studies reported common risk factors associated with brain amyloidosis, suggesting that this endophenotype is driven by genetic variants. However, these loci pinpoint to large genomic regions and the functional variants remain to be identified. To identify new risk factors associated with brain amyloid deposition, we performed whole-genome sequencing on a large cohort of European descent individuals with amyloid PET imaging data (n = 1,888). Gene-based analysis for coding variants was performed using SKAT-O for amyloid PET as a quantitative endophenotype that identified genome-wide significant association for APOE (P = 2.45 × 10-10), and 26 new candidate genes with suggestive significance association (P < 5. 0 × 10-03) including SCN7A (P = 7.31 × 10-05), SH3GL1 (P = 7.56 × 10-04), and MFSD12 (P = 8.51 × 10-04). Enrichment analysis highlighted the lipid binding pathways as associated with Aβ deposition in brain driven by PITPNM3 (P = 4.27 × 10-03), APOE (P = 2.45 × 10-10), AP2A2 (P = 1.06 × 10-03), and SH3GL1 (P = 7.56 × 10-04). Overall, our data strongly support a connection between lipid metabolism and the deposition of Aβ in the brain. Our study illuminates promising avenues for therapeutic interventions targeting lipid metabolism to address brain amyloidosis.
Collapse
Affiliation(s)
- Maulikkumar Patel
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Cyril Pottier
- Department of Psychiatry, Neurogenomics and Informatics, Department of Neurology, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Kang-Hsien Fan
- Department of Human Genetics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Arda Cetin
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Matthew Johnson
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Muhammad Ali
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Menghan Liu
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Priyanka Gorijala
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - John Budde
- Department of Psychiatry, Neurogenomics and Informatics, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| | - Ruyu Shi
- Department of Human Genetics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Ann D Cohen
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA 15213, United States
| | - James T Becker
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Beth E Snitz
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - Howard Aizenstein
- Department of Human Genetics, University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Oscar L Lopez
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213, United States
| | - John C Morris
- Department of Neurology, Hope Center for Neurologic Diseases, Section on Aging & Dementia, Institute of Clinical and Translational Sciences, Knight Alzheimer Disease Research Center Washington University School of Medicine, 4901 Forest Park Ave 4th floor, St. Louis, MO 63108, United States
| | - M Ilyas Kamboh
- Department of Human Genetics, Department of Psychiatry University of Pittsburgh, 130 De Soto St, Pittsburgh, PA 15261, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Neurogenomics and Informatics, Department of Neurology, Hope Center for Neurologic Diseases, Knight Alzheimer Disease Research Center, Washington University School of Medicine, 4444 Forest Park Ave, St. Louis, MO 63108, United States
| |
Collapse
|
9
|
Adil NA, Omo-Erigbe C, Yadav H, Jain S. The Oral-Gut Microbiome-Brain Axis in Cognition. Microorganisms 2025; 13:814. [PMID: 40284650 PMCID: PMC12029813 DOI: 10.3390/microorganisms13040814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and neuronal loss, affecting millions worldwide. Emerging evidence highlights the oral microbiome-a complex ecosystem of bacteria, fungi, viruses, and protozoa as a significant factor in cognitive health. Dysbiosis of the oral microbiome contributes to systemic inflammation, disrupts the blood-brain barrier, and promotes neuroinflammation, processes increasingly implicated in the pathogenesis of AD. This review examines the mechanisms linking oral microbiome dysbiosis to cognitive decline through the oral-brain and oral-gut-brain axis. These interconnected pathways enable bidirectional communication between the oral cavity, gut, and brain via neural, immune, and endocrine signaling. Oral pathogens, such as Porphyromonas gingivalis, along with virulence factors, including lipopolysaccharides (LPS) and gingipains, contribute to neuroinflammation, while metabolic byproducts, such as short-chain fatty acids (SCFAs) and peptidoglycans, further exacerbate systemic immune activation. Additionally, this review explores the influence of external factors, including diet, pH balance, medication use, smoking, alcohol consumption, and oral hygiene, on oral microbial diversity and stability, highlighting their role in shaping cognitive outcomes. The dynamic interplay between the oral and gut microbiomes reinforces the importance of microbial homeostasis in preserving systemic and neurological health. The interventions, including probiotics, prebiotics, and dietary modifications, offer promising strategies to support cognitive function and reduce the risk of neurodegenerative diseases, such as AD, by maintaining a diverse microbiome. Future longitudinal research is needed to identify the long-term impact of oral microbiome dysbiosis on cognition.
Collapse
Affiliation(s)
- Noorul Ain Adil
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Christabel Omo-Erigbe
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, Tampa, FL 33612, USA; (N.A.A.); (C.O.-E.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
10
|
Donkor DM, Marfo E, Bockarie A, Tettevi EJ, Antwi MH, Dogah J, Osei GN, Simpong DL. Genetic and environmental risk factors for dementia in African adults: A systematic review. Alzheimers Dement 2025; 21:e70220. [PMID: 40289851 PMCID: PMC12035544 DOI: 10.1002/alz.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/30/2025]
Abstract
Dementia, a leading cause of global mortality, disproportionately impacts sub-Saharan Africans due to complex genetic and environmental interactions. This systematic review evaluated dementia risk factors among sub-Saharan Africans, identifying significant genetic and environmental influences using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The ATP-binding cassette subfamily A member 7 (ABCA7) gene, linked to dementia in African Americans, and unique genetic variants like those in A-kinase anchor protein 9 (AKAP9) and cytidine deaminase (CDA) genes, emerge as potential contributors. Conversely, apolipoprotein E (APOE) ε4 shows lesser impact in older sub-Saharan Africans. Environmental findings highlight that exposure to air pollution, including nitrogen dioxide and particulate matter increases the likelihood of dementia. These findings highlight the role of genetic and environmental diversity in shaping dementia risk profiles. Strategies such as training health-care professionals, enhancing funding for research, combating stigma through awareness campaigns, and fostering global collaborations are vital to ensure African representation in dementia studies. These efforts aim to improve the knowledge of dementia tailored to sub-Saharan Africa's needs. HIGHLIGHTS: The ATP-binding cassette subfamily A member 7 (ABCA7) gene is strongly associated with dementia risk, particularly in African American populations. Apolipoprotein E (APOE) ε4, a well-established risk factor for Alzheimer's disease in Western populations, has a lesser impact in older sub-Saharan Africans, suggesting unique genetic-environment interactions. Exposure to air pollutants, such as nitrogen dioxide and particulate matter, significantly increases dementia risk. The development of dementia in sub-Saharan Africans is influenced by complex interactions between genetic predispositions and environmental exposures, emphasizing the need for tailored prevention strategies.
Collapse
Affiliation(s)
- David Mawutor Donkor
- Department of Medical Laboratory ScienceSchool of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| | - Esther Marfo
- Department of Medical Laboratory ScienceSchool of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| | - Ansumana Bockarie
- Department of Internal Medicine and TherapeuticsSchool of Medical SciencesUniversity of Cape CoastCape CoastGhana
| | - Edward Jenner Tettevi
- Department of BiochemistryCell and Molecular BiologySchool of Biological ScienceUniversity of GhanaAccraGhana
| | - Maxwell Hubert Antwi
- Department of Medical Laboratory ScienceSchool of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
- Department of Medical Laboratory ScienceFaculty of Health SciencesKoforidua Technical UniversityKoforiduaGhana
| | - John Dogah
- Department of Medical Laboratory ScienceSchool of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| | - George Nkrumah Osei
- Department of Medical Laboratory ScienceSchool of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| | - David Larbi Simpong
- Department of Medical Laboratory ScienceSchool of Allied Health SciencesUniversity of Cape CoastCape CoastGhana
| |
Collapse
|
11
|
Dhillon A, Fazal J. Overview and Regional Context of Alzheimer's Disease in the Middle East and North Africa Region. Cureus 2025; 17:e83164. [PMID: 40443613 PMCID: PMC12120654 DOI: 10.7759/cureus.83164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2025] [Indexed: 06/02/2025] Open
Abstract
Alzheimer's disease (AD) poses a significant global health challenge, particularly in the Middle East and North Africa (MENA) due to unique socio-economic, cultural, and environmental factors. While AD is prevalent worldwide, MENA faces distinct challenges such as rapid urbanization, aging populations, and healthcare disparities, which exacerbate the disease's impact. Both non-modifiable factors like genetics and modifiable factors, including lifestyle and environmental exposures influence AD's prevalence and severity across the region. The economic burden of AD significantly impacts family and societal structures. The need for enhanced research, early diagnosis, culturally tailored healthcare interventions, and robust public health policies to manage and mitigate AD in MENA is apparent. Applying lessons from international contexts to the MENA region and advocating for a multi-faceted approach that integrates medical, social, and policy efforts should help combat this growing health crisis effectively. This comprehensive review assesses the epidemiology, risk factors, and barriers to optimal care for AD across the MENA region, revealing a critical need for region-specific public health strategies.
Collapse
Affiliation(s)
- Akum Dhillon
- Department of Research and Health Innovation, Burjeel Medical City, Abu Dhabi, ARE
| | - Jawad Fazal
- Department of Neurology, Burjeel Medical City, Abu Dhabi, ARE
| |
Collapse
|
12
|
Rosal AE, Martin SL, Strafella AP. The role of Apolipoprotein E4 on cognitive impairment in Parkinson's disease and Parkinsonisms. Front Neurosci 2025; 19:1515374. [PMID: 40052092 PMCID: PMC11882537 DOI: 10.3389/fnins.2025.1515374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025] Open
Abstract
Cognitive impairment is a prevalent non-motor symptom of Parkinson's disease (PD), increasing the risk of dementia as the disease progresses. Despite its clinical significance, the etiology of cognitive impairment in PD remains unclear. Apolipoprotein E4 (APOE4), a well-known genetic risk factor of Alzheimer's disease, has been studied for its potential role in PD-related cognitive impairment. However, findings have been conflicting and thus inconclusive, highlighting a need to critically evaluate the current research. Several studies using neuroimaging modalities have explored the brains of individuals with PD and atypical parkinsonian disorders who have APOE4. Some of these studies have identified distinct neuropathological changes that have been previously reported to be associated with cognitive impairments in those with Parkinsonisms. Here, we review the role of APOE4 on cognitive impairment in PD and atypical Parkinsonisms using neuroimaging evidence. We will examine how APOE4 may contribute to pathological changes within the brain and its association with cognitive impairment.
Collapse
Affiliation(s)
- Angenelle Eve Rosal
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Sarah L. Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Translation and Computational Neurosciences Unit (TCNU), Faculty of Health and Education, Manchester Metropolitan University, Manchester, United Kingdom
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital and Krembil Brain Institute, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Gao X, Yin Y, Chen Y, Lu L, Zhao J, Lin X, Wu J, Li Q, Zeng R. Uncovering dark mass in population proteomics: Pan-analysis of single amino acid polymorphism relevant to cognition and aging. CELL GENOMICS 2025; 5:100763. [PMID: 39889701 PMCID: PMC11872527 DOI: 10.1016/j.xgen.2025.100763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/28/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Human proteome data across populations have been analyzed extensively to reveal protein quantitative associations with physiological or pathological states, while the single amino acid polymorphism (SAP) has been rarely investigated. In this work, we introduce a pan-SAP workflow that relies on pan-database searching independent of individual genome sequencing. Using ten cohorts comprising 2,004 individuals related to cognition disorder and aging, we quantify the SAP sites in key proteins, such as apolipoprotein E (APOE) in plasma and cerebrospinal fluid at the proteome level. Specifically, the quantification of heterozygous APOE-C112R, including its abundance and ratio, provides insights into the dosage effect and relationship with cognition disorder, which cannot be interpreted at the genomic level. Furthermore, our approach could precisely track age-related changes in APOE-C112R levels. Taken together, this pan-SAP workflow uncovered existing but hidden SAPs in multi-populations, connecting SAP quantification to disease progression and paving the way for broader proteomic investigations in complex diseases.
Collapse
Affiliation(s)
- Xiaojing Gao
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yuanyuan Yin
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yiqian Chen
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ling Lu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Zhao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xu Lin
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jiarui Wu
- National Facility for Protein Science Shanghai (NFPSS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qingrun Li
- National Facility for Protein Science Shanghai (NFPSS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
| | - Rong Zeng
- Shanghai Clinical Research and Trial Center, ShanghaiTech University, Shanghai 201210, China; National Facility for Protein Science Shanghai (NFPSS), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Sciences and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
14
|
Dias D, Portugal CC, Relvas J, Socodato R. From Genetics to Neuroinflammation: The Impact of ApoE4 on Microglial Function in Alzheimer's Disease. Cells 2025; 14:243. [PMID: 39996715 PMCID: PMC11853365 DOI: 10.3390/cells14040243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disorder marked by progressive cognitive decline and memory loss, impacting millions of people around the world. The apolipoprotein E4 (ApoE4) allele is the most prominent genetic risk factor for late-onset AD, dramatically increasing disease susceptibility and accelerating onset compared to its isoforms ApoE2 and ApoE3. ApoE4's unique structure, which arises from single-amino-acid changes, profoundly alters its function. This review examines the critical interplay between ApoE4 and microglia-the brain's resident immune cells-and how this relationship contributes to AD pathology. We explore the molecular mechanisms by which ApoE4 modulates microglial activity, promoting a pro-inflammatory state, impairing phagocytic function, and disrupting lipid metabolism. These changes diminish microglia's ability to clear amyloid-beta peptides, exacerbating neuroinflammation and leading to neuronal damage and synaptic dysfunction. Additionally, ApoE4 adversely affects other glial cells, such as astrocytes and oligodendrocytes, further compromising neuronal support and myelination. Understanding the ApoE4-microglia axis provides valuable insights into AD progression and reveals potential therapeutic targets. We discuss current strategies to modulate ApoE4 function using small molecules, antisense oligonucleotides, and gene editing technologies. Immunotherapies targeting amyloid-beta and ApoE4, along with neuroprotective approaches to enhance neuronal survival, are also examined. Future directions highlight the importance of personalized medicine based on individual ApoE genotypes, early biomarker identification for risk assessment, and investigating ApoE4's role in other neurodegenerative diseases. This review emphasizes the intricate connection between ApoE4 and microglial dysfunction, highlighting the necessity of targeting this pathway to develop effective interventions. Advancing our understanding in this area holds promise for mitigating AD progression and improving outcomes for those affected by this relentless disease.
Collapse
Affiliation(s)
| | | | | | - Renato Socodato
- i3S—Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135 Porto, Portugal; (D.D.); (C.C.P.); (J.R.)
| |
Collapse
|
15
|
Lee BH, Cevizci M, Lieblich SE, Galea LAM. Sex-specific influences of APOEε4 genotype on hippocampal neurogenesis and progenitor cells in middle-aged rats. Biol Sex Differ 2025; 16:10. [PMID: 39910616 PMCID: PMC11796140 DOI: 10.1186/s13293-025-00694-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/27/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) disproportionately and uniquely affects females, and these sex differences are further exacerbated by the presence of Apolipoprotein (APOE) ε4 alleles, the top genetic risk factor for late-onset AD. To expand our understanding about how late-onset AD risk might differentially influence males and females, this study explores how APOEε4 affects hippocampal neurogenesis and microglia, key neuroplastic markers involved in AD pathogenesis, differently by sex in middle-aged rats. METHODS A rat model expressing the humanized (h) APOEε4 allele was characterized to examine markers of adult neurogenesis (neural progenitor cells and new-born neurons) and immune cells (microglia) in the dentate gyrus of the hippocampus in 13 month-old male and female rats. RESULTS We observed basal sex differences in neurogenesis at middle age, as wildtype male rats had greater densities of neural progenitor cells and new-born neurons in the dentate gyrus than wildtype female rats. Male hAPOEε4 rats exhibited fewer neural progenitor cells, fewer new-born neurons, and more microglia than male wildtype rats. On the other hand, female hAPOEε4 rats exhibited more new-born neurons than female wildtype rats. Interestingly, females had more microglia than males regardless of genotype. Correlations were conducted to further elucidate any sex differences in the relationships between these biomarkers. Notably, there was a significant positive correlation between neural progenitor cells and new-born neurons, and a significant negative correlation between new-born neurons and microglia, but only in male rats. CONCLUSION In contrast to the clear pattern of effects of the hAPOEε4 risk factor on hippocampal neurogenesis in males, females had unaltered levels of neural progenitor cells and increased density of new-born neurons. Furthermore, relationships between neurogenesis and microglia were significantly correlated within males, and not females. This suggests that females may be presenting a compensatory response to the hAPOEε4 genotype at middle age. Collectively, these results exemplify the importance of thoroughly examining influences of sex on AD endophenotypes, as it may reveal sex-specific pathways and protective mechanisms relevant to AD.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melike Cevizci
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie E Lieblich
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Luo X, Liang J, Lei X, Sun F, Gong M, Liu B, Zhou Z. C/EBPβ in Alzheimer's disease: An integrative regulator of pathological mechanisms. Brain Res Bull 2025; 221:111198. [PMID: 39788461 DOI: 10.1016/j.brainresbull.2025.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) stands as one of the most prevalent neurodegenerative disorders, characterized by a progressive decline in cognitive function, neuroinflammation, amyloid-beta (Aβ) plaques, and neurofibrillary tangles (NFTs). With the global aging population, the incidence of AD continues to rise, yet current therapeutic strategies remain limited in their ability to significantly alleviate cognitive impairments. Therefore, a deeper understanding of the molecular mechanisms underlying AD is imperative for the development of more effective treatments. In recent years, the transcription factor C/EBPβ has emerged as a pivotal regulator in several pathological processes of AD, including neuroinflammation, lipid metabolism, Aβ processing, and tau phosphorylation. Through intricate post-translational modifications, C/EBPβ modulates these processes and may influence the progression of AD on multiple fronts. This review systematically explores the multifaceted roles of C/EBPβ in the pathogenesis of AD, delving into its crucial involvement in neuroinflammation, Aβ production, tau pathology, and lipid metabolism dysregulation. Furthermore, we critically assess therapeutic strategies targeting C/EBPβ, examining the challenges and opportunities in regulating this factor. By synthesizing the latest research findings, we offer a more comprehensive understanding of the role of C/EBPβ in AD and discuss its potential as a therapeutic intervention target.
Collapse
Affiliation(s)
- Xiaoting Luo
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Junyi Liang
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Xue Lei
- The First Hospital Affiliated to Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | - Fengqi Sun
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| | | | - Bin Liu
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China.
| | - Zhongguang Zhou
- Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
17
|
Biel D, Suárez-Calvet M, Dewenter A, Steward A, Roemer SN, Dehsarvi A, Zhu Z, Pescoller J, Frontzkowski L, Kreuzer A, Haass C, Schöll M, Brendel M, Franzmeier N. Female sex is linked to a stronger association between sTREM2 and CSF p-tau in Alzheimer's disease. EMBO Mol Med 2025; 17:235-248. [PMID: 39794447 PMCID: PMC11822105 DOI: 10.1038/s44321-024-00190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
In Alzheimer's disease (AD), Aβ triggers p-tau secretion, which drives tau aggregation. Therefore, it is critical to characterize modulators of Aβ-related p-tau increases which may alter AD trajectories. Here, we assessed whether factors known to alter tau levels in AD modulate the association between fibrillar Aβ and secreted p-tau181 determined in the cerebrospinal fluid (CSF). To assess potentially modulating effects of female sex, younger age, and ApoE4, we included 322 ADNI participants with cross-sectional/longitudinal p-tau181. To determine effects of microglial activation on p-tau181, we included 454 subjects with cross-sectional CSF sTREM2. Running ANCOVAs for nominal and linear regressions for metric variables, we found that women had higher Aβ-related p-tau181 levels. Higher sTREM2 was associated with elevated p-tau181, with stronger associations in women. Similarly, ApoE4 was related to higher p-tau181 levels and faster p-tau181 increases, with stronger effects in female ApoE4 carriers. Our results show that sex alone modulates the Aβ to p-tau axis, where women show higher Aβ-dependent p-tau secretion, potentially driven by elevated sTREM2-related microglial activation and stronger effects of ApoE4 carriership in women.
Collapse
Affiliation(s)
- Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sebastian N Roemer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Annika Kreuzer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michael Schöll
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| |
Collapse
|
18
|
Zheng Q, Wang X. Alzheimer's disease: insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025; 16:83-120. [PMID: 38733347 PMCID: PMC11786724 DOI: 10.1093/procel/pwae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, is characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. This condition casts a significant shadow on global health due to its complex and multifactorial nature. In addition to genetic predispositions, the development of AD is influenced by a myriad of risk factors, including aging, systemic inflammation, chronic health conditions, lifestyle, and environmental exposures. Recent advancements in understanding the complex pathophysiology of AD are paving the way for enhanced diagnostic techniques, improved risk assessment, and potentially effective prevention strategies. These discoveries are crucial in the quest to unravel the complexities of AD, offering a beacon of hope for improved management and treatment options for the millions affected by this debilitating disease.
Collapse
Affiliation(s)
- Qiuyang Zheng
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xin Wang
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
19
|
Cruz-Sese J, Mirón-Alcala M, Alfonso-Triguero M, Olalde J, Ruiz L, Galbis-Gramage N, Cortes L, Escobar L, Preman P, Snellinx A, Saito T, Saido TC, Saiz-Aúz L, Rábano-Gutiérrez A, Tcw J, Goate A, Strooper BD, Alberdi E, Arranz AM. Divergent Effects of APOE3 and APOE4 Human Astrocytes on Key Alzheimer's Disease Hallmarks in Chimeric Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635271. [PMID: 39975251 PMCID: PMC11838330 DOI: 10.1101/2025.01.28.635271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Despite strong evidence supporting that both astrocytes and apolipoprotein E (APOE) play crucial roles in the pathogenesis and progression of Alzheimer's disease (AD), the impact of astrocytes carrying different APOE variants on key AD pathological hallmarks remains largely unknown. To explore such effects in a human relevant context, we generated a chimeric model of AD. We transplanted isogenic APOE3 or APOE4 human induced pluripotent stem cell (hiPSC)-derived astrocyte progenitors into neonatal brains of AD model mice. We show that at five to six months after transplantation, transplanted cells have differentiated into mature astrocytes (h-astrocytes) that often integrate in upper layers of one cortical hemisphere. APOE3 and APOE4 h-astrocytes differentially express and secrete the APOE protein, which binds to Aβ plaques with an isoform-dependent affinity. Remarkably, APOE3 h-astrocytes ameliorate Aβ pathology, Tau pathology and neuritic dystrophy. In contrast, APOE4 h-astrocytes aggravate these AD processes. Moreover, APOE3 and APOE4 h-astrocytes modulate microglia responses to Aβ pathology in opposite ways. APOE4 h-astrocytes enhance microglia clustering around Aβ plaques and exacerbate DAM state whereas APOE3 h-astrocytes reduce microglia clustering and induce a more homeostatic state on plaque-associated microglia. These findings highlight a critical contribution of h-astrocytes not only to Aβ pathology but also to other key AD hallmarks in chimeric mice. In addition, our findings reveal that h-astrocytes with different APOE variants and the different forms of APOE they secrete have a crucial role in AD progression.
Collapse
|
20
|
Rao A, Chen N, Kim MJ, Blumenfeld J, Yip O, Liang Z, Shostak D, Hao Y, Nelson MR, Koutsodendris N, Grone B, Ding L, Yoon SY, Arriola P, Zilberter M, Huang Y. Microglia depletion reduces human neuronal APOE4-related pathologies in a chimeric Alzheimer's disease model. Cell Stem Cell 2025; 32:86-104.e7. [PMID: 39500314 DOI: 10.1016/j.stem.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/13/2024]
Abstract
Despite strong evidence supporting the important roles of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-related AD pathogenesis remain elusive. To examine such effects, we utilized microglial depletion in a chimeric model with induced pluripotent stem cell (iPSC)-derived human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) iPSC-derived human neurons into the hippocampus of human APOE3 or APOE4 knockin mice and then depleted microglia in half of the chimeric mice. We found that both neuronal APOE and microglial presence were important for the formation of Aβ and tau pathologies in an APOE isoform-dependent manner (APOE4 > APOE3). Single-cell RNA sequencing analysis identified two pro-inflammatory microglial subtypes with elevated MHC-II gene expression enriched in chimeric mice with human APOE4 neuron transplants. These findings highlight the concerted roles of neuronal APOE, especially APOE4, and microglia in AD pathogenesis.
Collapse
Affiliation(s)
- Antara Rao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nuo Chen
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Zherui Liang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - David Shostak
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yanxia Hao
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Maxine R Nelson
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Nicole Koutsodendris
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Grone
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Leo Ding
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Patrick Arriola
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Taza M, Schmitz TW, Spreng RN. Structural changes to the basal forebrain cholinergic system in the continuum of Alzheimer disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:81-93. [PMID: 40340069 DOI: 10.1016/b978-0-443-19088-9.00013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
In this chapter, we review evidence, derived predominantly from in vivo human MRI studies, that the basal forebrain (BF) and its projection system undergo structural changes across the continuum of Alzheimer disease (AD) progression. We examine how these changes are detectable from the earliest presymptomatic stages and continue into the prodromal and clinical phases of AD. The chapter begins with a brief overview of BF neuroanatomy before characterizing how changes to the BF and ascending cholinergic white matter projections parallel AD progression. In subsequent sections, we describe how these structural changes are exacerbated in the presence of amyloid and tau pathology, as well as in individuals at elevated genetic risk for AD. We conclude with a review of recent findings implicating the BF as a potential origin site for AD neuropathology and discuss the transsynaptic spread hypothesis of AD progression, from the BF to cortical projection targets.
Collapse
Affiliation(s)
- Miriam Taza
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Taylor W Schmitz
- Department of Physiology and Pharmacology, Western University, London, ON, Canada; Robarts Research Institute, Western University, London, ON, Canada; Western Institute for Neuroscience, Western University, London, ON, Canada; Lawson Health Research Institute, London, ON, Canada
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Psychology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
22
|
Prosser L, Sudre CH, Oxtoby NP, Young AL, Malone IB, Manning EN, Pemberton H, Walsh P, Barkhof F, Biessels GJ, Cash DM, Barnes J. Biomarker pathway heterogeneity of amyloid-positive individuals. Alzheimers Dement 2024; 20:8503-8515. [PMID: 39417393 DOI: 10.1002/alz.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION In amyloid-positive individuals, disease-related biomarker heterogeneity is understudied. METHODS We used Subtype and Stage Inference (SuStaIn) to identify data-driven subtypes among cerebrospinal fluid (CSF) amyloid beta (1-42)-positive individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNIGO/2 [n = 376]). Variables included: CSF phosphorylated tau (p-tau181), hippocampal and whole-brain volume, logical memory (LM), composite Trail Making Test score, and white matter hyperintensity (WMH) volumes. CSF amyloid-negative, apolipoprotein E ε4 non-carrier cognitively unimpaired controls (n = 86) were used to calculate z scores. RESULTS One subtype (n = 145) had early LM changes, with later p-tau and WMH changes. A second subtype (n = 88) had early WMH changes, were older, and more hypertensive. A third subtype (n = 100) had early p-tau changes, and reflected typical Alzheimer's disease. Some amyloid positive (n = 43) individuals were similar to the amyloid-negative group. DISCUSSION This work identified heterogeneity in individuals who are conventionally considered homogeneous, which is likely driven by co-pathologies including cerebrovascular disease. HIGHLIGHTS Data-driven modeling identified marker heterogeneity in amyloid-positive individuals. Heterogeneity reflected Alzheimer's disease-like, vascular-like, and mixed pathology presentations. Some amyloid-positive individuals were more similar to amyloid-negative controls. Vascular pathology plays a key role in understanding heterogeneity in those on the amyloid pathway.
Collapse
Affiliation(s)
- Lloyd Prosser
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Carole H Sudre
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Centre for Medical Image Computing, University College London, London, UK
- MRC Unit for Lifelong Health and Ageing at UCL, Department of Population Sciences and Experimental Medicine, University College London, London, UK
| | - Neil P Oxtoby
- Centre for Medical Image Computing, University College London, London, UK
| | - Alexandra L Young
- Centre for Medical Image Computing, University College London, London, UK
| | - Ian B Malone
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Emily N Manning
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Hugh Pemberton
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Phoebe Walsh
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Frederik Barkhof
- Centre for Medical Image Computing, University College London, London, UK
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Josephine Barnes
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
23
|
Preman P, Moechars D, Fertan E, Wolfs L, Serneels L, Shah D, Lamote J, Poovathingal S, Snellinx A, Mancuso R, Balusu S, Klenerman D, Arranz AM, Fiers M, De Strooper B. APOE from astrocytes restores Alzheimer's Aβ-pathology and DAM-like responses in APOE deficient microglia. EMBO Mol Med 2024; 16:3113-3141. [PMID: 39528861 PMCID: PMC11628604 DOI: 10.1038/s44321-024-00162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The major genetic risk factor for Alzheimer's disease (AD), APOE4, accelerates beta-amyloid (Aβ) plaque formation, but whether this is caused by APOE expressed in microglia or astrocytes is debated. We express here the human APOE isoforms in astrocytes in an Apoe-deficient AD mouse model. This is not only sufficient to restore the amyloid plaque pathology but also induces the characteristic transcriptional pathological responses in Apoe-deficient microglia surrounding the plaques. We find that both APOE4 and the protective APOE2 from astrocytes increase fibrillar plaque deposition, but differentially affect soluble Aβ aggregates. Microglia and astrocytes show specific alterations in function of APOE genotype expressed in astrocytes. Our experiments indicate a central role of the astrocytes in APOE mediated amyloid plaque pathology and in the induction of associated microglia responses.
Collapse
Affiliation(s)
- Pranav Preman
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Daan Moechars
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Emre Fertan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Leen Wolfs
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Lutgarde Serneels
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Disha Shah
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Jochen Lamote
- VIB FACS Expertise Center, Center for Cancer Biology, Leuven, Belgium
| | | | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB-UAntwerp, Centre for Molecular Neurology, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sriram Balusu
- VIB Center for Brain & Disease Research, Leuven, Belgium
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge, UK
| | - Amaia M Arranz
- Laboratory of Humanized Models of Disease, Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium.
- Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven (University of Leuven), Leuven, Belgium.
- UK Dementia Research Institute, University College London, London, UK.
| |
Collapse
|
24
|
Kaji S, Berghoff SA, Spieth L, Schlaphoff L, Sasmita AO, Vitale S, Büschgens L, Kedia S, Zirngibl M, Nazarenko T, Damkou A, Hosang L, Depp C, Kamp F, Scholz P, Ewers D, Giera M, Ischebeck T, Wurst W, Wefers B, Schifferer M, Willem M, Nave KA, Haass C, Arzberger T, Jäkel S, Wirths O, Saher G, Simons M. Apolipoprotein E aggregation in microglia initiates Alzheimer's disease pathology by seeding β-amyloidosis. Immunity 2024; 57:2651-2668.e12. [PMID: 39419029 DOI: 10.1016/j.immuni.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The seeded growth of pathogenic protein aggregates underlies the pathogenesis of Alzheimer's disease (AD), but how this pathological cascade is initiated is not fully understood. Sporadic AD is linked genetically to apolipoprotein E (APOE) and other genes expressed in microglia related to immune, lipid, and endocytic functions. We generated a transgenic knockin mouse expressing HaloTag-tagged APOE and optimized experimental protocols for the biochemical purification of APOE, which enabled us to identify fibrillary aggregates of APOE in mice with amyloid-β (Aβ) amyloidosis and in human AD brain autopsies. These APOE aggregates that stained positive for β sheet-binding dyes triggered Aβ amyloidosis within the endo-lysosomal system of microglia, in a process influenced by microglial lipid metabolism and the JAK/STAT signaling pathway. Taking these observations together, we propose a model for the onset of Aβ amyloidosis in AD, suggesting that the endocytic uptake and aggregation of APOE by microglia can initiate Aβ plaque formation.
Collapse
Affiliation(s)
- Seiji Kaji
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Stefan A Berghoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| | - Lena Spieth
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Lennart Schlaphoff
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Andrew O Sasmita
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Simona Vitale
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Luca Büschgens
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Shreeya Kedia
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martin Zirngibl
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Taisiia Nazarenko
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, Göttingen, Germany
| | - Constanze Depp
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Frits Kamp
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - David Ewers
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Martin Giera
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Albinusdreef 2, 2333ZA Leiden, the Netherlands
| | - Till Ischebeck
- Department of Plant Biochemistry, University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, University of Göttingen, Göttingen, Germany; Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Michael Willem
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Klaus-Armin Nave
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Thomas Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University of Munich, Munich, Germany; Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University Hospital, Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center (UMG), Georg-August-University, Göttingen, Germany
| | - Gesine Saher
- Max Planck Insitute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, University Hospital of Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
25
|
Ding Y, Palecek SP, Shusta EV. iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. Fluids Barriers CNS 2024; 21:79. [PMID: 39394110 PMCID: PMC11468049 DOI: 10.1186/s12987-024-00580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB. METHODS To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate. RESULTS Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients. CONCLUSIONS While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
26
|
Lin PBC, Holtzman DM. Current insights into apolipoprotein E and the immune response in Alzheimer's disease. Immunol Rev 2024; 327:43-52. [PMID: 39445515 PMCID: PMC11578782 DOI: 10.1111/imr.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder and the most common cause of dementia. Genetic analyses identified apolipoprotein E (APOE) as the strongest genetic risk for late-onset AD. Studies have shown that ApoE modulates AD pathogenesis in part by influencing amyloid-β (Aβ) deposition. However, ApoE also appears to regulate elements of AD via regulation of innate immune response, especially through microglial and astrocyte activation. In model systems, it also regulates changes in T-cells. This review focuses on the key findings that have advanced our understanding of the role of ApoE in the pathogenesis of AD and the current view of innate immune response regulated by ApoE in AD, while discussing open questions and areas for future research.
Collapse
Affiliation(s)
- Peter Bor-Chian Lin
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
27
|
Chen Y, Holtzman DM. New insights into innate immunity in Alzheimer's disease: from APOE protective variants to therapies. Trends Immunol 2024; 45:768-782. [PMID: 39278789 DOI: 10.1016/j.it.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Recent discoveries of rare variants of human APOE may shed light on novel therapeutic strategies for Alzheimer's disease (AD). Here, we highlight the newly identified protective variant [APOE3 Christchurch (APOE3ch, R136S)] as an example. We summarize human AD and mouse amyloidosis and tauopathy studies from the past 5 years that have been associated with this R136S variant. We also propose a potential mechanism for how this point mutation might lead to protection against AD pathology, from the molecular level, to cells, to mouse models, and potentially, to humans. Lastly, we extend our discussion of the recent insights gained regarding different APOE variants to putative therapeutic approaches in AD.
Collapse
Affiliation(s)
- Yun Chen
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St Louis, St Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St Louis, St Louis, MO 63110, USA.
| |
Collapse
|
28
|
Christensen A, McGill CJ, Qian W, Pike CJ. Effects of obesogenic diet and 17β-estradiol in female mice with APOE 3/3, 3/4, and 4/4 genotypes. Front Aging Neurosci 2024; 16:1415072. [PMID: 39347015 PMCID: PMC11427389 DOI: 10.3389/fnagi.2024.1415072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
The main genetic risk factor for Alzheimer's disease (AD) is the apolipoprotein E ε4 allele (APOE4). AD risk associated with APOE4 disproportionately affects women. Furthermore, human and rodent studies indicate that the cognitive deficits associated with APOE4 are greater in females. One modifiable AD risk factor is obesity during middle age. Given that approximately two-thirds of US adults are overweight, it is important to understand how obesity affects AD risk, how it interacts with APOE4, and the extent to which its detrimental effects can be mitigated with therapeutics. One intervention study for women is estrogen-based hormone therapy, which can exert numerous health benefits when administered in early middle age. No experimental studies have examined the interactions among APOE4, obesity, and hormone therapy in aging females. To begin to explore these issues, we considered how obesity outcomes are affected by treatment with estradiol at the onset of middle age in female mice with human APOE3 and APOE4. Furthermore, to explore how gene dosage affects outcomes, we compared mice homozygous for APOE3 (3/3) and homozygous (4/4) or hemizygous (3/4) for APOE4. Mice were examined over a 4-month period that spans the transition into reproductive senescence, a normal age-related change that models many aspects of human perimenopause. Beginning at 5 months of age, mice were maintained on a control diet (10% fat) or high-fat diet (HFD; 60% fat). After 8 weeks, by which time obesity was present in all HFD groups, mice were implanted with an estradiol or vehicle capsule that was maintained for the final 8 weeks. Animals were assessed on a range of metabolic and neural measures. Overall, APOE4 was associated with poorer metabolic function and cognitive performance. However, an obesogenic diet induced relatively greater impairments in metabolic function and cognitive performance in APOE3/3 mice. Estradiol treatment improved metabolic and cognitive outcomes across all HFD groups, with APOE4/4 generally exhibiting the greatest benefit. APOE3/4 mice were intermediate to the homozygous genotypes on many measures but also exhibited unique profiles. Together, these findings highlight the importance of the APOE genotype as a modulator of the risks associated with obesity and the beneficial outcomes of estradiol.
Collapse
Affiliation(s)
| | | | | | - Christian J. Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
29
|
Cao Y, Zhao LW, Chen ZX, Li SH. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer's disease. Front Neurosci 2024; 18:1430465. [PMID: 39323915 PMCID: PMC11422391 DOI: 10.3389/fnins.2024.1430465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/14/2024] [Indexed: 09/27/2024] Open
Abstract
Alzheimer's disease (AD) is increasingly recognized as being intertwined with the dysregulation of lipid metabolism. Lipids are a significant class of nutrients vital to all organisms, playing crucial roles in cellular structure, energy storage, and signaling. Alterations in the levels of various lipids in AD brains and dysregulation of lipid pathways and transportation have been implicated in AD pathogenesis. Clinically, evidence for a high-fat diet firmly links disrupted lipid metabolism to the pathogenesis and progression of AD, although contradictory findings warrant further exploration. In view of the significance of various lipids in brain physiology, the discovery of complex and diverse mechanisms that connect lipid metabolism with AD-related pathophysiology will bring new hope for patients with AD, underscoring the importance of lipid metabolism in AD pathophysiology, and promising targets for therapeutic intervention. Specifically, cholesterol, sphingolipids, and fatty acids have been shown to influence amyloid-beta (Aβ) accumulation and tau hyperphosphorylation, which are hallmarks of AD pathology. Recent studies have highlighted the potential therapeutic targets within lipid metabolism, such as enhancing apolipoprotein E lipidation, activating liver X receptors and retinoid X receptors, and modulating peroxisome proliferator-activated receptors. Ongoing clinical trials are investigating the efficacy of these strategies, including the use of ketogenic diets, statin therapy, and novel compounds like NE3107. The implications of these findings suggest that targeting lipid metabolism could offer new avenues for the treatment and management of AD. By concentrating on alterations in lipid metabolism within the central nervous system and their contribution to AD development, this review aims to shed light on novel research directions and treatment approaches for combating AD, offering hope for the development of more effective management strategies.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Lin-Wei Zhao
- Department of Cardiology, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou University Central China Fuwai Hospital, Zhengzhou, China
| | - Zi-Xin Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Shao-Hua Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, China
- Clinical Systems Biology Laboratories, Translation Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
31
|
Chen F, Zhao J, Meng F, He F, Ni J, Fu Y. The vascular contribution of apolipoprotein E to Alzheimer's disease. Brain 2024; 147:2946-2965. [PMID: 38748848 DOI: 10.1093/brain/awae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/23/2024] [Accepted: 04/21/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease, the most prevalent form of dementia, imposes a substantial societal burden. The persistent inadequacy of disease-modifying drugs targeting amyloid plaques and neurofibrillary tangles suggests the contribution of alternative pathogenic mechanisms. A frequently overlooked aspect is cerebrovascular dysfunction, which may manifest early in the progression of Alzheimer's disease pathology. Mounting evidence underscores the pivotal role of the apolipoprotein E gene, particularly the apolipoprotein ε4 allele as the strongest genetic risk factor for late-onset Alzheimer's disease, in the cerebrovascular pathology associated with Alzheimer's disease. In this review, we examine the evidence elucidating the cerebrovascular impact of both central and peripheral apolipoprotein E on the pathogenesis of Alzheimer's disease. We present a novel three-hit hypothesis, outlining potential mechanisms that shed light on the intricate relationship among different pathogenic events. Finally, we discuss prospective therapeutics targeting the cerebrovascular pathology associated with apolipoprotein E and explore their implications for future research endeavours.
Collapse
Affiliation(s)
- Feng Chen
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Fanxia Meng
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangping He
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jie Ni
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Yuan Fu
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
32
|
Gao Y, Wang R, Mou K, Zhang Y, Xu H, Liu Y, Yang F, Gao Y, Wang X, Bao L, Zhang J, Chen Q, Yin H, Zhang M. Association of outer retinal and choroidal alterations with neuroimaging and clinical features in posterior cortical atrophy. Alzheimers Res Ther 2024; 16:187. [PMID: 39160571 PMCID: PMC11331764 DOI: 10.1186/s13195-024-01551-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Posterior cortical atrophy (PCA) is a rare condition characterized by early-onset and progressive visual impairment. Individuals with PCA have relatively early-onset and progressive dementia, posing certain needs for early detection. Hence, this study aimed to investigate the association of alterations in outer retinal and choroidal structure and microvasculature with PCA neuroimaging and clinical features and the possible effects of apolipoprotein E(APOE) ε4 allele on outer retinal and choroidal alterations in participants with PCA, to detect potential ocular biomarkers for PCA screening. METHODS This cross-sectional study included PCA and age- and sex-matched healthy control participants from June 2022 to December 2023. All participants with PCA completed a comprehensive neurological evaluation. All participants were recorded baseline information and underwent an ophthalmic evaluation. Quantitative analyses were performed using swept-source optical coherence tomography (SS-OCT) and angiography (SS-OCTA). Adaptive optics scanning laser ophthalmoscopy (AO-SLO) was performed in some patients. In participants with PCA, the influence of APOE ε4 on outer retinal and choroidal alterations and the correlation of outer retinal and choroidal alterations with PCA neuroimaging and clinical features in participants with PCA were investigated. RESULTS A total of 28 participants (53 eyes) with PCA and 56 healthy control participants (112 eyes) were included in the current study. Compared with healthy control participants, participants with PCA had significantly reduced outer retinal thickness (ORT) (p < 0.001), choriocapillaris vessel density (VD) (p = 0.007), choroidal vascular index (CVI) (p = 0.005) and choroidal vascular volume (CVV) (p = 0.003). In participants with PCA, APOE ε4 carriers showed thinner ORT (p = 0.009), and increased choriocapillaris VD (p = 0.004) and CVI (p = 0.004). The PCA neuroimaging features were positively associated with the ORT, CVI and CVV. Furthermore, differential correlations were observed of PCA clinical features with the CRT, CVV and CVI. CONCLUSIONS Our findings highlighted the association of outer retinal and choroidal alterations with PCA neuroimaging and clinical features in participants with PCA. Noninvasive SS-OCT and SS-OCTA can provide potential biomarkers for the diagnosis and management of PCA, improving awareness of PCA syndrome among ophthalmologists, neurologists, and primary care providers.
Collapse
Affiliation(s)
- Yuzhu Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Ophthalmology and Research Laboratory of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ruihan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kefan Mou
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yifan Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanyue Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Feng Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yunxia Gao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Bao
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Advanced Ophthalmology Laboratory (AOL), Robotrak Technologies, Nanjing, China
| | - Qin Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Ming Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
33
|
Agnello L, Gambino CM, Ciaccio AM, Piccoli T, Blandino V, Scazzone C, Lo Sasso B, Del Ben F, Ciaccio M. Exploring the effect of APOE ε4 on biomarkers of neurodegeneration in Alzheimer's disease. Clin Chim Acta 2024; 562:119876. [PMID: 39025198 DOI: 10.1016/j.cca.2024.119876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND AND AIMS This study aims to assess the association between APOE genotype and biomarkers of neurodegeneration in Alzheimer's disease (AD). METHODS We performed a retrospective observational study at the University Hospital "P. Giaccone" in Palermo, Italy. We enrolled patients with cognitive decline, including AD. For each patient, we measured amyloid beta (Aβ)42, Aβ40, tau protein phosphorylated at threonine 181 (pTau), total tau (tTau), neurogranin, alpha-synuclein, and neurofilament light chain (NfL) in cerebrospinal fluid (CSF). RESULTS The study population consisted of 194 patients (123 AD and 71 non-AD). AD patients have significantly lower Aβ42 levels and Aβ42/40 ratio and higher pTau, tTau, and NfLs levels than non-AD patients. In AD patients, the APOEε4 allele is associated with a significantly lower Aβ42/40 ratio and higher levels of pTau, tTau, neurogranin, and alpha-synuclein. This association is not observed in non-AD patients. CONCLUSIONS This study provides evidence of the significant impact of the APOE ε4 allele on neurodegenerative biomarkers in AD patients, highlighting its role in exacerbating amyloid and tau pathology as well as synaptic degeneration.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Anna Maria Ciaccio
- Internal Medicine and Medical Specialties "G. D'Alessandro", Department of Health Promotion, Maternal and Infant Care, University of Palermo, Palermo, Italy
| | - Tommaso Piccoli
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Valeria Blandino
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Fabio Del Ben
- Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO)-IRCCS, Aviano, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy; Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy.
| |
Collapse
|
34
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
35
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
36
|
Liddelow SA, Olsen ML, Sofroniew MV. Reactive Astrocytes and Emerging Roles in Central Nervous System (CNS) Disorders. Cold Spring Harb Perspect Biol 2024; 16:a041356. [PMID: 38316554 PMCID: PMC11216178 DOI: 10.1101/cshperspect.a041356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In addition to their many functions in the healthy central nervous system (CNS), astrocytes respond to CNS damage and disease through a process called "reactivity." Recent evidence reveals that astrocyte reactivity is a heterogeneous spectrum of potential changes that occur in a context-specific manner. These changes are determined by diverse signaling events and vary not only with the nature and severity of different CNS insults but also with location in the CNS, genetic predispositions, age, and potentially also with "molecular memory" of previous reactivity events. Astrocyte reactivity can be associated with both essential beneficial functions as well as with harmful effects. The available information is rapidly expanding and much has been learned about molecular diversity of astrocyte reactivity. Emerging functional associations point toward central roles for astrocyte reactivity in determining the outcome in CNS disorders.
Collapse
Affiliation(s)
- Shane A Liddelow
- Neuroscience Institute, NYU School of Medicine, New York, New York 10016, USA
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, New York 10016, USA
- Department of Ophthalmology, NYU School of Medicine, New York, New York 10016, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
37
|
Narasimhan S, Holtzman DM, Apostolova LG, Cruchaga C, Masters CL, Hardy J, Villemagne VL, Bell J, Cho M, Hampel H. Apolipoprotein E in Alzheimer's disease trajectories and the next-generation clinical care pathway. Nat Neurosci 2024; 27:1236-1252. [PMID: 38898183 DOI: 10.1038/s41593-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/18/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease (AD) is a complex, progressive primary neurodegenerative disease. Since pivotal genetic studies in 1993, the ε4 allele of the apolipoprotein E gene (APOE ε4) has remained the strongest single genome-wide associated risk variant in AD. Scientific advances in APOE biology, AD pathophysiology and ApoE-targeted therapies have brought APOE to the forefront of research, with potential translation into routine AD clinical care. This contemporary Review will merge APOE research with the emerging AD clinical care pathway and discuss APOE genetic risk as a conduit to genomic-based precision medicine in AD, including ApoE's influence in the ATX(N) biomarker framework of AD. We summarize the evidence for APOE as an important modifier of AD clinical-biological trajectories. We then illustrate the utility of APOE testing and the future of ApoE-targeted therapies in the next-generation AD clinical-diagnostic pathway. With the emergence of new AD therapies, understanding how APOE modulates AD pathophysiology will become critical for personalized AD patient care.
Collapse
Affiliation(s)
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University in St. Louis, St. Louis, MO, USA
| | - Liana G Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Neurosciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin L Masters
- Florey Institute and the University of Melbourne, Parkville, Victoria, Australia
| | - John Hardy
- Department of Neurodegenerative Disease and Dementia Research Institute, Reta Lila Weston Research Laboratories, UCL Institute of Neurology, Queen Square, London, UK
| | | | | | | | | |
Collapse
|
38
|
Zhu Y, Lin Y, Gong B, Zhang Y, Su G, Yu Y. Dual toeholds regulated CRISPR-Cas12a sensing platform for ApoE single nucleotide polymorphisms genotyping. Biosens Bioelectron 2024; 255:116255. [PMID: 38565025 DOI: 10.1016/j.bios.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Single nucleotide polymorphisms (SNPs) are closely associated with many biological processes, including genetic disease, tumorigenesis, and drug metabolism. Accurate and efficient SNP determination has been proved pivotal in pharmacogenomics and diagnostics. Herein, a universal and high-fidelity genotyping platform is established based on the dual toeholds regulated Cas12a sensing methodology. Different from the conventional single stranded or double stranded activation mode, the dual toeholds regulated mode overcomes protospacer adjacent motif (PAM) limitation via cascade toehold mediated strand displacement reaction, which is highly universal and ultra-specific. To enhance the sensitivity for biological samples analysis, a modified isothermal recombinant polymerase amplification (RPA) strategy is developed via utilizing deoxythymidine substituted primer and uracil-DNA glycosylase (UDG) treatment, designated as RPA-UDG. The dsDNA products containing single stranded toehold domain generated in the RPA-UDG allow further incorporation with dual toeholds regulated Cas12a platform for high-fidelity human sample genotyping. We discriminate all the single-nucleotide polymorphisms of ApoE gene at rs429358 and rs7412 loci with human buccal swab samples with 100% accuracy. Furthermore, we engineer visual readout of genotyping results by exploiting commercial lateral flow strips, which opens new possibilities for field deployable implementation.
Collapse
Affiliation(s)
- Yuedong Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yanan Lin
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Bin Gong
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Yan Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| | - Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
39
|
Singh MK, Shin Y, Ju S, Han S, Kim SS, Kang I. Comprehensive Overview of Alzheimer's Disease: Etiological Insights and Degradation Strategies. Int J Mol Sci 2024; 25:6901. [PMID: 39000011 PMCID: PMC11241648 DOI: 10.3390/ijms25136901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder and affects millions of individuals globally. AD is associated with cognitive decline and memory loss that worsens with aging. A statistical report using U.S. data on AD estimates that approximately 6.9 million individuals suffer from AD, a number projected to surge to 13.8 million by 2060. Thus, there is a critical imperative to pinpoint and address AD and its hallmark tau protein aggregation early to prevent and manage its debilitating effects. Amyloid-β and tau proteins are primarily associated with the formation of plaques and neurofibril tangles in the brain. Current research efforts focus on degrading amyloid-β and tau or inhibiting their synthesis, particularly targeting APP processing and tau hyperphosphorylation, aiming to develop effective clinical interventions. However, navigating this intricate landscape requires ongoing studies and clinical trials to develop treatments that truly make a difference. Genome-wide association studies (GWASs) across various cohorts identified 40 loci and over 300 genes associated with AD. Despite this wealth of genetic data, much remains to be understood about the functions of these genes and their role in the disease process, prompting continued investigation. By delving deeper into these genetic associations, novel targets such as kinases, proteases, cytokines, and degradation pathways, offer new directions for drug discovery and therapeutic intervention in AD. This review delves into the intricate biological pathways disrupted in AD and identifies how genetic variations within these pathways could serve as potential targets for drug discovery and treatment strategies. Through a comprehensive understanding of the molecular underpinnings of AD, researchers aim to pave the way for more effective therapies that can alleviate the burden of this devastating disease.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
40
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
41
|
Stanton AE, Bubnys A, Agbas E, James B, Park DS, Jiang A, Pinals RL, Liu L, Truong N, Loon A, Staab C, Cerit O, Wen HL, Kellis M, Blanchard JW, Langer R, Tsai LH. Engineered 3D Immuno-Glial-Neurovascular Human miBrain Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553453. [PMID: 37645757 PMCID: PMC10461996 DOI: 10.1101/2023.08.15.553453] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Patient-specific, human-based cellular models integrating a biomimetic blood-brain barrier (BBB), immune, and myelinated neuron components are critically needed to enable accelerated, translationally relevant discovery of neurological disease mechanisms and interventions. By engineering a novel brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks inclusive of neuronal activity, functional connectivity, barrier function, myelin-producing oligodendrocyte engagement with neurons, multicellular interactions, and transcriptomic profiles. We implemented the model to study Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types, a feature we harnessed to identify that APOE4 in astrocytes promotes neuronal tau pathogenesis and dysregulation through crosstalk with microglia.
Collapse
|
42
|
Xia Z, Prescott EE, Urbanek A, Wareing HE, King MC, Olerinyova A, Dakin H, Leah T, Barnes KA, Matuszyk MM, Dimou E, Hidari E, Zhang YP, Lam JYL, Danial JSH, Strickland MR, Jiang H, Thornton P, Crowther DC, Ohtonen S, Gómez-Budia M, Bell SM, Ferraiuolo L, Mortiboys H, Higginbottom A, Wharton SB, Holtzman DM, Malm T, Ranasinghe RT, Klenerman D, De S. Co-aggregation with Apolipoprotein E modulates the function of Amyloid-β in Alzheimer's disease. Nat Commun 2024; 15:4695. [PMID: 38824138 PMCID: PMC11144216 DOI: 10.1038/s41467-024-49028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024] Open
Abstract
Which isoforms of apolipoprotein E (apoE) we inherit determine our risk of developing late-onset Alzheimer's Disease (AD), but the mechanism underlying this link is poorly understood. In particular, the relevance of direct interactions between apoE and amyloid-β (Aβ) remains controversial. Here, single-molecule imaging shows that all isoforms of apoE associate with Aβ in the early stages of aggregation and then fall away as fibrillation happens. ApoE-Aβ co-aggregates account for ~50% of the mass of diffusible Aβ aggregates detected in the frontal cortices of homozygotes with the higher-risk APOE4 gene. We show how dynamic interactions between apoE and Aβ tune disease-related functions of Aβ aggregates throughout the course of aggregation. Our results connect inherited APOE genotype with the risk of developing AD by demonstrating how, in an isoform- and lipidation-specific way, apoE modulates the aggregation, clearance and toxicity of Aβ. Selectively removing non-lipidated apoE4-Aβ co-aggregates enhances clearance of toxic Aβ by glial cells, and reduces secretion of inflammatory markers and membrane damage, demonstrating a clear path to AD therapeutics.
Collapse
Affiliation(s)
- Zengjie Xia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Emily E Prescott
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Agnieszka Urbanek
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Hollie E Wareing
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Marianne C King
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Anna Olerinyova
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Helen Dakin
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Tom Leah
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Katy A Barnes
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Martyna M Matuszyk
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Eleni Dimou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Eric Hidari
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Yu P Zhang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Jeff Y L Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - John S H Danial
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
- SUPA School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, KY16 9SS, UK
| | - Michael R Strickland
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hong Jiang
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Peter Thornton
- Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Sohvi Ohtonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mireia Gómez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Simon M Bell
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight ADRC, Washington University School of Medicine, St. Louis, MO, USA
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Rohan T Ranasinghe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK.
| | - Suman De
- Sheffield Institute for Translational Neuroscience, Division of Neurosciences, University of Sheffield, Sheffield, S10 2HQ, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- Healthy Lifespan Institute (HELSI), University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
43
|
Ferguson CM, Godinho BMDC, Echeverria D, Hassler M, Vangjeli L, Sousa J, McHugh N, Alterman J, Hariharan V, Krishnamurthy P, Watts J, Rogaev E, Khvorova A. A combinatorial approach for achieving CNS-selective RNAi. Nucleic Acids Res 2024; 52:5273-5284. [PMID: 38348876 PMCID: PMC11109952 DOI: 10.1093/nar/gkae100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/30/2023] [Accepted: 02/12/2024] [Indexed: 05/23/2024] Open
Abstract
RNA interference (RNAi) is an endogenous process that can be harnessed using chemically modified small interfering RNAs (siRNAs) to potently modulate gene expression in many tissues. The route of administration and chemical architecture are the primary drivers of oligonucleotide tissue distribution, including siRNAs. Independently of the nature and type, oligonucleotides are eliminated from the body through clearance tissues, where their unintended accumulation may result in undesired gene modulation. Divalent siRNAs (di-siRNAs) administered into the CSF induce robust gene silencing throughout the central nervous system (CNS). Upon clearance from the CSF, they are mainly filtered by the kidneys and liver, with the most functionally significant accumulation occurring in the liver. siRNA- and miRNA-induced silencing can be blocked through substrate inhibition using single-stranded, stabilized oligonucleotides called antagomirs or anti-siRNAs. Using APOE as a model target, we show that undesired di-siRNA-induced silencing in the liver can be mitigated through administration of liver targeting GalNAc-conjugated anti-siRNAs, without impacting CNS activity. Blocking unwanted hepatic APOE silencing achieves fully CNS-selective silencing, essential for potential clinical translation. While we focus on CNS/liver selectivity, coadministration of differentially targeting siRNA and anti-siRNAs can be adapted as a strategy to achieve tissue selectivity in different organ combinations.
Collapse
Affiliation(s)
- Chantal M Ferguson
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Matthew Hassler
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Lorenc Vangjeli
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | | | - Jonathan Watts
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Eveny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
44
|
Fruhwürth S, Zetterberg H, Paludan SR. Microglia and amyloid plaque formation in Alzheimer's disease - Evidence, possible mechanisms, and future challenges. J Neuroimmunol 2024; 390:578342. [PMID: 38640827 DOI: 10.1016/j.jneuroim.2024.578342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive decline that severely affects patients and their families. Genetic and environmental risk factors, such as viral infections, synergize to accelerate the aging-associated neurodegeneration. Genetic risk factors for late-onset AD (LOAD), which accounts for most AD cases, are predominantly implicated in microglial and immune cell functions. As such, microglia play a major role in formation of amyloid beta (Aβ) plaques, the major pathological hallmark of AD. This review aims to provide an overview of the current knowledge regarding the role of microglia in Aβ plaque formation, as well as their impact on morphological and functional diversity of Aβ plaques. Based on this discussion, we seek to identify challenges and opportunities in this field with potential therapeutic implications.
Collapse
Affiliation(s)
- Stefanie Fruhwürth
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, Institute of Neurology, University College London Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, USA
| | - Søren R Paludan
- Department of Rheumatology and Inflammatory Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
45
|
Foley KE, Wilcock DM. Three major effects of APOE ε4 on Aβ immunotherapy induced ARIA. Front Aging Neurosci 2024; 16:1412006. [PMID: 38756535 PMCID: PMC11096466 DOI: 10.3389/fnagi.2024.1412006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
The targeting of amyloid-beta (Aβ) plaques therapeutically as one of the primary causes of Alzheimer's disease (AD) dementia has been an ongoing effort spanning decades. While some antibodies are extremely promising and have been moved out of clinical trials and into the clinic, most of these treatments show similar adverse effects in the form of cerebrovascular damage known as amyloid-related imaging abnormalities (ARIA). The two categories of ARIA are of major concern for patients, families, and prescribing physicians, with ARIA-E presenting as cerebral edema, and ARIA-H as cerebral hemorrhages (micro- and macro-). From preclinical and clinical trials, it has been observed that the greatest genetic risk factor for AD, APOEε4, is also a major risk factor for anti-Aβ immunotherapy-induced ARIA. APOEε4 carriers represent a large population of AD patients, and, therefore, limits the broad adoption of these therapies across the AD population. In this review we detail three hypothesized mechanisms by which APOEε4 influences ARIA risk: (1) reduced cerebrovascular integrity, (2) increased neuroinflammation and immune dysregulation, and (3) elevated levels of CAA. The effects of APOEε4 on ARIA risk is clear, however, the underlying mechanisms require more research.
Collapse
Affiliation(s)
- Kate E. Foley
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Donna M. Wilcock
- Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, United States
- Department of Neurology, School of Medicine, Indiana University, Indianapolis, IN, United States
| |
Collapse
|
46
|
He K, Li B, Wang J, Wang Y, You Z, Chen X, Chen H, Li J, Huang Q, Guo Q, Huang YH, Guan Y, Chen K, Zhao J, Deng Y, Xie F. APOE ε4 is associated with decreased synaptic density in cognitively impaired participants. Alzheimers Dement 2024; 20:3157-3166. [PMID: 38477490 PMCID: PMC11095422 DOI: 10.1002/alz.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aβ) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.
Collapse
Affiliation(s)
- Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yiyun Henry Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kewei Chen
- Banner Alzheimer InstituteArizona State University, University of Arizona and Arizona Alzheimer's ConsortiumPhoenixUSA
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
47
|
van Olst L, Kamermans A, Halters S, van der Pol SMA, Rodriguez E, Verberk IMW, Verberk SGS, Wessels DWR, Rodriguez-Mogeda C, Verhoeff J, Wouters D, Van den Bossche J, Garcia-Vallejo JJ, Lemstra AW, Witte ME, van der Flier WM, Teunissen CE, de Vries HE. Adaptive immune changes associate with clinical progression of Alzheimer's disease. Mol Neurodegener 2024; 19:38. [PMID: 38658964 PMCID: PMC11044380 DOI: 10.1186/s13024-024-00726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands.
- Present address: The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Sem Halters
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Inge M W Verberk
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Danielle W R Wessels
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Dorine Wouters
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Epidemiology & Data Science, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurovascular Disorders, Amsterdam, the Netherlands
| |
Collapse
|
48
|
Hou J, Chen Y, Cai Z, Heo GS, Yuede CM, Wang Z, Lin K, Saadi F, Trsan T, Nguyen AT, Constantopoulos E, Larsen RA, Zhu Y, Wagner N, McLaughlin N, Kuang XC, Barrow AD, Li D, Zhou Y, Wang S, Gilfillan S, Gross M, Brioschi S, Liu Y, Holtzman DM, Colonna M. Antibody-mediated targeting of human microglial leukocyte Ig-like receptor B4 attenuates amyloid pathology in a mouse model. Sci Transl Med 2024; 16:eadj9052. [PMID: 38569016 PMCID: PMC11977387 DOI: 10.1126/scitranslmed.adj9052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Microglia help limit the progression of Alzheimer's disease (AD) by constraining amyloid-β (Aβ) pathology, effected through a balance of activating and inhibitory intracellular signals delivered by distinct cell surface receptors. Human leukocyte Ig-like receptor B4 (LILRB4) is an inhibitory receptor of the immunoglobulin (Ig) superfamily that is expressed on myeloid cells and recognizes apolipoprotein E (ApoE) among other ligands. Here, we find that LILRB4 is highly expressed in the microglia of patients with AD. Using mice that accumulate Aβ and carry a transgene encompassing a portion of the LILR region that includes LILRB4, we corroborated abundant LILRB4 expression in microglia wrapping around Aβ plaques. Systemic treatment of these mice with an anti-human LILRB4 monoclonal antibody (mAb) reduced Aβ load, mitigated some Aβ-related behavioral abnormalities, enhanced microglia activity, and attenuated expression of interferon-induced genes. In vitro binding experiments established that human LILRB4 binds both human and mouse ApoE and that anti-human LILRB4 mAb blocks such interaction. In silico modeling, biochemical, and mutagenesis analyses identified a loop between the two extracellular Ig domains of LILRB4 required for interaction with mouse ApoE and further indicated that anti-LILRB4 mAb may block LILRB4-mApoE by directly binding this loop. Thus, targeting LILRB4 may be a potential therapeutic avenue for AD.
Collapse
Affiliation(s)
- Jinchao Hou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yun Chen
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhangying Cai
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zuoxu Wang
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kent Lin
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Fareeha Saadi
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tihana Trsan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel A. Larsen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yiyang Zhu
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nicole Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Nolan McLaughlin
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Xinyi Cynthia Kuang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Alexander D. Barrow
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Yingyue Zhou
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Shoutang Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Simone Brioschi
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Yongjian Liu
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
49
|
Yao Q, Long C, Yi P, Zhang G, Wan W, Rao X, Ying J, Liang W, Hua F. C/EBPβ: A transcription factor associated with the irreversible progression of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14721. [PMID: 38644578 PMCID: PMC11033503 DOI: 10.1111/cns.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aβ (β-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPβ in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS Several studies have demonstrated an elevation in the expression level of C/EBPβ among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPβ expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPβ can be a new therapeutic target for AD. METHODS A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS Overexpression of C/EBPβ exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION The correlation between overexpression of C/EBPβ and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPβ regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPβ overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION The overexpression of C/EBPβ accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPβ plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPβ could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.
Collapse
Affiliation(s)
- Qing Yao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Chubing Long
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Pengcheng Yi
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Guangyong Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Wei Wan
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Xiuqin Rao
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Jun Ying
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| | - Weidong Liang
- Department of AnesthesiologyThe First Affiliated Hospital of Gannan Medical UniversityGanzhouJiangxi ProvinceChina
| | - Fuzhou Hua
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchang CityJiangxi ProvinceChina
- Key Laboratory of Anesthesiology of Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
| |
Collapse
|
50
|
Vance JM, Farrer LA, Huang Y, Cruchaga C, Hyman BT, Pericak-Vance MA, Goate AM, Greicius MD, Griswold AJ, Haines JL, Tcw J, Schellenberg GD, Tsai LH, Herz J, Holtzman DM. Report of the APOE4 National Institute on Aging/Alzheimer Disease Sequencing Project Consortium Working Group: Reducing APOE4 in Carriers is a Therapeutic Goal for Alzheimer's Disease. Ann Neurol 2024; 95:625-634. [PMID: 38180638 DOI: 10.1002/ana.26864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and one of the leading causes of disability worldwide. The apolipoprotein E4 gene (APOE4) is the strongest genetic risk factor for AD. In 2023, the APOE4 National Institute on Aging/Alzheimer's Disease Sequencing Project working group came together to gather data and discuss the question of whether to reduce or increase APOE4 as a therapeutic intervention for AD. It was the unanimous consensus that cumulative data from multiple studies in humans and animal models support that lowering APOE4 should be a target for therapeutic approaches for APOE4 carriers. ANN NEUROL 2024;95:625-634.
Collapse
Affiliation(s)
- Jeffery M Vance
- John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Lindsay A Farrer
- Departments of Medicine (Biomedical Genetics), Neurology and Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Epidemiology and Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yadong Huang
- Department of Neurology, Gladstone Center for Translational Advancement, Gladstone Institute of Neurological Disease, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Bradley T Hyman
- Alzheimer Research Unit, Department of Neurology, The Massachusetts General Hospital Institute for Neurodegenerative Disease, Harvard Medical School, Boston, MA, USA
| | - Margaret A Pericak-Vance
- John T. McDonald Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alison M Goate
- Departments of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Julia Tcw
- Departments of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Bioinformatics Program, Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-Huei Tsai
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology, Center for Translational Neurodegeneration Research, UT Southwestern, Dallas, TX, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|