1
|
Zhao X, Wang H, Li K, Chen S, Hou L. Beta-band oscillations and spike-local field potential synchronization in the motor cortex are correlated with movement deficits in an exercise-induced fatigue mouse model. Cogn Neurodyn 2025; 19:3. [PMID: 39749101 PMCID: PMC11688262 DOI: 10.1007/s11571-024-10182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Fatigue, a complex and multifaceted symptom, profoundly influences quality of life, particularly among individuals suffering from chronic medical conditions or neurological disorders. This symptom not only exacerbates existing conditions but also hinders daily functioning, thereby perpetuating a vicious cycle of worsening symptoms and reduced physical activity. Given the pivotal role of the motor cortex (M1) in coordinating and executing voluntary movements, understanding how the cortex regulates fatigue is crucial. Despite its importance, the neural mechanisms underlying fatigue remain inadequately explored. In this study, we employed electrophysiological recordings in the M1 region of mice to investigate how excitation-inhibition dynamics and neural oscillations are regulated during exercise-induced fatigue. We observed that fatigue led to decreased voluntary physical activity and cognitive performance, manifesting as reduced running wheel distance, mean speed, exercise intensity, and exploratory behaviour. At the neural level, we detected increased firing frequencies for M1 neurons, including both pyramidal neurons and interneurons, along with heightened beta-band oscillatory activity and stronger coupling between beta-band oscillations and interneurons. These findings enhance our understanding of the mechanisms underlying fatigue, offering insights into behavioural, excitability, and oscillatory changes. The results of this study could pave the way for the development of novel intervention strategies to combat fatigue.
Collapse
Affiliation(s)
- Xudong Zhao
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| | - Hualin Wang
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| | - Ke Li
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| | - Shanguang Chen
- National Key Laboratory of Human Factors Engineering at China Astronaut Research and Training Center, Beijing, 100094 China
| | - Lijuan Hou
- Exercise Physiology and Neurobiology Lab, College of Physical Education and Sports, Beijing Normal University, No. 19, Xinjiekou Street, Beijing, 100875 China
| |
Collapse
|
2
|
Liu CW, Wang YM, Chen SY, Lu LY, Liang TY, Fang KC, Chen P, Lee IC, Liu WC, Kumar A, Kuo SH, Lee JC, Lo CC, Wu SC, Pan MK. The cerebellum shapes motions by encoding motor frequencies with precision and cross-individual uniformity. Nat Biomed Eng 2025:10.1038/s41551-025-01409-5. [PMID: 40425805 DOI: 10.1038/s41551-025-01409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025]
Abstract
Understanding brain behaviour encoding or designing neuroprosthetics requires identifying precise, consistent neural algorithms across individuals. However, cerebral microstructures and activities are individually variable, posing challenges for identifying precise codes. Here, despite cerebral variability, we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in vivo electrophysiology and optogenetics in mice, we confirm that deep cerebellar neurons encode frequencies using populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism is consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validate the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for a brain-computer interface for motor control.
Collapse
Grants
- NTUMC 110C101-011 NTU | College of Medicine, National Taiwan University (College of Medicine, National Taiwan University)
- NSC-145-11 National Taiwan University Hospital (NTUH)
- 113-UN0013 National Taiwan University Hospital (NTUH)
- 108-039 National Taiwan University Hospital (NTUH)
- 112-UN0024 National Taiwan University Hospital (NTUH)
- 113-E0001 National Taiwan University Hospital (NTUH)
- AS-TM-112-01-02 Academia Sinica
- NHRI-EX113-11303NI National Health Research Institutes (NHRI)
- 109-2326-B-002-013-MY4 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 107-2321-B-002-020 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2321-B-002-011 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 108-2321-002-059-MY2 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 110-2321-B-002-012 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 111-2628-B-002-036 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 112-2628-B-002-011 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- 113-2628-B-002-002 Ministry of Science and Technology, Taiwan (Ministry of Science and Technology of Taiwan)
- R01NS118179 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01NS104423 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R01NS124854 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Yi-Mei Wang
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Shun-Ying Chen
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Liang-Yin Lu
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Yu Liang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Ke-Chu Fang
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Peng Chen
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - I-Chen Lee
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Wen-Chuan Liu
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ami Kumar
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- The Initiative for Columbia Ataxia and Tremor, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Jye-Chang Lee
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chuan Lo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Shun-Chi Wu
- Department of Engineering and Bioinformatics, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Fujiki S, Kansaku K. Learning performance of cerebellar circuit depends on diversity and chaoticity of spiking patterns in granule cells: A simulation study. Neural Netw 2025; 189:107585. [PMID: 40359736 DOI: 10.1016/j.neunet.2025.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/14/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
The cerebellum, composed of numerous neurons, plays various roles in motor control. Although it is functionally subdivided, the cerebellar cortex has a canonical structural pattern in neuronal circuits including a recurrent circuit pattern formed by granule cells (GrCs) and Golgi cells (GoCs). The canonical circuital pattern suggests the existence of a fundamental computational algorithm, although it remains unclear. Modeling and simulation studies are useful for verifying hypotheses about complex systems. Previous models have shown that they could reproduced the neurophysiological data of the cerebellum; however, the dynamic characteristics of the system have not been fully elucidated. Understanding the dynamic characteristics of the circuital pattern is necessary to reveal the computational algorithm embedded in the circuit. This study conducted numerical simulations using the cerebellar circuit model to investigate dynamic characteristics in a simplified model of cerebellar microcircuits. First, the diversity and chaoticity of the patterns of spike trains generated from GrCs depending on the synaptic strength between the GrCs and GoCs were investigated based on cluster analysis and the Lyapunov exponent, respectively. Then the effect of synaptic strength on learning tasks was investigated based on the convergence properties of the output signals from Purkinje cells. The synaptic strength for high learning performance was almost consistent with that for the high diversity of the generated patterns and the edge of chaos. These results suggest that the learning performance of the cerebellar circuit depends on the diversity and the chaoticity of the spiking patterns from the GrC-GoC recurrent circuit.
Collapse
Affiliation(s)
- Soichiro Fujiki
- Department of Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan.
| | - Kenji Kansaku
- Department of Physiology, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi 321-0293, Japan
| |
Collapse
|
4
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje cells control posture in larval zebrafish ( Danio rerio). eLife 2025; 13:RP97614. [PMID: 40272244 PMCID: PMC12021414 DOI: 10.7554/elife.97614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya UniversityNagoyaJapan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
5
|
Bina L, Ciapponi C, Yu S, Wang X, Bosman LWJ, De Zeeuw CI. Cerebellar control of targeted tongue movements. J Physiol 2025; 603:1141-1169. [PMID: 40019494 PMCID: PMC11870073 DOI: 10.1113/jp287732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/10/2025] [Indexed: 03/01/2025] Open
Abstract
The cerebellum is critical for coordinating movements related to eating, drinking and swallowing, all of which require proper control of the tongue. Cerebellar Purkinje cells can encode tongue movements, but it is unclear how their simple spikes and complex spikes induce changes in the shape of the tongue that contribute to goal-directed movements. To study these relations, we recorded and stimulated Purkinje cells in the vermis and hemispheres of mice during spontaneous licking from a stationary or moving water spout. We found that Purkinje cells can encode rhythmic licking with both their simple spikes and complex spikes. Increased simple spike firing during tongue protrusion induces ipsiversive bending of the tongue. Unexpected changes in the target location trigger complex spikes that alter simple spike firing during subsequent licks, adjusting the tongue trajectory. Furthermore, we observed increased complex spike firing during behavioural state changes at both the start and the end of licking bouts. Using machine learning, we confirmed that alterations in Purkinje cell activity accompany licking, with different Purkinje cells often exerting heterogeneous encoding schemes. Our data highlight that directional movement control is paramount in cerebellar function and that modulation of the complex spikes and that of the simple spikes are complementary during acquisition and execution of sensorimotor coordination. These results bring us closer to understanding the clinical implications of cerebellar disorders during eating, drinking and swallowing. KEY POINTS: When drinking, mice make rhythmic tongue movements directed towards the water source. Cerebellar Purkinje cells can fire rhythmically in tune with the tongue movements. Purkinje cells encode changes in the position of the water source with complex spikes. Purkinje cell simple spike firing affects the direction of tongue movements. Purkinje cells that report changes in the position of the target can also adjust movements in the right direction.
Collapse
Affiliation(s)
- Lorenzo Bina
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | | | - Si‐yang Yu
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | - Xiang Wang
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
| | | | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MCRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Academy of SciencesAmsterdamThe Netherlands
| |
Collapse
|
6
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons can impair non-motor behaviors by altering development of extracerebellar connectivity. Nat Commun 2025; 16:1858. [PMID: 39984491 PMCID: PMC11845701 DOI: 10.1038/s41467-025-57080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the mouse cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the main requirement for these neurons is for motor coordination and not basic learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S Lee
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Tanzil M Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Daniel N Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Natalia V De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Detlef H Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
| |
Collapse
|
7
|
Busch SE, Hansel C. Non-allometric expansion and enhanced compartmentalization of Purkinje cell dendrites in the human cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.612113. [PMID: 39554002 PMCID: PMC11565726 DOI: 10.1101/2024.09.09.612113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched. Do they exceed allometry to achieve enhanced integrative capacities relative to mouse PCs? To answer this, we used several comparative histology techniques in adult human and mouse to analyze cellular morphology, parallel fiber (PF) and CF input arrangement, and regional PC demographics. Human PCs are substantially larger than previously described; they exceed allometric constraint by cortical thickness and are the largest neuron in the brain with 6-7cm total dendritic length. Unlike mouse, human PC dendrites ramify horizontally to form a multi-compartment motif that we show can receive multiple CFs. Human spines are denser (6.9 vs 4.9 spines/μm), larger (~0.36 vs 0.29μm), and include an unreported 'spine cluster' structure-features that may be congruent with enhanced PF association and amplification as human-specific adaptations. By extrapolation, human PCs may receive 500,000 to 1 million synaptic inputs compared with 30-40,000 in mouse. Collectively, human PC morphology and input arrangement is quantitatively and qualitatively distinct from rodent. Multi-branched PCs are more prevalent in posterior and lateral cerebellum, co-varying with functional boundaries, supporting the hypothesis that this morphological motif permits expanded input multiplexing and may subserve task-dependent needs for input association.
Collapse
Affiliation(s)
- Silas E. Busch
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
8
|
Lyle TT, Verpeut JL. Adolescent Cerebellar Nuclei Manipulation Alters Reversal Learning and Perineuronal Net Intensity Independently in Male and Female Mice. J Neurosci 2025; 45:e2182232024. [PMID: 39753302 PMCID: PMC11823351 DOI: 10.1523/jneurosci.2182-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 02/14/2025] Open
Abstract
The cerebellum, identified to be active during cognitive and social behavior, has multisynaptic connections through the cerebellar nuclei (CN) and thalamus to cortical regions, yet formation and modulation of these pathways are not fully understood. Perineuronal nets (PNNs) respond to changes in local cellular activity and emerge during development. PNNs are implicated in learning and neurodevelopmental disorders, but their role in the CN during development is unknown. Connectivity deficits, specifically between lateral CN (LCN) and cortical regions have been found in autism spectrum disorder with patients displaying reduced cognitive flexibility. To examine the role of LCN on cognition, neural activity was perturbed in both male and female mice using designer receptors exclusively activated by designer drugs (DREADDs) from postnatal day 21 to 35. We found that while an adolescent LCN disruption did not alter task acquisition, correct choice reversal performance was dependent on DREADD manipulation and sex. Inhibitory DREADDs improved reversal learning in males (5 d faster to criteria), and excitatory DREADDs improved female reversal learning (10 d faster to criteria) compared with controls. Interestingly, the DREADD manipulation in females regardless of direction reduced PNN intensity, whereas in males, only the inhibitory DREADDs reduced PNNs. This suggests a chronic adolescent LCN manipulation may have sex-specific compensatory changes in PNN structure and LCN output to improve reversal learning. This study provides new evidence for LCN in nonmotor functions and sex-dependent differences in behavior and CN plasticity.
Collapse
Affiliation(s)
- Tristan T Lyle
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| |
Collapse
|
9
|
Heilman SA, Schriever HC, Kostka D, Koenig KM, Gross JM. tet2 and tet3 regulate cell fate specification and differentiation events during retinal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627071. [PMID: 39713311 PMCID: PMC11661121 DOI: 10.1101/2024.12.06.627071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Tet enzymes are epigenetic modifiers that impact gene expression via 5mC to 5hmC oxidation. Previous work demonstrated the requirement for Tet and 5hmC during zebrafish retinogenesis. tet2 -/- ;tet3 -/- mutants possessed defects in the formation of differentiated retinal neurons, but the mechanisms underlying these defects are unknown. Here, we leveraged scRNAseq technologies to better understand cell type-specific deficits and molecular signatures underlying the tet2 -/- ;tet3 -/- retinal phenotype. Our results identified defects in the tet2 -/- ;tet3 -/- retinae that included delayed specification of several retinal cell types, reduced maturity across late-stage cones, expansions of immature subpopulations of horizontal and bipolar cells, and altered biases of bipolar cell subtype fates at late differentiation stages. Together, these data highlight the critical role that tet2 and tet3 play as regulators of cell fate specification and terminal differentiation events during retinal development.
Collapse
Affiliation(s)
- Shea A Heilman
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Hannah C Schriever
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Dennis Kostka
- Department of Computational Biology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Kristen M Koenig
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jeffrey M Gross
- Department of Ophthalmology, The Louis J. Fox Center for Vision Restoration, The McGowan Institute for Regenerative Medicine, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States of America
| |
Collapse
|
10
|
Brinkerhoff SA, Sánchez N, Culver MN, Murrah WM, Robinson AT, McCullough JD, Miller MW, Roper JA. The dual timescales of gait adaptation: initial stability adjustments followed by subsequent energetic cost adjustments. J Exp Biol 2024; 227:jeb249217. [PMID: 39422307 PMCID: PMC11883409 DOI: 10.1242/jeb.249217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Gait adaptation during bipedal walking allows people to adjust their walking patterns to maintain balance, avoid obstacles and avoid injury. Adaptation involves complex processes that function to maintain stability and reduce energy expenditure. However, the processes that influence walking patterns during different points in the adaptation period remain to be investigated. We assessed split-belt adaptation in 17 young adults aged 19-35. We also assessed individual aerobic capacity to understand how aerobic capacity influences adaptation. We analyzed step lengths, step length asymmetry (SLA), mediolateral margins of stability, positive, negative and net mechanical work rates, as well as metabolic rate during adaptation. Dual-rate exponential mixed-effects regressions estimated the adaptation of each measure over two timescales; results indicate that mediolateral stability adapts over a single timescale in under 1 min, whereas mechanical work rates, metabolic rate, step lengths and SLA adapt over two distinct timescales (3.5-11.2 min). We then regressed mediolateral margins of stability, net mechanical work rate and metabolic rate on SLA during early and late adaptation phases to determine whether stability drives early adaptation and energetic cost drives late adaptation. Stability predicted SLA during the initial rapid onset of adaptation, and mechanical work rate predicted SLA during the latter part of adaptation. Findings suggest that stability optimization may contribute to early gait changes and that mechanical work contributes to later changes during adaptation. A final sub-analysis showed that aerobic capacity levels <36 and >43 ml kg-1 min-1 resulted in greater SLA adaptation, underscoring the metabolic influences on gait adaptation. This study illuminates the complex interplay between biomechanical and metabolic factors in gait adaptation, shedding light on fundamental mechanisms underlying human locomotion.
Collapse
Affiliation(s)
- Sarah A. Brinkerhoff
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Natalia Sánchez
- Department of Physical Therapy, Chapman University, Irvine, CA 92618, USA
- Fowler School of Engineering, Chapman University, Orange, CA 92866, USA
| | - Meral N. Culver
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| | - William M. Murrah
- Department of Kinesiology, Department of Educational Foundations, Leadership, and Technology, Auburn University, Auburn, AL 36849, USA
| | - Austin T. Robinson
- Department of Kinesiology, Indiana University Bloomington, Bloomington, IN 47405-7109, USA
| | | | | | - Jaimie A. Roper
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
11
|
Monaghan PG, Murrah WM, Neely KA, Walker HC, Roper JA. Exploring age-related differences in the relationship between spatial and temporal contributions to step length asymmetry during split-belt adaptation. Exp Brain Res 2024; 242:2815-2825. [PMID: 39446163 PMCID: PMC11568997 DOI: 10.1007/s00221-024-06929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Gait adaptability is crucial for meeting environmental demands, and impaired gait adaptation increases fall risk, particularly in older adults. While prior research exists on older adults' gait adaptation, particularly in perturbation studies, the specific contributions of temporal and spatial adaptation strategies to step length asymmetry (SLA) during split-belt treadmill walking require further examination. This study fills this gap by evaluating how distinct adaptation strategies contribute to SLA in healthy young and older adults. 19 healthy young adults (20.4 ± 1.1 years) and 19 healthy older adults (68.3 ± 8.1 years) walked on a split-belt treadmill requiring their non-dominant leg to move twice as fast as their dominant leg. Repeated measures ANOVA investigated (1) spatial and temporal contributions to SLA, (2) SLA across gait adaptation epochs, and (3) rates of adaptation and deadaptation. Older adults displayed reduced temporal contributions to SLA compared to younger adults (F1,36 = 6.42, p = .02, ŋ2 = .15), but no group differences were observed in spatial contributions to SLA (F1,36 = 3.23, p = .08, ŋ2 = .082). SLA during adaptation and deadaptation did not differ by age group, nor did the rate of adaptation (F1,34.7 = 0.594, p = .45) or deadaptation F1,33.6 = 2.886, p = .09). These findings suggest that while older adults rely less on temporal strategies for gait adaptation, but maintain overall adaptability comparable to younger adults. Findings enhance our understanding of age-related changes in gait adaptation mechanisms and may inform targeted interventions to improve gait adaptability in older populations.
Collapse
Affiliation(s)
| | - William M Murrah
- Department of Educational Foundations, Leadership, and Technology, Auburn University, Auburn, AL, USA
| | | | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA.
| |
Collapse
|
12
|
Sridhar G, Vergassola M, Marques JC, Orger MB, Costa AC, Wyart C. Uncovering multiscale structure in the variability of larval zebrafish navigation. Proc Natl Acad Sci U S A 2024; 121:e2410254121. [PMID: 39546569 PMCID: PMC11588111 DOI: 10.1073/pnas.2410254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/23/2024] [Indexed: 11/17/2024] Open
Abstract
Animals chain movements into long-lived motor strategies, exhibiting variability across scales that reflects the interplay between internal states and environmental cues. To reveal structure in such variability, we build Markov models of movement sequences that bridge across timescales and enable a quantitative comparison of behavioral phenotypes among individuals. Applied to larval zebrafish responding to diverse sensory cues, we uncover a hierarchy of long-lived motor strategies, dominated by changes in orientation distinguishing cruising versus wandering strategies. Environmental cues induce preferences along these modes at the population level: while fish cruise in the light, they wander in response to aversive stimuli, or in search for appetitive prey. As our method encodes the behavioral dynamics of each individual fish in the transitions among coarse-grained motor strategies, we use it to uncover a hierarchical structure in the phenotypic variability that reflects exploration-exploitation trade-offs. Across a wide range of sensory cues, a major source of variation among fish is driven by prior and/or immediate exposure to prey that induces exploitation phenotypes. A large degree of variability that is not explained by environmental cues unravels hidden states that override the sensory context to induce contrasting exploration-exploitation phenotypes. Altogether, by extracting the timescales of motor strategies deployed during navigation, our approach exposes structure among individuals and reveals internal states tuned by prior experience.
Collapse
Affiliation(s)
- Gautam Sridhar
- Sorbonne University, Paris Brain Institute (Institut du Cerveau), Inserm U1127, CNRS UMR 7225, Paris75013, France
| | - Massimo Vergassola
- Laboratoire de Physique de l’Ecole normale supérieure, École Normale Supérieure, Université Paris Sciences & Lettres, CNRS, Sorbonne Université, Université de Paris, ParisF-75005, France
| | - João C. Marques
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa1400-038, Portugal
| | - Michael B. Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa1400-038, Portugal
| | - Antonio Carlos Costa
- Sorbonne University, Paris Brain Institute (Institut du Cerveau), Inserm U1127, CNRS UMR 7225, Paris75013, France
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisboa1400-038, Portugal
| | - Claire Wyart
- Sorbonne University, Paris Brain Institute (Institut du Cerveau), Inserm U1127, CNRS UMR 7225, Paris75013, France
| |
Collapse
|
13
|
Auer F, Nardone K, Matsuda K, Hibi M, Schoppik D. Cerebellar Purkinje Cells Control Posture in Larval Zebrafish ( Danio rerio). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557469. [PMID: 37745506 PMCID: PMC10515840 DOI: 10.1101/2023.09.12.557469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells - the output neurons of the cerebellar cortex - as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically-tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.
Collapse
Affiliation(s)
- Franziska Auer
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Katherine Nardone
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
| | - Koji Matsuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Japan
| | - David Schoppik
- Depts. of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine
- Lead Contact
| |
Collapse
|
14
|
Seethapathi N, Clark BC, Srinivasan M. Exploration-based learning of a stabilizing controller predicts locomotor adaptation. Nat Commun 2024; 15:9498. [PMID: 39489737 PMCID: PMC11532365 DOI: 10.1038/s41467-024-53416-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Humans adapt their locomotion seamlessly in response to changes in the body or the environment. It is unclear how such adaptation improves performance measures like energy consumption or symmetry while avoiding falling. Here, we model locomotor adaptation as interactions between a stabilizing controller that reacts quickly to perturbations and a reinforcement learner that gradually improves the controller's performance through local exploration and memory. This model predicts time-varying adaptation in many settings: walking on a split-belt treadmill (i.e. with both feet at different speeds), with asymmetric leg weights, or using exoskeletons - capturing learning and generalization phenomena in ten prior experiments and two model-guided experiments conducted here. The performance measure of energy minimization with a minor cost for asymmetry captures a broad range of phenomena and can act alongside other mechanisms such as reducing sensory prediction error. Such a model-based understanding of adaptation can guide rehabilitation and wearable robot control.
Collapse
Affiliation(s)
- Nidhi Seethapathi
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | - Manoj Srinivasan
- Department of Mechanical and Aerospace Engineering, the Ohio State University, Columbus, OH, USA
- Program in Biophysics, the Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Pratt BG, Lee SYJ, Chou GM, Tuthill JC. Miniature linear and split-belt treadmills reveal mechanisms of adaptive motor control in walking Drosophila. Curr Biol 2024; 34:4368-4381.e5. [PMID: 39216486 PMCID: PMC11461123 DOI: 10.1016/j.cub.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
To navigate complex environments, walking animals must detect and overcome unexpected perturbations. One technical challenge when investigating adaptive locomotion is measuring behavioral responses to precise perturbations during naturalistic walking; another is that manipulating neural activity in sensorimotor circuits often reduces spontaneous locomotion. To overcome these obstacles, we introduce miniature treadmill systems for coercing locomotion and tracking 3D kinematics of walking Drosophila. By systematically comparing walking in three experimental setups, we show that flies compelled to walk on the linear treadmill have similar stepping kinematics to freely walking flies, while kinematics of tethered walking flies are subtly different. Genetically silencing mechanosensory neurons altered step kinematics of flies walking on the linear treadmill across all speeds. We also discovered that flies can maintain a forward heading on a split-belt treadmill by specifically adapting the step distance of their middle legs. These findings suggest that proprioceptive feedback contributes to leg motor control irrespective of walking speed and that the fly's middle legs play a specialized role in stabilizing locomotion.
Collapse
Affiliation(s)
- Brandon G Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Su-Yee J Lee
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Grant M Chou
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Mishra I, Feng B, Basu B, Brown AM, Kim LH, Lin T, Raza MA, Moore A, Hahn A, Bailey S, Sharp A, Bournat JC, Poulton C, Kim B, Langsner A, Sathyanesan A, Sillitoe RV, He Y, Chopra AR. The cerebellum modulates thirst. Nat Neurosci 2024; 27:1745-1757. [PMID: 38987435 DOI: 10.1038/s41593-024-01700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024]
Abstract
The cerebellum, a phylogenetically ancient brain region, has long been considered strictly a motor control structure. Recent studies have implicated the cerebellum in cognition, sensation, emotion and autonomic function, making it an important target for further investigation. Here, we show that cerebellar Purkinje neurons in mice are activated by the hormone asprosin, leading to enhanced thirst, and that optogenetic or chemogenetic activation of Purkinje neurons induces rapid manifestation of water drinking. Purkinje neuron-specific asprosin receptor (Ptprd) deletion results in reduced water intake without affecting food intake and abolishes asprosin's dipsogenic effect. Purkinje neuron-mediated motor learning and coordination were unaffected by these manipulations, indicating independent control of two divergent functions by Purkinje neurons. Our results show that the cerebellum is a thirst-modulating brain area and that asprosin-Ptprd signaling may be a potential therapeutic target for the management of thirst disorders.
Collapse
Affiliation(s)
- Ila Mishra
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bing Feng
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Bijoya Basu
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Mir Abbas Raza
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Amelia Moore
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Abigayle Hahn
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Samantha Bailey
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Alaina Sharp
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
| | - Juan C Bournat
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Claire Poulton
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Brian Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Amos Langsner
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Aaron Sathyanesan
- Department of Biology, College of Arts & Sciences, University of Dayton, Dayton, OH, USA
- Department of Electrical & Computer Engineering, School of Engineering, University of Dayton, Dayton, OH, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Atul R Chopra
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
17
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. Nat Commun 2024; 15:7309. [PMID: 39181866 PMCID: PMC11344817 DOI: 10.1038/s41467-024-51750-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different conditions. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are sequenced by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics. This shift is minimally affected by cerebellar perturbation and significantly larger than the load response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A Kirk
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Keenan T Hope
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samuel J Sober
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Britton A Sauerbrei
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
18
|
Brazdis RM, Zoicas I, Kornhuber J, Mühle C. Brain Region-Specific Expression Levels of Synuclein Genes in an Acid Sphingomyelinase Knockout Mouse Model: Correlation with Depression-/Anxiety-Like Behavior and Locomotor Activity in the Absence of Genotypic Variation. Int J Mol Sci 2024; 25:8685. [PMID: 39201372 PMCID: PMC11354454 DOI: 10.3390/ijms25168685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson's disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, β-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM-/-, n = 7) and heterozygous (ASM+/-, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with β-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Universitätsklinikum Erlangen, and Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (R.-M.B.); (I.Z.); (J.K.)
| |
Collapse
|
19
|
Roth RH, Ding JB. Cortico-basal ganglia plasticity in motor learning. Neuron 2024; 112:2486-2502. [PMID: 39002543 PMCID: PMC11309896 DOI: 10.1016/j.neuron.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/29/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024]
Abstract
One key function of the brain is to control our body's movements, allowing us to interact with the world around us. Yet, many motor behaviors are not innate but require learning through repeated practice. Among the brain's motor regions, the cortico-basal ganglia circuit is particularly crucial for acquiring and executing motor skills, and neuronal activity in these regions is directly linked to movement parameters. Cell-type-specific adaptations of activity patterns and synaptic connectivity support the learning of new motor skills. Functionally, neuronal activity sequences become structured and associated with learned movements. On the synaptic level, specific connections become potentiated during learning through mechanisms such as long-term synaptic plasticity and dendritic spine dynamics, which are thought to mediate functional circuit plasticity. These synaptic and circuit adaptations within the cortico-basal ganglia circuitry are thus critical for motor skill acquisition, and disruptions in this plasticity can contribute to movement disorders.
Collapse
Affiliation(s)
- Richard H Roth
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Jun B Ding
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA; The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Tsay JS, Kim HE, McDougle SD, Taylor JA, Haith A, Avraham G, Krakauer JW, Collins AGE, Ivry RB. Fundamental processes in sensorimotor learning: Reasoning, refinement, and retrieval. eLife 2024; 13:e91839. [PMID: 39087986 PMCID: PMC11293869 DOI: 10.7554/elife.91839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
Motor learning is often viewed as a unitary process that operates outside of conscious awareness. This perspective has led to the development of sophisticated models designed to elucidate the mechanisms of implicit sensorimotor learning. In this review, we argue for a broader perspective, emphasizing the contribution of explicit strategies to sensorimotor learning tasks. Furthermore, we propose a theoretical framework for motor learning that consists of three fundamental processes: reasoning, the process of understanding action-outcome relationships; refinement, the process of optimizing sensorimotor and cognitive parameters to achieve motor goals; and retrieval, the process of inferring the context and recalling a control policy. We anticipate that this '3R' framework for understanding how complex movements are learned will open exciting avenues for future research at the intersection between cognition and action.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, Carnegie Mellon UniversityPittsburghUnited States
- Neuroscience Institute, Carnegie Mellon UniversityPittsburgUnited States
| | - Hyosub E Kim
- School of Kinesiology, University of British ColumbiaVancouverCanada
| | | | - Jordan A Taylor
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Adrian Haith
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Guy Avraham
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - John W Krakauer
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Santa Fe InstituteSanta FeUnited States
| | - Anne GE Collins
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| | - Richard B Ivry
- Department of Psychology, University of California BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California BerkeleyBerkeleyUnited States
| |
Collapse
|
21
|
Lee AS, Arefin TM, Gubanova A, Stephen DN, Liu Y, Lao Z, Krishnamurthy A, De Marco García NV, Heck DH, Zhang J, Rajadhyaksha AM, Joyner AL. Cerebellar output neurons impair non-motor behaviors by altering development of extracerebellar connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602496. [PMID: 39026865 PMCID: PMC11257463 DOI: 10.1101/2024.07.08.602496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The capacity of the brain to compensate for insults during development depends on the type of cell loss, whereas the consequences of genetic mutations in the same neurons are difficult to predict. We reveal powerful compensation from outside the cerebellum when the excitatory cerebellar output neurons are ablated embryonically and demonstrate that the minimum requirement for these neurons is for motor coordination and not learning and social behaviors. In contrast, loss of the homeobox transcription factors Engrailed1/2 (EN1/2) in the cerebellar excitatory lineage leads to additional deficits in adult learning and spatial working memory, despite half of the excitatory output neurons being intact. Diffusion MRI indicates increased thalamo-cortico-striatal connectivity in En1/2 mutants, showing that the remaining excitatory neurons lacking En1/2 exert adverse effects on extracerebellar circuits regulating motor learning and select non-motor behaviors. Thus, an absence of cerebellar output neurons is less disruptive than having cerebellar genetic mutations.
Collapse
Affiliation(s)
- Andrew S. Lee
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Tanzil M. Arefin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
- Present Address: Center for Neurotechnology in Mental Health Research, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - Alina Gubanova
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
| | - Anjana Krishnamurthy
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| | - Natalia V. De Marco García
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Center for Neurogenetics, Brain and Mind Research Institute, Weill Cornell Medicine, New York 10021, NY 10021, USA
| | - Detlef H. Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, MN 55812, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York 10016, NY, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York 10021, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York 10021, NY, USA
- Present address: Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA and Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York 10065, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York 10021, NY, USA
| |
Collapse
|
22
|
Volotsky S, Donchin O, Segev R. The archerfish uses motor adaptation in shooting to correct for changing physical conditions. eLife 2024; 12:RP92909. [PMID: 38829209 PMCID: PMC11147504 DOI: 10.7554/elife.92909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
The archerfish is unique in its ability to hunt by shooting a jet of water from its mouth that hits insects situated above the water's surface. To aim accurately, the fish needs to overcome physical factors including changes in light refraction at the air-water interface. Nevertheless, archerfish can still hit the target with a high success rate under changing conditions. One possible explanation for this extraordinary ability is that it is learned by trial and error through a motor adaptation process. We tested this possibility by characterizing the ability of the archerfish to adapt to perturbations in the environment to make appropriate adjustments to its shots. We introduced a perturbing airflow above the water tank of the archerfish trained to shoot at a target. For each trial shot, we measured the error, i.e., the distance between the center of the target and the center of the water jet produced by the fish. Immediately after the airflow perturbation, there was an increase in shot error. Then, over the course of several trials, the error was reduced and eventually plateaued. After the removal of the perturbation, there was an aftereffect, where the error was in the opposite direction but washed out after several trials. These results indicate that archerfish can adapt to the airflow perturbation. Testing the fish with two opposite airflow directions indicated that adaptation took place within an egocentric frame of reference. These results thus suggest that the archerfish is capable of motor adaptation, as indicated by data showing that the fish produced motor commands that anticipated the perturbation.
Collapse
Affiliation(s)
- Svetlana Volotsky
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBe'er ShevaIsrael
- School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBe'er ShevaIsrael
- Department of Life Sciences, Ben-Gurion University of the NegevBe'er ShevaIsrael
| | - Opher Donchin
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBe'er ShevaIsrael
- School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBe'er ShevaIsrael
| | - Ronen Segev
- Department of Biomedical Engineering, Ben-Gurion University of the NegevBe'er ShevaIsrael
- School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBe'er ShevaIsrael
- Department of Life Sciences, Ben-Gurion University of the NegevBe'er ShevaIsrael
| |
Collapse
|
23
|
Sridhar G, Vergassola M, Marques JC, Orger MB, Costa AC, Wyart C. Uncovering multiscale structure in the variability of larval zebrafish navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594521. [PMID: 38798455 PMCID: PMC11118365 DOI: 10.1101/2024.05.16.594521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Animals chain movements into long-lived motor strategies, resulting in variability that ultimately reflects the interplay between internal states and environmental cues. To reveal structure in such variability, we build models that bridges across time scales that enable a quantitative comparison of behavioral phenotypes among individuals. Applied to larval zebrafish exposed to diverse sensory cues, we uncover a hierarchy of long-lived motor strategies, dominated by changes in orientation distinguishing cruising and wandering strategies. Environmental cues induce preferences along these modes at the population level: while fish cruise in the light, they wander in response to aversive (dark) stimuli or in search for prey. Our method enables us to encode the behavioral dynamics of each individual fish in the transitions among coarse-grained motor strategies. By doing so, we uncover a hierarchical structure to the phenotypic variability that corresponds to exploration-exploitation trade-offs. Within a wide range of sensory cues, a major source of variation among fish is driven by prior and immediate exposure to prey that induces exploitation phenotypes. However, a large degree of variability is unexplained by environmental cues, pointing to hidden states that override the sensory context to induce contrasting exploration-exploitation phenotypes. Altogether, our approach extracts the timescales of motor strategies deployed during navigation, exposing undiscovered structure among individuals and pointing to internal states tuned by prior experience.
Collapse
|
24
|
Silva NT, Ramírez-Buriticá J, Pritchett DL, Carey MR. Climbing fibers provide essential instructive signals for associative learning. Nat Neurosci 2024; 27:940-951. [PMID: 38565684 PMCID: PMC11088996 DOI: 10.1038/s41593-024-01594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 02/05/2024] [Indexed: 04/04/2024]
Abstract
Supervised learning depends on instructive signals that shape the output of neural circuits to support learned changes in behavior. Climbing fiber (CF) inputs to the cerebellar cortex represent one of the strongest candidates in the vertebrate brain for conveying neural instructive signals. However, recent studies have shown that Purkinje cell stimulation can also drive cerebellar learning and the relative importance of these two neuron types in providing instructive signals for cerebellum-dependent behaviors remains unresolved. In the present study we used cell-type-specific perturbations of various cerebellar circuit elements to systematically evaluate their contributions to delay eyeblink conditioning in mice. Our findings reveal that, although optogenetic stimulation of either CFs or Purkinje cells can drive learning under some conditions, even subtle reductions in CF signaling completely block learning to natural stimuli. We conclude that CFs and corresponding Purkinje cell complex spike events provide essential instructive signals for associative cerebellar learning.
Collapse
Affiliation(s)
- N Tatiana Silva
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | | | - Dominique L Pritchett
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
- Biology Department, Howard University, Washington, DC, USA.
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| |
Collapse
|
25
|
Yang F, Chen L, Wang H, Zhang J, Shen Y, Qiu Y, Qu Z, Li J, Xu W. Combined contralateral C7 to C7 and L5 to S1 cross nerve transfer for treating limb hemiplegia after stroke. Br J Neurosurg 2024; 38:510-513. [PMID: 33843383 DOI: 10.1080/02688697.2021.1910764] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Contralateral C7 to C7 cross nerve transfer has been proved to be safe and effective for patients with spastic arm paralysis due to stroke and traumatic brain injury. For the lower limb, contralateral L5 to S1 cross nerve transfer serves as a novel surgical approach. In many cases, patients with hemiplegia have both upper and lower limb dysfunction and hope to restore all limb functions within one operation. To cope with this demand, we performed combined contralateral C7 to C7 and L5 to S1 cross nerve transfer in two cases successfully. CASE DESCRIPTION Two patients were enrolled in this study. The first patient is a 36-year-old woman who had spasticity and hemiplegia in both upper and lower limbs on the left side after a right cerebral hemorrhage 14 years prior. The second patient is a 64-year-old man who suffered from permanent muscle weakness in his right limbs, especially the leg, after a left cerebral hemorrhage 7 years prior. Both patients underwent the combined nerve transfer to improve upper and lower limb motor functions simultaneously. During the 10-month follow-up after surgery, the limb functions of both patients improved significantly. CONCLUSIONS This study demonstrates the safety and benefits of combined contralateral C7 to C7 and L5 to S1 cross nerve transfer for hemiplegic patients after stroke. This novel combined surgical approach could provide an optimal choice for patients suffering from both upper and lower limb dysfunction, to reduce hospital stay while reducing financial burden.
Collapse
Affiliation(s)
- Fangjing Yang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Liwen Chen
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Haipeng Wang
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- Department of Orthopedics, Jing'an District Center Hospital, Shanghai, China
| | - Jionghao Zhang
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- Department of Orthopedics, Jing'an District Center Hospital, Shanghai, China
| | - Yundong Shen
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Yanqun Qiu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Zhiwei Qu
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- Department of Orthopedics, Jing'an District Center Hospital, Shanghai, China
| | - Jie Li
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
| | - Wendong Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Department of Hand and Upper Extremity Surgery, Jing'an District Center Hospital, Shanghai, China
- Shanghai Clinical Medical Center for Limb Function Reconstruction, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, China, Shanghai
| |
Collapse
|
26
|
Montgomery JC. Roles for cerebellum and subsumption architecture in central pattern generation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:315-324. [PMID: 37130955 PMCID: PMC10994996 DOI: 10.1007/s00359-023-01634-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
Within vertebrates, central pattern generators drive rhythmical behaviours, such as locomotion and ventilation. Their pattern generation is also influenced by sensory input and various forms of neuromodulation. These capabilities arose early in vertebrate evolution, preceding the evolution of the cerebellum in jawed vertebrates. This later evolution of the cerebellum is suggestive of subsumption architecture that adds functionality to a pre-existing network. From a central-pattern-generator perspective, what additional functionality might the cerebellum provide? The suggestion is that the adaptive filter capabilities of the cerebellum may be able to use error learning to appropriately repurpose pattern output. Examples may include head and eye stabilization during locomotion, song learning, and context-dependent alternation between learnt motor-control sequences.
Collapse
Affiliation(s)
- John C Montgomery
- Institute of Marine Science, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
27
|
Love K, Cao D, Chang JC, Dal'Bello LR, Ma X, O'Shea DJ, Schone HR, Shahbazi M, Smoulder A. Highlights from the 32nd Annual Meeting of the Society for the Neural Control of Movement. J Neurophysiol 2024; 131:75-87. [PMID: 38057264 DOI: 10.1152/jn.00428.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023] Open
Affiliation(s)
- Kassia Love
- Massachusetts Eye and Ear, Boston, Massachusetts, United States
| | - Di Cao
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland, United States
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Joanna C Chang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Lucas R Dal'Bello
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Xuan Ma
- Department of Neuroscience, Northwestern University, Chicago, Illinois, United States
| | - Daniel J O'Shea
- Department of Bioengineering, Stanford University, Stanford, California, United States
| | - Hunter R Schone
- Rehabilitation and Neural Engineering Laboratory, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mahdiyar Shahbazi
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Adam Smoulder
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
28
|
Chung B, Zia M, Thomas KA, Michaels JA, Jacob A, Pack A, Williams MJ, Nagapudi K, Teng LH, Arrambide E, Ouellette L, Oey N, Gibbs R, Anschutz P, Lu J, Wu Y, Kashefi M, Oya T, Kersten R, Mosberger AC, O'Connell S, Wang R, Marques H, Mendes AR, Lenschow C, Kondakath G, Kim JJ, Olson W, Quinn KN, Perkins P, Gatto G, Thanawalla A, Coltman S, Kim T, Smith T, Binder-Markey B, Zaback M, Thompson CK, Giszter S, Person A, Goulding M, Azim E, Thakor N, O'Connor D, Trimmer B, Lima SQ, Carey MR, Pandarinath C, Costa RM, Pruszynski JA, Bakir M, Sober SJ. Myomatrix arrays for high-definition muscle recording. eLife 2023; 12:RP88551. [PMID: 38113081 PMCID: PMC10730117 DOI: 10.7554/elife.88551] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.
Collapse
Affiliation(s)
- Bryce Chung
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Muneeb Zia
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Kyle A Thomas
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | | | - Amanda Jacob
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Andrea Pack
- Neuroscience Graduate Program, Emory UniversityAtlantaUnited States
| | - Matthew J Williams
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | | | - Lay Heng Teng
- Department of Biology, Emory UniversityAtlantaUnited States
| | | | | | - Nicole Oey
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Rhuna Gibbs
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Philip Anschutz
- Graduate Program in BioEngineering, Georgia TechAtlantaUnited States
| | - Jiaao Lu
- Graduate Program in Electrical and Computer Engineering, Georgia TechAtlantaUnited States
| | - Yu Wu
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Mehrdad Kashefi
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Tomomichi Oya
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute at Columbia UniversityNew YorkUnited States
| | - Sean O'Connell
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Runming Wang
- Department of Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Hugo Marques
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Ana Rita Mendes
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Constanze Lenschow
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | | | - Jeong Jun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - William Olson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Kiara N Quinn
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Pierce Perkins
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Graziana Gatto
- Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Susan Coltman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Taegyo Kim
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Trevor Smith
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University College of Nursing and Health ProfessionsPhiladelphiaUnited States
| | - Martin Zaback
- Department of Health and Rehabilitation Sciences, Temple UniversityPhiladelphiaUnited States
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple UniversityPhiladelphiaUnited States
| | - Simon Giszter
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Abigail Person
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Allen InstituteSeattleUnited States
| | | | - Eiman Azim
- Salk Institute for Biological StudiesLa JollaUnited States
| | - Nitish Thakor
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Daniel O'Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Barry Trimmer
- Department of Biology, Tufts UniversityMedfordUnited States
| | - Susana Q Lima
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Chethan Pandarinath
- Department of Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia UniversityNew YorkUnited States
| | | | - Muhannad Bakir
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Samuel J Sober
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
29
|
Tsay JS, Schuck L, Ivry RB. Cerebellar Degeneration Impairs Strategy Discovery but Not Strategy Recall. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1223-1233. [PMID: 36464710 PMCID: PMC10239782 DOI: 10.1007/s12311-022-01500-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
The cerebellum is recognized to play a critical role in the automatic and implicit process by which movement errors are used to keep the sensorimotor system precisely calibrated. However, its role in other learning processes frequently engaged during sensorimotor adaptation tasks remains unclear. In the present study, we tested the performance of individuals with cerebellar degeneration on a variant of a visuomotor adaptation task in which learning requires the use of strategic re-aiming, a process that can nullify movement errors in a rapid and volitional manner. Our design allowed us to assess two components of this learning process, the discovery of an appropriate strategy and the recall of a learned strategy. Participants were exposed to a 60° visuomotor rotation twice, with the initial exposure block assessing strategy discovery and the re-exposure block assessing strategy recall. Compared to age-matched controls, individuals with cerebellar degeneration were slower to derive an appropriate aiming strategy in the initial Discovery block but exhibited similar recall of the aiming strategy during the Recall block. This dissociation underscores the multi-faceted contributions of the cerebellum to sensorimotor learning, highlighting one way in which this subcortical structure facilitates volitional action selection.
Collapse
Affiliation(s)
- Jonathan S Tsay
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Lauren Schuck
- Department of Psychology, University of California, Berkeley, CA, USA.
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA.
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
30
|
Kirk EA, Hope KT, Sober SJ, Sauerbrei BA. An output-null signature of inertial load in motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565869. [PMID: 37986810 PMCID: PMC10659339 DOI: 10.1101/2023.11.06.565869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Coordinated movement requires the nervous system to continuously compensate for changes in mechanical load across different contexts. For voluntary movements like reaching, the motor cortex is a critical hub that generates commands to move the limbs and counteract loads. How does cortex contribute to load compensation when rhythmic movements are clocked by a spinal pattern generator? Here, we address this question by manipulating the mass of the forelimb in unrestrained mice during locomotion. While load produces changes in motor output that are robust to inactivation of motor cortex, it also induces a profound shift in cortical dynamics, which is minimally affected by cerebellar perturbation and significantly larger than the response in the spinal motoneuron population. This latent representation may enable motor cortex to generate appropriate commands when a voluntary movement must be integrated with an ongoing, spinally-generated rhythm.
Collapse
Affiliation(s)
- Eric A. Kirk
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | - Keenan T. Hope
- CaseWestern Reserve University School ofMedicine, Department of Neurosciences
| | | | | |
Collapse
|
31
|
Cruz TL, Chiappe ME. Multilevel visuomotor control of locomotion in Drosophila. Curr Opin Neurobiol 2023; 82:102774. [PMID: 37651855 DOI: 10.1016/j.conb.2023.102774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023]
Abstract
Vision is critical for the control of locomotion, but the underlying neural mechanisms by which visuomotor circuits contribute to the movement of the body through space are yet not well understood. Locomotion engages multiple control systems, forming distinct interacting "control levels" driven by the activity of distributed and overlapping circuits. Therefore, a comprehensive understanding of the mechanisms underlying locomotion control requires the consideration of all control levels and their necessary coordination. Due to their small size and the wide availability of experimental tools, Drosophila has become an important model system to study this coordination. Traditionally, insect locomotion has been divided into studying either the biomechanics and local control of limbs, or navigation and course control. However, recent developments in tracking techniques, and physiological and genetic tools in Drosophila have prompted researchers to examine multilevel control coordination in flight and walking.
Collapse
Affiliation(s)
- Tomás L Cruz
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal.
| |
Collapse
|
32
|
Chung B, Zia M, Thomas KA, Michaels JA, Jacob A, Pack A, Williams MJ, Nagapudi K, Teng LH, Arrambide E, Ouellette L, Oey N, Gibbs R, Anschutz P, Lu J, Wu Y, Kashefi M, Oya T, Kersten R, Mosberger AC, O'Connell S, Wang R, Marques H, Mendes AR, Lenschow C, Kondakath G, Kim JJ, Olson W, Quinn KN, Perkins P, Gatto G, Thanawalla A, Coltman S, Kim T, Smith T, Binder-Markey B, Zaback M, Thompson CK, Giszter S, Person A, Goulding M, Azim E, Thakor N, O'Connor D, Trimmer B, Lima SQ, Carey MR, Pandarinath C, Costa RM, Pruszynski JA, Bakir M, Sober SJ. Myomatrix arrays for high-definition muscle recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529200. [PMID: 36865176 PMCID: PMC9980060 DOI: 10.1101/2023.02.21.529200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.
Collapse
Affiliation(s)
- Bryce Chung
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Muneeb Zia
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Kyle A Thomas
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Jonathan A Michaels
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Amanda Jacob
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Andrea Pack
- Neuroscience Graduate Program, Emory University (Atlanta, GA, USA)
| | - Matthew J Williams
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | | | - Lay Heng Teng
- Department of Biology, Emory University (Atlanta, GA, USA)
| | | | | | - Nicole Oey
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Rhuna Gibbs
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Philip Anschutz
- Graduate Program in BioEngineering, Georgia Tech (Atlanta, GA, USA)
| | - Jiaao Lu
- Graduate Program in Electrical and Computer Engineering, Georgia Tech (Atlanta, GA, USA)
| | - Yu Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Mehrdad Kashefi
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Tomomichi Oya
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute at Columbia University (New York, NY, USA)
| | - Sean O'Connell
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Runming Wang
- Department of Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Hugo Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Ana Rita Mendes
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Constanze Lenschow
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
- current address: Institute of Biology, Otto-von-Guericke University, (Magdeburg, Germany)
| | | | - Jeong Jun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - William Olson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Kiara N Quinn
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Pierce Perkins
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Graziana Gatto
- Salk Institute for Biological Studies (La Jolla, CA, USA)
- current address: Department of Neurology, University Hospital of Cologne (Cologne, Germany)
| | | | - Susan Coltman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (Aurora, CO, USA)
| | - Taegyo Kim
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Trevor Smith
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University College of Nursing and Health Professions (Philadelphia, PA)
| | - Martin Zaback
- Department of Health and Rehabilitation Sciences, Temple University (Philadelphia, PA, USA)
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University (Philadelphia, PA, USA)
| | - Simon Giszter
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Abigail Person
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (Aurora, CO, USA)
| | | | - Eiman Azim
- Salk Institute for Biological Studies (La Jolla, CA, USA)
| | - Nitish Thakor
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Daniel O'Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Barry Trimmer
- Department of Biology, Tufts University (Medford, MA, USA)
| | - Susana Q Lima
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Chethan Pandarinath
- Department of Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia University (New York, NY, USA)
- Allen Institute (Seattle, WA, USA)
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Muhannad Bakir
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Samuel J Sober
- Department of Biology, Emory University (Atlanta, GA, USA)
| |
Collapse
|
33
|
Brown AM, van der Heijden ME, Jinnah HA, Sillitoe RV. Cerebellar Dysfunction as a Source of Dystonic Phenotypes in Mice. CEREBELLUM (LONDON, ENGLAND) 2023; 22:719-729. [PMID: 35821365 PMCID: PMC10307717 DOI: 10.1007/s12311-022-01441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
There is now a substantial amount of compelling evidence demonstrating that the cerebellum may be a central locus in dystonia pathogenesis. Studies using spontaneous genetic mutations in rats and mice, engineered genetic alleles in mice, shRNA knockdown in mice, and conditional genetic silencing of fast neurotransmission in mice have all uncovered a common set of behavioral and electrophysiological defects that point to cerebellar cortical and cerebellar nuclei dysfunction as a source of dystonic phenotypes. Here, we revisit the Ptf1aCre/+;Vglut2flox/flox mutant mouse to define fundamental phenotypes and measures that are valuable for testing the cellular, circuit, and behavioral mechanisms that drive dystonia. In this model, excitatory neurotransmission from climbing fibers is genetically eliminated and, as a consequence, Purkinje cell and cerebellar nuclei firing are altered in vivo, with a prominent and lasting irregular burst pattern of spike activity in cerebellar nuclei neurons. The resulting impact on behavior is that the mice have developmental abnormalities, including twisting of the limbs and torso. These behaviors continue into adulthood along with a tremor, which can be measured with a tremor monitor or EMG. Importantly, expression of dystonic behavior is reduced upon cerebellar-targeted deep brain stimulation. The presence of specific combinations of disease-like features and therapeutic responses could reveal the causative mechanisms of different types of dystonia and related conditions. Ultimately, an emerging theme places cerebellar dysfunction at the center of a broader dystonia brain network.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - H A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Mari S, Lecomte CG, Merlet AN, Audet J, Harnie J, Rybak IA, Prilutsky BI, Frigon A. A sensory signal related to left-right symmetry modulates intra- and interlimb cutaneous reflexes during locomotion in intact cats. Front Syst Neurosci 2023; 17:1199079. [PMID: 37360774 PMCID: PMC10288215 DOI: 10.3389/fnsys.2023.1199079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction During locomotion, cutaneous reflexes play an essential role in rapidly responding to an external perturbation, for example, to prevent a fall when the foot contacts an obstacle. In cats and humans, cutaneous reflexes involve all four limbs and are task- and phase modulated to generate functionally appropriate whole-body responses. Methods To assess task-dependent modulation of cutaneous interlimb reflexes, we electrically stimulated the superficial radial or superficial peroneal nerves in adult cats and recorded muscle activity in the four limbs during tied-belt (equal left-right speeds) and split-belt (different left-right speeds) locomotion. Results We show that the pattern of intra- and interlimb cutaneous reflexes in fore- and hindlimbs muscles and their phase-dependent modulation were conserved during tied-belt and split-belt locomotion. Short-latency cutaneous reflex responses to muscles of the stimulated limb were more likely to be evoked and phase-modulated when compared to muscles in the other limbs. In some muscles, the degree of reflex modulation was significantly reduced during split-belt locomotion compared to tied-belt conditions. Split-belt locomotion increased the step-by-step variability of left-right symmetry, particularly spatially. Discussion These results suggest that sensory signals related to left-right symmetry reduce cutaneous reflex modulation, potentially to avoid destabilizing an unstable pattern.
Collapse
Affiliation(s)
- Stephen Mari
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Charly G. Lecomte
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Angèle N. Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Johannie Audet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Boris I. Prilutsky
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
35
|
Brinkerhoff SA, Sánchez N, Roper JA. Habitual exercise evokes fast and persistent adaptation during split-belt walking. PLoS One 2023; 18:e0286649. [PMID: 37267314 DOI: 10.1371/journal.pone.0286649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Changing movement patterns in response to environmental perturbations is a critical aspect of gait and is related to reducing the energetic cost of the movement. Exercise improves energetic capacity for submaximal exercise and may affect how people adapt movement to reach an energetic minimum. The purpose of this study was to determine whether self-reported exercise behavior influences gait adaptation in young adults. Young adults who met the optimal volume of exercise according to the Physical Activity Guidelines for Americans (MOVE; n = 19) and young adults who did not meet the optimal volume of exercise (notMOVE; n = 13) walked on a split-belt treadmill with one belt moving twice the speed of the other belt for 10 minutes. Step length asymmetry (SLA) and mechanical work done by each leg were measured. Nonlinear mixed effects models compared the time course of adaptation between MOVE and notMOVE, and t-tests compared net work at the end of adaptation between MOVE and notMOVE. Compared to notMOVE, MOVE had a faster initial response to the split belt treadmill, and continued to adapt over the duration of split-belt treadmill walking. Young adults who engage in sufficient amounts of exercise responded more quickly to the onset of a perturbation, and throughout the perturbation they continued to explore movement strategies, which might be related to reduction of energetic cost. Our findings provide insights into the multisystem positive effects of exercise, including walking adaptation.
Collapse
Affiliation(s)
- Sarah A Brinkerhoff
- School of Kinesiology, Auburn University, Auburn, Alabama, United States of America
| | - Natalia Sánchez
- Department of Physical Therapy, Chapman University, Irvine, California, United States of America
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
36
|
Kambic RE, Roemmich RT, Bastian AJ. Joint-level coordination patterns for split-belt walking across different speed ratios. J Neurophysiol 2023; 129:969-983. [PMID: 36988216 PMCID: PMC10125032 DOI: 10.1152/jn.00323.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/01/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023] Open
Abstract
Locomotion is a highly flexible process, requiring rapid changes to gait due to changes in the environment or goals. Here, we used a split-belt treadmill to examine how the central nervous system coordinates a novel gait pattern. Existing research has focused on summary measures, most often step lengths, when describing changes induced while walking on the split-belt treadmill and during subsequent aftereffects. Here, we asked how the nervous system adjusts individual joint motions and the coordination pattern of the legs when people walk with one leg moving at either 2×, 3×, or 4× the speed of the other leg. We found that relative to tied-belt walking, split-belt perturbations change the timing relationships between the legs while most joint angle peaks and range of motion change little. The kinematic changes over the course of adaptation (i.e., from the beginning to end of a single split-belt walking bout) were subtle, particularly when comparing individual joint motions. The magnitude of the belt speed differences impacted intralimb coordination but did not produce consistent differences in most other measures. Most significant changes in kinematics occurred in the fast leg. Overall, interlimb timing changes drove a large proportion of the differences observed between tied-belt and split-belt gaits. Thus, it appears that the central nervous system can produce novel gait patterns through changes in coordination between legs that lead to new configurations at significant time points. These patterns can use within-limb and within-joint patterns that closely resemble those of normal walking.NEW & NOTEWORTHY We studied how the nervous system coordinates limb movements during asymmetric gait. Using a split-belt treadmill, we found that most changes in motion occurred when comparing motions between limbs, rather than among joints within a limb. Individual joint patterns resembled speed-matched comparisons, but this meant that joint movements became asymmetric during split-belt walking. These findings demonstrate that the nervous system can use consistent joint motions that are reconfigured in time to achieve new gait patterns.
Collapse
Affiliation(s)
- Robert E Kambic
- Department of Biology, Hood College, Frederick, Maryland, United States
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
| | - Ryan T Roemmich
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amy J Bastian
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, Maryland, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
37
|
Ni C, Lin Y, Lu L, Wang J, Liu W, Kuo S, Pan M. Tracking motion kinematics and tremor with intrinsic oscillatory property of instrumental mechanics. Bioeng Transl Med 2023; 8:e10432. [PMID: 36925695 PMCID: PMC10013767 DOI: 10.1002/btm2.10432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Tracking kinematic details of motor behaviors is a foundation to study the neuronal mechanism and biology of motor control. However, most of the physiological motor behaviors and movement disorders, such as gait, balance, tremor, dystonia, and myoclonus, are highly dependent on the overall momentum of the whole-body movements. Therefore, tracking the targeted movement and overall momentum simultaneously is critical for motor control research, but it remains an unmet need. Here, we introduce the intrinsic oscillatory property (IOP), a fundamental mechanical principle of physics, as a method for motion tracking in a force plate. The overall kinetic energy of animal motions can be transformed into the oscillatory amplitudes at the designed IOP frequency of the force plate, while the target movement has its own frequency features and can be tracked simultaneously. Using action tremor as an example, we reported that force plate-based IOP approach has superior performance and reliability in detecting both tremor severity and tremor frequency, showing a lower level of coefficient of variation (CV) compared with video- and accelerometer-based motion tracking methods and their combination. Under the locomotor suppression effect of medications, therapeutic effects on tremor severity can still be quantified by dynamically adjusting the overall locomotor activity detected by IOP. We further validated IOP method in optogenetic-induced movements and natural movements, confirming that IOP can represent the intensity of general rhythmic and nonrhythmic movements, thus it can be generalized as a common approach to study kinematics.
Collapse
Affiliation(s)
- Chun‐Lun Ni
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
- The Initiative for Columbia Ataxia and TremorNew YorkNew YorkUSA
- Department of Biochemistry and Molecular BiologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yi‐Ting Lin
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Department of PsychologyNational Taiwan UniversityTaipei CityTaiwan
| | - Liang‐Yin Lu
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
| | - Jia‐Huei Wang
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipei CityTaiwan
| | - Wen‐Chuan Liu
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipei CityTaiwan
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia UniversityNew YorkNew YorkUSA
- The Initiative for Columbia Ataxia and TremorNew YorkNew YorkUSA
| | - Ming‐Kai Pan
- Molecular Imaging Center, National Taiwan UniversityTaipei CityTaiwan
- Institute of Biomedical Sciences, Academia SinicaTaipei CityTaiwan
- Department and Graduate Institute of PharmacologyNational Taiwan University College of MedicineTaipei CityTaiwan
- Department of Medical ResearchNational Taiwan University HospitalTaipei CityTaiwan
- Cerebellar Research CenterNational Taiwan University Hospital, Yun‐Lin BranchYun‐LinTaiwan
| |
Collapse
|
38
|
Biundo F, Chitu V, Tindi J, Burghardt NS, Shlager GGL, Ketchum HC, DeTure MA, Dickson DW, Wszolek ZK, Khodakhah K, Stanley ER. Elevated granulocyte colony stimulating factor (CSF) causes cerebellar deficits and anxiety in a model of CSF-1 receptor related leukodystrophy. Glia 2023; 71:775-794. [PMID: 36433736 PMCID: PMC9868112 DOI: 10.1002/glia.24310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022]
Abstract
Colony stimulating factor (CSF) receptor-1 (CSF-1R)-related leukoencephalopathy (CRL) is an adult-onset, demyelinating and neurodegenerative disease caused by autosomal dominant mutations in CSF1R, modeled by the Csf1r+/- mouse. The expression of Csf2, encoding granulocyte-macrophage CSF (GM-CSF) and of Csf3, encoding granulocyte CSF (G-CSF), are elevated in both mouse and human CRL brains. While monoallelic targeting of Csf2 has been shown to attenuate many behavioral and histological deficits of Csf1r+/- mice, including cognitive dysfunction and demyelination, the contribution of Csf3 has not been explored. In the present study, we investigate the behavioral, electrophysiological and histopathological phenotypes of Csf1r+/- mice following monoallelic targeting of Csf3. We show that Csf3 heterozygosity normalized the Csf3 levels in Csf1r+/- mouse brains and ameliorated anxiety-like behavior, motor coordination and social interaction deficits, but not the cognitive impairment of Csf1r+/- mice. Csf3 heterozygosity failed to prevent callosal demyelination. However, consistent with its effects on behavior, Csf3 heterozygosity normalized microglial morphology in the cerebellum and in the ventral, but not in the dorsal hippocampus. Csf1r+/- mice exhibited altered firing activity in the deep cerebellar nuclei (DCN) associated with increased engulfment of glutamatergic synapses by DCN microglia and increased deposition of the complement factor C1q on glutamatergic synapses. These phenotypes were significantly ameliorated by monoallelic deletion of Csf3. Our current and earlier findings indicate that G-CSF and GM-CSF play largely non-overlapping roles in CRL-like disease development in Csf1r+/- mice.
Collapse
Affiliation(s)
- Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jaafar Tindi
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nesha S. Burghardt
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - Gabriel G. L. Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harmony C. Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | - Kamran Khodakhah
- The Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - E. Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
39
|
The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement. Cell Rep 2023; 42:112000. [PMID: 36656714 DOI: 10.1016/j.celrep.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Cerebellar-thalamo-striatal synaptic communication has been implicated in a wide range of behaviors, including goal-directed actions, and is altered in cerebellar dystonia. However, its detailed connectivity through the thalamus and its contribution to the execution of forelimb movements is unclear. Here, we use trans-synaptic and retrograde tracing, ex vivo slice recordings, and optogenetic inhibitions during the execution of unidirectional or sequential joystick displacements to demonstrate that the deep cerebellar nuclei (DCN) influence the dorsal striatum with a very high probability. We show that this mainly occurs through the centrolateral (CL), parafascicular (PF), and ventrolateral (VL) nuclei of the thalamus, observing that the DCN→VL and DCN→CL pathways contribute to the execution of unidirectional forelimb displacements while the DCN→PF and DCN→thalamo→striatal pathways contribute to the appropriate execution of forelimb reaching and sequential displacements. These findings highlight specific contributions of the different cerebellar-thalamo-striatal paths to the control of skilled forelimb movement.
Collapse
|
40
|
Lyu C, Yu C, Sun G, Zhao Y, Cai R, Sun H, Wang X, Jia G, Fan L, Chen X, Zhou L, Shen Y, Gao L, Li X. Deconstruction of Vermal Cerebellum in Ramp Locomotion in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2203665. [PMID: 36373709 PMCID: PMC9811470 DOI: 10.1002/advs.202203665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The cerebellum is involved in encoding balance, posture, speed, and gravity during locomotion. However, most studies are carried out on flat surfaces, and little is known about cerebellar activity during free ambulation on slopes. Here, it has been imaged the neuronal activity of cerebellar molecular interneurons (MLIs) and Purkinje cells (PCs) using a miniaturized microscope while a mouse is walking on a slope. It has been found that the neuronal activity of vermal MLIs specifically enhanced during uphill and downhill locomotion. In addition, a subset of MLIs is activated during entire uphill or downhill positions on the slope and is modulated by the slope inclines. In contrast, PCs showed counter-balanced neuronal activity to MLIs, which reduced activity at the ramp peak. So, PCs may represent the ramp environment at the population level. In addition, chemogenetic inactivation of lobule V of the vermis impaired uphill locomotion. These results revealed a novel micro-circuit in the vermal cerebellum that regulates ambulatory behavior in 3D terrains.
Collapse
Affiliation(s)
- Chenfei Lyu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Chencen Yu
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Guanglong Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Yue Zhao
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- Key Laboratory for Biomedical Engineering of Ministry of EducationCollege of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhou310027China
| | - Xintai Wang
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Lingzhu Fan
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
| | - Xi Chen
- Department of NeuroscienceCity University of Hong KongKowloonHong KongChina
| | - Lin Zhou
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Ying Shen
- Department of Physiology and Department of PsychiatrySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- Key Laboratory for Biomedical Engineering of Ministry of EducationCollege of Biomedical Engineering and Instrument Science, Zhejiang UniversityHangzhou310027China
- MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310027China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and TechnologyZhejiang University School of MedicineHangzhou310027China
- MOE Frontier Science Center for Brain Science and Brain‐machine IntegrationSchool of Brain Science and Brain MedicineZhejiang UniversityHangzhou310027China
- Key Laboratory of Medical Neurobiology of Zhejiang ProvinceHangzhou310027China
| |
Collapse
|
41
|
Barkus C, Bergmann C, Branco T, Carandini M, Chadderton PT, Galiñanes GL, Gilmour G, Huber D, Huxter JR, Khan AG, King AJ, Maravall M, O'Mahony T, Ragan CI, Robinson ESJ, Schaefer AT, Schultz SR, Sengpiel F, Prescott MJ. Refinements to rodent head fixation and fluid/food control for neuroscience. J Neurosci Methods 2022; 381:109705. [PMID: 36096238 PMCID: PMC7617528 DOI: 10.1016/j.jneumeth.2022.109705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/14/2022]
Abstract
The use of head fixation in mice is increasingly common in research, its use having initially been restricted to the field of sensory neuroscience. Head restraint has often been combined with fluid control, rather than food restriction, to motivate behaviour, but this too is now in use for both restrained and non-restrained animals. Despite this, there is little guidance on how best to employ these techniques to optimise both scientific outcomes and animal welfare. This article summarises current practices and provides recommendations to improve animal wellbeing and data quality, based on a survey of the community, literature reviews, and the expert opinion and practical experience of an international working group convened by the UK's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Topics covered include head fixation surgery and post-operative care, habituation to restraint, and the use of fluid/food control to motivate performance. We also discuss some recent developments that may offer alternative ways to collect data from large numbers of behavioural trials without the need for restraint. The aim is to provide support for researchers at all levels, animal care staff, and ethics committees to refine procedures and practices in line with the refinement principle of the 3Rs.
Collapse
Affiliation(s)
- Chris Barkus
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK.
| | | | - Tiago Branco
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Matteo Carandini
- Institute of Ophthalmology, University College London, London, UK
| | - Paul T Chadderton
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | | | | | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Adil G Khan
- Centre for Developmental Neurobiology, King's College London, London, UK
| | - Andrew J King
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Miguel Maravall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Tina O'Mahony
- Sainsbury Wellcome Centre, University College London, London, UK
| | - C Ian Ragan
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, London, UK; Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - Simon R Schultz
- Centre for Neurotechnology and Department of Bioengineering, Imperial College London, London, UK
| | | | - Mark J Prescott
- National Centre for Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| |
Collapse
|
42
|
Cabaraux P, Agrawal SK, Cai H, Calabro RS, Casali C, Damm L, Doss S, Habas C, Horn AKE, Ilg W, Louis ED, Mitoma H, Monaco V, Petracca M, Ranavolo A, Rao AK, Ruggieri S, Schirinzi T, Serrao M, Summa S, Strupp M, Surgent O, Synofzik M, Tao S, Terasi H, Torres-Russotto D, Travers B, Roper JA, Manto M. Consensus Paper: Ataxic Gait. CEREBELLUM (LONDON, ENGLAND) 2022; 22:394-430. [PMID: 35414041 DOI: 10.1007/s12311-022-01373-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
The aim of this consensus paper is to discuss the roles of the cerebellum in human gait, as well as its assessment and therapy. Cerebellar vermis is critical for postural control. The cerebellum ensures the mapping of sensory information into temporally relevant motor commands. Mental imagery of gait involves intrinsically connected fronto-parietal networks comprising the cerebellum. Muscular activities in cerebellar patients show impaired timing of discharges, affecting the patterning of the synergies subserving locomotion. Ataxia of stance/gait is amongst the first cerebellar deficits in cerebellar disorders such as degenerative ataxias and is a disabling symptom with a high risk of falls. Prolonged discharges and increased muscle coactivation may be related to compensatory mechanisms and enhanced body sway, respectively. Essential tremor is frequently associated with mild gait ataxia. There is growing evidence for an important role of the cerebellar cortex in the pathogenesis of essential tremor. In multiple sclerosis, balance and gait are affected due to cerebellar and spinal cord involvement, as a result of disseminated demyelination and neurodegeneration impairing proprioception. In orthostatic tremor, patients often show mild-to-moderate limb and gait ataxia. The tremor generator is likely located in the posterior fossa. Tandem gait is impaired in the early stages of cerebellar disorders and may be particularly useful in the evaluation of pre-ataxic stages of progressive ataxias. Impaired inter-joint coordination and enhanced variability of gait temporal and kinetic parameters can be grasped by wearable devices such as accelerometers. Kinect is a promising low cost technology to obtain reliable measurements and remote assessments of gait. Deep learning methods are being developed in order to help clinicians in the diagnosis and decision-making process. Locomotor adaptation is impaired in cerebellar patients. Coordinative training aims to improve the coordinative strategy and foot placements across strides, cerebellar patients benefiting from intense rehabilitation therapies. Robotic training is a promising approach to complement conventional rehabilitation and neuromodulation of the cerebellum. Wearable dynamic orthoses represent a potential aid to assist gait. The panel of experts agree that the understanding of the cerebellar contribution to gait control will lead to a better management of cerebellar ataxias in general and will likely contribute to use gait parameters as robust biomarkers of future clinical trials.
Collapse
Affiliation(s)
- Pierre Cabaraux
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.
| | | | - Huaying Cai
- Department of Neurology, Neuroscience Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | | | - Carlo Casali
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy
| | - Loic Damm
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Sarah Doss
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Christophe Habas
- Université Versailles Saint-Quentin, Versailles, France.,Service de NeuroImagerie, Centre Hospitalier National des 15-20, Paris, France
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig Maximilians-University Munich, Munich, Germany
| | - Winfried Ilg
- Section Computational Sensomotorics, Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Vito Monaco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Maria Petracca
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy
| | - Alberto Ranavolo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, Rome, Italy
| | - Ashwini K Rao
- Department of Rehabilitation & Regenerative Medicine (Programs in Physical Therapy), Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serena Ruggieri
- Department of Human Neurosciences, University of Rome Sapienza, Rome, Italy.,Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Tommaso Schirinzi
- Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Mariano Serrao
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Latina, Italy.,Movement Analysis LAB, Policlinico Italia, Rome, Italy
| | - Susanna Summa
- MARlab, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital - IRCCS, Rome, Italy
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig Maximilians-University Munich, Munich, Germany
| | - Olivia Surgent
- Neuroscience Training Program and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and Centre of Neurology, Tübingen, Germany
| | - Shuai Tao
- Dalian Key Laboratory of Smart Medical and Health, Dalian University, Dalian, 116622, China
| | - Hiroo Terasi
- Department of Neurology, Tokyo Medical University, Tokyo, Japan
| | - Diego Torres-Russotto
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, USA
| | - Brittany Travers
- Department of Kinesiology and Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jaimie A Roper
- School of Kinesiology, Auburn University, Auburn, AL, USA
| | - Mario Manto
- Unité Des Ataxies Cérébelleuses, Department of Neurology, CHU de Charleroi, Charleroi, Belgium.,Service Des Neurosciences, University of Mons, UMons, Mons, Belgium
| |
Collapse
|
43
|
Gonçalves AI, Zavatone-Veth JA, Carey MR, Clark DA. Parallel locomotor control strategies in mice and flies. Curr Opin Neurobiol 2022; 73:102516. [PMID: 35158168 PMCID: PMC12103226 DOI: 10.1016/j.conb.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
Abstract
Our understanding of the neural basis of locomotor behavior can be informed by careful quantification of animal movement. Classical descriptions of legged locomotion have defined discrete locomotor gaits, characterized by distinct patterns of limb movement. Recent technical advances have enabled increasingly detailed characterization of limb kinematics across many species, imposing tighter constraints on neural control. Here, we highlight striking similarities between coordination patterns observed in two genetic model organisms: the laboratory mouse and Drosophila. Both species exhibit continuously-variable coordination patterns with similar low-dimensional structure, suggesting shared principles for limb coordination and descending neural control.
Collapse
Affiliation(s)
- Ana I Gonçalves
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal. https://twitter.com/ana_gigoncalves
| | - Jacob A Zavatone-Veth
- Department of Physics, Harvard University, Cambridge, MA, United States; Center for Brain Science, Harvard University, Cambridge, MA, United States. https://twitter.com/jzavatoneveth
| | - Megan R Carey
- Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal.
| | - Damon A Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, United States; Department of Physics, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University, New Haven, CT, United States.
| |
Collapse
|
44
|
Erikson CM, Douglas KT, Thuet TO, Richardson BD, Mohr C, Shiina H, Kaplan JS, Rossi DJ. Independent of differences in taste, B6N mice consume less alcohol than genetically similar B6J mice, and exhibit opposite polarity modulation of tonic GABA AR currents by alcohol. Neuropharmacology 2022; 206:108934. [PMID: 34933049 PMCID: PMC9208337 DOI: 10.1016/j.neuropharm.2021.108934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022]
Abstract
Genetic differences in cerebellar sensitivity to alcohol (EtOH) influence EtOH consumption phenotype in animal models and contribute to risk for developing an alcohol use disorder in humans. We previously determined that EtOH enhances cerebellar granule cell (GC) tonic GABAAR currents in low EtOH consuming rodent genotypes, but suppresses it in high EtOH consuming rodent genotypes. Moreover, pharmacologically counteracting EtOH suppression of GC tonic GABAAR currents reduces EtOH consumption in high alcohol consuming C57BL/6J (B6J) mice, suggesting a causative role. In the low EtOH consuming rodent models tested to date, EtOH enhancement of GC tonic GABAAR currents is mediated by inhibition of neuronal nitric oxide synthase (nNOS) which drives increased vesicular GABA release onto GCs and a consequent enhancement of tonic GABAAR currents. Consequently, genetic variation in nNOS expression across rodent genotypes is a key determinant of whether EtOH enhances or suppresses tonic GABAAR currents, and thus EtOH consumption. We used behavioral, electrophysiological, and immunocytochemical techniques to further explore the relationship between EtOH consumption and GC GABAAR current responses in C57BL/6N (B6N) mice. B6N mice consume significantly less EtOH and achieve significantly lower blood EtOH concentrations than B6J mice, an outcome not mediated by differences in taste. In voltage-clamped GCs, EtOH enhanced the GC tonic current in B6N mice but suppressed it in B6J mice. Immunohistochemical and electrophysiological studies revealed significantly higher nNOS expression and function in the GC layer of B6N mice compared to B6Js. Collectively, our data demonstrate that despite being genetically similar, B6N mice consume significantly less EtOH than B6J mice, a behavioral difference paralleled by increased cerebellar nNOS expression and opposite EtOH action on GC tonic GABAAR currents in each genotype.
Collapse
Affiliation(s)
- Chloe M Erikson
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Kevin T Douglas
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Talia O Thuet
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Ben D Richardson
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA; Department of Pharmacology, Southern Illinois University - School of Medicine, Springfield, IL, USA
| | - Claudia Mohr
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA
| | - Hiroko Shiina
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA; Department of Physiology, University College London, London, UK
| | - Josh S Kaplan
- Department of Psychology, Western Washington University, Bellinham, WA, 9822, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - David J Rossi
- Department of Integrative Physiology and Neuroscience, 1815 Ferdinands Lane, Washington State University, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
45
|
Romano V, Zhai P, van der Horst A, Mazza R, Jacobs T, Bauer S, Wang X, White JJ, De Zeeuw CI. Olivocerebellar control of movement symmetry. Curr Biol 2022; 32:654-670.e4. [PMID: 35016009 DOI: 10.1016/j.cub.2021.12.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 12/08/2021] [Indexed: 01/02/2023]
Abstract
Coordination of bilateral movements is essential for a large variety of animal behaviors. The olivocerebellar system is critical for the control of movement, but its role in bilateral coordination has yet to be elucidated. Here, we examined whether Purkinje cells encode and influence synchronicity of left-right whisker movements. We found that complex spike activity is correlated with a prominent left-right symmetry of spontaneous whisker movements within parts, but not all, of Crus1 and Crus2. Optogenetic stimulation of climbing fibers in the areas with high and low correlations resulted in symmetric and asymmetric whisker movements, respectively. Moreover, when simple spike frequency prior to the complex spike was higher, the complex spike-related symmetric whisker protractions were larger. This finding alludes to a role for rebound activity in the cerebellar nuclei, which indeed turned out to be enhanced during symmetric protractions. Tracer injections suggest that regions associated with symmetric whisker movements are anatomically connected to the contralateral cerebellar hemisphere. Together, these data point toward the existence of modules on both sides of the cerebellar cortex that can differentially promote or reduce the symmetry of left and right movements in a context-dependent fashion.
Collapse
Affiliation(s)
- Vincenzo Romano
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | - Peipei Zhai
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Roberta Mazza
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas Jacobs
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Staf Bauer
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
46
|
Spaeth L, Bahuguna J, Gagneux T, Dorgans K, Sugihara I, Poulain B, Battaglia D, Isope P. Cerebellar connectivity maps embody individual adaptive behavior in mice. Nat Commun 2022; 13:580. [PMID: 35102165 PMCID: PMC8803868 DOI: 10.1038/s41467-022-27984-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors, however the precise relationship between synaptic connectivity and behavior is unclear. We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in murine acute cerebellar slices using photostimulation of caged glutamate combined with patch-clamp in developing or after mice adapted to different locomotor contexts. By translating individual maps into graph network entities, we found that synaptic maps in juvenile animals undergo critical period characterized by dissolution of their structure followed by the re-establishment of a patchy functional organization in adults. Although, in adapted mice, subdivisions in anatomical microzones do not fully account for the observed spatial map organization in relation to behavior, we can discriminate locomotor contexts with high accuracy. We also demonstrate that the variability observed in connectivity maps directly accounts for motor behavior traits at the individual level. Our findings suggest that, beyond general motor contexts, GC-PC networks also encode internal models underlying individual-specific motor adaptation.
Collapse
Affiliation(s)
- Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jyotika Bahuguna
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Theo Gagneux
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Kevin Dorgans
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
- Okinawa Institute of Science and Technology, Graduate University of Okinawa, Onna, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Bernard Poulain
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France
| | - Demian Battaglia
- Aix-Marseille Université, Institut de Neurosciences des Systèmes, CNRS, 13005, Marseille, France
- University of Strasbourg Institute for Advanced Studies (USIAS), 67084, Strasbourg, France
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, 67084, Strasbourg, France.
| |
Collapse
|
47
|
Abstract
Locomotion is a universal motor behavior that is expressed as the output of many integrated brain functions. Locomotion is organized at several levels of the nervous system, with brainstem circuits acting as the gate between brain areas regulating innate, emotional, or motivational locomotion and executive spinal circuits. Here we review recent advances on brainstem circuits involved in controlling locomotion. We describe how delineated command circuits govern the start, speed, stop, and steering of locomotion. We also discuss how these pathways interface between executive circuits in the spinal cord and diverse brain areas important for context-specific selection of locomotion. A recurrent theme is the need to establish a functional connectome to and from brainstem command circuits. Finally, we point to unresolved issues concerning the integrated function of locomotor control. Expected final online publication date for the Annual Review of Neuroscience, Volume 45 is July 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roberto Leiras
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jared M. Cregg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Reverse-translational identification of a cerebellar satiation network. Nature 2021; 600:269-273. [PMID: 34789878 DOI: 10.1038/s41586-021-04143-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
The brain is the seat of body weight homeostasis. However, our inability to control the increasing prevalence of obesity highlights a need to look beyond canonical feeding pathways to broaden our understanding of body weight control1-3. Here we used a reverse-translational approach to identify and anatomically, molecularly and functionally characterize a neural ensemble that promotes satiation. Unbiased, task-based functional magnetic resonance imaging revealed marked differences in cerebellar responses to food in people with a genetic disorder characterized by insatiable appetite. Transcriptomic analyses in mice revealed molecularly and topographically -distinct neurons in the anterior deep cerebellar nuclei (aDCN) that are activated by feeding or nutrient infusion in the gut. Selective activation of aDCN neurons substantially decreased food intake by reducing meal size without compensatory changes to metabolic rate. We found that aDCN activity terminates food intake by increasing striatal dopamine levels and attenuating the phasic dopamine response to subsequent food consumption. Our study defines a conserved satiation centre that may represent a novel therapeutic target for the management of excessive eating, and underscores the utility of a 'bedside-to-bench' approach for the identification of neural circuits that influence behaviour.
Collapse
|
49
|
Judd EN, Lewis SM, Person AL. Diverse inhibitory projections from the cerebellar interposed nucleus. eLife 2021; 10:e66231. [PMID: 34542410 PMCID: PMC8483738 DOI: 10.7554/elife.66231] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 09/19/2021] [Indexed: 11/17/2022] Open
Abstract
The cerebellum consists of parallel circuit modules that contribute to diverse behaviors, spanning motor to cognitive. Recent work employing cell-type-specific tracing has identified circumscribed output channels of the cerebellar nuclei (CbN) that could confer tight functional specificity. These studies have largely focused on excitatory projections of the CbN, however, leaving open the question of whether inhibitory neurons also constitute multiple output modules. We mapped output and input patterns to intersectionally restricted cell types of the interposed and adjacent interstitial nuclei in mice. In contrast to the widespread assumption of primarily excitatory outputs and restricted inferior olive-targeting inhibitory output, we found that inhibitory neurons from this region ramified widely within the brainstem, targeting both motor- and sensory-related nuclei, distinct from excitatory output targets. Despite differences in output targeting, monosynaptic rabies tracing revealed largely shared afferents to both cell classes. We discuss the potential novel functional roles for inhibitory outputs in the context of cerebellar theory.
Collapse
Affiliation(s)
- Elena N Judd
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Samantha M Lewis
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| | - Abigail L Person
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
50
|
Whiteway MR, Biderman D, Friedman Y, Dipoppa M, Buchanan EK, Wu A, Zhou J, Bonacchi N, Miska NJ, Noel JP, Rodriguez E, Schartner M, Socha K, Urai AE, Salzman CD, The International Brain Laboratory, Cunningham JP, Paninski L. Partitioning variability in animal behavioral videos using semi-supervised variational autoencoders. PLoS Comput Biol 2021; 17:e1009439. [PMID: 34550974 PMCID: PMC8489729 DOI: 10.1371/journal.pcbi.1009439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/04/2021] [Accepted: 09/09/2021] [Indexed: 12/02/2022] Open
Abstract
Recent neuroscience studies demonstrate that a deeper understanding of brain function requires a deeper understanding of behavior. Detailed behavioral measurements are now often collected using video cameras, resulting in an increased need for computer vision algorithms that extract useful information from video data. Here we introduce a new video analysis tool that combines the output of supervised pose estimation algorithms (e.g. DeepLabCut) with unsupervised dimensionality reduction methods to produce interpretable, low-dimensional representations of behavioral videos that extract more information than pose estimates alone. We demonstrate this tool by extracting interpretable behavioral features from videos of three different head-fixed mouse preparations, as well as a freely moving mouse in an open field arena, and show how these interpretable features can facilitate downstream behavioral and neural analyses. We also show how the behavioral features produced by our model improve the precision and interpretation of these downstream analyses compared to using the outputs of either fully supervised or fully unsupervised methods alone.
Collapse
Affiliation(s)
- Matthew R. Whiteway
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Dan Biderman
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Yoni Friedman
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Boston, Massachusetts, United States of America
| | - Mario Dipoppa
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
| | - E. Kelly Buchanan
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - Anqi Wu
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | - John Zhou
- Department of Computer Science, Columbia University, New York, New York, United States of America
| | | | - Nathaniel J. Miska
- Sainsbury-Wellcome Centre for Neural Circuits and Behavior, University College London, London, United Kingdom
| | - Jean-Paul Noel
- Center for Neural Science, New York University, New York, New York, United States of America
| | - Erica Rodriguez
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| | | | - Karolina Socha
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anne E. Urai
- Cognitive Psychology Unit, Leiden University, Leiden, The Netherlands
| | - C. Daniel Salzman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Department of Psychiatry, Columbia University, New York, New York, United States of America
- New York State Psychiatric Institute, New York, New York, United States of America
- Kavli Institute for Brain Sciences, New York, New York, United States of America
| | | | - John P. Cunningham
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
| | - Liam Paninski
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
| |
Collapse
|