1
|
Ling Y, Hayat MA, Lv X, Niu D, Zeng Y, Qiu Y, Chen B, Hu J. Preliminary exploration of endoplasmic reticulum stress transmission in astrocytes and neurons, and its mediators. Mol Med Rep 2025; 31:167. [PMID: 40242951 PMCID: PMC12012417 DOI: 10.3892/mmr.2025.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
Unfolded protein response (UPR) signaling in cells stimulates UPR signaling in adjacent cells, facilitating the progression of disease (such as diabetes)by upregulating UPR target genes; however, whether this dissemination occurs between nerve cells, and its molecular basis, is currently unclear. In the present study, the supernatant of endoplasmic reticulum (ER) stress‑induced rat astrocytes was prepared and used to treat rat adrenal pheochromocytoma cell to simulate the propagation of ER stress between nerve cells. Reverse transcription‑quantitative PCR and western blotting were performed to detect the expression levels of mRNAs and protein levels associated with ER stress in cells. The results revealed that ER stress may propagate between rat nerve cells, ultimately leading to apoptosis. Analysis also revealed that the mediators of ER stress transmission were non‑vesicular, oxidative molecules with molecular weights >100 kDa. In conclusion, ER stress propagation may have a role in neuronal death following ER stress in central nervous system diseases, presenting potential novel therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Yating Ling
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
- Department of Laboratory Medicine, Nanjing Red Cross Blood Center, Nanjing, Jiangsu 210003, P.R. China
| | - Muhammad Abid Hayat
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaorui Lv
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Dongdong Niu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yu Zeng
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yun Qiu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Bo Chen
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Jiabo Hu
- Institute of Cerebrovascular Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
2
|
Chen K, Morizawa YM, Nuriel T, Al-Dalahmah O, Xie Z, Yang G. Selective removal of astrocytic PERK protects against glymphatic impairment and decreases toxic aggregation of β-amyloid and tau. Neuron 2025:S0896-6273(25)00310-1. [PMID: 40403715 DOI: 10.1016/j.neuron.2025.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/02/2025] [Accepted: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Dysfunction of the glymphatic system, a brain-wide waste clearance network, is strongly linked to Alzheimer's disease (AD) and the accumulation of β-amyloid (Aβ) and tau proteins. Here, we identify an astrocytic signaling pathway that can be targeted to preserve glymphatic function and mitigate neurotoxic protein buildup. Analysis of astrocytes from both human AD brains and two transgenic mouse models (5XFAD and PS19) reveals robust activation of the protein kinase RNA-like endoplasmic reticulum (ER) kinase (PERK)-α subunit of eukaryotic initiation factor 2 (eIF2α) branch of the unfolded protein response. Chronic PERK activation suppresses astrocytic protein synthesis and, through casein kinase 2 (CK2)-dependent mechanisms, disrupts the perivascular localization of aquaporin-4 (AQP4), a water channel essential for glymphatic flow. Importantly, astrocyte-specific PERK deletion or pharmacological inhibition restores AQP4 localization, enhances glymphatic clearance, reduces Aβ and tau pathology, and improves cognitive performance in mice. These findings highlight the critical role of the astrocytic PERK-CK2-AQP4 axis in glymphatic dysfunction and AD pathogenesis, positioning this pathway as a promising therapeutic target.
Collapse
Affiliation(s)
- Kai Chen
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yosuke M Morizawa
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tal Nuriel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | - Guang Yang
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Kushwaha R, Molesworth K, Makarava N, Baskakov IV. Downregulation of STAT3 transcription factor reverses synaptotoxic phenotype of reactive astrocytes associated with prion diseases. Acta Neuropathol Commun 2025; 13:101. [PMID: 40375298 PMCID: PMC12080014 DOI: 10.1186/s40478-025-02028-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 05/01/2025] [Indexed: 05/18/2025] Open
Abstract
In neurodegenerative diseases, including prion diseases, astrocytes adopt reactive phenotypes that persist throughout disease progression. While astrocyte reactivity may initially serve as a protective response to prion infection, it transitions into a neurotoxic phenotype that disrupts homeostatic functions and exacerbates disease pathology. The transcription factor Stat3 has been recognized as a master regulator of astrocyte reactivity in neurodegenerative diseases, yet its role in prion disease-associated astrocyte reactive phenotypes remains unexplored. The current study addresses this gap by investigating the effects of Stat3 deletion in reactive astrocytes isolated from prion-infected mice. We demonstrate that Stat3 deletion mitigates the reactive astrocyte phenotype and alleviates their synaptotoxic effects. Stat3-dependent activation of astrocytes was reproduced by co-culturing naïve astrocytes with reactive microglia isolated from prion-infected animals or exposing them to microglia-conditioned media. A cytokine array profiling of 40 molecules revealed partially overlapping inflammatory signatures in reactive microglia and astrocytes, with IL-6 prominently upregulated in both cell types. Notably, IL-6 treatment elevated phosphorylated Stat3 levels in naïve astrocytes and triggered astrocyte reactivity. These findings indicate that the synaptotoxic phenotype of astrocytes in prion diseases can be sustained by reactive microglia and self-reinforced in a cell-autonomous manner. Our work highlights the pivotal role of Stat3 signaling in astrocyte activation and suggests that Stat3 inhibition may suppress the reactive phenotype of astrocytes associated with prion diseases.
Collapse
Affiliation(s)
- Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kara Molesworth
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ilia V Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, 111 S. Penn St, Baltimore, MD, 21201, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Huang W, Liu Y, Li J, Gao Y, Tang J, Yip S, Wang X, Zhang H, Ma Y, Su S, Nie J, Lu R. Endoplasmic Reticulum Stress Drives Neuroinflammation Through Lipocalin 2 Upregulation in Retinal Microglia After Optic Nerve Injury. Invest Ophthalmol Vis Sci 2025; 66:12. [PMID: 40327012 PMCID: PMC12063709 DOI: 10.1167/iovs.66.5.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/12/2025] [Indexed: 05/07/2025] Open
Abstract
Purpose This study aims to explore how lipocalin 2 (LCN2) connects endoplasmic reticulum (ER) stress and inflammation in optic nerve injury (ONI) and identify potential therapeutic strategies. Methods An optic nerve crush (ONC) mouse model was used to investigate the role of ER stress and LCN2 in ONI. Immunofluorescence, quantitative PCR, and Western blot analyses were performed to assess ER stress markers, LCN2, inflammation-related genes, and retinal ganglion cell (RGC) survival, with or without treatment of 4PBA (an ER stress inhibitor) and TUN (an ER stress activator) in both the ONC model and BV2 cells. Lcn2 knockdown was achieved using small interfering RNA in BV2 cells and adeno-associated virus (AAV)-mediated gene silencing in vivo to explore underlying signaling pathways. Results ER stress markers (GRP78, ATF4, CHOP) and LCN2 expression were increased in ONC retinas, accompanied by microglial activation and RGC loss. Inhibition of ER stress using 4PBA effectively decreased LCN2 expression, attenuated microglial activation, and increased RGC survival post-ONC. Intravitreal injection of recombinant LCN2 induced a proinflammatory phenotype in microglia and exacerbated neurotoxicity. AAV-mediated Lcn2 silencing mitigated microglial activation, reduced neuroinflammation, and provided RGC neuroprotection, surpassing 4PBA treatment. In vitro studies further confirmed that Lcn2 knockdown significantly reduced the inflammatory response in BV2 cells by inhibiting NLRP3 inflammasome activation via the TLR4/NF-κB pathway. Conclusions This study elucidates the critical role of LCN2 in linking ER stress and inflammation in ONI, offering a promising therapeutic target. AAV-mediated Lcn2 silencing outperforms broad ER stress inhibition, providing a novel strategy for treating optic nerve injuries.
Collapse
Affiliation(s)
- Weifeng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yaoming Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jinmiao Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yang Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Junjie Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Siuhang Yip
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Xinyue Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Hongwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Yujun Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Shicai Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Jiahe Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| | - Rong Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou, China
| |
Collapse
|
5
|
Qu Y, Yi L, Tang Y, Yang F, Pan BF, Shi S, Qu C, Li F, Wen S, Pan Y. TSG-6 Protects Against Cerebral Ischemia-Reperfusion Injury via Upregulating Hsp70-1B in Astrocytes. CNS Neurosci Ther 2025; 31:e70354. [PMID: 40130432 PMCID: PMC11933850 DOI: 10.1111/cns.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/21/2025] [Accepted: 03/15/2025] [Indexed: 03/26/2025] Open
Abstract
AIMS This study aimed to investigate the relationship between tumor necrosis factor alpha-induced protein (TNFAIP6/TSG-6) and astrocytes in cerebral ischemia/reperfusion (I/R) injury. METHODS Utilizing in vivo and in vitro cerebral I/R models, cerebral infarct volumes, neurobehavioral outcomes, blood-brain barrier (BBB) permeability, as well as indicators of astrocyte apoptosis, reactivity, and A1 phenotype were assessed to evaluate the effects of recombinant rattus TSG-6 (rrTSG-6) on astrocytes in acute cerebral I/R injury. Following mRNA sequencing of all astrocyte groups, astrocyte apoptosis and reactivity were analyzed through a combined intervention of rrTSG-6 and Apoptozole, a heat shock protein 70-1B (Hsp70-1B) inhibitor, in vitro. RESULTS The findings demonstrated that rrTSG-6 significantly reduced cerebral infarct volumes by nearly half, improved neurobehavioral outcomes, mitigated BBB damage, and suppressed the expressions of astrocyte apoptosis markers, reactivity indicators, and A1 phenotype markers. mRNA sequencing revealed that the Hsp70-1B protein level increased to approximately 1.6 times that of the rrTSG-6 non-intervention group. Furthermore, Apoptozole impeded the expressions of astrocyte apoptosis markers, reactivity indicators, and A1 phenotype markers. CONCLUSION TSG-6 inhibited nuclear factor kappa-B (NF-κB) phosphorylation by upregulating Hsp70-1B in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced astrocytes, thereby exerting a protective effect through anti-apoptotic mechanisms and the suppression of astrocyte reactivity and A1 transformation following cerebral I/R injury.
Collapse
Affiliation(s)
- Yewei Qu
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
- NHC Key Laboratory of Cell TransplantationFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Lian Yi
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yushi Tang
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fan Yang
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Byron Fei Pan
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shanshan Shi
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Changda Qu
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Fangqin Li
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Shirong Wen
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yujun Pan
- Department of NeurologyFirst Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| |
Collapse
|
6
|
Gildea HK, Liddelow SA. Mechanisms of astrocyte aging in reactivity and disease. Mol Neurodegener 2025; 20:21. [PMID: 39979986 PMCID: PMC11844071 DOI: 10.1186/s13024-025-00810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Normal aging alters brain functions and phenotypes. However, it is not well understood how astrocytes are impacted by aging, nor how they contribute to neuronal dysfunction and disease risk as organisms age. Here, we examine the transcriptional, cell biology, and functional differences in astrocytes across normal aging. Astrocytes at baseline are heterogenous, responsive to their environments, and critical regulators of brain microenvironments and neuronal function. With increasing age, astrocytes adopt different immune-related and senescence-associated states, which relate to organelle dysfunction and loss of homeostasis maintenance, both cell autonomously and non-cell autonomously. These perturbed states are increasingly associated with age-related dysfunction and the onset of neurodegeneration, suggesting that astrocyte aging is a compelling target for future manipulation in the prevention of disease.
Collapse
Affiliation(s)
- Holly K Gildea
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Neuroscience, NYU Grossman School of Medicine, New York, USA.
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, USA.
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, USA.
- Optimal Aging Institute, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
7
|
Flury A, Aljayousi L, Park HJ, Khakpour M, Mechler J, Aziz S, McGrath JD, Deme P, Sandberg C, González Ibáñez F, Braniff O, Ngo T, Smith S, Velez M, Ramirez DM, Avnon-Klein D, Murray JW, Liu J, Parent M, Mingote S, Haughey NJ, Werneburg S, Tremblay MÈ, Ayata P. A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion. Neuron 2025; 113:554-571.e14. [PMID: 39719704 DOI: 10.1016/j.neuron.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/22/2024] [Accepted: 11/25/2024] [Indexed: 12/26/2024]
Abstract
The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes. Autonomous activation of ISR in microglia is sufficient to induce early features of the ultrastructurally distinct "dark microglia" linked to pathological synapse loss. In AD models, microglial ISR activation exacerbates neurodegenerative pathologies and synapse loss while its inhibition ameliorates them. Mechanistically, we present evidence that ISR activation promotes the secretion of toxic lipids by microglia, impairing neuron homeostasis and survival in vitro. Accordingly, pharmacological inhibition of ISR or lipid synthesis mitigates synapse loss in AD models. Our results demonstrate that microglial ISR activation represents a neurodegenerative phenotype, which may be sustained, at least in part, by the secretion of toxic lipids.
Collapse
Affiliation(s)
- Anna Flury
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Leen Aljayousi
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Hye-Jin Park
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | | | - Jack Mechler
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA
| | - Siaresh Aziz
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Jackson D McGrath
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Colby Sandberg
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | | | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada
| | - Thi Ngo
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Simira Smith
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Matthew Velez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Denice Moran Ramirez
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Dvir Avnon-Klein
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - John W Murray
- Columbia Center for Human Development, Center for Stem Cell Therapies, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jia Liu
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA
| | - Martin Parent
- CERVO Brain Research Center, Québec City, QC G1E 1T2, Canada
| | - Susana Mingote
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sebastian Werneburg
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Michigan Medicine, Ann Arbor, MI 48105, USA; Michigan Neuroscience Institute, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C4, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC G1V 0A6, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC H3A 2B4, Canada; Canada Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 2A1, Canada; Centre for Advanced Materials and Related Technology and Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC V8N 5M8, Canada
| | - Pinar Ayata
- Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA.
| |
Collapse
|
8
|
Lanzillotta S, Esteve D, Lanzillotta C, Tramutola A, Lloret A, Forte E, Pesce V, Picca A, Di Domenico F, Perluigi M, Barone E. Altered mitochondrial unfolded protein response and protein quality control promote oxidative distress in down syndrome brain. Free Radic Biol Med 2025; 227:80-93. [PMID: 39586382 DOI: 10.1016/j.freeradbiomed.2024.11.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Down Syndrome (DS) is a genetic disorder caused by the presence of an extra copy of chromosome 21, and leading to various developmental and cognitive defects. A critical feature of DS is the occurrence of oxidative distress particularly in the brain, which exacerbates neurodevelopmental processes. Mitochondria play a crucial role in cell energy metabolism and their impairment is one of the major causes of oxidative distress in several pathologies. Hence, this study investigates mitochondrial proteostasis by the mean of the mitochondrial Unfolded Protein Response (UPRmt) and the mitochondrial protein quality control (MQC) mechanisms in the context of DS, focusing on their implications in redox homeostasis in brain development. We analyzed key UPRmt markers and mitochondrial function in the frontal cortex isolated fromTs2Cje mice, a model for DS, across different developmental stages. Our results demonstrate significant alterations in UPRmt markers, particularly at postnatal day 0 (P0) and 1 month (1M). These changes indicate early UPRmt activation, primarily driven by the ATF5/GRP75 axis, although compromised by reduced levels of other components. Impaired UPRmt correlates with decreased mitochondrial activity, evidenced by reduced oxygen consumption rates and altered expression of OXPHOS complexes. Additionally, elevated oxidative stress markers such as 3-nitrotyrosine (3-NT), 4-hydroxynonenal (HNE), and protein carbonyls (PC) were observed, linking mitochondrial dysfunction to increased oxidative damage. Defects of MQC, including disrupted biogenesis, increased fission, and the activation of mitophagy were evident mostly at P0 and 1M consistent with UPRmt activation. Principal Component Analysis revealed distinct phenotypic differences between Ts2Cje and control mice, driven by these molecular alterations. Our findings underscore the critical role of UPRmt and MQC in DS brain development, highlighting potential therapeutic targets to mitigate mitochondrial dysfunction and oxidative distress, thereby alleviating some of the neurodevelopmental and cognitive impairments associated with DS.
Collapse
Affiliation(s)
- Simona Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Daniel Esteve
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain; Department of Neurology, University of Wisconsin-Madison, Madison, WI, USA
| | - Chiara Lanzillotta
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, University of Valencia, Valencia, Spain
| | - Elena Forte
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Vito Pesce
- Department of Biosciences Biotechnologies and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Cui F, Deng S, Fu Y, Xu T, Bao S, Wang S, Lin Y, Wang X, Zhao F, Zhang T, Xu S, Zhang Z, Li W, Yang GY, Tang H, Wang J, Sheng X, Tang Y. Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway. Cell Rep 2025; 44:115126. [PMID: 39752254 DOI: 10.1016/j.celrep.2024.115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 02/01/2025] Open
Abstract
Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear. Here, we demonstrate that maternal exposure to MBP enhances neural stem cell (NSC) differentiation into astrocytes with highly expressed C3 and LCN2 in mouse offspring, resulting in increased synapse phagocytosis and cognitive dysfunction. Mechanistically, we find that MBP exposure activates the IRE1α/XBP1s (spliced XBP1) stress response pathway, which regulates key genes involved in astrocyte differentiation (SOX9 and ATF3) and reactivity (C3 and LCN2). Conditional knockout or pharmacological inhibition of IRE1α markedly inhibits NSC differentiation into astrocytes and astrocyte reactivity, attenuates synapse phagocytosis, and improves cognitive function. This phenotype is further recapitulated in a human brain organoid model. Together, these findings unveil the molecular mechanism underlying the neurodevelopmental deficits caused by a widespread environmental pollutant.
Collapse
Affiliation(s)
- Fengzhen Cui
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China; School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Shiyu Deng
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Yan Fu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Tongtong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Shuangshuang Bao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China
| | - Siyi Wang
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Yahang Lin
- Department of Neurology, Wuhan Fourth Hospital, Wuhan 430033, China
| | - Xianghui Wang
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Faming Zhao
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tingting Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shunqing Xu
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhijun Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Wanlu Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Guo-Yuan Yang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Huanwen Tang
- School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jixian Wang
- Department of Rehabilitation, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Xia Sheng
- Department of Environmental Health, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yaohui Tang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China.
| |
Collapse
|
10
|
Cabral-Miranda F, Matias I, Gomes FCA. Astrocytic proteostasis in the tale of aging and neurodegeneration. Ageing Res Rev 2025; 103:102580. [PMID: 39557299 DOI: 10.1016/j.arr.2024.102580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/05/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
Homeostasis of proteins (proteostasis), which governs protein processing, folding, quality control, and degradation, is a fundamental cellular process that plays a pivotal role in various neurodegenerative diseases and in the natural aging process of the mammalian brain. While the role of neuronal proteostasis in neuronal physiology is well characterized, the contribution of proteostasis of glial cells, particularly of astrocytes, has received fairly less attention in this context. Here, we summarize recent data highlighting proteostasis dysfunction in astrocytes and its putative implication to neurodegenerative diseases and aging. We discuss how distinct proteostasis nodes and pathways in astrocytes may specifically contribute to brain function and different age-associated pathologies. Finally, we argue that the understanding of astrocytic proteostasis role in neuronal physiology and functional decay may arise as a potential new avenue of intervention in neurodegenerative diseases and grant relevant data in the biology of aging.
Collapse
Affiliation(s)
- Felipe Cabral-Miranda
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isadora Matias
- Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
11
|
Fornara B, Igel A, Béringue V, Martin D, Sibille P, Pujo-Menjouet L, Rezaei H. The dynamics of prion spreading is governed by the interplay between the non-linearities of tissue response and replication kinetics. iScience 2024; 27:111381. [PMID: 39717079 PMCID: PMC11664133 DOI: 10.1016/j.isci.2024.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/29/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrPSc) of the cellular prion protein (PrPC). During the pathogenesis, the PrPSc seeds disseminate in the central nervous system and convert PrPC leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrPSc structures. In this work, we implemented the recent developments on PrPSc structural diversity and tissue response to prion replication into a stochastic reaction-diffusion model using an application of the Gillespie algorithm. We showed that this combination of non-linearities can lead prion propagation to behave as a complex system, providing an alternative to the current paradigm to explain strain-specific phenotypes, tissue tropisms, and strain co-propagation while also clarifying the role of the connectome in the neuro-invasion process.
Collapse
Affiliation(s)
- Basile Fornara
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Angélique Igel
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Vincent Béringue
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Davy Martin
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Pierre Sibille
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| | - Laurent Pujo-Menjouet
- Université Claude Bernard Lyon 1, ICJ UMR5208, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Jean Monnet, Inria Dracula, 69622 Villeurbanne, France
| | - Human Rezaei
- Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France
| |
Collapse
|
12
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Kandoi S, Walker RH, Nirenberg MJ, Frucht SJ, Riboldi GM, Zhang B, Pereira AC, Crary JF. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. Acta Neuropathol 2024; 148:80. [PMID: 39648200 PMCID: PMC11625691 DOI: 10.1007/s00401-024-02823-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures, and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing (snRNA-seq) and analyzed 50,708 high quality nuclei targeting the diencephalon, including the subthalamic nucleus and adjacent structures, from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type-specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was activated in multiple vulnerable cell types and validated in independent snRNA-seq and bulk RNA-seq datasets. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
Affiliation(s)
- Kristen Whitney
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Won-Min Song
- Mount Sinai Center for Transformative Disease Modeling, Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Abhijeet Sharma
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Diana K Dangoor
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Margaret M Krassner
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hadley W Ressler
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas D Christie
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shrishtee Kandoi
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruth H Walker
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - Melissa J Nirenberg
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Bin Zhang
- Mount Sinai Center for Transformative Disease Modeling, Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ana C Pereira
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| | - John F Crary
- Department of Pathology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Neuropathology Brain Bank & Research Core, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, 10468, USA.
| |
Collapse
|
13
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
14
|
Kim J, Chang MY. Gene Therapy for Parkinson's Disease Using Midbrain Developmental Genes to Regulate Dopaminergic Neuronal Maintenance. Int J Mol Sci 2024; 25:12369. [PMID: 39596436 PMCID: PMC11594980 DOI: 10.3390/ijms252212369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. It is characterized by the progressive loss of dopaminergic (DAnergic) neurons in the substantia nigra and decreased dopamine (DA) levels, which lead to both motor and non-motor symptoms. Conventional PD treatments aim to alleviate symptoms, but do not delay disease progression. PD gene therapy offers a promising approach to improving current treatments, with the potential to alleviate significant PD symptoms and cause fewer adverse effects than conventional therapies. DA replacement approaches and DA enzyme expression do not slow disease progression. However, DA replacement gene therapies, such as adeno-associated virus (AAV)-glutamic acid decarboxylase (GAD) and L-amino acid decarboxylase (AADC) gene therapies, which increase DA transmitter levels, have been demonstrated to be safe and efficient in early-phase clinical trials. Disease-modifying strategies, which aim to slow disease progression, appear to be potent. These include therapies targeting downstream pathways, neurotrophic factors, and midbrain DAnergic neuronal factors, all of which have shown potential in preclinical and clinical trials. These approaches focus on maintaining the integrity of DAnergic neurons, not just targeting the DA transmitter level itself. In particular, critical midbrain developmental and maintenance factors, such as Nurr1 and Foxa2, can interact synergistically with neighboring glia, in a paracrine mode of action, to protect DAnergic neurons against various toxic factors. Similar outcomes could be achieved by targeting both DAnergic neurons and glial cells with other candidate gene therapies, but in-depth research is needed. Neurotrophic factors, such as neurturin, the glial-cell-line-derived neurotrophic factor (GDNF), the brain-derived neurotrophic factor (BDNF), and the vascular endothelial growth factor (VEGF), are also being investigated for their potential to support DAnergic neuron survival. Additionally, gene therapies targeting key downstream pathways, such as the autophagy-lysosome pathway, mitochondrial function, and endoplasmic reticulum (ER) stress, offer promising avenues. Gene editing and delivery techniques continue to evolve, presenting new opportunities to develop effective gene therapies for PD.
Collapse
Affiliation(s)
- Jintae Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Goyang 10326, Republic of Korea;
| | - Mi-Yoon Chang
- Department of Premedicine, College of Medicine, Hanyang University, FTC12, 222 Wangsimni-ro, Seoul 04763, Republic of Korea
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
15
|
Fiorini MR, Dilliott AA, Thomas RA, Farhan SMK. Transcriptomics of Human Brain Tissue in Parkinson's Disease: a Comparison of Bulk and Single-cell RNA Sequencing. Mol Neurobiol 2024; 61:8996-9015. [PMID: 38578357 PMCID: PMC11496323 DOI: 10.1007/s12035-024-04124-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease leading to motor dysfunction and, in some cases, dementia. Transcriptome analysis is one promising approach for characterizing PD and other neurodegenerative disorders by informing how specific disease events influence gene expression and contribute to pathogenesis. With the emergence of single-cell and single-nucleus RNA sequencing (scnRNA-seq) technologies, the transcriptional landscape of neurodegenerative diseases can now be described at the cellular level. As the application of scnRNA-seq is becoming routine, it calls to question how results at a single-cell resolution compare to those obtained from RNA sequencing of whole tissues (bulk RNA-seq), whether the findings are compatible, and how the assays are complimentary for unraveling the elusive transcriptional changes that drive neurodegenerative disease. Herein, we review the studies that have leveraged RNA-seq technologies to investigate PD. Through the integration of bulk and scnRNA-seq findings from human, post-mortem brain tissue, we use the PD literature as a case study to evaluate the compatibility of the results generated from each assay and demonstrate the complementarity of the sequencing technologies. Finally, through the lens of the PD transcriptomic literature, we evaluate the current feasibility of bulk and scnRNA-seq technologies to illustrate the necessity of both technologies for achieving a comprehensive insight into the mechanism by which gene expression promotes neurodegenerative disease. We conclude that the continued application of both assays will provide the greatest insight into neurodegenerative disease pathology, providing both cell-specific and whole-tissue level information.
Collapse
Affiliation(s)
- Michael R Fiorini
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Allison A Dilliott
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Rhalena A Thomas
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Sali M K Farhan
- The Montreal Neurological Institute-Hospital, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Ghura S, Beratan NR, Shi X, Alvarez-Periel E, Bond Newton SE, Akay-Espinoza C, Jordan-Sciutto KL. Genetic knock-in of EIF2AK3 variants reveals differences in PERK activity in mouse liver and pancreas under endoplasmic reticulum stress. Sci Rep 2024; 14:23812. [PMID: 39394239 PMCID: PMC11470120 DOI: 10.1038/s41598-024-74362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024] Open
Abstract
Common single-nucleotide variants (SNVs) of eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) slightly increase the risk of disorders in the periphery and the central nervous system. EIF2AK3 encodes protein kinase RNA-like endoplasmic reticulum kinase (PERK), a key regulator of ER stress. Three exonic EIF2AK3 SNVs form the PERK-B haplotype, which is present in 28% of the global population. Importantly, the precise impact of these SNVs on PERK activity remains elusive. In this study, we demonstrate that PERK-B SNVs do not alter PERK expression or basal activity in vitro and in the novel triple knock-in mice expressing the exonic PERK-B SNVs in vivo. However, the kinase activity of PERK-B protein is higher than that of PERK-A in a cell-free assay and in mouse liver homogenates. Pancreatic tissue in PERK-B/B mice also exhibit increased susceptibility to apoptosis under acute ER stress. Monocyte-derived macrophages from PERK-B/B mice exhibit higher PERK activity than those from PERK-A/A mice, albeit with minimal functional consequences at acute timepoints. The subtle PERK-B-driven effects observed in liver and pancreas during acute stress implicate PERK as a contributor to disease susceptibility. The novel PERK-B mouse model provides valuable insights into ER stress-induced PERK activity, aiding the understanding of the genetic basis of disorders associated with ER stress.
Collapse
Affiliation(s)
- Shivesh Ghura
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Noah R Beratan
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Xinglong Shi
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Elena Alvarez-Periel
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Sarah E Bond Newton
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
- Department of Neuroscience, Weinberg ALS Center, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Cagla Akay-Espinoza
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA
| | - Kelly L Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, 240 S. 40th St, Rm 312 Levy, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
18
|
Hanson FM, Ribeiro de Oliveira MI, Cross AK, Allen KE, Campbell SG. eIF2B localization and its regulation during the integrated stress response is cell-type specific. iScience 2024; 27:110851. [PMID: 39310746 PMCID: PMC11414691 DOI: 10.1016/j.isci.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
Eukaryotic initiation factor 2B (eIF2B) controls translation initiation by recycling inactive eIF2-GDP to active eIF2-GTP. Under cellular stress, the integrated stress response (ISR) is activated inhibiting eIF2B activity resulting in the translation attenuation and reprogramming of gene expression to overcome the stress. The ISR can dictate cell fate wherein chronic activation has pathological outcomes. Vanishing white matter disease (VWMD) is a chronic ISR-related disorder with mutations in eIF2B targeting astrocyte and oligodendrocyte cells. Regulation of eIF2B localization (eIF2B bodies) has been implicated in the ISR. We present evidence that neuronal and glial cell types possess distinct patterns of eIF2B bodies which change in a manner correlating to acute and chronic ISR activation. We also demonstrate that while neural and glial cell types respond similarly to the acute induction of the ISR a chronic ISR exerts cell-type specific differences. These findings provide key insights into neural cell responses and adaptation to cellular stress.
Collapse
Affiliation(s)
- Filipe M. Hanson
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Madalena I. Ribeiro de Oliveira
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Alison K. Cross
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - K. Elizabeth Allen
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Susan G. Campbell
- Biomolecular Sciences Research Centre, Industry and Innovation Research Institute (IRI), Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
19
|
Rosendal E, Lindqvist R, Chotiwan N, Henriksson J, Överby AK. Transcriptional Response to Tick-Borne Flavivirus Infection in Neurons, Astrocytes and Microglia In Vivo and In Vitro. Viruses 2024; 16:1327. [PMID: 39205301 PMCID: PMC11359927 DOI: 10.3390/v16081327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While primary cells isolated from the host can be used to study the immune response to TBEV, it is still unclear how well these reflect the immune response elicited in vivo. Here, we compared the transcriptional response to TBEV and the less pathogenic tick-borne flavivirus, Langat virus (LGTV), in primary monocultures of neurons, astrocytes and microglia in vitro, with the transcriptional response in vivo captured by single-nuclei RNA sequencing (snRNA-seq) of a whole mouse cortex. We detected similar transcriptional changes induced by both LGTV and TBEV infection in vitro, with the lower response to LGTV likely resulting from slower viral kinetics. Gene set enrichment analysis showed a stronger transcriptional response in vivo than in vitro for astrocytes and microglia, with a limited overlap mainly dominated by interferon signaling. Together, this adds to our understanding of neurotropic flavivirus pathogenesis and the strengths and limitations of available model systems.
Collapse
Affiliation(s)
- Ebba Rosendal
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Nunya Chotiwan
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Icelab, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
20
|
Calì C, Cantando I, Veloz Castillo MF, Gonzalez L, Bezzi P. Metabolic Reprogramming of Astrocytes in Pathological Conditions: Implications for Neurodegenerative Diseases. Int J Mol Sci 2024; 25:8922. [PMID: 39201607 PMCID: PMC11354244 DOI: 10.3390/ijms25168922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Astrocytes play a pivotal role in maintaining brain energy homeostasis, supporting neuronal function through glycolysis and lipid metabolism. This review explores the metabolic intricacies of astrocytes in both physiological and pathological conditions, highlighting their adaptive plasticity and diverse functions. Under normal conditions, astrocytes modulate synaptic activity, recycle neurotransmitters, and maintain the blood-brain barrier, ensuring a balanced energy supply and protection against oxidative stress. However, in response to central nervous system pathologies such as neurotrauma, stroke, infections, and neurodegenerative diseases like Alzheimer's and Huntington's disease, astrocytes undergo significant morphological, molecular, and metabolic changes. Reactive astrocytes upregulate glycolysis and fatty acid oxidation to meet increased energy demands, which can be protective in acute settings but may exacerbate chronic inflammation and disease progression. This review emphasizes the need for advanced molecular, genetic, and physiological tools to further understand astrocyte heterogeneity and their metabolic reprogramming in disease states.
Collapse
Affiliation(s)
- Corrado Calì
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
| | - Iva Cantando
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Maria Fernanda Veloz Castillo
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10124 Turin, Italy;
- Neuroscience Institute Cavalieri Ottolenghi, 10143 Orbassano, Italy
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Laurine Gonzalez
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
| | - Paola Bezzi
- Department of Fundamental Neurosciences (DNF), University of Lausanne (UNIL), 1005 Lausanne, Switzerland; (I.C.); (L.G.)
- Department of Physiology and Pharmacology, University of Rome Sapienza, 00185 Rome, Italy
| |
Collapse
|
21
|
Qiu R, Cai Y, Su Y, Fan K, Sun Z, Zhang Y. Emerging insights into Lipocalin-2: Unraveling its role in Parkinson's Disease. Biomed Pharmacother 2024; 177:116947. [PMID: 38901198 DOI: 10.1016/j.biopha.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Parkinson's disease (PD) ranks as the second most prevalent neurodegenerative disorder globally, marked by a complex pathogenesis. Lipocalin-2 (LCN2) emerges as a crucial factor during the progression of PD. Belonging to the lipocalin family, LCN2 is integral to several biological functions, including glial cell activation, iron homeostasis regulation, immune response, inflammatory reactions, and oxidative stress mitigation. Substantial research has highlighted marked increases in LCN2 expression within the substantia nigra (SN), cerebrospinal fluid (CSF), and blood of individuals with PD. This review focuses on the pathological roles of LCN2 in neuroinflammation, aging, neuronal damage, and iron dysregulation in PD. It aims to explore the underlying mechanisms of LCN2 in the disease and potential therapeutic targets that could inform future treatment strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunjia Cai
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
22
|
Lockshin ER, Calakos N. The integrated stress response in brain diseases: A double-edged sword for proteostasis and synapses. Curr Opin Neurobiol 2024; 87:102886. [PMID: 38901329 PMCID: PMC11646490 DOI: 10.1016/j.conb.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway that regulates protein synthesis. The ISR is activated in response to diverse stressors to restore cellular homeostasis. As such, the ISR is implicated in a wide range of diseases, including brain disorders. However, in the brain, the ISR also has potent influence on processes beyond proteostasis, namely synaptic plasticity, learning and memory. Thus, in the setting of brain diseases, ISR activity may have dual effects on proteostasis and synaptic function. In this review, we consider the ISR's contribution to brain disorders through the lens of its potential effects on synaptic plasticity. From these examples, we illustrate that at times ISR activity may be a "double-edged sword". We also highlight its potential as a therapeutic target to improve circuit function in brain diseases independent of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Szebényi K, Vargová I, Petrova V, Turečková J, Gibbons GM, Řehořová M, Abdelgawad M, Sándor A, Marekova D, Kwok JCF, Jendelová P, Fawcett JW, Lakatos A. Inhibition of PHLDA3 expression in human superoxide dismutase 1-mutant amyotrophic lateral sclerosis astrocytes protects against neurotoxicity. Brain Commun 2024; 6:fcae244. [PMID: 39144751 PMCID: PMC11323778 DOI: 10.1093/braincomms/fcae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Pleckstrin homology-like domain family A-member 3 (PHLDA3) has recently been identified as a player in adaptive and maladaptive cellular stress pathways. The outcome of pleckstrin homology-like domain family A-member 3 signalling was shown to vary across different cell types and states. It emerges that its expression and protein level are highly increased in amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Whether it orchestrates a supportive or detrimental function remains unexplored in the context of neurodegenerative pathologies. To directly address the role of pleckstrin homology-like domain family A-member 3 in healthy and ALS astrocytes, we used overexpression and knockdown strategies. We generated cultures of primary mouse astrocytes and also human astrocytes from control and ALS patient-derived induced pluripotent stem cells harbouring the superoxide dismutase 1 mutation. Then, we assessed astrocyte viability and the impact of their secretome on oxidative stress responses in human stem cell-derived cortical and spinal neuronal cultures. Here, we show that PHLDA3 overexpression or knockdown in control astrocytes does not significantly affect astrocyte viability or reactive oxygen species production. However, PHLDA3 knockdown in ALS astrocytes diminishes reactive oxygen species concentrations in their supernatants, indicating that pleckstrin homology-like domain family A-member 3 can facilitate stress responses in cells with altered homeostasis. In support, supernatants of PHLDA3-silenced ALS and even control spinal astrocytes with a lower pleckstrin homology-like domain family A-member 3 protein content could prevent sodium arsenite-induced stress granule formation in spinal neurons. Our findings provide evidence that reducing pleckstrin homology-like domain family A-member 3 levels may transform astrocytes into a more neurosupportive state relevant to targeting non-cell autonomous ALS pathology.
Collapse
Affiliation(s)
- Kornélia Szebényi
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- Research Centre of Natural Sciences, Institute of Molecular Life Sciences, Budapest, 1117, Hungary
| | - Ingrid Vargová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Veselina Petrova
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Jana Turečková
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - George M Gibbons
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Monika Řehořová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, 150 06, Czech Republic
| | - Mai Abdelgawad
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Alexandra Sándor
- Research Centre of Natural Sciences, Institute of Molecular Life Sciences, Budapest, 1117, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, 1085, Hungary
| | - Dana Marekova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Jessica C F Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- School of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, 150 06, Czech Republic
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - András Lakatos
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- MRC-WT Cambridge Stem Cell Institute, Biomedical Campus, Cambridge, CB2 0AW, UK
| |
Collapse
|
24
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
25
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
26
|
Bradford BM, Walmsley-Rowe L, Reynolds J, Verity N, Mabbott NA. Cell adhesion molecule CD44 is dispensable for reactive astrocyte activation during prion disease. Sci Rep 2024; 14:13749. [PMID: 38877012 PMCID: PMC11178777 DOI: 10.1038/s41598-024-63464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024] Open
Abstract
Prion diseases are fatal, infectious, neurodegenerative disorders resulting from accumulation of misfolded cellular prion protein in the brain. Early pathological changes during CNS prion disease also include reactive astrocyte activation with increased CD44 expression, microgliosis, as well as loss of dendritic spines and synapses. CD44 is a multifunctional cell surface adhesion and signalling molecule which is considered to play roles in astrocyte morphology and the maintenance of dendritic spine integrity and synaptic plasticity. However, the role of CD44 in prion disease was unknown. Here we used mice deficient in CD44 to determine the role of CD44 during prion disease. We show that CD44-deficient mice displayed no difference in their response to CNS prion infection when compared to wild type mice. Furthermore, the reactive astrocyte activation and microgliosis that accompanies CNS prion infection was unimpaired in the absence of CD44. Together, our data show that although CD44 expression is upregulated in reactive astrocytes during CNS prion disease, it is dispensable for astrocyte and microglial activation and the development of prion neuropathogenesis.
Collapse
Affiliation(s)
- Barry M Bradford
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| | - Lauryn Walmsley-Rowe
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Joe Reynolds
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
- Maurice Wohl Basic and Clinical Neuroscience Institute, King's College London, Denmark Hill, London, SE5 9NU, UK
| | - Nicholas Verity
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Neil A Mabbott
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
27
|
Makarava N, Kushwaha R, Baskakov IV. Reactive astrocytes in prion diseases: Friend or foe? PLoS Pathog 2024; 20:e1012286. [PMID: 38900746 PMCID: PMC11189187 DOI: 10.1371/journal.ppat.1012286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Affiliation(s)
- Natallia Makarava
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rajesh Kushwaha
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V. Baskakov
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Hay A, Popichak K, Moreno J, Zabel M. The Role of Glial Cells in Neurobiology and Prion Neuropathology. Cells 2024; 13:832. [PMID: 38786054 PMCID: PMC11119027 DOI: 10.3390/cells13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Prion diseases are rare and neurodegenerative diseases that are characterized by the misfolding and infectious spread of the prion protein in the brain, causing progressive and irreversible neuronal loss and associated clinical and behavioral manifestations in humans and animals, ultimately leading to death. The brain has a complex network of neurons and glial cells whose crosstalk is critical for function and homeostasis. Although it is established that prion infection of neurons is necessary for clinical disease to occur, debate remains in the field as to the role played by glial cells, namely astrocytes and microglia, and whether these cells are beneficial to the host or further accelerate disease. Here, we review the current literature assessing the complex morphologies of astrocytes and microglia, and the crosstalk between these two cell types, in the prion-infected brain.
Collapse
Affiliation(s)
- Arielle Hay
- Division of Intramural Research, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Katriana Popichak
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.P.); (J.M.); (M.Z.)
| | - Julie Moreno
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.P.); (J.M.); (M.Z.)
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mark Zabel
- Prion Research Center, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.P.); (J.M.); (M.Z.)
| |
Collapse
|
29
|
Tapella L, Dematteis G, La Vitola P, Leva S, Tonelli E, Raddi M, Delconti M, Dacomo L, La Macchia A, Murari E, Talmon M, Malecka J, Chrostek G, Grilli M, Colombo L, Salmona M, Forloni G, Genazzani AA, Balducci C, Lim D. Genetic deletion of astrocytic calcineurin B1 prevents cognitive impairment and neuropathology development in acute and chronic mouse models of Alzheimer's disease. Glia 2024; 72:899-915. [PMID: 38288580 DOI: 10.1002/glia.24509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 03/20/2024]
Abstract
Alzheimer's disease (AD) represents an urgent yet unmet challenge for modern society, calling for exploration of innovative targets and therapeutic approaches. Astrocytes, main homeostatic cells in the CNS, represent promising cell-target. Our aim was to investigate if deletion of the regulatory CaNB1 subunit of calcineurin in astrocytes could mitigate AD-related memory deficits, neuropathology, and neuroinflammation. We have generated two, acute and chronic, AD mouse models with astrocytic CaNB1 ablation (ACN-KO). In the former, we evaluated the ability of β-amyloid oligomers (AβOs) to impair memory and activate glial cells once injected in the cerebral ventricle of conditional ACN-KO mice. Next, we generated a tamoxifen-inducible astrocyte-specific CaNB1 knock-out in 3xTg-AD mice (indACNKO-AD). CaNB1 was deleted, by tamoxifen injection, in 11.7-month-old 3xTg-AD mice for 4.4 months. Spatial memory was evaluated using the Barnes maze; β-amyloid plaques burden, neurofibrillary tangle deposition, reactive gliosis, and neuroinflammation were also assessed. The acute model showed that ICV injected AβOs in 2-month-old wild type mice impaired recognition memory and fostered a pro-inflammatory microglia phenotype, whereas in ACN-KO mice, AβOs were inactive. In indACNKO-AD mice, 4.4 months after CaNB1 depletion, we found preservation of spatial memory and cognitive flexibility, abolishment of amyloidosis, and reduction of neurofibrillary tangles, gliosis, and neuroinflammation. Our results suggest that ACN is crucial for the development of cognitive impairment, AD neuropathology, and neuroinflammation. Astrocyte-specific CaNB1 deletion is beneficial for both the abolishment of AβO-mediated detrimental effects and treatment of ongoing AD-related pathology, hence representing an intriguing target for AD therapy.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Pietro La Vitola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Susanna Leva
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa Tonelli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marco Raddi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marta Delconti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Letizia Dacomo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Alberto La Macchia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Elisa Murari
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Maria Talmon
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Justyna Malecka
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gabriela Chrostek
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Laura Colombo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Mario Salmona
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
30
|
Sonsalla G, Malpartida AB, Riedemann T, Gusic M, Rusha E, Bulli G, Najas S, Janjic A, Hersbach BA, Smialowski P, Drukker M, Enard W, Prehn JHM, Prokisch H, Götz M, Masserdotti G. Direct neuronal reprogramming of NDUFS4 patient cells identifies the unfolded protein response as a novel general reprogramming hurdle. Neuron 2024; 112:1117-1132.e9. [PMID: 38266647 PMCID: PMC10994141 DOI: 10.1016/j.neuron.2023.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Mitochondria account for essential cellular pathways, from ATP production to nucleotide metabolism, and their deficits lead to neurological disorders and contribute to the onset of age-related diseases. Direct neuronal reprogramming aims at replacing neurons lost in such conditions, but very little is known about the impact of mitochondrial dysfunction on the direct reprogramming of human cells. Here, we explore the effects of mitochondrial dysfunction on the neuronal reprogramming of induced pluripotent stem cell (iPSC)-derived astrocytes carrying mutations in the NDUFS4 gene, important for Complex I and associated with Leigh syndrome. This led to the identification of the unfolded protein response as a major hurdle in the direct neuronal conversion of not only astrocytes and fibroblasts from patients but also control human astrocytes and fibroblasts. Its transient inhibition potently improves reprogramming by influencing the mitochondria-endoplasmic-reticulum-stress-mediated pathways. Taken together, disease modeling using patient cells unraveled novel general hurdles and ways to overcome these in human astrocyte-to-neuron reprogramming.
Collapse
Affiliation(s)
- Giovanna Sonsalla
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Ana Belen Malpartida
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried 82152, Germany
| | - Therese Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany
| | - Giorgia Bulli
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Sonia Najas
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Aleks Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Bob A Hersbach
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Graduate School of Systemic Neurosciences, BMC, LMU Munich, Planegg-Martinsried 82152 Germany
| | - Pawel Smialowski
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Micha Drukker
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Gorlaeus Building, 2333 CC RA, Leiden, the Netherlands
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, 85764 Neuherberg, Germany; Institute of Human Genetics, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Magdalena Götz
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - Giacomo Masserdotti
- Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany.
| |
Collapse
|
31
|
Clayton BLL, Kristell JD, Allan KC, Cohn EF, Karl M, Jerome AD, Garrison E, Maeno-Hikichi Y, Sturno AM, Kerr A, Shick HE, Sepeda JA, Freundt EC, Sas AR, Segal BM, Miller RH, Tesar PJ. A phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Nat Neurosci 2024; 27:656-665. [PMID: 38378993 PMCID: PMC11034956 DOI: 10.1038/s41593-024-01580-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024]
Abstract
Disease, injury and aging induce pathological reactive astrocyte states that contribute to neurodegeneration. Modulating reactive astrocytes therefore represent an attractive therapeutic strategy. Here we describe the development of an astrocyte phenotypic screening platform for identifying chemical modulators of astrocyte reactivity. Leveraging this platform for chemical screening, we identify histone deacetylase 3 (HDAC3) inhibitors as effective suppressors of pathological astrocyte reactivity. We demonstrate that HDAC3 inhibition reduces molecular and functional characteristics of reactive astrocytes in vitro. Transcriptional and chromatin mapping studies show that HDAC3 inhibition disarms pathological astrocyte gene expression and function while promoting the expression of genes associated with beneficial astrocytes. Administration of RGFP966, a small molecule HDAC3 inhibitor, blocks reactive astrocyte formation and promotes neuroprotection in vivo in mice. Collectively, these results establish a platform for discovering modulators of reactive astrocyte states, inform the mechanisms that control astrocyte reactivity and demonstrate the therapeutic benefits of modulating astrocyte reactivity for neurodegenerative diseases.
Collapse
Affiliation(s)
- Benjamin L L Clayton
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - James D Kristell
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin C Allan
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Erin F Cohn
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Molly Karl
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Andrew D Jerome
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric Garrison
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Yuka Maeno-Hikichi
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Annalise M Sturno
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alexis Kerr
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - H Elizabeth Shick
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jesse A Sepeda
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Eric C Freundt
- Department of Biology, The University of Tampa, Tampa, FL, USA
| | - Andrew R Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Benjamin M Segal
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, George Washington University School of Medicine, Washington, DC, USA
| | - Paul J Tesar
- Institute for Glial Sciences, Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
32
|
Tan Q, Zhang C, Rao X, Wan W, Lin W, Huang S, Ying J, Lin Y, Hua F. The interaction of lipocalin-2 and astrocytes in neuroinflammation: mechanisms and therapeutic application. Front Immunol 2024; 15:1358719. [PMID: 38533497 PMCID: PMC10963420 DOI: 10.3389/fimmu.2024.1358719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammation is a common pathological process in various neurological disorders, including stroke, Alzheimer's disease, Parkinson's disease, and others. It involves the activation of glial cells, particularly astrocytes, and the release of inflammatory mediators. Lipocalin-2 (Lcn-2) is a secretory protein mainly secreted by activated astrocytes, which can affect neuroinflammation through various pathways. It can also act as a pro-inflammatory factor by modulating astrocyte activation and polarization through different signaling pathways, such as NF-κB, and JAK-STAT, amplifying the inflammatory response and aggravating neural injury. Consequently, Lcn-2 and astrocytes may be potential therapeutic targets for neuroinflammation and related diseases. This review summarizes the current knowledge on the role mechanisms, interactions, and therapeutic implications of Lcn-2 and astrocytes in neuroinflammation.
Collapse
Affiliation(s)
- Qianqian Tan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chenxi Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Lin
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shupeng Huang
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
33
|
Batenburg KL, Scheper W. Neuron-to-astrocyte proteostatic stress signaling in response to tau pathology. Neural Regen Res 2024; 19:505-506. [PMID: 37721275 PMCID: PMC10581557 DOI: 10.4103/1673-5374.377609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 09/19/2023] Open
Affiliation(s)
- Kevin Llewelyn Batenburg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| | - Wiep Scheper
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Zerr I, Ladogana A, Mead S, Hermann P, Forloni G, Appleby BS. Creutzfeldt-Jakob disease and other prion diseases. Nat Rev Dis Primers 2024; 10:14. [PMID: 38424082 DOI: 10.1038/s41572-024-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Prion diseases share common clinical and pathological characteristics such as spongiform neuronal degeneration and deposition of an abnormal form of a host-derived protein, termed prion protein. The characteristic features of prion diseases are long incubation times, short clinical courses, extreme resistance of the transmissible agent to degradation and lack of nucleic acid involvement. Sporadic and genetic forms of prion diseases occur worldwide, of which genetic forms are associated with mutations in PRNP. Human to human transmission of these diseases has occurred due to iatrogenic exposure, and zoonotic forms of prion diseases are linked to bovine disease. Significant progress has been made in the diagnosis of these disorders. Clinical tools for diagnosis comprise brain imaging and cerebrospinal fluid tests. Aggregation assays for detection of the abnormally folded prion protein have a clear potential to diagnose the disease in peripherally accessible biofluids. After decades of therapeutic nihilism, new treatment strategies and clinical trials are on the horizon. Although prion diseases are relatively rare disorders, understanding their pathogenesis and mechanisms of prion protein misfolding has significantly enhanced the field in research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Inga Zerr
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany.
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Peter Hermann
- National Reference Center for CJD Surveillance, Department of Neurology, University Medical Center, Georg August University, Göttingen, Germany
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Brian S Appleby
- Departments of Neurology, Psychiatry and Pathology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
35
|
Albert-Gasco H, Smith HL, Alvarez-Castelao B, Swinden D, Halliday M, Janaki-Raman S, Butcher AJ, Mallucci GR. Trazodone rescues dysregulated synaptic and mitochondrial nascent proteomes in prion neurodegeneration. Brain 2024; 147:649-664. [PMID: 37703312 PMCID: PMC10834243 DOI: 10.1093/brain/awad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023] Open
Abstract
The unfolded protein response (UPR) is rapidly gaining momentum as a therapeutic target for protein misfolding neurodegenerative diseases, in which its overactivation results in sustained translational repression leading to synapse loss and neurodegeneration. In mouse models of these disorders, from Alzheimer's to prion disease, modulation of the pathway-including by the licensed drug, trazodone-restores global protein synthesis rates with profound neuroprotective effects. However, the precise nature of the translational impairment, in particular the specific proteins affected in disease, and their response to therapeutic UPR modulation are poorly understood. We used non-canonical amino acid tagging (NCAT) to measure de novo protein synthesis in the brains of prion-diseased mice with and without trazodone treatment, in both whole hippocampus and cell-specifically. During disease the predominant nascent proteome changes occur in synaptic, cytoskeletal and mitochondrial proteins in both hippocampal neurons and astrocytes. Remarkably, trazodone treatment for just 2 weeks largely restored the whole disease nascent proteome in the hippocampus to that of healthy, uninfected mice, predominantly with recovery of proteins involved in synaptic and mitochondrial function. In parallel, trazodone treatment restored the disease-associated decline in synapses and mitochondria and their function to wild-type levels. In conclusion, this study increases our understanding of how translational repression contributes to neurodegeneration through synaptic and mitochondrial toxicity via depletion of key proteins essential for their function. Further, it provides new insights into the neuroprotective mechanisms of trazodone through reversal of this toxicity, relevant for the treatment of neurodegenerative diseases via translational modulation.
Collapse
Affiliation(s)
- Hector Albert-Gasco
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Heather L Smith
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
- The San Carlos Hospital Health Research Institute, IdISSC, 28040 Madrid, Spain
| | - Dean Swinden
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Mark Halliday
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | | | - Adrian J Butcher
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| | - Giovanna R Mallucci
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0AH, UK
- Cambridge Institute of Science, Altos Labs, Great Abington CB21 6GP, UK
| |
Collapse
|
36
|
Martirosyan A, Ansari R, Pestana F, Hebestreit K, Gasparyan H, Aleksanyan R, Hnatova S, Poovathingal S, Marneffe C, Thal DR, Kottick A, Hanson-Smith VJ, Guelfi S, Plumbly W, Belgard TG, Metzakopian E, Holt MG. Unravelling cell type-specific responses to Parkinson's Disease at single cell resolution. Mol Neurodegener 2024; 19:7. [PMID: 38245794 PMCID: PMC10799528 DOI: 10.1186/s13024-023-00699-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disorder. The pathological hallmark of PD is loss of dopaminergic neurons and the presence of aggregated α-synuclein, primarily in the substantia nigra pars compacta (SNpc) of the midbrain. However, the molecular mechanisms that underlie the pathology in different cell types is not currently understood. Here, we present a single nucleus transcriptome analysis of human post-mortem SNpc obtained from 15 sporadic Parkinson's Disease (PD) cases and 14 Controls. Our dataset comprises ∼84K nuclei, representing all major cell types of the brain, allowing us to obtain a transcriptome-level characterization of these cell types. Importantly, we identify multiple subpopulations for each cell type and describe specific gene sets that provide insights into the differing roles of these subpopulations. Our findings reveal a significant decrease in neuronal cells in PD samples, accompanied by an increase in glial cells and T cells. Subpopulation analyses demonstrate a significant depletion of tyrosine hydroxylase (TH) enriched astrocyte, microglia and oligodendrocyte populations in PD samples, as well as TH enriched neurons, which are also depleted. Moreover, marker gene analysis of the depleted subpopulations identified 28 overlapping genes, including those associated with dopamine metabolism (e.g., ALDH1A1, SLC6A3 & SLC18A2). Overall, our study provides a valuable resource for understanding the molecular mechanisms involved in dopaminergic neuron degeneration and glial responses in PD, highlighting the existence of novel subpopulations and cell type-specific gene sets.
Collapse
Affiliation(s)
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | | | | | - Hayk Gasparyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - Razmik Aleksanyan
- Armenian Bioinformatics Institute, Yerevan, Armenia
- Department of Mathematics and Mechanics, Yerevan State University, Yerevan, Armenia
| | - Silvia Hnatova
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology and Leuven Brain Institute, KU Leuven, and Department of Pathology, UZ Leuven, Leuven, Belgium
| | | | | | | | - William Plumbly
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK
| | | | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0AH, UK.
- bit.bio, The Dorothy Hodgkin Building, Babraham Research Institute, Cambridge, CB22 3FH, UK.
| | - Matthew G Holt
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.
- Laboratory of Synapse Biology, i3S, Porto, Portugal.
| |
Collapse
|
37
|
Simmons SM, Bartz JC. Strain-Specific Targeting and Destruction of Cells by Prions. BIOLOGY 2024; 13:57. [PMID: 38275733 PMCID: PMC10813089 DOI: 10.3390/biology13010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Prion diseases are caused by the disease-specific self-templating infectious conformation of the host-encoded prion protein, PrPSc. Prion strains are operationally defined as a heritable phenotype of disease under controlled conditions. One of the hallmark phenotypes of prion strain diversity is tropism within and between tissues. A defining feature of prion strains is the regional distribution of PrPSc in the CNS. Additionally, in both natural and experimental prion disease, stark differences in the tropism of prions in secondary lymphoreticular system tissues occur. The mechanism underlying prion tropism is unknown; however, several possible hypotheses have been proposed. Clinical target areas are prion strain-specific populations of neurons within the CNS that are susceptible to neurodegeneration following the replication of prions past a toxic threshold. Alternatively, the switch from a replicative to toxic form of PrPSc may drive prion tropism. The normal form of the prion protein, PrPC, is required for prion formation. More recent evidence suggests that it can mediate prion and prion-like disease neurodegeneration. In vitro systems for prion formation have indicated that cellular cofactors contribute to prion formation. Since these cofactors can be strain specific, this has led to the hypothesis that the distribution of prion formation cofactors can influence prion tropism. Overall, there is evidence to support several mechanisms of prion strain tropism; however, a unified theory has yet to emerge.
Collapse
Affiliation(s)
| | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
38
|
Rozpędek-Kamińska W, Galita G, Saramowicz K, Granek Z, Barczuk J, Siwecka N, Pytel D, Majsterek I. Evaluation of the LDN-0060609 PERK Inhibitor as a Selective Treatment for Primary Open-Angle Glaucoma: An In Vitro Study on Human Retinal Astrocytes. Int J Mol Sci 2024; 25:728. [PMID: 38255802 PMCID: PMC10815359 DOI: 10.3390/ijms25020728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The term glaucoma encompasses various neurodegenerative eye disorders, among which the most common is primary open-angle glaucoma (POAG). Recently, the essential role of human retinal astrocytes (HRA) in glaucoma progression has been placed in the spotlight. It has been found that placing the endoplasmic reticulum (ER) under stress and activating PERK leads to apoptosis of HRA cells, which inhibits their neuroprotective effect in the course of glaucoma. Therefore, the aim of the present study was to evaluate the effectiveness of the small-molecule PERK inhibitor LDN-0060609 in countering ER stress conditions induced in HRA cells in vitro. The activity of LDN-0060609 was studied in terms of protein and mRNA expression, cytotoxicity, genotoxicity, caspase-3 level and cell cycle progression. LDN-0060609 at 25 μM proved to be a potent inhibitor of the major PERK substrate, p-eIF2α (49% inhibition). The compound markedly decreased the expression of pro-apoptotic ER stress-related genes (ATF4, DDIT3, BAX and Bcl-2). Treatment with LDN-0060609 significantly increased cell viability, decreased genotoxicity and caspase-3 levels, and restored cell cycle distribution in HRA cells with activated ER stress conditions. These findings indicate that the small-molecule PERK inhibitor LDN-0060609 can potentially be developed into a novel anti-glaucoma agent.
Collapse
Affiliation(s)
- Wioletta Rozpędek-Kamińska
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Kamil Saramowicz
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Zuzanna Granek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Julia Barczuk
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Natalia Siwecka
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| | - Dariusz Pytel
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (K.S.); (Z.G.); (J.B.); (N.S.)
| |
Collapse
|
39
|
Jones E, Hill E, Linehan J, Nazari T, Caulder A, Codner GF, Hutchison M, Mackenzie M, Farmer M, Coysh T, De Oliveira MW, Al-Doujaily H, Sandberg M, Viré E, Cunningham TJ, Asante EA, Brandner S, Collinge J, Mead S. Characterisation and prion transmission study in mice with genetic reduction of sporadic Creutzfeldt-Jakob disease risk gene Stx6. Neurobiol Dis 2024; 190:106363. [PMID: 37996040 PMCID: PMC7615600 DOI: 10.1016/j.nbd.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023] Open
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is thought to occur when the cellular prion protein (PrPC) spontaneously misfolds and assembles into prion fibrils, culminating in fatal neurodegeneration. In a genome-wide association study of sCJD, we recently identified risk variants in and around the gene STX6, with evidence to suggest a causal increase of STX6 expression in disease-relevant brain regions. STX6 encodes syntaxin-6, a SNARE protein primarily involved in early endosome to trans-Golgi network retrograde transport. Here we developed and characterised a mouse model with genetic depletion of Stx6 and investigated a causal role of Stx6 expression in mouse prion disease through a classical prion transmission study, assessing the impact of homozygous and heterozygous syntaxin-6 knockout on disease incubation periods and prion-related neuropathology. Following inoculation with RML prions, incubation periods in Stx6-/- and Stx6+/- mice differed by 12 days relative to wildtype. Similarly, in Stx6-/- mice, disease incubation periods following inoculation with ME7 prions also differed by 12 days. Histopathological analysis revealed a modest increase in astrogliosis in ME7-inoculated Stx6-/- animals and a variable effect of Stx6 expression on microglia activation, however no differences in neuronal loss, spongiform change or PrP deposition were observed at endpoint. Importantly, Stx6-/- mice are viable and fertile with no gross impairments on a range of neurological, biochemical, histological and skeletal structure tests. Our results provide some support for a pathological role of Stx6 expression in prion disease, which warrants further investigation in the context of prion disease but also other neurodegenerative diseases considering syntaxin-6 appears to have pleiotropic risk effects in progressive supranuclear palsy and Alzheimer's disease.
Collapse
Affiliation(s)
- Emma Jones
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Elizabeth Hill
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Jacqueline Linehan
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Tamsin Nazari
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Adam Caulder
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Gemma F Codner
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Marie Hutchison
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Matthew Mackenzie
- Mary Lyon Centre at MRC Harwell, Harwell Campus, Oxfordshire OX11 0RD, UK
| | - Michael Farmer
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Thomas Coysh
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Michael Wiggins De Oliveira
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Huda Al-Doujaily
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Malin Sandberg
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Emmanuelle Viré
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Thomas J Cunningham
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Emmanuel A Asante
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Collinge
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK
| | - Simon Mead
- Medical Research Council Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, London W1W 7FF, UK.
| |
Collapse
|
40
|
Whitney K, Song WM, Sharma A, Dangoor DK, Farrell K, Krassner MM, Ressler HW, Christie TD, Walker RH, Nirenberg MJ, Zhang B, Frucht SJ, Riboldi GM, Crary JF, Pereira AC. Single-cell transcriptomic and neuropathologic analysis reveals dysregulation of the integrated stress response in progressive supranuclear palsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567587. [PMID: 38014079 PMCID: PMC10680842 DOI: 10.1101/2023.11.17.567587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Progressive supranuclear palsy (PSP) is a sporadic neurodegenerative tauopathy variably affecting brainstem and cortical structures and characterized by tau inclusions in neurons and glia. The precise mechanism whereby these protein aggregates lead to cell death remains unclear. To investigate the contribution of these different cellular abnormalities to PSP pathogenesis, we performed single-nucleus RNA sequencing and analyzed 45,559 high quality nuclei targeting the subthalamic nucleus and adjacent structures from human post-mortem PSP brains with varying degrees of pathology compared to controls. Cell-type specific differential expression and pathway analysis identified both common and discrete changes in numerous pathways previously implicated in PSP and other neurodegenerative disorders. This included EIF2 signaling, an adaptive pathway activated in response to diverse stressors, which was the top activated pathway in vulnerable cell types. Using immunohistochemistry, we found that activated eIF2α was positively correlated with tau pathology burden in vulnerable brain regions. Multiplex immunofluorescence localized activated eIF2α positivity to hyperphosphorylated tau (p-tau) positive neurons and ALDH1L1-positive astrocytes, supporting the increased transcriptomic EIF2 activation observed in these vulnerable cell types. In conclusion, these data provide insights into cell-type-specific pathological changes in PSP and support the hypothesis that failure of adaptive stress pathways play a mechanistic role in the pathogenesis and progression of PSP.
Collapse
|
41
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
42
|
Pajares MA, Hernández-Gerez E, Pekny M, Pérez-Sala D. Alexander disease: the road ahead. Neural Regen Res 2023; 18:2156-2160. [PMID: 37056123 DOI: 10.4103/1673-5374.369097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein, a type III intermediate filament protein expressed in astrocytes. Both early (infantile or juvenile) and adult onsets of the disease are known and, in both cases, astrocytes present characteristic aggregates, named Rosenthal fibers. Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner. Although the presence of aggregates suggests a proteostasis problem of the mutant forms, this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased. Additionally, several isoforms of glial fibrillary acidic protein have been described to date, while the impact of the mutations on their expression and proportion has not been exhaustively studied. Moreover, the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered, leading to functional changes that may modify the morphology, positioning, and/or the function of several organelles, in turn, impairing astrocyte normal function and subsequently affecting neurons. In particular, mitochondrial function, redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes. To study the disease and to develop putative therapeutic strategies, several experimental models have been developed, a collection that is in constant growth. The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations, together with the availability of new and more relevant experimental models, holds promise for the design and assay of novel therapeutic strategies.
Collapse
Affiliation(s)
- María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Elena Hernández-Gerez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; University of Newcastle, Newcastle, NSW, and the Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain
| |
Collapse
|
43
|
Jung BK, Ryu KY. Lipocalin-2: a therapeutic target to overcome neurodegenerative diseases by regulating reactive astrogliosis. Exp Mol Med 2023; 55:2138-2146. [PMID: 37779143 PMCID: PMC10618504 DOI: 10.1038/s12276-023-01098-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Glial cell activation precedes neuronal cell death during brain aging and the progression of neurodegenerative diseases. Under neuroinflammatory stress conditions, lipocalin-2 (LCN2), also known as neutrophil gelatinase-associated lipocalin or 24p3, is produced and secreted by activated microglia and reactive astrocytes. Lcn2 expression levels are known to be increased in various cells, including reactive astrocytes, through the activation of the NF-κB signaling pathway. In the central nervous system, as LCN2 exerts neurotoxicity when secreted from reactive astrocytes, many researchers have attempted to identify various strategies to inhibit LCN2 production, secretion, and function to minimize neuroinflammation and neuronal cell death. These strategies include regulation at the transcriptional, posttranscriptional, and posttranslational levels, as well as blocking its functions using neutralizing antibodies or antagonists of its receptor. The suppression of NF-κB signaling is a strategy to inhibit LCN2 production, but it may also affect other cellular activities, raising questions about its effectiveness and feasibility. Recently, LCN2 was found to be a target of the autophagy‒lysosome pathway. Therefore, autophagy activation may be a promising therapeutic strategy to reduce the levels of secreted LCN2 and overcome neurodegenerative diseases. In this review, we focused on research progress on astrocyte-derived LCN2 in the central nervous system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
44
|
Lahiri A, Walton JC, Zhang N, Billington N, DeVries AC, Meares GP. Astrocytic deletion of protein kinase R-like ER kinase (PERK) does not affect learning and memory in aged mice but worsens outcome from experimental stroke. J Neurosci Res 2023; 101:1586-1610. [PMID: 37314006 PMCID: PMC10524975 DOI: 10.1002/jnr.25224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/22/2023] [Accepted: 05/27/2023] [Indexed: 06/15/2023]
Abstract
Aging is associated with cognitive decline and is the main risk factor for a myriad of conditions including neurodegeneration and stroke. Concomitant with aging is the progressive accumulation of misfolded proteins and loss of proteostasis. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress and activation of the unfolded protein response (UPR). The UPR is mediated, in part, by the eukaryotic initiation factor 2α (eIF2α) kinase protein kinase R-like ER kinase (PERK). Phosphorylation of eIF2α reduces protein translation as an adaptive mechanism but this also opposes synaptic plasticity. PERK, and other eIF2α kinases, have been widely studied in neurons where they modulate both cognitive function and response to injury. The impact of astrocytic PERK signaling in cognitive processes was previously unknown. To examine this, we deleted PERK from astrocytes (AstroPERKKO ) and examined the impact on cognitive functions in middle-aged and old mice of both sexes. Additionally, we tested the outcome following experimental stroke using the transient middle cerebral artery occlusion (MCAO) model. Tests of short-term and long-term learning and memory as well as of cognitive flexibility in middle-aged and old mice revealed that astrocytic PERK does not regulate these processes. Following MCAO, AstroPERKKO had increased morbidity and mortality. Collectively, our data demonstrate that astrocytic PERK has limited impact on cognitive function and has a more prominent role in the response to neural injury.
Collapse
Affiliation(s)
| | | | | | | | - A Courtney DeVries
- Department of Neuroscience
- Rockefeller Neuroscience Institute
- Department of Medicine, Division of Hematology and Oncology
- WVU Cancer Institute, Morgantown, WV- 26506, USA
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown, WV- 26506, USA
| | - Gordon P. Meares
- Department of Microbiology, Immunology and Cell Biology
- Department of Neuroscience
- Rockefeller Neuroscience Institute
| |
Collapse
|
45
|
Zhao YX, Li XN, Tang YX, Talukder M, Zhao Y, Li JL. Cadmium Transforms Astrocytes into the A1 Subtype via Inducing Gap Junction Protein Connexin 43 into the Nucleus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12043-12051. [PMID: 37471304 DOI: 10.1021/acs.jafc.3c02963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Cadmium is highly toxic and present in the environment and can be accumulated among various levels of the food chain. Both humans and animals are at risk from toxicity associated with cadmium. However, the neurological endpoint caused by cadmium has not been revealed. The aim of our research is to explore the potential target of cadmium attack when causing neurotoxicity. 80 male chickens (one day old, weighing 36.49 ± 2.88 g) were randomly divided into four groups and independently treated with 0, 35, 70, or 140 mg/kg CdCl2 in diet for 90 days. The result showed that the striatum was damaged due to a high dose of cadmium in the brain, which was characterized by degeneration of neurons and astrocyte dysfunction. Transcriptome analysis demonstrated that striatal astrocytes were transformed into the A1 state under cadmium exposure. Deeper investigation revealed that the internalization of gap junction protein connexin 43 was responsible for this transformation. Eventually, we can conclude that the internalized gap junction protein connexin 43 of astrocytes is the target of cadmium anchoring, and this process was accompanied by the transformation of astrocytes into the A1 subtype. This study provides a new direction for exploring the effects of cadmium on the nervous system and the treatment of subsequent nervous system diseases.
Collapse
Affiliation(s)
| | - Xue-Nan Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | | | - Yi Zhao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Jin-Long Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
46
|
Carvalho D, Diaz-Amarilla P, Dapueto R, Santi MD, Duarte P, Savio E, Engler H, Abin-Carriquiry JA, Arredondo F. Transcriptomic Analyses of Neurotoxic Astrocytes Derived from Adult Triple Transgenic Alzheimer's Disease Mice. J Mol Neurosci 2023; 73:487-515. [PMID: 37318736 DOI: 10.1007/s12031-023-02105-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/03/2023] [Indexed: 06/16/2023]
Abstract
Neurodegenerative diseases such as Alzheimer's disease have been classically studied from a purely neuronocentric point of view. More recent evidences support the notion that other cell populations are involved in disease progression. In this sense, the possible pathogenic role of glial cells like astrocytes is increasingly being recognized. Once faced with tissue damage signals and other stimuli present in disease environments, astrocytes suffer many morphological and functional changes, a process referred as reactive astrogliosis. Studies from murine models and humans suggest that these complex and heterogeneous responses could manifest as disease-specific astrocyte phenotypes. Clear understanding of disease-associated astrocytes is a necessary step to fully disclose neurodegenerative processes, aiding in the design of new therapeutic and diagnostic strategies. In this work, we present the transcriptomics characterization of neurotoxic astrocytic cultures isolated from adult symptomatic animals of the triple transgenic mouse model of Alzheimer's disease (3xTg-AD). According to the observed profile, 3xTg-AD neurotoxic astrocytes show various reactivity features including alteration of the extracellular matrix and release of pro-inflammatory and proliferative factors that could result in harmful effects to neurons. Moreover, these alterations could be a consequence of stress responses at the endoplasmic reticulum and mitochondria as well as of concomitant metabolic adaptations. Present results support the hypothesis that adaptive changes of astrocytic function induced by a stressed microenvironment could later promote harmful astrocyte phenotypes and further accelerate or induce neurodegenerative processes.
Collapse
Affiliation(s)
- Diego Carvalho
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay
| | - Pablo Diaz-Amarilla
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Rosina Dapueto
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - María Daniela Santi
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, 10010, USA
| | - Pablo Duarte
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Eduardo Savio
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
| | - Henry Engler
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay
- Facultad de Medicina, Universidad de la República, 1800, Montevideo, Uruguay
| | - Juan A Abin-Carriquiry
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Laboratorio de Biofármacos, Institut Pasteur de Montevideo, 11600, Montevideo, Uruguay.
| | - Florencia Arredondo
- Departamento de Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, 11600, Montevideo, Uruguay.
- Área I+D Biomédica, Centro Uruguayo de Imagenología Molecular, 11600, Montevideo, Uruguay.
| |
Collapse
|
47
|
Jung BK, Park Y, Yoon B, Bae JS, Han SW, Heo JE, Kim DE, Ryu KY. Reduced secretion of LCN2 (lipocalin 2) from reactive astrocytes through autophagic and proteasomal regulation alleviates inflammatory stress and neuronal damage. Autophagy 2023; 19:2296-2317. [PMID: 36781380 PMCID: PMC10351455 DOI: 10.1080/15548627.2023.2180202] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
LCN2/neutrophil gelatinase-associated lipocalin/24p3 (lipocalin 2) is a secretory protein that acts as a mammalian bacteriostatic molecule. Under neuroinflammatory stress conditions, LCN2 is produced and secreted by activated microglia and reactive astrocytes, resulting in neuronal apoptosis. However, it remains largely unknown whether inflammatory stress and neuronal loss can be minimized by modulating LCN2 production and secretion. Here, we first demonstrated that LCN2 was secreted from reactive astrocytes, which were stimulated by treatment with lipopolysaccharide (LPS) as an inflammatory stressor. Notably, we found two effective conditions that led to the reduction of induced LCN2 levels in reactive astrocytes: proteasome inhibition and macroautophagic/autophagic flux activation. Mechanistically, proteasome inhibition suppresses NFKB/NF-κB activation through NFKBIA/IκBα stabilization in primary astrocytes, even under inflammatory stress conditions, resulting in the downregulation of Lcn2 expression. In contrast, autophagic flux activation via MTOR inhibition reduced the intracellular levels of LCN2 through its pre-secretory degradation. In addition, we demonstrated that the N-terminal signal peptide of LCN2 is critical for its secretion and degradation, suggesting that these two pathways may be mechanistically coupled. Finally, we observed that LPS-induced and secreted LCN2 levels were reduced in the astrocyte-cultured medium under the above-mentioned conditions, resulting in increased neuronal viability, even under inflammatory stress.Abbreviations: ACM, astrocyte-conditioned medium; ALP, autophagy-lysosome pathway; BAF, bafilomycin A1; BTZ, bortezomib; CHX, cycloheximide; CNS, central nervous system; ER, endoplasmic reticulum; GFAP, glial fibrillary acidic protein; GFP, green fluorescent protein; JAK, Janus kinase; KD, knockdown; LCN2, lipocalin 2; LPS, lipopolysaccharide; MACS, magnetic-activated cell sorting; MAP1LC3/LC3, microtubule-associated protein 1 light chain 3; MTOR, mechanistic target of rapamycin kinase; NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells 1, p105; NFKBIA/IκBα, nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha; OVEX, overexpression; SLC22A17, solute carrier family 22 member 17; SP, signal peptide; SQSTM1, sequestosome 1; STAT3, signal transducer and activator of transcription 3; TNF/TNF-α, tumor necrosis factor; TUBA, tubulin, alpha; TUBB3/β3-TUB, tubulin, beta 3 class III; UB, ubiquitin; UPS, ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Byung-Kwon Jung
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Yujin Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Boran Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Jin-Sil Bae
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Seung-Woo Han
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Ji-Eun Heo
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| |
Collapse
|
48
|
Matafora V, Gorb A, Yang F, Noble W, Bachi A, Perez‐Nievas BG, Jimenez‐Sanchez M. Proteomics of the astrocyte secretome reveals changes in their response to soluble oligomeric Aβ. J Neurochem 2023; 166:346-366. [PMID: 37303123 PMCID: PMC10952722 DOI: 10.1111/jnc.15875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes associate with amyloid plaques in Alzheimer's disease (AD). Astrocytes react to changes in the brain environment, including increasing concentrations of amyloid-β (Aβ). However, the precise response of astrocytes to soluble small Aβ oligomers at concentrations similar to those present in the human brain has not been addressed. In this study, we exposed astrocytes to media from neurons that express the human amyloid precursor protein (APP) transgene with the double Swedish mutation (APPSwe), and which contains APP-derived fragments, including soluble human Aβ oligomers. We then used proteomics to investigate changes in the astrocyte secretome. Our data show dysregulated secretion of astrocytic proteins involved in the extracellular matrix and cytoskeletal organization and increase secretion of proteins involved in oxidative stress responses and those with chaperone activity. Several of these proteins have been identified in previous transcriptomic and proteomic studies using brain tissue from human AD and cerebrospinal fluid (CSF). Our work highlights the relevance of studying astrocyte secretion to understand the brain response to AD pathology and the potential use of these proteins as biomarkers for the disease.
Collapse
Affiliation(s)
| | - Alena Gorb
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Fangjia Yang
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Wendy Noble
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Angela Bachi
- IFOM ETS‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Beatriz Gomez Perez‐Nievas
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Maria Jimenez‐Sanchez
- Department of Basic and Clinical NeuroscienceMaurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| |
Collapse
|
49
|
Giroud J, Bouriez I, Paulus H, Pourtier A, Debacq-Chainiaux F, Pluquet O. Exploring the Communication of the SASP: Dynamic, Interactive, and Adaptive Effects on the Microenvironment. Int J Mol Sci 2023; 24:10788. [PMID: 37445973 DOI: 10.3390/ijms241310788] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Cellular senescence is a complex cell state that can occur during physiological ageing or after exposure to stress signals, regardless of age. It is a dynamic process that continuously evolves in a context-dependent manner. Senescent cells interact with their microenvironment by producing a heterogenous and plastic secretome referred to as the senescence-associated secretory phenotype (SASP). Hence, understanding the cross-talk between SASP and the microenvironment can be challenging due to the complexity of signal exchanges. In this review, we first aim to update the definition of senescence and its associated biomarkers from its discovery to the present day. We detail the regulatory mechanisms involved in the expression of SASP at multiple levels and develop how SASP can orchestrate microenvironment modifications, by focusing on extracellular matrix modifications, neighboring cells' fate, and intercellular communications. We present hypotheses on how these microenvironmental events may affect dynamic changes in SASP composition in return. Finally, we discuss the various existing approaches to targeting SASP and clarify what is currently known about the biological effects of these modified SASPs on the cellular environment.
Collapse
Affiliation(s)
- Joëlle Giroud
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Inès Bouriez
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Hugo Paulus
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Albin Pourtier
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| | - Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 5000 Namur, Belgium
| | - Olivier Pluquet
- University of Lille, CNRS, Inserm, Pasteur Institute of Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, 59000 Lille, France
| |
Collapse
|
50
|
Que M, Li Y, Wang X, Zhan G, Luo X, Zhou Z. Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders? Front Cell Neurosci 2023; 17:1188306. [PMID: 37435045 PMCID: PMC10330732 DOI: 10.3389/fncel.2023.1188306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Sleep plays an essential role in all studied animals with a nervous system. However, sleep deprivation leads to various pathological changes and neurobehavioral problems. Astrocytes are the most abundant cells in the brain and are involved in various important functions, including neurotransmitter and ion homeostasis, synaptic and neuronal modulation, and blood-brain barrier maintenance; furthermore, they are associated with numerous neurodegenerative diseases, pain, and mood disorders. Moreover, astrocytes are increasingly being recognized as vital contributors to the regulation of sleep-wake cycles, both locally and in specific neural circuits. In this review, we begin by describing the role of astrocytes in regulating sleep and circadian rhythms, focusing on: (i) neuronal activity; (ii) metabolism; (iii) the glymphatic system; (iv) neuroinflammation; and (v) astrocyte-microglia cross-talk. Moreover, we review the role of astrocytes in sleep deprivation comorbidities and sleep deprivation-related brain disorders. Finally, we discuss potential interventions targeting astrocytes to prevent or treat sleep deprivation-related brain disorders. Pursuing these questions would pave the way for a deeper understanding of the cellular and neural mechanisms underlying sleep deprivation-comorbid brain disorders.
Collapse
Affiliation(s)
- Mengxin Que
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yujuan Li
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Gaofeng Zhan
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxiao Luo
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Department of Anesthesiology, Tongji Medical College, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|