1
|
Zeng Y, Antoniou A. Regulation of synaptic mitochondria by extracellular vesicles and its implications for neuronal metabolism and synaptic plasticity. J Cereb Blood Flow Metab 2025:271678X251337630. [PMID: 40367393 PMCID: PMC12078259 DOI: 10.1177/0271678x251337630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/17/2025] [Accepted: 03/28/2025] [Indexed: 05/16/2025]
Abstract
Mitochondrial metabolism in neurons is necessary for energetically costly processes like synaptic transmission and plasticity. As post-mitotic cells, neurons are therefore faced with the challenge of maintaining healthy functioning mitochondria throughout lifetime. The precise mechanisms of mitochondrial maintenance in neurons, and particularly in morphologically complex dendrites and axons, are not fully understood. Evidence from several biological systems suggests the regulation of cellular metabolism by extracellular vesicles (EVs), secretory lipid-enclosed vesicles that have emerged as important mediators of cell communication. In the nervous system, neuronal and glial EVs were shown to regulate neuronal circuit development and function, at least in part via the transfer of protein and RNA cargo. Interestingly, EVs have been implicated in diseases characterized by altered metabolism, such as cancer and neurodegenerative diseases. Furthermore, nervous system EVs were shown to contain proteins related to metabolic processes, mitochondrial proteins and even intact mitochondria. Here, we present the current knowledge of the mechanisms underlying neuronal mitochondrial maintenance, and highlight recent evidence suggesting the regulation of synaptic mitochondria by neuronal and glial cell EVs. We further discuss the potential implications of EV-mediated regulation of mitochondrial maintenance and function in neuronal circuit development and synaptic plasticity.
Collapse
Affiliation(s)
- Yuzhou Zeng
- Medical Faculty, University of Bonn, Bonn, Germany
| | - Anna Antoniou
- Medical Faculty, University of Bonn, Bonn, Germany
- Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Liu S, Feng A, Li Z. Neuron-Derived Extracellular Vesicles: Emerging Regulators in Central Nervous System Disease Progression. Mol Neurobiol 2025:10.1007/s12035-025-05010-4. [PMID: 40325332 DOI: 10.1007/s12035-025-05010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
The diagnosis and exploration of central nervous system (CNS) diseases remain challenging due to the blood-brain barrier (BBB), complex signaling pathways, and heterogeneous clinical manifestations. Neurons, as the core functional units of the CNS, play a pivotal role in CNS disease progression. Extracellular vesicles (EVs), capable of crossing the BBB, facilitate intercellular and cell-extracellular matrix (ECM) communication, making neuron-derived extracellular vesicles (NDEVs) a focal point of research. Recent studies reveal that NDEVs, carrying various bioactive substances, can exert either pathogenic or protective effects in numerous CNS diseases. Additionally, NDEVs show significant potential as biomarkers for CNS diseases. This review summarizes the emerging roles of NDEVs in CNS diseases, including Alzheimer's disease, depression, traumatic brain injury, schizophrenia, ischemic stroke, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. It aims to provide a novel perspective on developing therapeutic and diagnostic strategies for CNS diseases through the study of NDEVs.
Collapse
Affiliation(s)
- Sitong Liu
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Aitong Feng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhigang Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nat Rev Neurol 2025; 21:265-282. [PMID: 40181198 DOI: 10.1038/s41582-025-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Over the past few decades, extensive basic, translational and clinical research has been devoted to deciphering the physiological and pathogenic roles of extracellular vesicles (EVs) in the nervous system. The presence of brain cell-derived EVs in the blood, carrying diverse cargoes, has enabled the development of predictive, diagnostic, prognostic, disease-monitoring and treatment-response biomarkers for various neurological disorders. In this Review, we consider how EV biomarkers can bring us closer to understanding the complex pathogenesis of neurological disorders such as Alzheimer disease, Parkinson disease, stroke, traumatic brain injury, amyotrophic lateral sclerosis and multiple sclerosis. We describe how translational research on EVs might unfold bidirectionally, proceeding from basic to clinical studies but also in the opposite direction, with biomarker findings in the clinic leading to novel hypotheses that can be tested in the laboratory. We demonstrate the potential value of EVs across all stages of the therapeutic development pipeline, from identifying therapeutic targets to the use of EVs as reporters in model systems and biomarkers in clinical research. Finally, we discuss how the cargo and physicochemical properties of naturally occurring and custom-engineered EVs can be leveraged as novel treatments and vehicles for drug delivery, potentially revolutionizing neurotherapeutics.
Collapse
Affiliation(s)
- Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, Baltimore, MD, USA.
| |
Collapse
|
4
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against trans-synaptic signaling via extracellular vesicles. J Cell Biol 2024; 223:e202405025. [PMID: 38842573 PMCID: PMC11157088 DOI: 10.1083/jcb.202405025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles (EVs) are released by many cell types, including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating endosomal sorting complex required for transport (ESCRT) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo evenness interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell-autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | | | | | - Mark Rozencwaig
- Department of Biology, Brandeis University, Waltham, MA, USA
| | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Avital A. Rodal
- Department of Biology, Brandeis University, Waltham, MA, USA
| |
Collapse
|
5
|
Yan B, Liao P, Liu Y, Han Z, Wang C, Chen F, Lei P. Therapeutic potential of microglia-derived extracellular vesicles in ischemic stroke. Int Immunopharmacol 2024; 139:112712. [PMID: 39032476 DOI: 10.1016/j.intimp.2024.112712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair. They secrete numerous extracellular vesicles in different states. Recent evidence indicates that microglia-derived extracellular vesicles (M-EVs) actively participate in mediating various biological processes, such as neuroprotection and neurorepair, in stroke, making them an excellent therapeutic approach for treating this condition. This review comprehensively summarizes the latest research on M-EVs in stroke and explores their potential as novel therapeutic targets for this disorder. Additionally, it provides an overview of the effects and functions of M-EVs on stroke recovery to facilitate the development of clinically relevant therapies for IS.
Collapse
Affiliation(s)
- Bo Yan
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Pan Liao
- Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China
| | - Yaru Liu
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Conglin Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China
| | - Fanglian Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China.
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Anshan Road No. 154, Tianjin 300052, China; Key Laboratory of Post-Trauma Neuro-Repair and Regeneration in Central Nervous System, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Ministry of Education, Tianjin 300052, China; School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
6
|
Yao PJ, Manolopoulos A, Eren E, Rivera SM, Hessl DR, Hagerman R, Martinez‐Cerdeno V, Tassone F, Kapogiannis D. Mitochondrial dysfunction in brain tissues and Extracellular Vesicles Fragile X-associated tremor/ataxia syndrome. Ann Clin Transl Neurol 2024; 11:1420-1429. [PMID: 38717724 PMCID: PMC11187838 DOI: 10.1002/acn3.52040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/24/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Mitochondrial impairments have been implicated in the pathogenesis of Fragile X-associated tremor/ataxia syndrome (FXTAS) based on analysis of mitochondria in peripheral tissues and cultured cells. We sought to assess whether mitochondrial abnormalities present in postmortem brain tissues of patients with FXTAS are also present in plasma neuron-derived extracellular vesicles (NDEVs) from living carriers of fragile X messenger ribonucleoprotein1 (FMR1) gene premutations at an early asymptomatic stage of the disease continuum. METHODS We utilized postmortem frozen cerebellar and frontal cortex samples from a cohort of eight patients with FXTAS and nine controls and measured the quantity and activity of the mitochondrial proteins complex IV and complex V. In addition, we evaluated the same measures in isolated plasma NDEVs by selective immunoaffinity capture targeting L1CAM from a separate cohort of eight FMR1 premutation carriers and four age-matched controls. RESULTS Lower complex IV and V quantity and activity were observed in the cerebellum of FXTAS patients compared to controls, without any differences in total mitochondrial content. No patient-control differences were observed in the frontal cortex. In NDEVs, FMR1 premutation carriers compared to controls had lower activity of Complex IV and Complex V, but higher Complex V quantity. INTERPRETATION Quantitative and functional abnormalities in mitochondrial electron transport chain complexes IV and V seen in the cerebellum of patients with FXTAS are also manifest in plasma NDEVs of FMR1 premutation carriers. Plasma NDEVs may provide further insights into mitochondrial pathologies in this syndrome and could potentially lead to the development of biomarkers for predicting symptomatic FXTAS among premutation carriers and disease monitoring.
Collapse
Affiliation(s)
- Pamela J. Yao
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Apostolos Manolopoulos
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Erden Eren
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Susan Michelle Rivera
- Department of PsychologyUniversity of MarylandCollege ParkMarylandUSA
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
| | - David R. Hessl
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Randi Hagerman
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of PediatricsUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Veronica Martinez‐Cerdeno
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children Northern CaliforniaSacramentoCaliforniaUSA
| | - Flora Tassone
- MIND InstituteUniversity of California, Davis, Medical CenterSacramentoCaliforniaUSA
- Department of Biochemistry and Molecular MedicineUniversity of California, Davis, School of MedicineSacramentoCaliforniaUSA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| |
Collapse
|
7
|
Nogueras‐Ortiz CJ, Eren E, Yao P, Calzada E, Dunn C, Volpert O, Delgado‐Peraza F, Mustapic M, Lyashkov A, Rubio FJ, Vreones M, Cheng L, You Y, Hill AF, Ikezu T, Eitan E, Goetzl EJ, Kapogiannis D. Single-extracellular vesicle (EV) analyses validate the use of L1 Cell Adhesion Molecule (L1CAM) as a reliable biomarker of neuron-derived EVs. J Extracell Vesicles 2024; 13:e12459. [PMID: 38868956 PMCID: PMC11170079 DOI: 10.1002/jev2.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Isolation of neuron-derived extracellular vesicles (NDEVs) with L1 Cell Adhesion Molecule (L1CAM)-specific antibodies has been widely used to identify blood biomarkers of CNS disorders. However, full methodological validation requires demonstration of L1CAM in individual NDEVs and lower levels or absence of L1CAM in individual EVs from other cells. Here, we used multiple single-EV techniques to establish the neuronal origin and determine the abundance of L1CAM-positive EVs in human blood. L1CAM epitopes of the ectodomain are shown to be co-expressed on single-EVs with the neuronal proteins β-III-tubulin, GAP43, and VAMP2, the levels of which increase in parallel with the enrichment of L1CAM-positive EVs. Levels of L1CAM-positive EVs carrying the neuronal proteins VAMP2 and β-III-tubulin range from 30% to 63%, in contrast to 0.8%-3.9% of L1CAM-negative EVs. Plasma fluid-phase L1CAM does not bind to single-EVs. Our findings support the use of L1CAM as a target for isolating plasma NDEVs and leveraging their cargo to identify biomarkers reflecting neuronal function.
Collapse
Affiliation(s)
- Carlos J Nogueras‐Ortiz
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Erden Eren
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Pamela Yao
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Elizabeth Calzada
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | | | - Francheska Delgado‐Peraza
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Maja Mustapic
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Alexey Lyashkov
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research BranchIntramural Research Program/National Institute on Drug Abuse/National Institutes of HealthBaltimoreMarylandUSA
| | - Michael Vreones
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
| | - Lesley Cheng
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Yang You
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | - Andrew F Hill
- La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| | | | - Edward J Goetzl
- Department of MedicineUniversity of CaliforniaSan FranciscoCaliforniaUSA
- San Francisco Campus for Jewish LivingSan FranciscoCaliforniaUSA
| | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research ProgramNational Institute on Aging, National Institutes of Health (NIA/NIH)BaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Fox S, Gaudreau-LaPierre A, Reshke R, Podinic I, Gibbings DJ, Trinkle-Mulcahy L, Copeland JW. Identification of an FMNL2 Interactome by Quantitative Mass Spectrometry. Int J Mol Sci 2024; 25:5686. [PMID: 38891874 PMCID: PMC11171801 DOI: 10.3390/ijms25115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
Formin Homology Proteins (Formins) are a highly conserved family of cytoskeletal regulatory proteins that participate in a diverse range of cellular processes. FMNL2 is a member of the Diaphanous-Related Formin sub-group, and previous reports suggest FMNL2's role in filopodia assembly, force generation at lamellipodia, subcellular trafficking, cell-cell junction assembly, and focal adhesion formation. How FMNL2 is recruited to these sites of action is not well understood. To shed light on how FMNL2 activity is partitioned between subcellular locations, we used biotin proximity labeling and proteomic analysis to identify an FMNL2 interactome. The interactome identified known and new FMNL2 interacting proteins with functions related to previously described FMNL2 activities. In addition, our interactome predicts a novel connection between FMNL2 and extracellular vesicle assembly. We show directly that FMNL2 protein is present in exosomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John W. Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (S.F.)
| |
Collapse
|
9
|
Meldolesi J. Specific Extracellular Vesicles, Generated and Operating at Synapses, Contribute to Neuronal Effects and Signaling. Int J Mol Sci 2024; 25:5103. [PMID: 38791143 PMCID: PMC11121580 DOI: 10.3390/ijms25105103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In all cell types, small EVs, very abundant extracellular vesicles, are generated and accumulated within MVB endocytic cisternae. Upon MVB fusion and exocytosis with the plasma membrane, the EVs are released to the extracellular space. In the central nervous system, the release of neuronal EVs was believed to occur only from the surface of the body and dendrites. About 15 years ago, MVB cisternae and EVs were shown to exist and function at synaptic boutons, the terminals' pre- and post-synaptic structures essential for canonical neurotransmitter release. Recent studies have revealed that synaptic EVs are peculiar in many respects and heterogeneous with respect to other neuronal EVs. The distribution of synaptic EVs and the effect of their specific molecules are found at critical sites of their distribution. The role of synaptic EVs could consist of the modulation of canonical neurotransmitter release or a distinct, non-canonical form of neurotransmission. Additional roles of synaptic EVs are still not completely known. In the future, additional investigations will clarify the role of synaptic EVs in pathology, concerning, for example, circuits, trans-synaptic transmission, diagnosis and the therapy of diseases.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- IRCCS San Raffaele Hospital, Vita-Salute San Raffaele University, 20129 Milan, Italy;
- CNR Institute of Neuroscience, Milano-Bicocca University, 20854 Vedano al Lambro, Italy
| |
Collapse
|
10
|
Dresselhaus EC, Harris KP, Blanchette CR, Koles K, Del Signore SJ, Pescosolido MF, Ermanoska B, Rozencwaig M, Soslowsky RC, Parisi MJ, Stewart BA, Mosca TJ, Rodal AA. ESCRT disruption provides evidence against transsynaptic signaling functions for extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.22.537920. [PMID: 38746182 PMCID: PMC11092503 DOI: 10.1101/2023.04.22.537920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are released by many cell types including neurons, carrying cargoes involved in signaling and disease. It is unclear whether EVs promote intercellular signaling or serve primarily to dispose of unwanted materials. We show that loss of multivesicular endosome-generating ESCRT (endosomal sorting complex required for transport) machinery disrupts release of EV cargoes from Drosophila motor neurons. Surprisingly, ESCRT depletion does not affect the signaling activities of the EV cargo Synaptotagmin-4 (Syt4) and disrupts only some signaling activities of the EV cargo Evenness Interrupted (Evi). Thus, these cargoes may not require intercellular transfer via EVs, and instead may be conventionally secreted or function cell autonomously in the neuron. We find that EVs are phagocytosed by glia and muscles, and that ESCRT disruption causes compensatory autophagy in presynaptic neurons, suggesting that EVs are one of several redundant mechanisms to remove cargoes from synapses. Our results suggest that synaptic EV release serves primarily as a proteostatic mechanism for certain cargoes.
Collapse
Affiliation(s)
| | - Kathryn P. Harris
- Office of the Vice-Principal, Research and Innovation, University of Toronto, Mississauga, Mississauga, Canada
| | | | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | | | - Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | - Bryan A. Stewart
- Department of Biology, University of Toronto Mississauga, Mississauga, Canada; Department of Cell and Systems Biology University of Toronto, Toronto, Canada
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA
| | | |
Collapse
|
11
|
Mason AJ, Deppmann C, Winckler B. Emerging Roles of Neuronal Extracellular Vesicles at the Synapse. Neuroscientist 2024; 30:199-213. [PMID: 36942881 DOI: 10.1177/10738584231160521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Extracellular vesicles (EVs) are secreted from most, if not all, cell types and are implicated in short- and long-distance signaling throughout the body. EVs are also secreted from neurons and represent an emergent neuronal communication platform. Understanding the functional implications of EV signaling to recipient neurons and glia requires understanding the cell biology involved in EV biogenesis, cargo loading, secretion, uptake, and signal transduction in the recipient cell. Here we review these major questions of EV biology while highlighting recent new insights and examples within the nervous system, such as modulating synaptic function or morphogenesis in recipient neurons.
Collapse
Affiliation(s)
- Ashley J Mason
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher Deppmann
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Bettina Winckler
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
12
|
Wang YZ, Castillon CCM, Gebis KK, Bartom ET, d'Azzo A, Contractor A, Savas JN. Notch receptor-ligand binding facilitates extracellular vesicle-mediated neuron-to-neuron communication. Cell Rep 2024; 43:113680. [PMID: 38241148 PMCID: PMC10976296 DOI: 10.1016/j.celrep.2024.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024] Open
Abstract
Extracellular vesicles (EVs) facilitate intercellular communication by transferring cargo between cells in a variety of tissues. However, how EVs achieve cell-type-specific intercellular communication is still largely unknown. We found that Notch1 and Notch2 proteins are expressed on the surface of neuronal EVs that have been generated in response to neuronal excitatory synaptic activity. Notch ligands bind these EVs on the neuronal plasma membrane, trigger their internalization, activate the Notch signaling pathway, and drive the expression of Notch target genes. The generation of these neuronal EVs requires the endosomal sorting complex required for transport-associated protein Alix. Adult Alix conditional knockout mice have reduced hippocampal Notch signaling activation and glutamatergic synaptic protein expression. Thus, EVs facilitate neuron-to-neuron communication via the Notch receptor-ligand system in the brain.
Collapse
Affiliation(s)
- Yi-Zhi Wang
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Charlotte C M Castillon
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kamil K Gebis
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anis Contractor
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Wu J, Yang OJ, Soderblom EJ, Yan D. Heat Shock Proteins Function as Signaling Molecules to Mediate Neuron-Glia Communication During Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576052. [PMID: 38293019 PMCID: PMC10827141 DOI: 10.1101/2024.01.18.576052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The nervous system is primarily composed of neurons and glia, and the communication between them plays profound roles in regulating the development and function of the brain. Neuron-glia signal transduction is known to be mediated by secreted or juxtacrine signals through ligand-receptor interactions on the cell membrane. Here, we report a novel mechanism for neuron-glia signal transduction, wherein neurons transmit proteins to glia through extracellular vesicles, activating glial signaling pathways. We find that in the amphid sensory organ of Caenorhabditis elegans, different sensory neurons exhibit varying aging rates. This discrepancy in aging is governed by the crosstalk between neurons and glia. We demonstrate that early-aged neurons can transmit heat shock proteins (HSP) to glia via extracellular vesicles. These neuronal HSPs activate the IRE1-XBP1 pathway, further increasing their expression in glia, forming a positive feedback loop. Ultimately, the activation of the IRE1-XBP-1 pathway leads to the transcriptional regulation of chondroitin synthases to protect glia-embedded neurons from aging-associated functional decline. Therefore, our studies unveil a novel mechanism for neuron-glia communication in the nervous system and provide new insights into our understanding of brain aging.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Olivia Jiaming Yang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- East Chapel Hill High School, Chapel Hill, NC 27514, USA
| | - Erik J. Soderblom
- Proteomics and Metabolomics Core Facility, Duke University Medical School, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell biology, Department of Neurobiology, Regeneration next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
14
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
15
|
Yan L, Li J, Zhang C. The role of MSCs and CAR-MSCs in cellular immunotherapy. Cell Commun Signal 2023; 21:187. [PMID: 37528472 PMCID: PMC10391838 DOI: 10.1186/s12964-023-01191-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Chimeric antigen receptors (CARs) are widely used by T cells (CAR-T cells), natural killer cells dendritic cells and macrophages, and they are of great importance in cellular immunotherapy. However, the use of CAR-related products faces several challenges, including the poor persistence of cells carrying CARs, cell dysfunction or exhaustion, relapse of disease, immune effector cell-associated neurotoxicity syndrome, cytokine release syndrome, low efficacy against solid tumors and immunosuppression by the tumor microenvironment. Another important cell therapy regimen involves mesenchymal stem cells (MSCs). Recent studies have shown that MSCs can improve the anticancer functions of CAR-related products. CAR-MSCs can overcome the flaws of cellular immunotherapy. Thus, MSCs can be used as a biological vehicle for CARs. In this review, we first discuss the characteristics and immunomodulatory functions of MSCs. Then, the role of MSCs as a source of exosomes, including the characteristics of MSC-derived exosomes and their immunomodulatory functions, is discussed. The role of MSCs in CAR-related products, CAR-related product-derived exosomes and the effect of MSCs on CAR-related products are reviewed. Finally, the use of MSCs as CAR vehicles is discussed. Video Abstract.
Collapse
Affiliation(s)
- Lun Yan
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jing Li
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, State Key Laboratory of Trauma, Burn and Combined Injury, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
16
|
Dixson AC, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol 2023; 24:454-476. [PMID: 36765164 PMCID: PMC10330318 DOI: 10.1038/s41580-023-00576-0] [Citation(s) in RCA: 298] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/12/2023]
Abstract
To coordinate, adapt and respond to biological signals, cells convey specific messages to other cells. An important aspect of cell-cell communication involves secretion of molecules into the extracellular space. How these molecules are selected for secretion has been a fundamental question in the membrane trafficking field for decades. Recently, extracellular vesicles (EVs) have been recognized as key players in intercellular communication, carrying not only membrane proteins and lipids but also RNAs, cytosolic proteins and other signalling molecules to recipient cells. To communicate the right message, it is essential to sort cargoes into EVs in a regulated and context-specific manner. In recent years, a wealth of lipidomic, proteomic and RNA sequencing studies have revealed that EV cargo composition differs depending upon the donor cell type, metabolic cues and disease states. Analyses of distinct cargo 'fingerprints' have uncovered mechanistic linkages between the activation of specific molecular pathways and cargo sorting. In addition, cell biology studies are beginning to reveal novel biogenesis mechanisms regulated by cellular context. Here, we review context-specific mechanisms of EV biogenesis and cargo sorting, focusing on how cell signalling and cell state influence which cellular components are ultimately targeted to EVs.
Collapse
Affiliation(s)
- Andrew C Dixson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - T Renee Dawson
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and Therapeutics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
17
|
Avallone M, Pardo J, Mergiya TF, Rájová J, Räsänen A, Davidsson M, Åkerblom M, Quintino L, Kumar D, Bramham CR, Björklund T. Visualizing Arc protein dynamics and localization in the mammalian brain using AAV-mediated in situ gene labeling. Front Mol Neurosci 2023; 16:1140785. [PMID: 37415832 PMCID: PMC10321715 DOI: 10.3389/fnmol.2023.1140785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/11/2023] [Indexed: 07/08/2023] Open
Abstract
The activity-regulated cytoskeleton-associated (Arc) protein is essential for synaptic plasticity and memory formation. The Arc gene, which contains remnants of a structural GAG retrotransposon sequence, produces a protein that self-assembles into capsid-like structures harboring Arc mRNA. Arc capsids, released from neurons, have been proposed as a novel intercellular mechanism for mRNA transmission. Nevertheless, evidence for intercellular transport of Arc in the mammalian brain is still lacking. To enable the tracking of Arc molecules from individual neurons in vivo, we devised an adeno-associated virus (AAV) mediated approach to tag the N-terminal of the mouse Arc protein with a fluorescent reporter using CRISPR/Cas9 homologous independent targeted integration (HITI). We show that a sequence coding for mCherry can successfully be knocked in at the 5' end of the Arc open reading frame. While nine spCas9 gene editing sites surround the Arc start codon, the accuracy of the editing was highly sequence-dependent, with only a single target resulting in an in-frame reporter integration. When inducing long-term potentiation (LTP) in the hippocampus, we observed an increase of Arc protein highly correlated with an increase in fluorescent intensity and the number of mCherry-positive cells. By proximity ligation assay (PLA), we demonstrated that the mCherry-Arc fusion protein retains the Arc function by interacting with the transmembrane protein stargazin in postsynaptic spines. Finally, we recorded mCherry-Arc interaction with presynaptic protein Bassoon in mCherry-negative surrounding neurons at close proximity to mCherry-positive spines of edited neurons. This is the first study to provide support for inter-neuronal in vivo transfer of Arc in the mammalian brain.
Collapse
Affiliation(s)
- Martino Avallone
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Joaquín Pardo
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
- Instituto de Investigaciones Bioquímicas de La Plata “Prof. Dr. Rodolfo R. Brenner” (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Tadiwos F. Mergiya
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Jana Rájová
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Atte Räsänen
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Malin Åkerblom
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Luis Quintino
- CNS Gene Therapy, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | | | - Clive R. Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, Bergen, Norway
| | - Tomas Björklund
- Molecular Neuromodulation, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Hessvik NP, Sagini K, Romero S, Ramirez-Garrastacho M, Rodriguez M, Tutturen AEV, Kvalvaag A, Stang E, Brech A, Sandvig K, Llorente A. siRNA screening reveals that SNAP29 contributes to exosome release. Cell Mol Life Sci 2023; 80:177. [PMID: 37285022 PMCID: PMC10247572 DOI: 10.1007/s00018-023-04822-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/08/2023]
Abstract
Cells release extracellular vesicles (EVs) of different sizes. Small EVs (< 200 nm) can originate from the fusion of multivesicular bodies with the plasma membrane, i.e. exosomes, and from budding of the plasma membrane, i.e. small ectosomes. To investigate the molecular machinery required for the release of small EVs, we developed a sensitive assay based on incorporation of radioactive cholesterol in EV membranes and used it in a siRNA screening. The screening showed that depletion of several SNARE proteins affected the release of small EVs. We focused on SNAP29, VAMP8, syntaxin 2, syntaxin 3 and syntaxin 18, the depletion of which reduced the release of small EVs. Importantly, this result was verified using gold standard techniques. SNAP29 depletion resulted in the largest effect and was further investigated. Immunoblotting analysis of small EVs showed that the release of several proteins considered to be associated with exosomes like syntenin, CD63 and Tsg101 was reduced, while the level of several proteins that have been shown to be released in ectosomes (annexins) or by secretory autophagy (LC3B and p62) was not affected by SNAP29 depletion. Moreover, these proteins appeared in different fractions when the EV samples were further separated by a density gradient. These results suggest that SNAP29 depletion mainly affects the secretion of exosomes. To investigate how SNAP29 affects exosome release, we used microscopy to study the distribution of MBVs using CD63 labelling and CD63-pHluorin to detect fusion events of MVBs with the plasma membrane. SNAP29 depletion caused a redistribution of CD63-labelled compartments but did not change the number of fusion events. Further experiments are therefore needed to fully understand the function of SNAP29. To conclude, we have developed a novel screening assay that has allowed us to identify several SNAREs involved in the release of small EVs.
Collapse
Affiliation(s)
- Nina Pettersen Hessvik
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Marta Rodriguez
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Center for the Biomedical Research Network in Oncology, CIBERONC, Madrid, Spain
| | | | - Audun Kvalvaag
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Espen Stang
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
19
|
Tedford E, Badya NB, Laing C, Asaoka N, Kaneko S, Filippi BM, McConkey GA. Infection-induced extracellular vesicles evoke neuronal transcriptional and epigenetic changes. Sci Rep 2023; 13:6913. [PMID: 37106020 PMCID: PMC10140046 DOI: 10.1038/s41598-023-34074-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Infection with the protozoan Toxoplasma gondii induces changes in neurotransmission, neuroinflammation, and behavior, yet it remains elusive how these changes come about. In this study we investigated how norepinephrine levels are altered by infection. TINEV (Toxoplasma-induced neuronal extracellular vesicles) isolated from infected noradrenergic cells down-regulated dopamine ß-hydroxylase (DBH) gene expression in human and rodent cells. Here we report that intracerebral injection of TINEVs into the brain is sufficient to induce DBH down-regulation and distrupt catecholaminergic signalling. Further, TINEV treatment induced hypermethylation upstream of the DBH gene. An antisense lncRNA to DBH was found in purified TINEV preparations. Paracrine signalling to induce transcriptional gene silencing and DNA methylation may be a common mode to regulate neurologic function.
Collapse
Affiliation(s)
- Ellen Tedford
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Norhidayah Binti Badya
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Conor Laing
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nozomi Asaoka
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-Cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Beatrice Maria Filippi
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Glenn Alan McConkey
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
20
|
Jin M, Liu Y, Hu G, Li X, Jia N, Cui X, Li Z, Ai L, Xie M, Xue F, Yang Y, Li W, Zhang M, Yu Q. Establishment of a schizophrenia classifier based on peripheral blood signatures and investigation of pathogenic miRNA-mRNA regulation. J Psychiatr Res 2023; 159:172-184. [PMID: 36738648 DOI: 10.1016/j.jpsychires.2023.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/04/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
To date, the diagnosis of schizophrenia (SCZ) mainly relies on patients' or guardians' self-reports and clinical observation, and the pathogenesis of SCZ remains elusive. In this study, we sought to develop a reliable classifier for diagnosing SCZ patients and provide clues to the etiology and pathogenesis of SCZ. Based on the high throughput sequencing analysis of peripheral blood miRNA expression profile and weighted gene co-expression network analysis (WGCNA) in our previous study, we selected eleven hub miRNAs for validation by qRT-PCR in 51 SCZ patients and 51 controls. miR-939-5p, miR-4732-3p let-7d-3p, and miR-142-3p were confirmed to be significantly up-regulated, and miR-30e-3p and miR-23a-3p were down-regulated in SCZ patients. miR-30e-3p with the most considerable fold change and statistically significance was selected for targeting validation. We first performed bioinformatics prediction followed by qRT-PCR and verified the up-regulation of potential target mRNAs (ABI1, NMT1, HMGB1) expression. Next, we found that the expression level of ABI1 was significantly up-regulated in SH-SY5Y cells transfected with miR-30e-3p mimics. Lastly, we conducted a luciferase assay in 293T cells confirming that miR-30e-3p could directly bind with the 3'untranslated region (3'-UTR) of ABI1, revealing that miR-30e-3p might play a role in the polymerization of neuronal actin and the reconstruction of the cytoskeleton via the downstream regulation of ABI1. In addition, we constructed a classifier by a series of bioinformatics algorithms and evaluated its diagnostic performance. It appears that the classifier consists of miRNAs and mRNAs possess a better discrimination performance than individual miRNA or mRNA in SCZ.
Collapse
Affiliation(s)
- Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lizhe Ai
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuqing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
21
|
Antoniou A, Auderset L, Kaurani L, Sebastian E, Zeng Y, Allahham M, Cases-Cunillera S, Schoch S, Gründemann J, Fischer A, Schneider A. Neuronal extracellular vesicles and associated microRNAs induce circuit connectivity downstream BDNF. Cell Rep 2023; 42:112063. [PMID: 36753414 DOI: 10.1016/j.celrep.2023.112063] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/13/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as mediators of cellular communication, in part via the delivery of associated microRNAs (miRNAs), small non-coding RNAs that regulate gene expression. We show that brain-derived neurotrophic factor (BDNF) mediates the sorting of miR-132-5p, miR-218-5p, and miR-690 in neuron-derived EVs. BDNF-induced EVs in turn increase excitatory synapse formation in recipient hippocampal neurons, which is dependent on the inter-neuronal delivery of these miRNAs. Transcriptomic analysis further indicates the differential expression of developmental and synaptogenesis-related genes by BDNF-induced EVs, many of which are predicted targets of miR-132-5p, miR-218-5p, and miR-690. Furthermore, BDNF-induced EVs up-regulate synaptic vesicle (SV) clustering in a transmissible manner, thereby increasing synaptic transmission and synchronous neuronal activity. As BDNF and EV-miRNAs miR-218 and miR-132 were previously implicated in neuropsychiatric disorders such as anxiety and depression, our results contribute to a better understanding of disorders characterized by aberrant neural circuit connectivity.
Collapse
Affiliation(s)
- Anna Antoniou
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| | - Loic Auderset
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Lalit Kaurani
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany; Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075 Göttingen, Germany
| | - Eva Sebastian
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Yuzhou Zeng
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Maria Allahham
- Institute of Bio- and Geosciences 1, Forschungszentrum Jülich, 52428 Jülich, Germany; Aachen Biology and Biotechnology, RWTH Aachen University, 52056 Aachen, Germany
| | - Silvia Cases-Cunillera
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Susanne Schoch
- Section for Translational Epilepsy Research, Department of Neuropathology, University of Bonn Medical Center, 53127 Bonn, Germany
| | - Jan Gründemann
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075 Göttingen, Germany; Department for Systems Medicine and Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, 37075 Göttingen, Germany
| | - Anja Schneider
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn Medical Center, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany.
| |
Collapse
|
22
|
Braun JEA. Extracellular chaperone networks and the export of J-domain proteins. J Biol Chem 2023; 299:102840. [PMID: 36581212 PMCID: PMC9867986 DOI: 10.1016/j.jbc.2022.102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022] Open
Abstract
An extracellular network of molecular chaperones protects a diverse array of proteins that reside in or pass through extracellular spaces. Proteins in the extracellular milieu face numerous challenges that can lead to protein misfolding and aggregation. As a checkpoint for proteins that move between cells, extracellular chaperone networks are of growing clinical relevance. J-domain proteins (JDPs) are ubiquitous molecular chaperones that are known for their essential roles in a wide array of fundamental cellular processes through their regulation of heat shock protein 70s. As the largest molecular chaperone family, JDPs have long been recognized for their diverse functions within cells. Some JDPs are elegantly selective for their "client proteins," some do not discriminate among substrates and others act cooperatively on the same target. The realization that JDPs are exported through both classical and unconventional secretory pathways has fueled investigation into the roles that JDPs play in protein quality control and intercellular communication. The proposed functions of exported JDPs are diverse. Studies suggest that export of DnaJB11 enhances extracellular proteostasis, that intercellular movement of DnaJB1 or DnaJB6 enhances the proteostasis capacity in recipient cells, whereas the import of DnaJB8 increases resistance to chemotherapy in recipient cancer cells. In addition, the export of DnaJC5 and concurrent DnaJC5-dependent ejection of dysfunctional and aggregation-prone proteins are implicated in the prevention of neurodegeneration. This review provides a brief overview of the current understanding of the extracellular chaperone networks and outlines the first wave of studies describing the cellular export of JDPs.
Collapse
Affiliation(s)
- Janice E A Braun
- Department of Biochemistry and Molecular Biology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Blommer J, Pitcher T, Mustapic M, Eren E, Yao PJ, Vreones MP, Pucha KA, Dalrymple-Alford J, Shoorangiz R, Meissner WG, Anderson T, Kapogiannis D. Extracellular vesicle biomarkers for cognitive impairment in Parkinson's disease. Brain 2023; 146:195-208. [PMID: 35833836 PMCID: PMC10060702 DOI: 10.1093/brain/awac258] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 06/22/2022] [Indexed: 01/11/2023] Open
Abstract
Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-β42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.
Collapse
Affiliation(s)
- Joseph Blommer
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Toni Pitcher
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Maja Mustapic
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Erden Eren
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Pamela J Yao
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Michael P Vreones
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - Krishna A Pucha
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| | - John Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch 8041, New Zealand
| | - Reza Shoorangiz
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
| | - Wassilios G Meissner
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- University of Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
- Service de Neurologie—Maladies Neurodégénératives, CHU Bordeaux, F-33000 Bordeaux, France
| | - Tim Anderson
- New Zealand Brain Research Institute, Christchurch 8011, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Dimitrios Kapogiannis
- National Institute on Aging, Intramural Research Program, Laboratory of Clinical Investigation, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Nieves Torres D, Lee SH. Inter-neuronal signaling mediated by small extracellular vesicles: wireless communication? Front Mol Neurosci 2023; 16:1187300. [PMID: 37181650 PMCID: PMC10172472 DOI: 10.3389/fnmol.2023.1187300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional inter-neuronal communication conceptualizes the wired method of chemical synapses that physically connect pre-and post-synaptic neurons. In contrast, recent studies indicate that neurons also utilize synapse-independent, hence "wireless" broadcasting-type communications via small extracellular vesicles (EVs). Small EVs including exosomes are secreted vesicles released by cells and contain a variety of signaling molecules including mRNAs, miRNAs, lipids, and proteins. Small EVs are subsequently absorbed by local recipient cells via either membrane fusion or endocytic processes. Therefore, small EVs enable cells to exchange a "packet" of active biomolecules for communication purposes. It is now well established that central neurons also secrete and uptake small EVs, especially exosomes, a type of small EVs that are derived from the intraluminal vesicles of multivesicular bodies. Specific molecules carried by neuronal small EVs are shown to affect a variety of neuronal functions including axon guidance, synapse formation, synapse elimination, neuronal firing, and potentiation. Therefore, this type of volume transmission mediated by small EVs is thought to play important roles not only in activity-dependent changes in neuronal function but also in the maintenance and homeostatic control of local circuitry. In this review, we summarize recent discoveries, catalog neuronal small EV-specific biomolecules, and discuss the potential scope of small EV-mediated inter-neuronal signaling.
Collapse
Affiliation(s)
- Damaris Nieves Torres
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sang H Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Sang H. Lee,
| |
Collapse
|
25
|
Baratta AM, Mangieri RA, Aziz HC, Lopez MF, Farris SP, Homanics GE. Effect of chronic intermittent ethanol vapor exposure on RNA content of brain-derived extracellular vesicles. Alcohol 2022; 105:9-24. [PMID: 36055466 PMCID: PMC10173183 DOI: 10.1016/j.alcohol.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 01/26/2023]
Abstract
Extracellular vesicles (EVs) are important players in normal biological function and disease pathogenesis. Of the many biomolecules packaged into EVs, coding and noncoding RNA transcripts are of particular interest for their ability to significantly alter cellular and molecular processes. Here we investigate how chronic ethanol exposure impacts EV RNA cargo and the functional outcomes of these changes. Following chronic intermittent ethanol (CIE) vapor exposure, EVs were isolated from male and female C57BL/6J mouse brain. Total RNA from EVs was analyzed by lncRNA/mRNA microarray to survey changes in RNA cargo following vapor exposure. Differential expression analysis of microarray data revealed a number of lncRNA and mRNA types differentially expressed in CIE compared to control EVs. Weighted gene co-expression network analysis identified multiple male and female specific modules related to neuroinflammation, cell death, demyelination, and synapse organization. To functionally test these changes, whole-cell voltage-clamp recordings were used to assess synaptic transmission. Incubation of nucleus accumbens brain slices with EVs led to a reduction in spontaneous excitatory postsynaptic current amplitude, although no changes in synaptic transmission were observed between control and CIE EV administration. These results indicate that CIE vapor exposure significantly changes the RNA cargo of brain-derived EVs, which have the ability to impact neuronal function.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Regina A Mangieri
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Heather C Aziz
- College of Pharmacy, University of Texas at Austin, Texas, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Science, Charleston Alcohol Research Center, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Sean P Farris
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States.
| |
Collapse
|
26
|
Dewanjee S, Chakraborty P, Bhattacharya H, Chacko L, Singh B, Chaudhary A, Javvaji K, Pradhan SR, Vallamkondu J, Dey A, Kalra RS, Jha NK, Jha SK, Reddy PH, Kandimalla R. Altered glucose metabolism in Alzheimer's disease: Role of mitochondrial dysfunction and oxidative stress. Free Radic Biol Med 2022; 193:134-157. [PMID: 36206930 DOI: 10.1016/j.freeradbiomed.2022.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/06/2022]
Abstract
Increasing evidence suggests that abnormal cerebral glucose metabolism is largely present in Alzheimer's disease (AD). The brain utilizes glucose as its main energy source and a decline in its metabolism directly reflects on brain function. Weighing on recent evidence, here we systematically assessed the aberrant glucose metabolism associated with amyloid beta and phosphorylated tau accumulation in AD brain. Interlink between insulin signaling and AD highlighted the involvement of the IRS/PI3K/Akt/AMPK signaling, and GLUTs in the disease progression. While shedding light on the mitochondrial dysfunction in the defective glucose metabolism, we further assessed functional consequences of AGEs (advanced glycation end products) accumulation, polyol activation, and other contributing factors including terminal respiration, ROS (reactive oxygen species), mitochondrial permeability, PINK1/parkin defects, lysosome-mitochondrial crosstalk, and autophagy/mitophagy. Combined with the classic plaque and tangle pathologies, glucose hypometabolism with acquired insulin resistance and mitochondrial dysfunction potentiate these factors to exacerbate AD pathology. To this end, we further reviewed AD and DM (diabetes mellitus) crosstalk in disease progression. Taken together, the present work discusses the emerging role of altered glucose metabolism, contributing impact of insulin signaling, and mitochondrial dysfunction in the defective cerebral glucose utilization in AD.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, West Bengal, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute (IVRI), Regional Station, Palampur, 176061, Himachal Pradesh, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, 132001, Haryana, India
| | - Kalpana Javvaji
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India
| | | | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Rajkumar Singh Kalra
- Immune Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 9040495, Japan
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, UP, 201310, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Neurology Departments School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, India; Department of Biochemistry, Kakatiya Medical College, Warangal, India.
| |
Collapse
|
27
|
Progress and gaps of extracellular vesicle-mediated intercellular cargo transfer in the central nervous system. Commun Biol 2022; 5:1223. [PMID: 36369335 PMCID: PMC9652383 DOI: 10.1038/s42003-022-04050-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
A fundamentally novel function proposed for extracellular vesicles (EVs) is to transfer bioactive molecules in intercellular signaling. In this minireview, we discuss recent progress on EV-mediated cargo transfer in the central nervous system (CNS) and major gaps in previous studies. We also suggest a set of experiments necessary for bridging the gaps and establishing the physiological roles of EV-mediated cargo transfer.
Collapse
|
28
|
Jiao Z, He Z, Liu N, Lai Y, Zhong T. Multiple roles of neuronal extracellular vesicles in neurological disorders. Front Cell Neurosci 2022; 16:979856. [PMID: 36204449 PMCID: PMC9530318 DOI: 10.3389/fncel.2022.979856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathy is a growing public health problem in the aging, adolescent, and sport-playing populations, and the number of individuals at risk of neuropathy is growing; its risks include aging, violence, and conflicts between players. The signal pathways underlying neuronal aging and damage remain incompletely understood and evidence-based treatment for patients with neuropathy is insufficiently delivered; these are two of the reasons that explain why neuropathy is still not completely curable and why the progression of the disease cannot be inhibited. Extracellular vesicles (EVs) shuttling is an important pathway in disease progression. Previous studies have focused on the EVs of cells that support and protect neurons, such as astrocytes and microglia. This review aims to address the role of neuronal EVs by delineating updated mechanisms of neuronal damage and summarizing recent findings on the function of neuronal EVs. Challenges and obstacles in isolating and analyzing neuronal EVs are discussed, with an emphasis on neuron as research object and modification of EVs on translational medicine.
Collapse
Affiliation(s)
- Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Branch of National Geriatric Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Zhigang Jiao,
| | - Zhengyi He
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Nanhai Liu
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanwei Lai
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
29
|
Demais V, Pohl A, Wunderlich KA, Pfaller AM, Kaplan L, Barthélémy A, Dittrich R, Puig B, Giebel B, Hauck SM, Pfrieger FW, Grosche A. Release of VAMP5-positive extracellular vesicles by retinal Müller glia in vivo. J Extracell Vesicles 2022; 11:e12254. [PMID: 36043482 PMCID: PMC9428896 DOI: 10.1002/jev2.12254] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022] Open
Abstract
Cell-cell interactions in the central nervous system are based on the release of molecules mediating signal exchange and providing structural and trophic support through vesicular exocytosis and the formation of extracellular vesicles. The specific mechanisms employed by each cell type in the brain are incompletely understood. Here, we explored the means of communication used by Müller cells, a type of radial glial cells in the retina, which forms part of the central nervous system. Using immunohistochemical, electron microscopic, and molecular analyses, we provide evidence for the release of distinct extracellular vesicles from endfeet and microvilli of retinal Müller cells in adult mice in vivo. We identify VAMP5 as a Müller cell-specific SNARE component that is part of extracellular vesicles and responsive to ischemia, and we reveal differences between the secretomes of immunoaffinity-purified Müller cells and neurons in vitro. Our findings suggest extracellular vesicle-based communication as an important mediator of cellular interactions in the retina.
Collapse
Affiliation(s)
- Valerie Demais
- Plateforme Imagerie In Vitro, CNRS UAR 3156, NeuropôleUniversity of StrasbourgStrasbourgFrance
| | - Anne Pohl
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
- Institute of Human GeneticsUniversity of RegensburgRegensburgGermany
| | - Kirsten A. Wunderlich
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| | - Anna M. Pfaller
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| | - Lew Kaplan
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| | - Amelie Barthélémy
- Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance
| | - Robin Dittrich
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Berta Puig
- Neurology DepartmentExperimental Research in Stroke and Inflammation (ERSI)University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core and Research Unit Protein ScienceHelmholtz‐Zentrum MünchenMünchenGermany
| | - Frank W. Pfrieger
- Plateforme Imagerie In Vitro, CNRS UAR 3156, NeuropôleUniversity of StrasbourgStrasbourgFrance
- Centre National de la Recherche ScientifiqueUniversité de StrasbourgInstitut des Neurosciences Cellulaires et IntégrativesStrasbourgFrance
| | - Antje Grosche
- Department of Physiological GenomicsBioMedical Center BMCLudwig‐Maximilian UniversityPlanegg‐MartinsriedGermany
| |
Collapse
|
30
|
Lin JR, Ding LLQ, Xu L, Huang J, Zhang ZB, Chen XH, Cheng YW, Ruan CC, Gao PJ. Brown Adipocyte ADRB3 Mediates Cardioprotection via Suppressing Exosomal iNOS. Circ Res 2022; 131:133-147. [PMID: 35652349 DOI: 10.1161/circresaha.121.320470] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ADRB3 (β3-adrenergic receptors), which is predominantly expressed in brown adipose tissue (BAT), can activate BAT and improve metabolic health. Previous studies indicate that the endocrine function of BAT is associated with cardiac homeostasis and diseases. Here, we investigate the role of ADRB3 activation-mediated BAT function in cardiac remodeling. METHODS BKO (brown adipocyte-specific ADRB3 knockout) and littermate control mice were subjected to Ang II (angiotensin II) for 28 days. Exosomes from ADRB3 antagonist SR59230A (SR-exo) or agonist mirabegron (MR-exo) treated brown adipocytes were intravenously injected to Ang II-infused mice. RESULTS BKO markedly accelerated cardiac hypertrophy and fibrosis compared with control mice after Ang II infusion. In vitro, ADRB3 KO rather than control brown adipocytes aggravated expression of fibrotic genes in cardiac fibroblasts, and this difference was not detected after exosome inhibitor treatment. Consistently, BKO brown adipocyte-derived exosomes accelerated Ang II-induced cardiac fibroblast dysfunction compared with control exosomes. Furthermore, SR-exo significantly aggravated Ang II-induced cardiac remodeling, whereas MR-exo attenuated cardiac dysfunction. Mechanistically, ADRB3 KO or SR59230A treatment in brown adipocytes resulted an increase of iNOS (inducible nitric oxide synthase) in exosomes. Knockdown of iNOS in brown adipocytes reversed SR-exo-aggravated cardiac remodeling. CONCLUSIONS Our data illustrated a new endocrine pattern of BAT in regulating cardiac remodeling, suggesting that activation of ADRB3 in brown adipocytes offers cardiac protection through suppressing exosomal iNOS.
Collapse
Affiliation(s)
- Jing-Rong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Li-Li-Qiang Ding
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Lian Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Ze-Bei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Yu-Wen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, China (C.-C.R.)
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| |
Collapse
|
31
|
Tang F, Fan J, Zhang X, Zou Z, Xiao D, Li X. The Role of Vti1a in Biological Functions and Its Possible Role in Nervous System Disorders. Front Mol Neurosci 2022; 15:918664. [PMID: 35711736 PMCID: PMC9197314 DOI: 10.3389/fnmol.2022.918664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Vesicle transport through interaction with t-SNAREs 1A (Vti1a), a member of the N-ethylmaleimide-sensitive factor attachment protein receptor protein family, is involved in cell signaling as a vesicular protein and mediates vesicle trafficking. Vti1a appears to have specific roles in neurons, primarily by regulating upstream neurosecretory events that mediate exocytotic proteins and the availability of secretory organelles, as well as regulating spontaneous synaptic transmission and postsynaptic efficacy to control neurosecretion. Vti1a also has essential roles in neural development, autophagy, and unconventional extracellular transport of neurons. Studies have shown that Vti1a dysfunction plays critical roles in pathological mechanisms of Hepatic encephalopathy by influencing spontaneous neurotransmission. It also may have an unknown role in amyotrophic lateral sclerosis. A VTI1A variant is associated with the risk of glioma, and the fusion product of the VTI1A gene and the adjacent TCF7L2 gene is involved in glioma development. This review summarizes Vti1a functions in neurons and highlights the role of Vti1a in the several nervous system disorders.
Collapse
Affiliation(s)
- Fajuan Tang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Xiaoyan Zhang
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Zhuan Zou
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- Dongqiong Xiao,
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
- *Correspondence: Xihong Li,
| |
Collapse
|
32
|
Salvany S, Casanovas A, Piedrafita L, Gras S, Calderó J, Esquerda JE. Accumulation of misfolded SOD1 outlines distinct patterns of motor neuron pathology and death during disease progression in a SOD1 G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2022; 32:e13078. [PMID: 35584812 PMCID: PMC9616096 DOI: 10.1111/bpa.13078] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Early misfolded superoxide dismutase 1 (mfSOD1) accumulation, motor neuron (MN) degeneration, and microgliosis are hallmark pathological features in SOD1G93A amyotrophic lateral sclerosis (ALS) mice. Because of the different vulnerabilities of distinct MN subtypes, degenerating and surviving MNs coexist in different proportions during disease progression. By examining the expression of misfolded conformers of SOD1 using specific antibodies, we defined distinct MN phenotypes that were evaluated during disease progression and the local neuroinflammatory reaction. The most severe phenotype corresponded to somata of fast‐twitch subtype MNs, which exhibited highly positive mfSOD1 immunostaining and an extreme degree of vacuolar degeneration. Vacuoles, which are of mitochondrial origin, contain mfSOD1 in conjunction with nonmitochondrial proteins, such as chromogranin, CD81, and flotillin. The fusion of ER‐derived vesicles enriched in mfSOD1 with outer mitochondrial membranes is thought to be the primary mechanism for vacuole formation. In addition, the ulterior coalescence of enlarged mitochondria may lead to the formation of giant vacuoles. Vacuolar degeneration is a transient degenerative process occurring early during the presymptomatic stages of the disease in ALS mice. Some vacuolated MNs are also positive for pMLKL, the effector protein of necroptosis. This indicates a newly described mechanism in which extracellular vesicles derived from damaged MNs, via cellular secretion or necroptotic disruption, may be the triggers for initiating neuroinflammation, glial‐mediated neurotoxicity, and disease spreading. Furthermore, as MN degeneration in mutant SOD1 mice is noncell autonomous, the effects of experimentally increasing or decreasing the microglial response on the expression of MN phenotypes were also evaluated, demonstrating bidirectional cross talk signaling between the degree of expression of mfSOD1 and local neuroinflammation. More detailed knowledge regarding these processes occurring long before the end stages of the disease is necessary to identify novel molecular targets for future preclinical testing.
Collapse
Affiliation(s)
- Sara Salvany
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Anna Casanovas
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Lídia Piedrafita
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Sílvia Gras
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Jordi Calderó
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| | - Josep E Esquerda
- Patologia Neuromuscular Experimental, Departament de Medicina Experimental, Facultat de Medicina, Universitat de Lleida and Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
33
|
Eren E, Leoutsakos JM, Troncoso J, Lyketsos CG, Oh ES, Kapogiannis D. Neuronal-Derived EV Biomarkers Track Cognitive Decline in Alzheimer’s Disease. Cells 2022; 11:cells11030436. [PMID: 35159246 PMCID: PMC8834433 DOI: 10.3390/cells11030436] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
The hallmarks of Alzheimer’s disease (AD) pathology are senile plaques containing amyloid-beta (Aβ) and neurofibrillary tangles containing hyperphosphorylated tau. Additional pathologies often co-exist, whereas multiple pathogenic mechanisms are involved in AD, especially synaptic degeneration, which necessitate the need for synaptic integrity-related biomarkers alongside Aβ- and tau-related biomarkers. Plasma neuron-derived Extracellular Vesicles EVs (NDEVs) provide biomarkers related to Aβ and tau and synaptic degeneration. Here, to further establish the latter as a “liquid biopsy” for AD, we examined their relationship with ante-mortem cognition in pathologically-confirmed AD cases. We immunoprecipitated NDEVs by targeting neuronal marker L1CAM from ante-mortem plasma samples from 61 autopsy-confirmed cases of pure AD or AD with additional pathologies and measured Aβ42, p181-Tau, total Tau, synaptophysin, synaptopodin and three canonical EV markers, CD63, CD81 and CD9. Higher NDEV Aβ42 levels were consistently associated with better cognitive status, memory, fluency, working memory and executive function. Higher levels of NDEV synaptic integrity-related biomarkers were associated with better performance on executive function tasks. Our findings motivate the hypothesis that releasing Aβ42-laden NDEVs may be an adaptive mechanism in AD.
Collapse
Affiliation(s)
- Erden Eren
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Jeannie-Marie Leoutsakos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (J.-M.L.); (C.G.L.)
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA;
| | - Constantine G. Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (J.-M.L.); (C.G.L.)
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Esther S. Oh
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
- Correspondence: (E.S.O.); (D.K.)
| | - Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA;
- Correspondence: (E.S.O.); (D.K.)
| |
Collapse
|
34
|
Schiapparelli LM, Sharma P, He HY, Li J, Shah SH, McClatchy DB, Ma Y, Liu HH, Goldberg JL, Yates JR, Cline HT. Proteomic screen reveals diverse protein transport between connected neurons in the visual system. Cell Rep 2022; 38:110287. [PMID: 35081342 PMCID: PMC8906846 DOI: 10.1016/j.celrep.2021.110287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Intercellular transfer of toxic proteins between neurons is thought to contribute to neurodegenerative disease, but whether direct interneuronal protein transfer occurs in the healthy brain is not clear. To assess the prevalence and identity of transferred proteins and the cellular specificity of transfer, we biotinylated retinal ganglion cell proteins in vivo and examined biotinylated proteins transported through the rodent visual circuit using microscopy, biochemistry, and mass spectrometry. Electron microscopy demonstrated preferential transfer of biotinylated proteins from retinogeniculate inputs to excitatory lateral geniculate nucleus (LGN) neurons compared with GABAergic neurons. An unbiased mass spectrometry-based screen identified ∼200 transneuronally transported proteins (TNTPs) isolated from the visual cortex. The majority of TNTPs are present in neuronal exosomes, and virally expressed TNTPs, including tau and β-synuclein, were detected in isolated exosomes and postsynaptic neurons. Our data demonstrate transfer of diverse endogenous proteins between neurons in the healthy intact brain and suggest that TNTP transport may be mediated by exosomes.
Collapse
Affiliation(s)
- Lucio M Schiapparelli
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pranav Sharma
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Xosomix, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Hai-Yan He
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jianli Li
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sahil H Shah
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Neuroscience Graduate Program and Medical Scientist Training Program, University of California, San Diego, La Jolla, CA 92093, USA; Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA 94303, USA
| | - Daniel B McClatchy
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanhui Ma
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Han-Hsuan Liu
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jeffrey L Goldberg
- Byers Eye Institute and Spencer Center for Vision Research, Stanford University, Palo Alto, CA 94303, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hollis T Cline
- Neuroscience Department and Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Moreira R, Mendonça LS, Pereira de Almeida L. Extracellular Vesicles Physiological Role and the Particular Case of Disease-Spreading Mechanisms in Polyglutamine Diseases. Int J Mol Sci 2021; 22:ijms222212288. [PMID: 34830171 PMCID: PMC8621536 DOI: 10.3390/ijms222212288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research demonstrated pathological spreading of the disease-causing proteins from one focal point across other brain regions for some neurodegenerative diseases, such as Parkinson's and Alzheimer's disease. Spreading mediated by extracellular vesicles is one of the proposed disease-spreading mechanisms. Extracellular vesicles are cell membrane-derived vesicles, used by cells for cell-to-cell communication and excretion of toxic components. Importantly, extracellular vesicles carrying pathological molecules, when internalized by "healthy" cells, may trigger pathological pathways and, consequently, promote disease spreading to neighboring cells. Polyglutamine diseases are a group of genetic neurodegenerative disorders characterized by the accumulation of mutant misfolded proteins carrying an expanded tract of glutamines, including Huntington's and Machado-Joseph disease. The pathological spread of the misfolded proteins or the corresponding mutant mRNA has been explored. The understanding of the disease-spreading mechanism that plays a key role in the pathology progression of these diseases can result in the development of effective therapeutic approaches to stop disease progression, arresting the spread of the toxic components and disease aggravation. Therefore, the present review's main focus is the disease-spreading mechanisms with emphasis on polyglutamine diseases and the putative role played by extracellular vesicles in this process.
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Liliana S. Mendonça
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| | - Luís Pereira de Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (L.S.M.); (L.P.d.A.); Tel.: +351-239-820-190 (L.S.M.)
| |
Collapse
|
36
|
Mitochondrial Electron Transport Chain Protein Abnormalities Detected in Plasma Extracellular Vesicles in Alzheimer's Disease. Biomedicines 2021; 9:biomedicines9111587. [PMID: 34829816 PMCID: PMC8615874 DOI: 10.3390/biomedicines9111587] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria provide energy to neurons through oxidative phosphorylation and eliminate Reactive Oxygen Species (ROS) through Superoxide Dismutase 1 (SOD1). Dysfunctional mitochondria, manifesting decreased activity of electron transport chain (ETC) complexes and high ROS levels, are involved in Alzheimer’s disease (AD) pathogenesis. We hypothesized that neuronal mitochondrial dysfunction in AD is reflected in ETC and SOD1 levels and activity in plasma neuron-derived extracellular vesicles (NDEVs). We immunoprecipitated NDEVs targeting neuronal marker L1CAM from two cohorts: one including 22 individuals with early AD and 29 control subjects; and another including 14 individuals with early AD and 14 control subjects. In the first cohort, we measured levels of complexes I, III, IV, ATP synthase, and SOD1; in the second cohort, we measured levels and catalytic activity of complexes IV and ATP synthase. AD individuals had lower levels of complexes I (p < 0.0001), III (p < 0.0001), IV (p = 0.0061), and V (p < 0.0001), and SOD1 (p < 0.0001) compared to controls. AD individuals also had lower levels of catalytic activity of complex IV (p = 0.0214) and ATP synthase (p < 0.0001). NDEVs confirm quantitative and functional abnormalities in ECT complexes and SOD1 previously observed in AD models and during autopsy, opening the way for using them as biomarkers for mitochondrial dysfunction in AD.
Collapse
|
37
|
Verweij FJ, Balaj L, Boulanger CM, Carter DRF, Compeer EB, D'Angelo G, El Andaloussi S, Goetz JG, Gross JC, Hyenne V, Krämer-Albers EM, Lai CP, Loyer X, Marki A, Momma S, Nolte-'t Hoen ENM, Pegtel DM, Peinado H, Raposo G, Rilla K, Tahara H, Théry C, van Royen ME, Vandenbroucke RE, Wehman AM, Witwer K, Wu Z, Wubbolts R, van Niel G. The power of imaging to understand extracellular vesicle biology in vivo. Nat Methods 2021; 18:1013-1026. [PMID: 34446922 PMCID: PMC8796660 DOI: 10.1038/s41592-021-01206-3] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/20/2021] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.
Collapse
Affiliation(s)
- Frederik J Verweij
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - David R F Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Ewoud B Compeer
- Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Samir El Andaloussi
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
| | | | - Vincent Hyenne
- INSERM UMR_S1109, Tumor Biomechanics Lab, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Equipe Labellisée Ligue contre le Cancer, Strasbourg, France
- CNRS SNC5055, Strasbourg, France
| | - Eva-Maria Krämer-Albers
- Johannes Gutenberg-Universität Mainz, Institute of Developmental Biology and Neurobiology, Mainz, Germany
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Xavier Loyer
- Université de Paris, PARCC, INSERM, Paris, France
| | - Alex Marki
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Goethe-University, Frankfurt am Main, Germany
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - D Michiel Pegtel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, Cancer Center Amsterdam, Amsterdam, the Netherlands
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144 Cell Biology and Cancer, Paris, France
| | - Kirsi Rilla
- University of Eastern Finland, Institute of Biomedicine, Kuopio, Finland
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Immunity and Cancer, Paris, France
| | | | - Roosmarijn E Vandenbroucke
- VIB Center for Inflammation Research and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ann M Wehman
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology and Neurology and the Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiwei Wu
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
- Medical School, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Richard Wubbolts
- Department of Biomolecular Health Sciences, Faculty of veterinary medicine, Utrecht University, Utrecht, the Netherlands
| | - Guillaume van Niel
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France.
| |
Collapse
|
38
|
Servetto A, Kollipara R, Formisano L, Lin CC, Lee KM, Sudhan DR, Gonzalez-Ericsson PI, Chatterjee S, Guerrero-Zotano A, Mendiratta S, Akamatsu H, James N, Bianco R, Hanker AB, Kittler R, Arteaga CL. Nuclear FGFR1 Regulates Gene Transcription and Promotes Antiestrogen Resistance in ER + Breast Cancer. Clin Cancer Res 2021; 27:4379-4396. [PMID: 34011560 PMCID: PMC8338892 DOI: 10.1158/1078-0432.ccr-20-3905] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 01/09/2023]
Abstract
PURPOSE FGFR1 overexpression has been associated with endocrine resistance in ER+ breast cancer. We found FGFR1 localized in the nucleus of breast cancer cells in primary tumors resistant to estrogen suppression. We investigated a role of nuclear FGFR1 on gene transcription and antiestrogen resistance. EXPERIMENTAL DESIGN Tumors from patients treated with letrozole were subjected to Ki67 and FGFR1 IHC. MCF7 cells were transduced with FGFR1(SP-)(NLS) to promote nuclear FGFR1 overexpression. FGFR1 genomic activity in ER+/FGFR1-amplified breast cancer cells ± FOXA1 siRNA or ± the FGFR tyrosine kinase inhibitor (TKI) erdafitinib was examined by chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq). The nuclear and chromatin-bound FGFR1 interactome was investigated by mass spectrometry (MS). RESULTS High nuclear FGFR1 expression in ER+ primary tumors positively correlated with post-letrozole Ki67 values. Nuclear FGFR1 overexpression influenced gene transcription and promoted resistance to estrogen suppression and to fulvestrant in vivo. A gene expression signature induced by nuclear FGFR1 correlated with shorter survival in the METABRIC cohort of patients treated with antiestrogens. ChIP-Seq revealed FGFR1 occupancy at transcription start sites, overlapping with active transcription histone marks. MS analysis of the nuclear FGFR1 interactome identified phosphorylated RNA-Polymerase II and FOXA1, with FOXA1 RNAi impairing FGFR1 recruitment to chromatin. Treatment with erdafitinib did not impair nuclear FGFR1 translocation and genomic activity. CONCLUSIONS These data suggest nuclear FGFR1 contributes to endocrine resistance by modulating gene transcription in ER+ breast cancer. Nuclear FGFR1 activity was unaffected by FGFR TKIs, thus supporting the development of treatment strategies to inhibit nuclear FGFR1 in ER+/FGFR1 overexpressing breast cancer.
Collapse
Affiliation(s)
- Alberto Servetto
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Rahul Kollipara
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Chang-Ching Lin
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Kyung-Min Lee
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Dhivya R. Sudhan
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | | | - Sumanta Chatterjee
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | | | - Saurabh Mendiratta
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Hiroaki Akamatsu
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Nicholas James
- Department of Cell and Molecular Biology, University of Hawaii at Manoa, Manoa, Hawaii
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ariella B. Hanker
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Ralf Kittler
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas
| | - Carlos L. Arteaga
- Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas Texas.,Corresponding Author: Carlos L. Arteaga, The University of Texas Southwestern Medical Center Simmons Comprehensive Cancer Center, 5323 Harry Hines Boulevard, Dallas, TX 75390–8590. E-mail:
| |
Collapse
|