1
|
Artusa V, De Luca L, Clerici M, Trabattoni D. Connecting the dots: Mitochondrial transfer in immunity, inflammation, and cancer. Immunol Lett 2025; 274:106992. [PMID: 40054017 DOI: 10.1016/j.imlet.2025.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Mitochondria are more than mere energy generators; they are multifaceted organelles that integrate metabolic, signalling, and immune functions, making them indispensable players in maintaining cellular and systemic health. Mitochondrial transfer has recently garnered attention due to its potential role in several physiological and pathological processes. This process involves multiple mechanisms by which mitochondria, along with mitochondrial DNA and other components, are exchanged between cells. In this review, we examine the critical roles of mitochondrial transfer in health and disease, focusing on its impact on immune cell function, the resolution of inflammation, tissue repair, and regeneration. Additionally, we explore its implications in viral infections and cancer progression. We also provide insights into emerging therapeutic applications, emphasizing its potential to address unmet clinical needs.
Collapse
Affiliation(s)
- Valentina Artusa
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy.
| | - Lara De Luca
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 12, 20122, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 12, 20122, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148 Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy.
| |
Collapse
|
2
|
Awad-Igbaria Y, Sakas R, Milhem L, Fishboom T, Ben-Menashe A, Edelman D, Shamir A, Soustiel JF, Palzur E. Mitochondrial translocator-protein ligand etifoxine reduces pain symptoms and protects against motor dysfunction development following peripheral nerve injury in rats. Neuropharmacology 2025; 273:110456. [PMID: 40189017 DOI: 10.1016/j.neuropharm.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
Peripheral nerve injury enhances mitochondrial translocator protein (TSPO) expression in the spinal cord and dorsal root ganglia (DRG), which is associated with neuroinflammation and mitochondrial dysfunction contributing to chronic pain development. Here, we investigate the effect of TSPO ligand Etifoxine, on the development of chronic pain and motor dysfunction following sciatic nerve injury. Mechanical and thermal sensitivity, as well as motor function, were measured in rats before and after sciatic nerve crush (SNC). Rats were treated with the Etifoxine (50 mg/kg, twice daily) for one week. At the end of the experiment, RT-PCR and immunohistochemistry (IHC) were performed to assess mitochondrial stress and neuroinflammation. Additionally, high-resolution respirometry (O2k) was used to evaluate mitochondrial function in the spinal cord following mitochondrial permeability transition pore (mPTP) induction by Ca2+. Etifoxine treatment post-SNC alleviated mechanical and thermal hypersensitivity, as well as motor dysfunction in rats. In addition, Etifoxine treatment modulates neuroinflammation and mitochondrial stress. Specifically, we found a significant reduction in microglia presence and the transcription of pro-inflammatory cytokines (TNFα, IL-6, IL-1β) in the DRG and spinal cord of the SNC/etifoxine-treated group. Furthermore, Etifoxine treatment prevent the decline in mitochondrial respiration, including non-phosphorylation, ATP-linked respiration, and maximal respiration, after mPTP induction by Ca2+. Our findings suggest that TSPO-ligand Etifoxine protects against motor dysfunction and the development of chronic pain by reducing neuroinflammation and apoptosis in the DRG and spinal cord. Importantly, the beneficial effects of TSPO-ligands are reflected in the restoration of the mitochondrial function under challenging conditions.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel.
| | - Reem Sakas
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Lama Milhem
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Tom Fishboom
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Aviv Ben-Menashe
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Doron Edelman
- Department of Neurosurgery, Sourasky Medical Center, Tel-Aviv, Israel
| | - Alon Shamir
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel
| | - Jean F Soustiel
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel; Department of Neurosurgery, Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
3
|
Sheng G, Wu Y, Liu H, Zhang P, Zhang Z, Yu L, Cheng M, Zhu H. Puerarin Improves Cancer-Induced Bone Pain by Recovering Mitochondrial Dysfunction in the Spinal Cord. J Neuroimmune Pharmacol 2025; 20:67. [PMID: 40493135 DOI: 10.1007/s11481-025-10224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 06/02/2025] [Indexed: 06/12/2025]
Abstract
Cancer metastases induce bone pain and central sensitization in the spinal cord. Mitochondrial dysfunction is associated with pian signal transmission and involved in cancer-induced bone pain. Pueratin (Pue) is a natural isoflavone compound that works as a potential natural neuroprotective agent. However, the mechanisms of Pue on cancer pain remain unclear. In this study, a cancer-induced bone pain (CIBP) rat model was established and Pue was administered intrathecally. As a result, CIBP model rats exhibited as the evoked mechanical pain, thermal pain, and spontaneous pain, the elevated neurological damage and mitochondrial dysfunction in the spinal cord. Pue administration improved pain related behaviors, decreased the neuronal activity, reduced NLRP3 inflammasome-mediated inflammation, and elevated mitochondrial dysfunction in the spinal cords of CIBP rats. Proteomical data showed that in the spinal synaptosomes, 59 differentially expressed proteins (DEPs) were significantly up-regulated while 128 DEPs were down-regulated. Among them, 5 genes were found to be overlapped for CIBP and Pue-potential targets and Src was belonged to the hub genes. Database analysis and experimental assay showed that Pue bound with Src at the affinity of 7.9 ± 0.2 µM, and decreased Src level and phosphorylation in the spinal cord of CIBP rats and in primary astrocytic cells. In addition, Pue also recovered levels of mitochondrial membrane potential and reactive oxygen species, and decreased inflammation in primary astrocytic cells. To summarize, Pue inhibits spinal Src activity, restores mitochondrial function, reduces central sensitization in the spinal cord, and relieves cancer-induced bone pain. This study may provide a basis for the application of Pue on the relief of cancer pain.
Collapse
Affiliation(s)
- Gege Sheng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China
| | - Yin Wu
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hongyan Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China
| | - Peigen Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China
| | - Zhipeng Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China
| | - Liangzhu Yu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China
| | - Menglin Cheng
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China
| | - Haili Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei, 437100, P.R. China.
| |
Collapse
|
4
|
Changaei M, Azimzadeh Tabrizi Z, Karimi M, Kashfi SA, Koochaki Chahardeh T, Hashemi SM, Soudi S. From powerhouse to modulator: regulating immune system responses through intracellular mitochondrial transfer. Cell Commun Signal 2025; 23:232. [PMID: 40394666 PMCID: PMC12090700 DOI: 10.1186/s12964-025-02237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Mitochondria are traditionally known as the cells' powerhouses; however, their roles go far beyond energy suppliers. They are involved in intracellular signaling and thus play a crucial role in shaping cells' destiny and functionality, including immune cells. Mitochondria can be actively exchanged between immune and non-immune cells via mechanisms such as nanotubes and extracellular vesicles. The mitochondria transfer from immune cells to different cells is associated with physiological and pathological processes, including inflammatory disorders, cardiovascular diseases, diabetes, and cancer. On the other hand, mitochondrial transfer from mesenchymal stem cells, bone marrow-derived stem cells, and adipocytes to immune cells significantly affects their functions. Mitochondrial transfer can prevent exhaustion/senescence in immune cells through intracellular signaling pathways and metabolic reprogramming. Thus, it is emerging as a promising therapeutic strategy for immune system diseases, especially those involving inflammation and autoimmune components. Transferring healthy mitochondria into damaged or dysfunctional cells can restore mitochondrial function, which is crucial for cellular energy production, immune regulation, and inflammation control. Also, mitochondrial transfer may enhance the potential of current therapeutic immune cell-based therapies such as CAR-T cell therapy.
Collapse
Affiliation(s)
- Mostafa Changaei
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Azimzadeh Tabrizi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mozhdeh Karimi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Adnan Kashfi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tina Koochaki Chahardeh
- Department of Basic Sciences, Biology and Health, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
Li D, Xie M, Zeng H, Yu J, Xu R, Wang Z, Huang Y, Yang Y, Sun Y. UPR mt alleviates bone cancer pain through the restoration of mitochondrial function. Exp Cell Res 2025; 448:114568. [PMID: 40273969 DOI: 10.1016/j.yexcr.2025.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
The mitochondrial unfolded protein response (UPRmt) is an intracellular retrograde signaling process that facilitates the restoration of mitochondrial homeostasis. Mitochondria are essential for neuronal signaling, and their dysfunction has been implicated as a significant mechanism in the development of chronic pain. Nevertheless, little is known about the exact function of UPRmt in bone cancer pain (BCP). This research intended to explore the connection between UPRmt and the progression of BCP. In BCP group, the ultrastructure of spinal cord mitochondria was disrupted, accompanied by a decline in ATP levels and a decrease in Mitochondrial membrane potential (MMP). Concurrently, mRNA and protein levels of UPRmt marker proteins (Atf5, Hsp60, LonP1, and ClpP) were upregulated, with the expression of Atf5, a key transcription factor of UPRmt, notably enhanced in spinal dorsal horn neurons. Nicotinamide riboside (NR)-mediated pharmacological augmentation of the UPRmt significantly alleviated BCP-induced nociceptive hypersensitivity, as demonstrated by elevated mechanical withdrawal thresholds and diminished spontaneous flinching behavior. Concomitant mitochondrial functional recovery was evidenced by restoration of MMP and normalization of ATP level. Notably, genetic knockdown of activating transcription factor 5 (Atf5) abolished both NR-induced UPRmt activation and the consequent protection against rotenone-mediated mitochondrial dysfunction. These findings establish UPRmt potentiation as an effective strategy for ameliorating mitochondrial dysfunction and attenuating BCP-associated nociception, proposing this pathway as a novel therapeutic target for clinical pain management.
Collapse
Affiliation(s)
- Dan Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingming Xie
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haohao Zeng
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiacheng Yu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rui Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhen Wang
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yan Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yu'e Sun
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
6
|
Wang M, Wang W, Chopp M, Zhang ZG, Zhang Y. Therapeutic and diagnostic potential of extracellular vesicle (EV)-mediated intercellular transfer of mitochondria and mitochondrial components. J Cereb Blood Flow Metab 2025:271678X251338971. [PMID: 40367392 PMCID: PMC12078269 DOI: 10.1177/0271678x251338971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/20/2025] [Accepted: 04/15/2025] [Indexed: 05/16/2025]
Abstract
Extracellular vesicles (EVs) facilitate the transfer of biological materials between cells throughout the body. Mitochondria, membrane-bound organelles present in the cytoplasm of nearly all eukaryotic cells, are vital for energy production and cellular homeostasis. Recent studies highlight the critical role of the transport of diverse mitochondrial content, such as mitochondrial DNA (mt-DNA), mitochondrial RNA (mt-RNA), mitochondrial proteins (mt-Prots), and intact mitochondria by small EVs (<200 nm) and large EVs (>200 nm) to recipient cells, where these cargos contribute to cellular and mitochondrial homeostasis. The interplay between EVs and mitochondrial components has significant implications for health, metabolic regulation, and potential as biomarkers. Despite advancements, the mechanisms governing EV-mitochondria crosstalk and the regulatory effect of mitochondrial EVs remain poorly understood. This review explores the roles of EVs and their mitochondrial cargos in health and disease, examines potential mechanisms underlying their interactions, and emphasizes the therapeutic potential of EVs for neurological and systemic conditions associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Weida Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | | | - Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
7
|
Li B, Li B, Qiao X, Meng W, Xie Y, Gong J, Fan Y, Zhao Z, Li L. Targeting mitochondrial transfer as a promising therapeutic strategy. Trends Mol Med 2025:S1471-4914(25)00089-9. [PMID: 40335384 DOI: 10.1016/j.molmed.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 04/04/2025] [Indexed: 05/09/2025]
Abstract
Despite the primary impression of mitochondria as energy factories, these organelles are increasingly recognized for their multifaceted roles beyond energy production. Intriguingly, mitochondria can transfer between cells, influencing physiological and pathological processes through intercellular trafficking termed 'mitochondrial transfer.' This phenomenon is important in maintaining metabolic homeostasis, enhancing tissue regeneration, exacerbating cancer progression, and facilitating immune modulation, depending on the cell type and microenvironment. Recently, mitochondrial transfer has emerged as a promising therapeutic target for tissue repair and antitumor therapy. Here, we summarize and critically review recent advances in this field. We aim to provide an updated overview of the mechanisms and potential therapeutic avenues associated with mitochondrial transfer in various diseases from the perspective of different donor cells.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Bingzhi Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuhang Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajing Gong
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Ma Y, Lei C, Ye T, Wan Q, Wang K, Zhu Y, Li L, Liu X, Niu L, Tay FR, Mu Z, Jiao K, Niu L. Silicon Enhances Functional Mitochondrial Transfer to Improve Neurovascularization in Diabetic Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415459. [PMID: 40125794 PMCID: PMC12097102 DOI: 10.1002/advs.202415459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/15/2025] [Indexed: 03/25/2025]
Abstract
Diabetes mellitus is a metabolic disorder associated with an increased risk of fractures and delayed fracture healing, leading to a higher prevalence of bone defects. Recent advancements in strategies aim at regulating immune responses and enhancing neurovascularization have not met expectations. This study demonstrates that a silicon-based strategy significantly enhances vascularization and innervation, thereby optimizing the repair of diabetic bone defects. Silicon improves mitochondrial function and modulates mitochondrial fission dynamics in macrophages via the Drp1-Mff signaling pathway. Subsequently, functional mitochondria are transferred from macrophages to endothelial and neuronal cells through microvesicles, providing a protective mechanism for blood vessels and peripheral nerves during early wound healing. On this basis, an optimized strategy combining a silicified collagen scaffold with a Drp1-Fis1 interaction inhibitor is used to further regulate mitochondrial fission in macrophages and enhance the trafficking of functional mitochondria into stressed receptor cells. In diabetic mice with critical-sized calvarial defects, the silicon-based treatment significantly promotes vessel formation, nerve growth, and mineralized tissue development. These findings provide therapeutic insights into the role of silicon in promoting diabetic bone regeneration and highlight the importance of intercellular communication in diabetic conditions.
Collapse
Affiliation(s)
- Yu‐Xuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Chen Lei
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Qian‐Qian Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Kai‐Yan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Yi‐Na Zhu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Ling Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Xu‐Fang Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Long‐Zhang Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Franklin R. Tay
- The Dental College of GeorgiaAugusta UniversityAugustaGA30912USA
| | - Zhao Mu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Kai Jiao
- Department of StomatologyTangdu hospitalState Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of StomatologySchool of Stomatology & Shaanxi Key Laboratory of StomatologySchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Li‐Na Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationNational Clinical Research Center for Oral DiseasesShaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| |
Collapse
|
9
|
Zhang K, Zhang S, Deng G, He G, Yuan Y, Fu Y, Liu Y, Gong Z, Kong L, Zheng C. Brown adipose tissue-derived extracellular vesicles regulate hepatocyte mitochondrial activity to alleviate high-fat diet-induced jawbone osteoporosis in mice. Front Endocrinol (Lausanne) 2025; 16:1583408. [PMID: 40343072 PMCID: PMC12058480 DOI: 10.3389/fendo.2025.1583408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 05/11/2025] Open
Abstract
Background Lipid metabolic disorder (LMD) serves as a systemic driver of osteoporosis (OP), with jawbone osteoporosis (JOP) representing a clinically significant yet underexplored complication. Current clinical treatments for JOP remain suboptimal, highlighting the need for innovative approaches. The use of metabolic regulators represents a promising therapeutic strategy for OP management. While brown adipose tissue-derived extracellular vesicles (BEV) exhibit metabolic regulatory potential, their capacity to mitigate LMD-associated OP remains unclear. Methods A high-fat diet (HFD)-induced LMD mouse model was established to identify the JOP phenotype through micro-computed tomography (micro-CT) and transcriptomic profiling. BEV isolation was optimized using liberase enzyme-enhanced differential centrifugation, with in vivo tracking confirming biodistribution. In vitro, BEV effects on hepatocytes were assessed with triglyceride (TG) content, free fatty acid (FFA) levels, and mitochondrial function. The additional benefits of BEV on the osteogenic microenvironment were evaluated via AML12/MC3T3-E1 indirect co-culture under high-lipid conditions. Dual therapeutic effects of BEV on LMD and JOP in vivo were validated through metabolic phenotyping, micro-CT and histomorphometry analysis. Results Sixteen weeks of HFD successfully induced typical LMD and JOP manifestations in mice. Transcriptomic sequencing revealed downregulation of osteogenic-related genes concomitant with upregulation of lipid metabolism-associated genes in the jawbone of LMD mice. In vivo tracking showed the exogenous BEV predominantly accumulated in the liver rather than the jawbone. BEV treatment significantly reduced intracellular TG and FFA content in hepatocytes, while enhancing osteogenic activity of MC3T3-E1 cells through indirect co-culture. Mitochondrial analyses revealed that BEV effectively increased the proportion of active mitochondria, reduced reactive oxygen species (ROS) generation rate, and enhanced oxygen consumption rate (OCR) in hepatocytes. Biochemical assay and metabolic cage testing showed a lower systemic lipid content level along with improved fat utilization and thermogenesis capacity in BEV-treated mice. Micro-CT and immunofluorescence staining further confirm significant improvements in the jawbone of BEV-treated mice regarding bone volume fraction, trabecular number, trabecular thickness, trabecular separation, and RUNX2 expression. Conclusion This study establishes LMD as a crucial driver factor in JOP and identifies BEV-mediated mitochondrial transferring in hepatocytes as a therapeutic strategy for LMD-related JOP.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Sha Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- College of Basic Medicine, Shaanxi Key Laboratory of Research on TCM Physical Constitution and Diseases Prevention and Treatment, Shaanxi University of Chinese Medicine, Xianyang, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Guorong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Guangxiang He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- The First Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yu Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Yihan Liu
- Department of Stomatology, The First Medical Center, Chinese Chinese PLA General Hospital, Beijing, China
| | - Zhen Gong
- Analysis & Testing Laboratory for Life Sciences and Medicine of Fourth Military Medical University, Xi’an, China
| | - Liang Kong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Chenxi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
11
|
Han C, Zhu X, Sokol CL. Neuroimmune Circuits in Allergic Diseases. Annu Rev Immunol 2025; 43:367-394. [PMID: 39977604 DOI: 10.1146/annurev-immunol-082423-032154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Communication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
Collapse
Affiliation(s)
- Cai Han
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| | - Caroline L Sokol
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
12
|
Oggero S, Voisin MB, Picco F, Huerta MÁ, Cecconello C, Burgoyne T, Perretti M, Malcangio M. Activation of proresolving macrophages in dorsal root ganglia attenuates persistent arthritis pain. Proc Natl Acad Sci U S A 2025; 122:e2416343122. [PMID: 40063821 PMCID: PMC11929478 DOI: 10.1073/pnas.2416343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 01/31/2025] [Indexed: 03/25/2025] Open
Abstract
Pain independent of disease activity is frequently reported by rheumatoid arthritis patients and remains undertreated. Preclinical evidence suggests that imbalance of neuroimmune proresolving interactions within dorsal root ganglia (DRG) rather than at the site of inflammation plays mechanistic roles in persistent arthritis pain. Here, we inhibited production of proresolving lipid mediators by silencing 12/15-lipoxygenase expression in CX3CR1+ monocyte/macrophages conditional knockout (cKO) mice. In an arthritis model, hind paw mechanical hypersensitivity is exacerbated in male and female cKO mice in association with DRG infiltration of neutrophils, which migrate in response to leukotriene B4 released by macrophages through 5-lipoxygenase conversion of arachidonic acid provided by neuron-derived vesicles. Neutrophils apoptosis promotes primary macrophage efferocytosis which is defective in cKO macrophages. In wild-type (WT) and cKO mice, intrathecal injection of MerTK activating antibody, attenuates persistent hypersensitivity and polarizes DRG macrophages toward a proresolving phenotype with production of antinociceptive lipoxin A4. Thus, we delineate a neuron-macrophage-neutrophil bidirectional circuit that can be exploited to reduce persistent arthritis pain.
Collapse
Affiliation(s)
- Silvia Oggero
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Mathieu-Benoit Voisin
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Francesca Picco
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| | - Miguel Á. Huerta
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
- Department of Pharmacology, University of Granada, Granada18016, Spain
| | - Chiara Cecconello
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Thomas Burgoyne
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, LondonEC1V 9EL, United Kingdom
- Pediatric Respiratory Medicine, Royal Brompton Hospital, Guy’s and St Thomas’ National Health System Foundation Trust, LondonSW3 6NP, United Kingdom
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, LondonEC1M 6BQ, United Kingdom
| | - Marzia Malcangio
- Sensory, Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, Guys’ Campus, LondonSE1 1UL, United Kingdom
| |
Collapse
|
13
|
Yan J, Yang T, Ma S, Li D, Hu C, Tan J. Macrophage-derived mitochondria-rich extracellular vesicles aggravate bone loss in periodontitis by disrupting the mitochondrial dynamics of BMSCs. J Nanobiotechnology 2025; 23:208. [PMID: 40075447 PMCID: PMC11905510 DOI: 10.1186/s12951-025-03178-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Periodontitis is the leading cause of tooth loss in adults due to progressive bone destruction, which is closely related to the dysfunction of bone mesenchymal stem cells (BMSCs). Existing evidence suggests that mitochondrial disorders are associated with periodontitis. However, whether mitochondrial dysregulation contributes to the osteogenic impairment of BMSCs and the underlying mechanisms remain unclear. Macrophages have been shown to communicate extensively with BMSCs in periodontitis. Recent studies have reported a novel manner of cellular communication in which mitochondria-rich extracellular vesicles(MEVs) transfer mitochondria from parent cells to recipient cells, playing a role in both physiological and pathological conditions. Therefore, we aimed to investigate the role of MEVs in orchestrating the crosstalk between macrophages and BMSCs in periodontitis to formulate management strategies for bone loss. RESULTS Our results revealed that macrophages underwent significant mitochondrial dysfunction and inflammation in periodontitis and that MEVs derived from these macrophages played a role in alveolar bone destruction. Furthermore, cell imaging showed that inflammatory macrophages packaged numerous damaged mitochondria into MEVs, and the entry of these impaired mitochondria into BMSCs disrupted mitochondrial dynamics and hindered donut-shaped mitochondria formation, leading to osteogenic dysfunction. Proteomic analysis revealed that the proteins enriched in macrophage-derived MEVs were largely related to mitochondria and the formation and transport of vesicles. Additionally, we found that MEVs from macrophages significantly increased lipocalin 2 (LCN2) in BMSCs in periodontitis and that LCN2 perturbed mitochondrial morphological changes in BMSCs by inducing the degradation of OMA1 and accumulation of OPA1, resulting in osteogenesis impairment in BMSCs. Inhibition of LCN2 rescued the osteogenic dysfunction of BMSCs and alveolar bone loss in periodontitis. CONCLUSIONS The transfer of mitochondria to BMSCs via MEVs exacerbates alveolar bone resorption through LCN2/OMA1/OPA1 signaling in periodontitis. Inhibition of LCN2 alleviates inflammatory bone loss, suggesting a promising therapeutic strategy for periodontitis.
Collapse
Affiliation(s)
- Jiayin Yan
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tian Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Siyuan Ma
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Danfeng Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiali Tan
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
- Institute of Stomatology, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Zalewski A, Andreieva I, Wiśniowska J, Tarnacka B, Gromadzka G. Clinical and Molecular Barriers to Understanding the Pathogenesis, Diagnosis, and Treatment of Complex Regional Pain Syndrome (CRPS). Int J Mol Sci 2025; 26:2514. [PMID: 40141156 PMCID: PMC11942065 DOI: 10.3390/ijms26062514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
Complex regional pain syndrome (CRPS) is an idiopathic, highly debilitating chronic disorder with persistent regional pain accompanied by a combination of sensory, motor, and autonomic abnormalities. It is not only difficult to treat but also difficult to study. This scoping review aimed to identify the key clinical and molecular challenges encountered in CRPS research and to examine the assessment tools currently employed. A comprehensive search was conducted across PubMed/Medline, Science Direct, Scopus, Wiley Online Library, and Google Scholar using a combination of free text and MeSH terms related to CRPS, clinical and molecular aspects, neuroinflammation, biomarkers, and research challenges. We analyzed 55 original clinical research papers on CRPS and 17 studies of immunological/biochemical/molecular aspects of CRPS. A significant degree of heterogeneity was observed in the methodologies employed across the reviewed studies. The most frequently reported challenges included difficulties in participant recruitment and controlling confounding factors (reported in 62% of studies), such as the heterogeneity of the patient population, the influence of pain coping strategies and psychological factors, and the impact of sociocultural factors (reported in 62% of studies). Research into diagnostic and prognostic markers for CRPS also faces numerous challenges. Recruiting participants is difficult due to the rarity of the condition, resulting in small sample sizes for studies. In vitro models often fail to replicate the complexity of in vivo inflammation, limiting their applicability. Findings from early CRPS stages may not generalize to chronic CRPS because of differing pathophysiological mechanisms and symptom profiles. Additional obstacles include the disorder's heterogeneity, difficulties in controlling confounding factors, variability in treatment approaches, and the lack of standardized tools and baseline comparisons. These issues hinder the development of reliable biomarkers and evidence-based treatments. Due to these difficulties, the exact cause of CRPS is still not fully understood, making it difficult to develop effective, specific treatments and conduct targeted research.
Collapse
Affiliation(s)
- Adam Zalewski
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Iana Andreieva
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | - Justyna Wiśniowska
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
| | - Beata Tarnacka
- Department of Rehabilitation, Eleonora Reicher National Institute of Geriatrics, Rheumatology and Rehabilitation, Spartańska 1, 02-637 Warsaw, Poland
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | - Grażyna Gromadzka
- Department of Biomedical Sciences, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego Street 1/3, 01-938 Warsaw, Poland
| |
Collapse
|
15
|
Dai P, Wang P, Chen X, Feng S, Wu F, Zheng X, Qin Z. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Restricts Inflammatory Progression through Limiting Macrophage Infiltration in DRG and Sciatic Nerve during Diabetic Peripheral Neuropathy. ACS Chem Neurosci 2025; 16:945-959. [PMID: 39970444 DOI: 10.1021/acschemneuro.5c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent complication affecting over half of individuals with diabetes. This study investigates the role of mesencephalic Astrocyte-derived neurotrophic factor (MANF) in DPN progression and its potential as a therapeutic target. Using a streptozotocin (STZ)-induced diabetic mouse model, we analyzed MANF expression in the dorsal root ganglia (DRG) and sciatic nerve and assessed the effects of recombinant human MANF (rhMANF) administration on DPN symptoms. Our findings show significant upregulation of MANF protein levels in the DRG of diabetic mice, along with an increased presence of MANF-expressing macrophages in both the DRG and sciatic nerve. Intravenous administration of rhMANF from Day 7 to Day 21 post-STZ injection yielded multiple beneficial outcomes. Notably, rhMANF treatment alleviated mechanical hypoalgesia, as measured by the paw mechanical withdrawal threshold (PMWT), and enhanced sciatic nerve conduction, improving motor nerve conduction velocity (MNCV). Additionally, it increased intradermal nerve density, indicated by more PGP9.5-positive nerve fibers in the plantar skin of treated diabetic mice. These improvements were associated with reduced macrophage infiltration in the DRG and sciatic nerve, marked by fewer CD68 and Iba-1 positive cells, and inhibition of inflammatory signaling pathways. Specifically, rhMANF treatment decreased NF-κB p65 phosphorylation and suppressed p38 MAPK phosphorylation, indicating reduced inflammation. In summary, our research underscores MANF's potential as a novel therapeutic target for DPN, particularly due to its anti-inflammatory properties. Further exploration of MANF could lead to the development of more effective treatments for this debilitating aspect of diabetes.
Collapse
Affiliation(s)
- Peng Dai
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Peng Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Xin Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P. R. China
| | - Shuyun Feng
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Fancan Wu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Xueqin Zheng
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P. R. China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
16
|
de Souza S, Laumet S, Hua H, Inyang KE, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. Pain 2025:00006396-990000000-00843. [PMID: 40035664 DOI: 10.1097/j.pain.0000000000003565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/02/2024] [Indexed: 03/06/2025]
Abstract
ABSTRACT Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains underinvestigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast cell-deficient mice. In response to complete Freund adjuvant, mast cell-deficient mice showed greater levels of nitric oxide, leukocyte infiltration, and altered cytokine/chemokine profile in inflamed skin in both sexes. In wild-type mice, the number of mast cell and mast cell-derived chymases, chymase 1 (CMA1) and mast cell protease 4 (MCPT4), increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206+ myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Sabrina de Souza
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Hannah Hua
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Kufreobong E Inyang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Jaewon Sim
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Adam J Moeser
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Mi, United States
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
17
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
18
|
Tong SH, Liu DL, Liao P, Zhang SY, Zhou J, Zong Y, Zhang CQ, Huang YG, Gao JJ. Emerging role of macrophages in neuropathic pain. J Orthop Translat 2025; 51:227-241. [PMID: 40177638 PMCID: PMC11964759 DOI: 10.1016/j.jot.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/19/2025] [Indexed: 04/05/2025] Open
Abstract
Neuropathic pain is a complex syndrome caused by injury to the neurons, which causes persistent hypersensitivity and considerable inconvenience to the patient's whole life. Over the past two decades, the interaction between immune cells and neurons has been proven to play a crucial role in the development of neuropathic pain. Increasing studies have indicated the important role of macrophages for neuroinflammation and have shed light on the underlying molecular and cellular mechanisms. In addition, novel therapeutic methods targeting macrophages are springing up, which provide more options in our clinical treatment. Herein, we reviewed the characteristics of peripheral macrophages and their function in neuropathic pain, with the aim of better understanding how these cells contribute to pathological processes and paving the way for therapeutic approaches. Translational potential statement This review provides a comprehensive overview of the mechanisms underlying the interplay between the macrophages and nervous system during the progression of nerve injury. Additionally, it compiles existing intervention strategies targeting macrophages for the treatment of neuropathic pain. This information offers valuable insights for researchers seeking to address the challenge of this intractable pain.
Collapse
Affiliation(s)
- Si-Han Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - De-Lin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sen-Yao Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Zhou
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, Western Australia, 6009, Australia
| | - Chang-Qing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yi-Gang Huang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jun-Jie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
19
|
Cheng X, Xia T, Han M, Xu M, Yuan W, Wei Z, Jiang W, Tang H, Bai Q, Gu X. Mitochondria-targeting Bimetallic Cluster Nanozymes Alleviate Neuropathic Pain Through Scavenging ROS and Reducing Inflammation. Adv Healthc Mater 2025; 14:e2401607. [PMID: 40134328 DOI: 10.1002/adhm.202401607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/11/2025] [Indexed: 03/27/2025]
Abstract
Neuropathic pain is a significant public health concern. Inflammatory mediators and reactive oxygen species (ROS) are recognized as primary contributors to pain perception. In this study, a mitochondria-targeted modification of bimetallic cluster nanozyme (TPP-Au-Ru) is developed. This TPP-Au-Ru nanozyme exhibits a high affinity for the mitochondrial matrix, effectively scavenging ROS and attenuating inflammatory mediators in both in vitro and in vivo settings. Additionally, the nanozyme inhibits the activation of the MAPK and NF-κB signaling cascades and protect mitochondrial function. Furthermore, a therapeutic dose of the TPP-Au-Ru nanozyme is able to alleviate nociceptive symptoms for up to 36 h with minimal biological toxicity. Therefore, the sustained mitochondrial delivery of TPP-Au-Ru nanozyme provides an effective and long-lasting approach to neuropathic pain. This innovative approach shows promise for the development of more efficient therapeutic interventions, potentially revolutionizing the management of neuropathic pain and enhancing the quality of life for affected individuals.
Collapse
Affiliation(s)
- Xiaolei Cheng
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
- Zhengzhou Key Laboratory of Cardiovascular Aging, National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Tianjiao Xia
- Medical School, Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Min Han
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, 250014, P.R.China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Minhui Xu
- Medical School, Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Weining Yuan
- Zhengzhou Key Laboratory of Cardiovascular Aging, National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Ziqi Wei
- Medical School, Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Wei Jiang
- Zhengzhou Key Laboratory of Cardiovascular Aging, National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Hao Tang
- Zhengzhou Key Laboratory of Cardiovascular Aging, National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Fuwai Hospital of Zhengzhou University, Fuwai Central China Cardiovascular Hospital & Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, Henan, 451464, China
| | - Qian Bai
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaoping Gu
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
20
|
Banerjee S, Hsu YT, Nguyen DH, Yeh SH, Liou KC, Liu JJ, Liou JP, Chuang JY. Development of BACE2-IN-1/tranylcypromine-based compounds to induce steroidogenesis-dependent neuroprotection. Biomed Pharmacother 2025; 183:117851. [PMID: 39837213 DOI: 10.1016/j.biopha.2025.117851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Traumatic brain injury (TBI) constitutes a significant burden on global healthcare systems, especially affecting younger populations, where it is a leading cause of disability and mortality. Current treatments for TBI mainly focus on preventing further brain damage and controlling symptoms. However, despite these approaches, several clinical needs remain unmet. Revelations from single-cell RNA sequencing (scRNA-seq) performed to determine cell-type heterogeneity and gene expression changes in brain tissue indicated that brain trauma increases the expression of lysine-specific demethylase 1 (LSD1) and secretase 2 (BACE2). To capitalize on this finding, a medicinal chemistry campaign was conducted to pragmatically insert tranylcypromine, an LSD1 inhibitor, into a carefully designed BACE2 inhibitory template (BACE2-IN-1). Additionally, tranylcypromine was structurally modified to enhance the effects of LSD1 inhibition in TBI. As a result, a tractable neuroprotective agent, BACE2-IN-1/tranylcypromine-based compound 4, was identified, showing potential to maintain Neuro-2a cell survival by alleviating mitochondrial damage after oxidative stress. Compound 4 also restored TBI-mediated inhibition of the cholesterol biosynthetic pathway (mevalonate pathway) and damage of redox metabolism, increasing neuroprotective effects. Furthermore, behavioral assays, including nest-building and cognitive performance tests, demonstrated significant improvement in mice post-TBI following treatment with compound 4. Taken together, the outcomes of this study validate the favorable effects of inhibiting LSD1 and beta-secretase in mitigating mitochondrial stress and promoting neurometabolic recovery in TBI. These findings pave the way for the development of rationally designed inhibitors as promising neuroprotective agents, potentially addressing unmet clinical needs in TBI treatment.
Collapse
Affiliation(s)
| | - Ying-Ting Hsu
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Duc-Hieu Nguyen
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Jr-Jiun Liu
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Jian-Ying Chuang
- Ph.D. Program in Medical Neuroscience, Taipei Medical University and National Health Research Institutes, Taipei 11031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan; International Master Program in Medical Neuroscience, Taipei Medical University, New Taipei City 23564, Taiwan; TMU Research Center of Neuroscience, Taipei Medical University, Taipei 11031, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80780, Taiwan.
| |
Collapse
|
21
|
Gu X, Chen C, Chen Y, Zeng C, Lin Y, Guo R, Xu S, Lin C. Bioinformatics approach reveals the critical role of inflammation-related genes in age-related hearing loss. Sci Rep 2025; 15:2687. [PMID: 39837906 PMCID: PMC11751394 DOI: 10.1038/s41598-024-83428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory impairment in the elderly. However, the pathogenesis of ARHL remains unclear. This study was aimed to explore the potential inflammation-related genes of ARHL and suggest novel therapeutic targets for this condition. Initially, a total of 105 Inflammatory related differentially expressed genes (IRDEGs) were obtained by overlapping the differentially expressed genes from the GSE49522 and GSE49543 datasets with Inflammatory related genes. The IRDEGs were mainly enriched in MAPK, PI3K-Akt, Hippo and JAK-STAT pathways by analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. We then identified 10 key IRDEGs including Alox5ap, Chil1, Clec7a, Dysf, Fcgr3, etc. using Least absolute shrinkage and selection operator regression analysis and converted them into human genes. The ROC curve indicated that Alox5ap expression presented a high accuracy in distinguishing between different groups. By CIBERSORT algorithm, 8 humanized key IRDEGs were correlated with the infiltration abundance of 3 immune cells. Finally, it showed that the Alox5ap expression was significantly more effective compared to other variables in the diagnostic model of ARHL. This study suggests that inflammation might play a role in the development of ARHL, providing a deeper understanding of the underlying causes of this disease.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chenyu Chen
- ENT Institute, Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Shanghai, China
| | - Yuqing Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chaojun Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanchun Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruosi Guo
- Fujian Medical University, Fuzhou, China
| | - Shujin Xu
- Fujian Medical University, Fuzhou, China
| | - Chang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Otorhinolaryngology Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Institute of Otolaryngology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
22
|
Picco F, Zeboudj L, Oggero S, Prato V, Burgoyne T, Gamper N, Malcangio M. Macrophage to neuron communication via extracellular vesicles in neuropathic pain conditions. Heliyon 2025; 11:e41268. [PMID: 39811367 PMCID: PMC11730208 DOI: 10.1016/j.heliyon.2024.e41268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Neuropathic pain following peripheral nerve injury results from maladaptive changes in neurons and immune cells contribution to mechanisms underlying chronic pain. Specifically, in dorsal root ganglia (DRG), sensory neuron cell bodies release extracellular vesicles (EVs) which promote pro-inflammatory macrophage accumulation that facilitates nociceptive signalling. Here, we show that macrophages shuttle EVs to neurons. Indeed, bone marrow-derived macrophages (BMDMs) release EVs containing microRNA-155 (miR-155) which are taken up by cultured sensory neurons. EV-mediated transfer of miR-155 suppresses phosphatase Ship1 expression and increases cytokine interleukin-6 (IL-6) contents. Intrathecal-injected BMDM-derived EVs accumulate in lumbar DRG and EVs containing miR-155 antagomir result in Ship1 upregulation, Il6 downregulation in neurons in concomitance to attenuation of neuropathic mechanical hypersensitivity. These data suggest that, under neuropathic conditions, pro-inflammatory macrophages shuttle EV-containing miR-155 to neurons and contribute to the expression of pronociceptive IL-6 in DRG.
Collapse
Affiliation(s)
- Francesca Picco
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| | - Lynda Zeboudj
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| | - Silvia Oggero
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| | - Vincenzo Prato
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, United Kingdom
- Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Nikita Gamper
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Marzia Malcangio
- Wolfson Sensory, Pain and Regeneration Centre, King’s College London, London, United Kingdom
| |
Collapse
|
23
|
Brestoff JR, Singh KK, Aquilano K, Becker LB, Berridge MV, Boilard E, Caicedo A, Crewe C, Enríquez JA, Gao J, Gustafsson ÅB, Hayakawa K, Khoury M, Lee YS, Lettieri-Barbato D, Luz-Crawford P, McBride HM, McCully JD, Nakai R, Neuzil J, Picard M, Rabchevsky AG, Rodriguez AM, Sengupta S, Sercel AJ, Suda T, Teitell MA, Thierry AR, Tian R, Walker M, Zheng M. Recommendations for mitochondria transfer and transplantation nomenclature and characterization. Nat Metab 2025; 7:53-67. [PMID: 39820558 DOI: 10.1038/s42255-024-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025]
Abstract
Intercellular mitochondria transfer is an evolutionarily conserved process in which one cell delivers some of their mitochondria to another cell in the absence of cell division. This process has diverse functions depending on the cell types involved and physiological or disease context. Although mitochondria transfer was first shown to provide metabolic support to acceptor cells, recent studies have revealed diverse functions of mitochondria transfer, including, but not limited to, the maintenance of mitochondria quality of the donor cell and the regulation of tissue homeostasis and remodelling. Many mitochondria-transfer mechanisms have been described using a variety of names, generating confusion about mitochondria transfer biology. Furthermore, several therapeutic approaches involving mitochondria-transfer biology have emerged, including mitochondria transplantation and cellular engineering using isolated mitochondria. In this Consensus Statement, we define relevant terminology and propose a nomenclature framework to describe mitochondria transfer and transplantation as a foundation for further development by the community as this dynamic field of research continues to evolve.
Collapse
Affiliation(s)
- Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Keshav K Singh
- Department of Genetics, I Heersink School of Medicine, University of Alabama at Birmhingham, Birmingham, AL, USA.
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Lance B Becker
- Department of Emergency Medicine, Northwell Health, Manhassett, NY, USA
- Department of Emergency Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Michael V Berridge
- Department of Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Eric Boilard
- Département de Microbiologie et Immunologie, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, Québec, Canada
| | - Andrés Caicedo
- Instituto de Investigaciones en Biomedicina and Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Clair Crewe
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology, Metabolism and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de salud Carlos III (CIBERFES), Madrid, Spain
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Åsa B Gustafsson
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Harvard Medical School, Massachusetts General Hospital East 149-2401, Charlestown, MA, USA
| | - Maroun Khoury
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | | | - Patricia Luz-Crawford
- IMPACT Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Universidad de los Andes, Santiago, Chile
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Heidi M McBride
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James D McCully
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
- Institute of Biotechnology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Alexander G Rabchevsky
- Department of Physiology & the Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, USA
| | - Anne-Marie Rodriguez
- UMR CNRS 8263, INSERM U1345, Development, Adaptation and Ageing, Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), Paris, France
| | | | - Alexander J Sercel
- MitoWorld, National Laboratory for Education Transformation, Oakland, CA, USA
| | - Toshio Suda
- Institute of Hematology, Blood Diseases Hospital, Chinese Academy of Sciences and Peking Union Medical College, Tianjin, China
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, Department of Bioengineering, and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Alain R Thierry
- Institute of Research in Cancerology of Montpellier, INSERM U1194, University of Montpellier, ICM, Institut du Cancer de Montpellier, Montpellier, France
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, USA
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA, USA
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School of the University of Western Australia, Nedlands, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
24
|
Zhu Y, Jiang Y, Lu X, Li S, Liu F, Xu Y, Tian Y, Gao L, Wei L. Curcumin relieves CFA-induced inflammatory pain by inhibiting the AP-1/c-Jun-CCL2-CCR2 pathway in the spinal dorsal horn. Mol Pain 2025; 21:17448069251323668. [PMID: 39950445 PMCID: PMC11869292 DOI: 10.1177/17448069251323668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025] Open
Abstract
Inflammatory pain is a pervasive clinical issue that severely diminishes individuals' quality of life. AP-1 (Activating protein-1) is a transcription factor composed of Jun and Fos proteins. Upregulation of AP-1/c-Jun activity is observed in a variety of diseases, particularly in inflammatory conditions. The CCL2 (C-C Motif Chemokine Ligand 2)/CCR2 (C-C Chemokine Receptor 2) axis plays a crucial role in regulating both peripheral and central inflammation. Curcumin, a natural compound derived from the roots of turmeric, possesses anti-inflammatory, antioxidant, and analgesic properties, making it effective for treating various disorders. However, the effects of curcumin on inflammatory pain and its potential mechanisms of action remain unclear. In this study, we utilized a CFA (Complete Freund's Adjuvant)-induced inflammatory pain model to investigate the effects of curcumin. We found that curcumin effectively reduced CFA-induced mechanical allodynia when administered via intrathecal injection. Behavioral assessments were performed using the Von Frey test. Western blot analysis was performed to detect variations in molecular expression, while immunofluorescence was employed to ascertain cellular localization. Intrathecal injection of the AP-1/c-Jun inhibitor T-5224, along with curcumin, resulted in a reduction in the levels of c-Jun, p-c-Jun, CCL2, and CCR2. Additionally, intrathecal injection of the CCR2 antagonist RS504393 also reduced the expression of CCL2 and CCR2. In summary, curcumin plays a significant role in analgesia within the CFA-induced inflammatory pain model. CCL2/CCR2 acts as a downstream mediator of AP-1/c-Jun. Curcumin can suppress the expression of AP-1/c-Jun, thereby inhibiting the expression of CCL2 and CCR2 in the spinal dorsal horn and contributing to the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yinhong Jiang
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xinyu Lu
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Siyu Li
- Kangda College of Nanjing Medical University Department, Lianyungang, Jiangsu, China
| | - Fujiaying Liu
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yidan Xu
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Yue Tian
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Liangliang Gao
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Lei Wei
- Department of Anesthesiology, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
25
|
Hua F, Sun J, Shi M, Mei R, Song Z, Liu J, Zhang M. Macrophage-derived extracellular vesicles transfer mitochondria to adipocytes and promote adipocyte-myofibroblast transition in epidural fibrosis. NPJ Regen Med 2024; 9:43. [PMID: 39738050 DOI: 10.1038/s41536-024-00388-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025] Open
Abstract
Epidural fibrosis post laminectomy is the leading cause of failed back surgery syndrome. Little is known about the role and mechanisms of adipose tissues in epidural fibrosis. Here, we found that obese patients were more likely to develop epidural fibrosis after spine surgery. Similarly, obesity led to more progressive epidural fibrosis in a mouse model of laminectomy. Adipocyte-myofibroblast transition (AMT) occurs in epidural scarring. Mechanistically, large extracellular vesicles (EVs) from M2-type macrophages transfer mitochondria into adipocytes and promote AMT by activating the TGF-β and PAI-1 pathways. Blocking the PAI-1 pathway significantly attenuated the transition of adipocytes into myofibroblasts. We conclude that large EVs from macrophages transfer mitochondria to promote AMT in epidural fibrosis.
Collapse
Affiliation(s)
- Feng Hua
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinpeng Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mohan Shi
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Mei
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeyuan Song
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
26
|
Geraghty T, Ishihara S, Obeidat AM, Adamczyk NS, Hunter RS, Li J, Wang L, Lee H, Ko FC, Malfait AM, Miller RE. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. Arthritis Res Ther 2024; 26:224. [PMID: 39707543 PMCID: PMC11660666 DOI: 10.1186/s13075-024-03457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain. Our objective was to determine the effects of acute systemic macrophage depletion on pain-related behaviors and joint damage using surgical mouse models in both sexes. METHODS We depleted CSF1R + macrophages by treating male macrophage Fas-induced apoptosis (MaFIA) transgenic mice 8- or 16-weeks post destabilization of the medial meniscus (DMM) with AP20187 or vehicle control (10 mg/kg i.p., 1x/day for 5 days), or treating female MaFIA mice 12 weeks post partial meniscectomy (PMX) with AP20187 or vehicle control. We measured pain-related behaviors 1-3 days before and after depletion, and, 3-4 days after the last injection we examined joint histopathology and performed flow cytometry of the dorsal root ganglia (DRGs). In a separate cohort of male 8-week DMM mice or age-matched naïve vehicle controls, we conducted DRG bulk RNA-sequencing analyses after the 5-day vehicle or AP20187 treatment. RESULTS Eight- and 16-weeks post DMM in male mice, AP20187-induced macrophage depletion resulted in attenuated mechanical allodynia and knee hyperalgesia. Female mice showed alleviation of mechanical allodynia, knee hyperalgesia, and weight bearing deficits after macrophage depletion at 12 weeks post PMX. Macrophage depletion did not affect the degree of cartilage degeneration, osteophyte width, or synovitis in either sex. Flow cytometry of the DRG revealed that macrophages and neutrophils were reduced after AP20187 treatment. In addition, in the DRG, only MHCII + M1-like macrophages were significantly decreased, while CD163 + MHCII- M2-like macrophages were not affected in both sexes. DRG bulk RNA-seq revealed that Cxcl10 and Il1b were upregulated with DMM surgery compared to naïve mice, and downregulated in DMM after acute macrophage depletion. CONCLUSIONS Acute systemic macrophage depletion reduced the levels of pro-inflammatory macrophages in the DRG and alleviated pain-related behaviors in established surgically induced OA in mice of both sexes, without affecting joint damage. Overall, these studies provide insight into immune cell regulation in the DRG during OA.
Collapse
Affiliation(s)
- Terese Geraghty
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Shingo Ishihara
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Alia M Obeidat
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Natalie S Adamczyk
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rahel S Hunter
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Jun Li
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Lai Wang
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Hoomin Lee
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Frank C Ko
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - Anne-Marie Malfait
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA
| | - Rachel E Miller
- Department of Internal Medicine, Division of Rheumatology, Rush University Medical Center, Chicago, IL, USA.
- Chicago Center on Musculoskeletal Pain, Chicago, IL, USA.
| |
Collapse
|
27
|
Dos Santos GG, Jiménez-Andrade JM, Muñoz-Islas E, Candanedo-Quiroz ME, Cardenas AG, Drummond B, Pham P, Stilson G, Hsu CC, Delay L, Navia-Pelaez JM, Lemes JP, Miller YI, Yaksh TL, Corr M. Role of TLR4 activation and signaling in bone remodeling, and afferent sprouting in serum transfer arthritis. Arthritis Res Ther 2024; 26:212. [PMID: 39696684 DOI: 10.1186/s13075-024-03424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/23/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND In the murine K/BxN serum transfer rheumatoid arthritis (RA) model, tactile allodynia persists after resolution of inflammation in male and partially in female wild type (WT) mice, which is absent in Toll-like receptor (TLR)4 deficient animals. We assessed the role of TLR4 on allodynia, bone remodeling and afferent sprouting in this model of arthritis. METHODS K/BxN sera were injected into male and female mice with conditional or stable TLR4 deletion and controls. Paw swelling was scored and allodynia assessed by von Frey filaments. At day 28, synovial neural fibers were visualized with confocal microscopy and bone density assayed with microCT. Microglial activity and TLR4 dimerization in spinal cords were examined by immunofluorescence and flow cytometry. RESULTS In the synovium, K/BxN injected WT male and female mice showed robust increases in calcitonin gene related-peptide (CGRP+), tyrosine hydroxylase (TH)+ and GAP43+ nerve fibers. Trabecular bone density by microCT was significantly decreased in K/BxN WT female but not in WT male mice. The number of osteoclasts increased in both sexes of WT mice, but not in Tlr4-/- K/BxN mice. We used conditional strains with Cre drivers for monocytes/osteoclasts (lysozyme M), microglia (Tmem119 and Cx3CR1), astrocytes (GFAP) and sensory neurons (advillin) for Tlr4f/f disruption. All strains developed similar arthritis scores after K/BxN serum injection with the exception being the Tlr4Tmem119 mice which showed a reduction. Both sexes of Tlr4Lyz2, Tlr4Tmem119 and Tlr4Cx3cr1 mice displayed a partial reversal of the chronic pain phenotype but not in Tlr4Avil, and Tlr4Gfap mice. WT K/BxN male mice showed increases in spinal Iba1, but not GFAP, compared to Tlr4-/- male mice. To determine whether spinal TLR4 was indeed activated in the K/BxN mice, flow cytometry of lumbar spinal cords of WT K/BxN male mice was performed and revealed that TLR4 in microglia cells (CD11b+ /TMEM119+) demonstrated dimerization (e.g. activation) and a characteristic increase in lipid rafts. CONCLUSION These results demonstrated a complex chronic allodynia phenotype associated with TLR4 in microglia and monocytic cell lineages, and a parallel spinal TLR4 activation. However, TLR4 is dispensable for the development of peripheral nerve sprouting in this model.
Collapse
Affiliation(s)
| | | | - Enriqueta Muñoz-Islas
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, UAT, Reynosa, Tamaulipas, México
| | | | - Andrea Gonzalez Cardenas
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Bronwen Drummond
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Peter Pham
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Gwendalynn Stilson
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Chao-Chin Hsu
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Lauriane Delay
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Juliana M Navia-Pelaez
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Julia Paes Lemes
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Yury I Miller
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA
| | - Tony L Yaksh
- Department of Anesthesiology and Pharmacology, University of California, La Jolla, San Diego, CA, USA
| | - Maripat Corr
- Department of Medicine, University of California, 9500 Gilman Dr. MC 0663, La Jolla, San Diego, CA, USA.
| |
Collapse
|
28
|
Hartmannsberger B, Ben-Kraiem A, Kramer S, Guidolin C, Kazerani I, Doppler K, Thomas D, Gurke R, Sisignano M, Kalelkar PP, García AJ, Monje PV, Sammeth M, Nusrat A, Brack A, Krug SM, Sommer C, Rittner HL. TAM receptors mediate the Fpr2-driven pain resolution and fibrinolysis after nerve injury. Acta Neuropathol 2024; 149:1. [PMID: 39680199 DOI: 10.1007/s00401-024-02840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
Nerve injury causes neuropathic pain and multilevel nerve barrier disruption. Nerve barriers consist of perineurial, endothelial and myelin barriers. So far, it is unclear whether resealing nerve barriers fosters pain resolution and recovery. To this end, we analysed the nerve barrier property portfolio, pain behaviour battery and lipidomics for precursors of specialized pro-resolving meditators (SPMs) and their receptors in chronic constriction injury of the rat sciatic nerve to identify targets for pain resolution by resealing the selected nerve barriers. Of the three nerve barriers-perineurium, capillaries and myelin-only capillary tightness specifically against larger molecules, such as fibrinogen, recuperated with pain resolution. Fibrinogen immunoreactivity was elevated in rats not only at the time of neuropathic pain but also in nerve biopsies from patients with (but not without) painful polyneuropathy, indicating that sealing of the vascular barrier might be a novel approach in pain treatment. Hydroxyeicosatetraenoic acid (15R-HETE), a precursor of aspirin-triggered lipoxin A4, was specifically upregulated at the beginning of pain resolution. Repeated local application of resolvin D1-laden nanoparticles or Fpr2 agonists sex-independently resulted in accelerated pain resolution and fibrinogen removal. Clearing macrophages (Cd206) were boosted and fibrinolytic pathways (Plat) were induced, while inflammation (Tnfα) and inflammasomes (Nlrp3) were unaffected by this treatment. Blocking TAM receptors (Tyro3, Axl and Mer) and tyrosine kinase receptors linking haemostasis and inflammation completely inhibited all the effects. In summary, nanoparticles can be used as transporters for fleeting lipids, such as SPMs, and therefore expand the array of possible therapeutic agents. Thus, the Fpr2-Cd206-TAM receptor axis may be a suitable target for strengthening the capillary barrier, removing endoneurial fibrinogen and boosting pain resolution in patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Beate Hartmannsberger
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Adel Ben-Kraiem
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research, Diet-Induced Metabolic Alterations Group, Leipzig, Germany
| | - Sofia Kramer
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Carolina Guidolin
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Ida Kazerani
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Dominique Thomas
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Robert Gurke
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Marco Sisignano
- Goethe University, Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Frankfurt Am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence of Immune Mediate Diseases CIMD, Frankfurt Am Main, Germany
| | - Pranav P Kalelkar
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
| | - Andrés J García
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, USA
| | - Paula V Monje
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Michael Sammeth
- Department of Applied Sciences and Health, Coburg University of Applied Sciences and Art, Coburg, Germany
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Asma Nusrat
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander Brack
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Susanne M Krug
- Charité-Universitätsmedizin Berlin, Clinical Physiology/Nutritional Medicine, Berlin, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Centre for Interdisciplinary Pain Medicine, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
29
|
Zhang R, Yang Y, Li X, Jiao C, Lou M, Mi W, Mao-Ying QL, Chu Y, Wang Y. Exploring shared targets in cancer immunotherapy and cancer-induced bone pain: Insights from preclinical studies. Cancer Lett 2024; 611:217399. [PMID: 39689823 DOI: 10.1016/j.canlet.2024.217399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Cancer casts a profound shadow on global health, with pain emerging as one of the dominant and severe complications, particularly in advanced stages. The effective management of cancer-induced pain remains an unmet need. Emerging preclinical evidence suggests that targets related to tumor immunotherapy may also modulate cancer-related pain pathways, thus offering a promising therapeutic direction. This review, focusing on more than ten molecular targets that link cancer immunotherapy and cancer-induced bone pain, underscores their potential to tackle both aspects in the context of comprehensive cancer care. Emphasizing factors such as types of cancer, drug administration methods, and sex differences in the analgesic efficacy of immunotherapeutic agents provides neuroscientific insights into personalized pain management for patients with cancer.
Collapse
Affiliation(s)
- Ruofan Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yachen Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiang Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Chunmeng Jiao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mengping Lou
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
30
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
31
|
Macchi C, Giachi A, Fichtner I, Pedretti S, Sarzi-Puttini P, Mitro N, Corsini A, Ruscica M, Gualtierotti R. Mitochondrial function in patients affected with fibromyalgia syndrome is impaired and correlates with disease severity. Sci Rep 2024; 14:30247. [PMID: 39632893 PMCID: PMC11618515 DOI: 10.1038/s41598-024-81298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Fibromyalgia is a musculoskeletal syndrome characterized by chronic widespread pain that is often associated with systemic manifestations. Since mitochondria are the main source of cellular energy, we hypothesized that fibromyalgia syndrome (FMS) could be linked to mitochondrial impairment. Aim was to study mitochondrial dysfunction in peripheral blood mononuclear cells isolated from 50 patients with primary FMS and 20 apparently healthy controls. Although no differences in mitochondrial basal respiration were observed between patients with primary FMS and healthy controls, a lower median bioenergetic health index (BHI; - 22.1%, p = 0.03), a proxy of mitochondrial function, was found in patients. According to fibromyalgia severity score (FSS), a composite of widespread pain index and symptom severity scale, a lower median BHI (- 18.7%) was found in patients with a FSS ≥ 20 compared to those with a FSS < 20. Negative moderate correlations were found only between BHI and FSS (r = - 0.36) and widespread pain index (r = - 0.38). We demonstrated that patients with FMS had an impaired mitochondrial function. Additionally, we found a mild correlation between the widespread pain index and the BHI, possibly indicating that the altered mitochondrial function, in these patients, narrows musculoskeletal rather than central nervous system involvement.
Collapse
Affiliation(s)
- Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Andrea Giachi
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Piercarlo Sarzi-Puttini
- Rheumatology Department, IRCCS Galeazzi-S.Ambrogio Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università Degli Studi di Milano, Milan, Italy.
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy.
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, S.C. Medicina - Emostasi e Trombosi, Milan, Italy.
| |
Collapse
|
32
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
33
|
Hakim S, Jain A, Woolf CJ. Immune drivers of pain resolution and protection. Nat Immunol 2024; 25:2200-2208. [PMID: 39528810 DOI: 10.1038/s41590-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Immune cells are involved in the pathogenesis of pain by directly activating or sensitizing nociceptor sensory neurons. However, because the immune system also has the capacity to self-regulate through anti-inflammatory mechanisms that drive the resolution of inflammation, it might promote pain resolution and prevention. Here, we describe how immune cell-derived cytokines can act directly on sensory neurons to inhibit pain hypersensitivity and how immune-derived endogenous opioids promote analgesia. We also discuss how immune cells support healthy tissue innervation by clearing debris after nerve injury, protecting against axon retraction from target tissues and enhancing regeneration, preventing the development of chronic neuropathic pain. Finally, we review the accumulating evidence that manipulating immune activity positively alters somatosensation, albeit with currently unclear molecular and cellular mechanisms. Exploration of immune-mediated analgesia and pain prevention could, therefore, be important for the development of novel immune therapies for the treatment of clinical pain states.
Collapse
Affiliation(s)
- Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
34
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
35
|
Rehak L, Giurato L, Monami M, Meloni M, Scatena A, Panunzi A, Manti GM, Caravaggi CMF, Uccioli L. The Immune-Centric Revolution Translated into Clinical Application: Peripheral Blood Mononuclear Cell (PBMNC) Therapy in Diabetic Patients with No-Option Critical Limb-Threatening Ischemia (NO-CLTI)-Rationale and Meta-Analysis of Observational Studies. J Clin Med 2024; 13:7230. [PMID: 39685690 DOI: 10.3390/jcm13237230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Chronic limb-threatening ischemia (CLTI), the most advanced form of peripheral arterial disease (PAD), is the comorbidity primarily responsible for major lower-limb amputations, particularly for diabetic patients. Autologous cell therapy has been the focus of efforts over the past 20 years to create non-interventional therapeutic options for no-option CLTI to improve limb perfusion and wound healing. Among the different available techniques, peripheral blood mononuclear cells (PBMNC) appear to be the most promising autologous cell therapy due to physio-pathological considerations and clinical evidence, which will be discussed in this review. A meta-analysis of six clinical studies, including 256 diabetic patients treated with naive, fresh PBMNC produced via a selective filtration point-of-care device, was conducted. PBMNC was associated with a mean yearly amputation rate of 15.7%, a mean healing rate of 62%, and a time to healing of 208.6 ± 136.5 days. Moreover, an increase in TcPO2 and a reduction in pain were observed. All-cause mortality, with a mean rate of 22.2% and a yearly mortality rate of 18.8%, was reported. No serious adverse events were reported. Finally, some practical and financial considerations are provided, which point to the therapy's recommendation as the first line of treatment for this particular and crucial patient group.
Collapse
Affiliation(s)
- Laura Rehak
- Athena Cell Therapy Technologies, 50126 Florence, Italy
| | - Laura Giurato
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo Monami
- Department of Diabetology Azienda Ospedaliera Universitaria Careggi, University of Florence, 50134 Florence, Italy
| | - Marco Meloni
- Diabetic Foot Unit, Department of Systems Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Alessia Scatena
- Diabetology Unit, San Donato Hospital Arezzo, Local Health Authorities Southeast Tuscany, 52100 Arezzo, Italy
| | - Andrea Panunzi
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
- PhD School of Applied Medical and Surgical Sciences, University of Rome Tor Vergata Italy, 00133 Rome, Italy
| | | | | | - Luigi Uccioli
- Department of Biomedicine and Prevention, Diabetes-Endocrine Section CTO Hospital, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
36
|
Da Vitoria Lobo M, Hardowar L, Valentine T, Tomblin L, Guest C, Sharma D, Dickins B, Paul-Clark M, Hulse RP. Early-life cisplatin exposure induces neuroinflammation and chemotherapy-induced neuropathic pain. Dis Model Mech 2024; 17:dmm052062. [PMID: 39428813 PMCID: PMC11625889 DOI: 10.1242/dmm.052062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is a common adverse health-related comorbidity that manifests later in life in patients with paediatric cancer. Current analgesia is ineffective, aligning closely with our lack of understanding of CINP. The aim of this study was to investigate how cisplatin induces nerve growth factor (NGF)-mediated neuroinflammation and nociceptor sensitisation. In a rat model of cisplatin-induced survivorship pain, cisplatin induced a neuroinflammatory environment in the dorsal root ganglia (DRG), demonstrated by NGF-positive macrophages infiltrating into the DRG. Cisplatin-treated CD11b- and F4/80-positive macrophages expressed more NGF compared to those treated with vehicle control. Mouse primary DRG sensory neuronal cultures demonstrated enhanced NGF-dependent TRPV1-mediated nociceptor activity after cisplatin treatment. Increased nociceptor activity was also observed when cultured mouse DRG neurons were treated with conditioned medium from cisplatin-activated macrophages. Elevated nociceptor activity was inhibited in a dose-dependent manner by an NGF-neutralising antibody. Intraperitoneal administration of the NGF-neutralising antibody reduced cisplatin-induced mechanical hypersensitivity and aberrant nociceptor intraepidermal nerve fibre density. These findings identify that a monocyte- or macrophage-driven NGF-TrkA pathway is a novel analgesic target for adult survivors of childhood cancer.
Collapse
Affiliation(s)
- Marlene Da Vitoria Lobo
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Lydia Hardowar
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Tameille Valentine
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Lucy Tomblin
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Charlotte Guest
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Dhyana Sharma
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Benjamin Dickins
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Mark Paul-Clark
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Richard Philip Hulse
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| |
Collapse
|
37
|
Tripathi G, Dourson A, Wayland J, Khanna S, Hoffmann M, Govindarajan T, Morales FM, Queme L, Millay D, Jankowski MP. Synaptic-like coupling of macrophages to myofibers regulates muscle repair. RESEARCH SQUARE 2024:rs.3.rs-5290399. [PMID: 39574892 PMCID: PMC11581056 DOI: 10.21203/rs.3.rs-5290399/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Peripheral injury responses essential for muscle repair and nociception require complex interactions of target tissues, immune cells and primary sensory neurons. Nociceptors and myofibers both react robustly to signals generated from circulating immune cells, which promote repair, growth, and regeneration of muscle while simultaneously modulating peripheral sensitization. Here, we found that macrophages form a synaptic-like contact with myofibers to hasten repair after acute incision injury and to facilitate regeneration after major muscle damage. Transient chemogenetic activation of macrophages enhanced calcium dependent membrane repair, induced muscle calcium waves in vivo , elicited low level electrical activity in the muscles and enhanced myonuclear accretion. Under severe injury, macrophage activation could also modulate pain-like behaviors. This study identifies a novel mechanism by which synaptic-like functions of macrophages impacts muscle repair after tissue damage.
Collapse
|
38
|
Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med 2024; 5:101756. [PMID: 39366385 PMCID: PMC11513853 DOI: 10.1016/j.xcrm.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Collapse
Affiliation(s)
- Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
39
|
Nakai R, Varnum S, Field RL, Shi H, Giwa R, Jia W, Krysa SJ, Cohen EF, Borcherding N, Saneto RP, Tsai RC, Suganuma M, Ohta H, Yokota T, Brestoff JR. Mitochondria transfer-based therapies reduce the morbidity and mortality of Leigh syndrome. Nat Metab 2024; 6:1886-1896. [PMID: 39223312 DOI: 10.1038/s42255-024-01125-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Mitochondria transfer is a recently described phenomenon in which donor cells deliver mitochondria to acceptor cells1-3. One possible consequence of mitochondria transfer is energetic support of neighbouring cells; for example, exogenous healthy mitochondria can rescue cell-intrinsic defects in mitochondrial metabolism in cultured ρ0 cells or Ndufs4-/- peritoneal macrophages4-7. Exposing haematopoietic stem cells to purified mitochondria before autologous haematopoietic stem cell transplantation allowed for treatment of anaemia in patients with large-scale mitochondrial DNA mutations8,9, and mitochondria transplantation was shown to minimize ischaemic damage to the heart10-12, brain13-15 and limbs16. However, the therapeutic potential of using mitochondria transfer-based therapies to treat inherited mitochondrial diseases is unclear. Here we demonstrate improved morbidity and mortality of the Ndufs4-/- mouse model of Leigh syndrome (LS) in multiple treatment paradigms associated with mitochondria transfer. Transplantation of bone marrow from wild-type mice, which is associated with release of haematopoietic cell-derived extracellular mitochondria into circulation and transfer of mitochondria to host cells in multiple organs, ameliorates LS in mice. Furthermore, administering isolated mitochondria from wild-type mice extends lifespan, improves neurological function and increases energy expenditure of Ndufs4-/- mice, whereas mitochondria from Ndufs4-/- mice did not improve neurological function. Finally, we demonstrate that cross-species administration of human mitochondria to Ndufs4-/- mice also improves LS. These data suggest that mitochondria transfer-related approaches can be harnessed to treat mitochondrial diseases, such as LS.
Collapse
Affiliation(s)
- Ritsuko Nakai
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
- Department of Hematology, Sakai City Medical Center, Sakai, Japan
| | - Stella Varnum
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Henyun Shi
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan
| | - Rocky Giwa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Wentong Jia
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samantha J Krysa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Eva F Cohen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Russell P Saneto
- Neuroscience Institute, Center for Integrated Brain Research, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | | | | | | - Takafumi Yokota
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Suita, Japan.
- Department of Hematology, Osaka International Cancer Institute, Osaka, Japan.
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
40
|
Jiménez-Andrade Y, Flesher JL, Park JM. Cancer Therapy-induced Dermatotoxicity as a Window to Understanding Skin Immunity. Hematol Oncol Clin North Am 2024; 38:1011-1025. [PMID: 38866636 PMCID: PMC11368641 DOI: 10.1016/j.hoc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Pruritus, rash, and various other forms of dermatotoxicity are the most frequent adverse events among patients with cancer receiving targeted molecular therapy and immunotherapy. Immune checkpoint inhibitors, macrophage-targeting agents, and epidermal growth factor receptor/MEK inhibitors not only exert antitumor effects but also interfere with molecular pathways essential for skin immune homeostasis. Studying cancer therapy-induced dermatotoxicity helps us identify molecular mechanisms governing skin immunity and deepen our understanding of human biology. This review summarizes new mechanistic insights emerging from the analysis of cutaneous adverse events and discusses knowledge gaps that remain to be closed by future research.
Collapse
Affiliation(s)
- Yanek Jiménez-Andrade
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Jessica L Flesher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA
| | - Jin Mo Park
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA 02129, USA.
| |
Collapse
|
41
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
42
|
Marino Y, Inferrera F, D'Amico R, Impellizzeri D, Cordaro M, Siracusa R, Gugliandolo E, Fusco R, Cuzzocrea S, Di Paola R. Role of mitochondrial dysfunction and biogenesis in fibromyalgia syndrome: Molecular mechanism in central nervous system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167301. [PMID: 38878832 DOI: 10.1016/j.bbadis.2024.167301] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 08/18/2024]
Abstract
A critical role for mitochondrial dysfunction has been shown in the pathogenesis of fibromyalgia. It is a chronic pain syndrome characterized by neuroinflammation and impaired oxidative balance in the central nervous system. Boswellia serrata (BS), a natural polyphenol, is a well-known able to influence the mitochondrial metabolism. The objective of this study was to evaluate the mitochondrial dysfunction and biogenesis in fibromyalgia and their modulation by BS. To induce the model reserpine (1 mg/Kg) was subcutaneously administered for three consecutive days and BS (100 mg/Kg) was given orally for twenty-one days. BS reduced pain like behaviors in reserpine-injected rats and the astrocytes activation in the dorsal horn of the spinal cord and prefrontal cortex that are recognized as key regions associated with the neuropathic pain. Vulnerability to neuroinflammation and impaired neuronal plasticity have been described as consequences of mitochondrial dysfunction. BS administration increased PGC-1α expression in the nucleus of spinal cord and brain tissues, promoting the expression of regulatory genes for mitochondrial biogenesis (NRF-1, Tfam and UCP2) and cellular antioxidant defence mechanisms (catalase, SOD2 and Prdx 3). According with these data BS reduced lipid peroxidation and the GSSG/GSH ratio and increased SOD activity in the same tissues. Our results also showed that BS administration mitigates cytochrome-c leakage by promoting mitochondrial function and supported the movement of PGC-1α protein into the nucleus restoring the quality control of mitochondria. Additionally, BS reduced Drp1 and Fis1, preventing both mitochondrial fission and cell death, and increased the expression of Mfn2 protein, facilitating mitochondrial fusion. Overall, our results showed important mitochondrial dysfunction in central nervous system in fibromyalgia syndrome and the role of BS in restoring mitochondrial dynamics.
Collapse
Affiliation(s)
- Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Francesca Inferrera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy.
| |
Collapse
|
43
|
Ding F, Zhou M, Ren Y, Li Y, Xiang J, Li Y, Yu J, Hong Y, Fu Z, Li H, Pan Z, Liu B. Mitochondrial Extracellular Vesicles: A Promising Avenue for Diagnosing and Treating Lung Diseases. ACS NANO 2024; 18:25372-25404. [PMID: 39225081 DOI: 10.1021/acsnano.4c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Mitochondria, pivotal organelles governing cellular biosynthesis, energy metabolism, and signal transduction, maintain dynamic equilibrium through processes such as biogenesis, fusion, fission, and mitophagy. Growing evidence implicates mitochondrial dysfunction in a spectrum of respiratory diseases including acute lung injury/acute respiratory distress syndrome, bronchial asthma, pulmonary fibrosis, chronic obstructive pulmonary disease, and lung cancer. Consequently, identifying methods capable of ameliorating damaged mitochondrial function is crucial for the treatment of pulmonary diseases. Extracellular vesicles (EVs), nanosized membrane vesicles released by cells into the extracellular space, facilitate intercellular communication by transferring bioactive substances or signals between cells or organs. Recent studies have identified abundant mitochondrial components within specific subsets of EVs, termed mitochondrial extracellular vesicles (mitoEVs), whose contents and compositions vary with disease progression. Moreover, mitoEVs have demonstrated reparative mitochondrial functions in injured recipient cells. However, a comprehensive understanding of mitoEVs is currently lacking, limiting their clinical translation prospects. This Review explores the biogenesis, classification, functional mitochondrial cargo, and biological effects of mitoEVs, with a focus on their role in pulmonary diseases. Emphasis is placed on their potential as biological markers and innovative therapeutic strategies in pulmonary diseases, offering fresh insights for mechanistic studies and drug development in various pulmonary disorders.
Collapse
Affiliation(s)
- Fengxia Ding
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Mi Zhou
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yinying Ren
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinying Xiang
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yuehan Li
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jinyue Yu
- Childhood Nutrition Research Group, Population, Policy & Practice Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Ying Hong
- Infection, Immunity, Inflammation Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, U.K
| | - Zhou Fu
- Department of Respiratory Medicine; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hongbo Li
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Zhengxia Pan
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bo Liu
- Department of Cardiothoracic Surgery; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Engineering Research Center of Stem Cell Therapy, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
44
|
Furgiuele S, Cappello E, Ruggeri M, Camilli D, Palasciano G, Guerrieri MW, Michelagnoli S, Dorrucci V, Pompeo F. One-Year Analysis of Autologous Peripheral Blood Mononuclear Cells as Adjuvant Therapy in Treatment of Diabetic Revascularizable Patients Affected by Chronic Limb-Threatening Ischemia: Real-World Data from Italian Registry ROTARI. J Clin Med 2024; 13:5275. [PMID: 39274487 PMCID: PMC11396002 DOI: 10.3390/jcm13175275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Wounds in diabetic patients with peripheral arterial disease (PAD) may be poorly responsive to revascularization and conventional therapies. Background/Objective: This study's objective is to analyze the results of regenerative cell therapy with peripheral blood mononuclear cells (PBMNCs) as an adjuvant to revascularization. Methods: This study is based on 168 patients treated with endovascular revascularization below the knee plus three PBMNC implants. The follow-up included clinical outcomes at 1-2-3-6 and 12 months based on amputations, wound healing, pain, and TcPO2. Results: The results at 1 year for 122 cases showed a limb rescue rate of 94.26%, a complete wound healing in 65.59% of patients, and an improvement in the wound area, significant pain relief, and increased peripheral oxygenation. In total, 64.51% of patients completely healed at 6 months, compared to the longer wound healing time reported in the literature in the same cohort of patients, suggesting that PBMNCs have an adjuvant effect in wound healing after revascularization. Conclusions: PBMNC regenerative therapy is a safe and promising treatment for diabetic PAD. In line with previous experiences, this registry shows improved healing in diabetic patients with below-the-knee arteriopathy. The findings support the use of this cell therapy and advocate for further research.
Collapse
Affiliation(s)
- Sergio Furgiuele
- Unit of Vascular and Endovascular Surgery, High Specialty Hospital "Mediterranea", 80122 Napoli, Italy
| | - Enrico Cappello
- Second Unit of Vascular and Endovascular Surgery, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Massimo Ruggeri
- Unit of Vascular Surgery, San Camillo de Lellis Hospital, 02100 Rieti, Italy
| | - Daniele Camilli
- Casa di Cura Santa Caterina della Rosa Asl RM 2, 00176 Roma, Italy
| | - Giancarlo Palasciano
- Vascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Massimiliano Walter Guerrieri
- Vascular Surgery Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
- UOC Vascular Surgery, San Donato Hospital, 52100 Arezzo, Italy
| | - Stefano Michelagnoli
- Vascular and Endovascular Surgery Unit, San Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Vittorio Dorrucci
- Department of Vascular Surgery, Umberto I Hospital, 96100 Venice, Italy
| | - Francesco Pompeo
- Second Unit of Vascular and Endovascular Surgery, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
45
|
Goto T, Kuramoto E, Iwai H, Yamanaka A. Cytoarchitecture and intercellular interactions in the trigeminal ganglion: Associations with neuropathic pain in the orofacial region. J Oral Biosci 2024; 66:485-490. [PMID: 39032827 DOI: 10.1016/j.job.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Disorders of the trigeminal nerve, a sensory nerve of the orofacial region, often lead to complications in dental practice, including neuropathic pain, allodynia, and ectopic pain. Management of these complications requires an understanding of the cytoarchitecture of the trigeminal ganglion, where the cell bodies of the trigeminal nerve are located, and the mechanisms of cell-cell interactions. HIGHLIGHTS In the trigeminal ganglion, ganglion, satellite, Schwann, and immune cells coexist and interact. Cell-cell interactions are complex and occur through direct contact via gap junctions or through mediators such as adenosine triphosphate, nitric oxide, peptides, and cytokines. Interactions between the nervous and immune systems within the trigeminal ganglion may have neuroprotective effects during nerve injury or may exacerbate inflammation and produce chronic pain. Under pathological conditions of the trigeminal nerve, cell-cell interactions can cause allodynia and ectopic pain. Although cell-cell interactions that occur via mediators can act at some distance, they are more effective when the cells are close together. Therefore, information on the three-dimensional topography of trigeminal ganglion cells is essential for understanding the pathophysiology of ectopic pain. CONCLUSIONS A three-dimensional map of the somatotopic localization of trigeminal ganglion neurons revealed that ganglion cells innervating distant orofacial regions are often apposed to each other, interacting with and potentially contributing to ectopic pain. Elucidation of the complex network of mediators and their receptors responsible for intercellular communication within the trigeminal ganglion is essential for understanding ectopic pain.
Collapse
Affiliation(s)
- Tetsuya Goto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| | - Haruki Iwai
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Yamanaka
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
46
|
Geraghty T, Ishihara S, Obeidat AM, Adamczyk NS, Hunter RS, Li J, Wang L, Lee H, Ko FC, Malfait AM, Miller RE. Acute systemic macrophage depletion in osteoarthritic mice alleviates pain-related behaviors and does not affect joint damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608301. [PMID: 39229102 PMCID: PMC11370380 DOI: 10.1101/2024.08.16.608301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain. Our objective was to determine the effects of acute systemic macrophage depletion on pain-related behaviors and joint damage using surgical mouse models in both sexes. Methods We depleted CSF1R+ macrophages by treating male macrophage Fas-induced apoptosis (MaFIA) transgenic mice 8- or 16-weeks post destabilization of the medial meniscus (DMM) with AP20187 or vehicle control (10 mg/kg i.p., 1x/day for 5 days), or treating female MaFIA mice 12 weeks post partial meniscectomy (PMX) with AP20187 or vehicle control. We measured pain-related behaviors 1-3 days before and after depletion, and, 3-4 days after the last injection we examined joint histopathology and performed flow cytometry of the dorsal root ganglia (DRGs). In a separate cohort of male 8-week DMM mice or age-matched naïve vehicle controls, we conducted DRG bulk RNA-sequencing analyses after the 5-day vehicle or AP20187 treatment. Results Eight- and 16-weeks post DMM in male mice, AP20187-induced macrophage depletion resulted in attenuated mechanical allodynia and knee hyperalgesia. Female mice showed alleviation of mechanical allodynia, knee hyperalgesia, and weight bearing deficits after macrophage depletion at 12 weeks post PMX. Macrophage depletion did not affect the degree of cartilage degeneration, osteophyte width, or synovitis in either sex. Flow cytometry of the DRG revealed that macrophages and neutrophils were reduced after AP20187 treatment. In addition, in the DRG, only MHCII+ M1-like macrophages were significantly decreased, while CD163+MHCII- M2-like macrophages were not affected in both sexes. DRG bulk RNA-seq revealed that Cxcl10 and Il1b were upregulated with DMM surgery compared to naïve mice, and downregulated in DMM after acute macrophage depletion. Conclusions Acute systemic macrophage depletion reduced the levels of pro-inflammatory macrophages in the DRG and alleviated pain-related behaviors in established surgically induced OA in mice of both sexes, without affecting joint damage. Overall, these studies provide insight into immune cell regulation in the DRG during OA.
Collapse
Affiliation(s)
- Terese Geraghty
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Shingo Ishihara
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Alia M Obeidat
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Natalie S Adamczyk
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Rahel S Hunter
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Jun Li
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Lai Wang
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Hoomin Lee
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Frank C Ko
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Anne-Marie Malfait
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| | - Rachel E Miller
- Rush University Medical Center, Department of Internal Medicine, Division of Rheumatology, Chicago, IL USA
- Rush University Medical Center, Department of Anatomy & Cell Biology, Chicago, IL USA
| |
Collapse
|
47
|
de Souza S, Laumet S, Inyang KE, Hua H, Sim J, Folger JK, Moeser AJ, Laumet G. Mast cell-derived chymases are essential for the resolution of inflammatory pain in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606617. [PMID: 39211156 PMCID: PMC11361099 DOI: 10.1101/2024.08.05.606617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Immune cells play a critical role in the transition from acute to chronic pain. However, the role of mast cells in pain remains under-investigated. Here, we demonstrated that the resolution of inflammatory pain is markedly delayed in mast-cell-deficient mice. In response to Complete Freund Adjuvant (CFA), mast-cell-deficient mice showed greater levels of nitric oxide and altered cytokine/chemokine profile in inflamed skin in both sexes. In Wild-Type (WT) mice, the number of mast cell and mast cell-derived chymases; chymase 1 (CMA1) and mast cell protease 4 (MCPT4) increased in the inflamed skin. Inhibiting chymase enzymatic activity delayed the resolution of inflammatory pain. Consistently, local pharmacological administration of recombinant CMA1 and MCPT4 promoted the resolution of pain hypersensitivity and attenuated the upregulation of cytokines and chemokines under inflammation. We identified CCL9 as a target of MCPT4. Inhibition of CCL9 promoted recruitment of CD206 + myeloid cells and alleviated inflammatory pain. Our work reveals a new role of mast cell-derived chymases in preventing the transition from acute to chronic pain and suggests new therapeutic avenues for the treatment of inflammatory pain. Summary Mast cell-derived chymases play an unexpected role in the resolution of inflammatory pain and regulate the immune response. Graphical abstract
Collapse
|
48
|
Marchon ISDS, Melo EDDN, Botinhão MDC, Pires GN, Reis JVR, de Souza ROMA, Leal ICR, Bonavita AGC, Mendonça HR, Muzitano MF, da Silva LL, do Carmo PL, Raimundo JM. Pharmacological potential of 4-dimethylamino chalcone against acute and neuropathic pain in mice. J Pharm Pharmacol 2024; 76:983-994. [PMID: 38733604 DOI: 10.1093/jpp/rgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVES This work investigated the acute antinociceptive effect of a synthetic chalcone, 4-dimethylamino chalcone (DMAC), as well as its effects on vincristine-induced peripheral neuropathy (VIPN) in mice. METHODS The inhibitory activity of myeloperoxidase was assessed by measuring HOCl formation. Formalin and hot plate tests were used to study the acute antinociceptive effect of DMAC. VIPN was induced through the administration of vincristine sulphate (0.1 mg/kg, i.p., 14 days). Then, DMSO, DMAC (10 or 30 mg/kg; i.p.), or pregabalin (10 mg/kg, i.p.) were administered for 14 consecutive days. Thermal hyperalgesia and mechanical allodynia were evaluated before and after VIPN induction and on days 1, 3, 7, and 14 of treatment. Neurodegeneration and neuroinflammation were assessed through immunohistochemistry for NF200, iNOS, and arginase-1 within the sciatic nerve. KEY FINDINGS DMAC inhibited myeloperoxidase activity in vitro and presented an acute antinociceptive effect in both formalin and hot plate tests, with the involvement of muscarinic and opioid receptors. Treatment with 30 mg/kg of DMAC significantly attenuated thermal hyperalgesia and mechanical allodynia and prevented macrophage proinflammatory polarisation in VIPN mice. CONCLUSIONS Our results show that DMAC, acting through different mechanisms, effectively attenuates VIPN.
Collapse
Affiliation(s)
- Isabela Souza Dos Santos Marchon
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Evelynn Dalila do Nascimento Melo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Mirella da Costa Botinhão
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Greice Nascimento Pires
- Laboratório Integrado de Morfologia, Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade NUPEM, Macaé, RJ 27965-045, Brazil
| | - João Vitor Rocha Reis
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | | | - Ivana Correa Ramos Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - André Gustavo Calvano Bonavita
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Henrique Rocha Mendonça
- Laboratório Integrado de Morfologia, Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade NUPEM, Macaé, RJ 27965-045, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Leandro Louback da Silva
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
| | - Paula Lima do Carmo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Juliana Montani Raimundo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
| |
Collapse
|
49
|
Wu S, Yang T, Ma M, Fan L, Ren L, Liu G, Wang Y, Cheng B, Xia J, Hao Z. Extracellular vesicles meet mitochondria: Potential roles in regenerative medicine. Pharmacol Res 2024; 206:107307. [PMID: 39004243 DOI: 10.1016/j.phrs.2024.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
Extracellular vesicles (EVs), secreted by most cells, act as natural cell-derived carriers for delivering proteins, nucleic acids, and organelles between cells. Mitochondria are highly dynamic organelles responsible for energy production and cellular physiological processes. Recent evidence has highlighted the pivotal role of EVs in intercellular mitochondrial content transfer, including mitochondrial DNA (mtDNA), proteins, and intact mitochondria. Intriguingly, mitochondria are crucial mediators of EVs release, suggesting an interplay between EVs and mitochondria and their potential implications in physiology and pathology. However, in this expanding field, much remains unknown regarding the function and mechanism of crosstalk between EVs and mitochondria and the transport of mitochondrial EVs. Herein, we shed light on the physiological and pathological functions of EVs and mitochondria, potential mechanisms underlying their interactions, delivery of mitochondria-rich EVs, and their clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Shujie Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Tao Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Meirui Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Le Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Lin Ren
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Gen Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yiqiao Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Juan Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Zhichao Hao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
50
|
Reynders A, Anissa Jhumka Z, Gaillard S, Mantilleri A, Malapert P, Magalon K, Etzerodt A, Salio C, Ugolini S, Castets F, Saurin AJ, Serino M, Hoeffel G, Moqrich A. Gut microbiota promotes pain chronicity in Myosin1A deficient male mice. Brain Behav Immun 2024; 119:750-766. [PMID: 38710336 DOI: 10.1016/j.bbi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.
Collapse
Affiliation(s)
- Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| | - Z Anissa Jhumka
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | | | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Karine Magalon
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Sophie Ugolini
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Francis Castets
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Serino
- Institut de Recherche en Santé Digestive, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Guillaume Hoeffel
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| |
Collapse
|