1
|
Yulug B, Kilic E, Oğuz T, Orhan C, Er B, Tuzcu M, Ozercan IH, Sahin N, Canpolat S, Komorowski J, Ojalvo SP, Sylla S, Cankaya S, Sahin K. Dose-Dependent Effect of a New Biotin Compound in Hippocampal Remyelination in Rats. Mol Neurobiol 2025; 62:6503-6520. [PMID: 39821844 PMCID: PMC11953097 DOI: 10.1007/s12035-025-04686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Demyelination is commonly observed in neurodegenerative disorders, including multiple sclerosis (MS). Biotin supplementation is known to stabilize MS progression. To reduce the effective dose of biotin, we synthesized a new and superior form of biotin, a complex of magnesium ionically bound to biotin (MgB) and compared its dose-dependent effect with biotin alone after inducing demyelination using lysolecithin (LPC) in rats. Myelination was assessed using luxol fast blue staining and immunostaining against MBP protein, revealing that the most significant remyelination occurred in the MgB groups. Additionally, both biotin and MgB-treated animals showed dose-dependent improvements in spatial memory. Moreover, we detected a decrease in inflammatory proteins in both treatment groups, which was more prominent in high-dose MgB-treated animals and correlated with decreased expression of NF-κB p65, OP, and MMP-9 proteins. Further analysis of biotin-related proteins demonstrated that both biotin and, notably, MgB reversed the demyelination-dependent reduction of these proteins. Furthermore, biotin, particularly MgB, improved neuronal transmission proteins, Synapsin-1, PSD-93, and PSD-95. Additionally, both treatment groups exhibited increased BDNF, GAP43, and ICAM levels, with significant increments observed in high-dose MgB-treated animals. Increased GFAP, indicative of reactive gliosis, was observed in LPC-treated animals, and this effect was notably reversed by high-dose MgB treatment. The current data emphasize the dose-dependent beneficial effect on the remyelination process. Furthermore, the combination of biotin with Mg resulted in a more potent effect compared to biotin by itself. The strong influence of MgB encourages proof-of-concept studies using MgB in patients with MS.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology, School of Medicine, Alaaddin Keykubat University, Alanya, Turkey
| | - Ertugrul Kilic
- Department of Physiology, Istanbul Medipol University, Istanbul, Turkey
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Tuba Oğuz
- Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neuroscience, Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Cemal Orhan
- Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | | | - Nurhan Sahin
- Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Sinan Canpolat
- Department of Physiology, Faculty of Medicine, Firat University, Elazig, Turkey
| | - James Komorowski
- Research and Development, JDS Therapeutics, LLC, Purchase, NY, 10577, USA
| | - Sara Perez Ojalvo
- Research and Development, JDS Therapeutics, LLC, Purchase, NY, 10577, USA
| | - Sarah Sylla
- Research and Development, JDS Therapeutics, LLC, Purchase, NY, 10577, USA
| | - Seyda Cankaya
- Department of Neurology, School of Medicine, Alaaddin Keykubat University, Alanya, Turkey
| | - Kazim Sahin
- Department of Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey.
| |
Collapse
|
2
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Ahmed EA, Fawzy MN, Alruwaili M, Alexiou A, Papadakis M, Batiha GES. Role of liver X receptor in multiple sclerosis: A long furtive life behind a barrier. Brain Res Bull 2025; 224:111333. [PMID: 40185420 DOI: 10.1016/j.brainresbull.2025.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/06/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Liver X receptors (LXRs) are nuclear receptors that function as transcription factors regulating cholesterol metabolism and are implicated in multiple sclerosis (MS) pathogenesis. This mini-review aims to elucidate the potential role of LXRs in MS neuropathology. MS is the most prevalent inflammatory and demyelinating disease of the central nervous system (CNS), impacting both the brain and spinal cord. Furthermore, alterations in brain cholesterol metabolism in MS can modify the functional activity and immune response of LXRs, which are implicated in MS neuropathology. Dysregulation of LXRs and cholesterol homeostasis is associated with the pathogenesis of MS. LXRs play a critical role in regulating the myelination of nerve sheaths, and defects in LXR function may contribute to the progression of MS. LXRs have immunomodulatory effects, including inhibition of the proliferation of lymphocytes, preventing contact of self-antigens to T cells, and regulating the apoptotic process of T cells. LXRs regulate the activity of microglia, which have pro-inflammatory and anti-inflammatory properties involved in immune regulation and clearance of debris as well as the remyelination process. LXRs regulate the functional activity of glial cells and prevent glial cell-mediated neurodegeneration. LXRs have an important role in the regulation of neuroinflammation during MS neuropathology. LXRs may prevent the progression of neuroinflammation in MS by inhibiting the NF-κB and NLRP3 inflammasome signaling pathways. In conclusion, LXRs play a crucial role in MS neuropathology by mitigating neuroinflammation. These findings proposed that LXR agonists, through modulation of cholesterol homeostasis and inflammatory response, could be effective in the management of MS.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Bagdad, Iraq.
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt.
| | - Mohamed N Fawzy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt.
| |
Collapse
|
3
|
Pierce K, Countryman B, Nelson M, Dasgupta A. Comparison of the newly formulated beckman access free T4 (Thyroxine) assay on the DXI 800 analyzer with the current Beckman free T4 (Thyroxine) assay for biotin Interference: New assay is free from biotin interference. Clin Chim Acta 2025; 571:120239. [PMID: 40064456 DOI: 10.1016/j.cca.2025.120239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Biotin causes significant positive interference with Free T4 (thyroxine) measurement using the current Beckman assay. Recently, Beckman reformulated the FT4 assay to overcome biotin interference. We compared the effect of biotin on both current and newly formulated FT4 assays. MATERIALS AND METHODS Three serum pools were prepared using specimens containing various amounts of FT4. Aliquots of each pool were supplemented with various amounts of biotin. Then FT4 concentrations were measured by both the current and new FT4 assay. In addition, three volunteers ingested 10 mg of biotin. Specimens were drawn prior to the administration of biotin and 2 h post-biotin ingestion. FT4 concentration was measured before and after biotin administration using both assays. RESULTS The newly formulated FT4 assay correlated well with the current FT4 assay. In the presence of biotin, FT4 concentrations were increased significantly using the current assay. However, negligible changes were observed using the newly formulated assay. We also observed similar results in vivo within the volunteer specimens. CONCLUSION The newly formulated Beckman Access FT4 assay is free from biotin interference up to a very high biotin concentration of 3500 ng/mL.
Collapse
Affiliation(s)
- Kameron Pierce
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Bailey Countryman
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Melody Nelson
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA
| | - Amitava Dasgupta
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, USA.
| |
Collapse
|
4
|
Orywal K, Socha K, Iwaniuk P, Kaczyński P, Farhan JA, Zoń W, Łozowicka B, Perkowski M, Mroczko B. Vitamins in the Prevention and Support Therapy of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:1333. [PMID: 39941101 PMCID: PMC11818229 DOI: 10.3390/ijms26031333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS), which are a consequence of the progressive loss of neuronal function and structure, cause significant cognitive impairment. The incidence of these diseases in the world's population is constantly increasing as a result of an aging population. Although genetic and environmental factors are most often mentioned as the pathogenetic factors of these diseases, increasing evidence points to the important role of proper nutrition in the prevention and support of the treatment of these disorders. A healthy, balanced diet can mitigate the risks associated with the risk factors mentioned above and slow the progression of the disease by reducing oxidative stress and inflammation. Vitamins B, D, E, C, K, and A have been shown to support cognitive functions and protect the nervous system. This review demonstrates the importance of vitamins in preventing and supporting the therapy of neurodegenerative diseases. Information regarding the health-promoting properties of these vitamins must be effectively communicated to consumers seeking to protect their health, particularly in the context of neurodegenerative diseases. Consequently, this review also examines the authorized health claims under EU food law related to these vitamins, assessing their role in promoting awareness of the vitamins' potential benefits for neuroprotection and the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Karolina Orywal
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
| | - Katarzyna Socha
- Department of Bromatology, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Piotr Kaczyński
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Jakub Ali Farhan
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Wojciech Zoń
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Bożena Łozowicka
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22, 15-195 Bialystok, Poland; (P.I.); (P.K.); (B.Ł.)
| | - Maciej Perkowski
- Department of Public International Law and European Law, University of Białystok, Mickiewicza 1, 15-213 Białystok, Poland; (J.A.F.); (W.Z.); (M.P.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Sharma T, Mehan S, Tiwari A, Khan Z, Gupta GD, Narula AS. Targeting Oligodendrocyte Dynamics and Remyelination: Emerging Therapies and Personalized Approaches in Multiple Sclerosis Management. Curr Neurovasc Res 2025; 21:359-417. [PMID: 39219420 DOI: 10.2174/0115672026336440240822063430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/01/1970] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Multiple sclerosis (MS) is a progressive autoimmune condition that primarily affects young people and is characterized by demyelination and neurodegeneration of the central nervous system (CNS). This in-depth review explores the complex involvement of oligodendrocytes, the primary myelin- producing cells in the CNS, in the pathophysiology of MS. It discusses the biochemical processes and signalling pathways required for oligodendrocytes to function and remain alive, as well as how they might fail and cause demyelination to occur. We investigate developing therapeutic options that target remyelination, a fundamental component of MS treatment. Remyelination approaches promote the survival and differentiation of oligodendrocyte precursor cells (OPCs), restoring myelin sheaths. This improves nerve fibre function and may prevent MS from worsening. We examine crucial parameters influencing remyelination success, such as OPC density, ageing, and signalling pathway regulation (e.g., Retinoid X receptor, LINGO-1, Notch). The review also examines existing neuroprotective and antiinflammatory medications being studied to see if they can assist oligodendrocytes in surviving and reducing the severity of MS symptoms. The review focuses on medicines that target the myelin metabolism in oligodendrocytes. Altering oligodendrocyte metabolism has been linked to reversing demyelination and improving MS patient outcomes through various mechanisms. We also explore potential breakthroughs, including innovative antisense technologies, deep brain stimulation, and the impact of gut health and exercise on MS development. The article discusses the possibility of personalized medicine in MS therapy, emphasizing the importance of specific medicines based on individual molecular profiles. The study emphasizes the need for reliable biomarkers and improved imaging tools for monitoring disease progression and therapy response. Finally, this review focuses on the importance of oligodendrocytes in MS and the potential for remyelination therapy. It also underlines the importance of continued research to develop more effective treatment regimens, taking into account the complexities of MS pathology and the different factors that influence disease progression and treatment.
Collapse
Affiliation(s)
- Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
6
|
Soroush A, Dunn JF. A Hypoxia-Inflammation Cycle and Multiple Sclerosis: Mechanisms and Therapeutic Implications. Curr Treat Options Neurol 2024; 27:6. [PMID: 39569339 PMCID: PMC11573864 DOI: 10.1007/s11940-024-00816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
Purpose of Review Multiple sclerosis (MS) is a complex neurodegenerative disease characterized by inflammation, demyelination, and neurodegeneration. Significant hypoxia exists in brain of people with MS (pwMS), likely contributing to inflammatory, neurodegenerative, and vascular impairments. In this review, we explore the concept of a negative feedback loop between hypoxia and inflammation, discussing its potential role in disease progression based on evidence of hypoxia, and its implications for therapeutic targets. Recent Findings In the experimental autoimmune encephalomyelitis (EAE) model, hypoxia has been detected in gray matter (GM) using histological stains, susceptibility MRI and implanted oxygen sensitive probes. In pwMS, hypoxia has been quantified using near-infrared spectroscopy (NIRS) to measure cortical tissue oxygen saturation (StO2), as well as through blood-based biomarkers such as Glucose Transporter-1 (GLUT-1). We outline the potential for the hypoxia-inflammation cycle to drive tissue damage even in the absence of plaques. Inflammation can drive hypoxia through blood-brain barrier (BBB) disruption and edema, mitochondrial dysfunction, oxidative stress, vessel blockage and vascular abnormalities. The hypoxia can, in turn, drive more inflammation. Summary The hypoxia-inflammation cycle could exacerbate neuroinflammation and disease progression. We explore therapeutic approaches that target this cycle, providing information about potential treatments in MS. There are many therapeutic approaches that could block this cycle, including inhibiting hypoxia-inducible factor 1-α (HIF-1α), blocking cell adhesion or using vasodilators or oxygen, which could reduce either inflammation or hypoxia. This review highlights the potential significance of the hypoxia-inflammation pathway in MS and suggests strategies to break the cycle. Such treatments could improve quality of life or reduce rates of progression.
Collapse
Affiliation(s)
- Ateyeh Soroush
- Department of Neuroscience, University of Calgary, Calgary, Alberta Canada
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| | - Jeff F Dunn
- Hotchkiss Brain Institute (HBI), University of Calgary, Calgary, Alberta Canada
- Department of Radiology, University of Calgary, Calgary, Alberta Canada
- Experimental Imaging Center (EIC), Cal Wenzel Precision Health Building (CWPH Building) University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
7
|
Ciumărnean L, Sârb OF, Drăghici NC, Sălăgean O, Milaciu MV, Orășan OH, Vlad CV, Vlad IM, Alexescu T, Para I, Țărmure SF, Hirișcău EI, Dogaru GB. Obesity Control and Supplementary Nutraceuticals as Cofactors of Brain Plasticity in Multiple Sclerosis Populations. Int J Mol Sci 2024; 25:10909. [PMID: 39456690 PMCID: PMC11507128 DOI: 10.3390/ijms252010909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammation, demyelination, and neurodegeneration within the central nervous system. Brain plasticity, the brain's ability to adapt its structure and function, plays a crucial role in mitigating MS's impact. This paper explores the potential benefits of lifestyle changes and nutraceuticals on brain plasticity in the MS population. Lifestyle modifications, including physical activity and dietary adjustments, can enhance brain plasticity by upregulating neurotrophic factors, promoting synaptogenesis, and reducing oxidative stress. Nutraceuticals, such as vitamin D, omega-3 fatty acids, and antioxidants like alpha lipoic acid, have shown promise in supporting brain health through anti-inflammatory and neuroprotective mechanisms. Regular physical activity has been linked to increased levels of brain-derived neurotrophic factor and improved cognitive function. Dietary interventions, including caloric restriction and the intake of polyphenols, can also positively influence brain plasticity. Integrating these lifestyle changes and nutraceuticals into the management of MS can provide a complementary approach to traditional therapies, potentially improving neurological outcomes and enhancing the quality of life for the MS population.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Oliviu-Florențiu Sârb
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Nicu-Cătălin Drăghici
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
- “IMOGEN” Institute, Centre of Advanced Research Studies, Emergency Clinical County Hospital Cluj, 400347 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Mircea-Vasile Milaciu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Olga-Hilda Orășan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Călin-Vasile Vlad
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Irina-Maria Vlad
- Department of Clinical Neurosciences, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania (I.-M.V.)
| | - Teodora Alexescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Ioana Para
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Simina-Felicia Țărmure
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.-V.M.); (O.-H.O.); (C.-V.V.); (T.A.); (I.P.); (S.-F.Ț.)
| | - Elisabeta-Ioana Hirișcău
- Department of Nursing, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (O.S.); (E.-I.H.)
| | - Gabriela-Bombonica Dogaru
- Department of Medical Rehabilitation, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Sakurai-Yageta M, Suzuki Y. Molecular Mechanisms of Biotin in Modulating Inflammatory Diseases. Nutrients 2024; 16:2444. [PMID: 39125325 PMCID: PMC11314543 DOI: 10.3390/nu16152444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Biotin, also known as vitamin B7 or vitamin H, is a water-soluble B-complex vitamin and serves as an essential co-enzyme for five specific carboxylases. Holocarboxylase synthase (HCS) activates biotin and facilitates its covalent attachment to these enzymes, while biotinidase releases free biotin in the biotin cycle. The transport of biotin, primarily from the intestine, is mediated by the sodium-dependent multi-vitamin transporter (SMVT). Severe biotin deficiency leads to multiple carboxylase deficiency. Moreover, biotin is crucial to glucose and lipid utilization in cellular energy production because it modulates the expression of metabolic enzymes via various signaling pathways and transcription factors. Biotin also modulates the production of proinflammatory cytokines in the immune system through similar molecular mechanisms. These regulatory roles in metabolic and immune homeostasis connect biotin to conditions such as diabetes, dermatologic manifestations, and multiple sclerosis. Furthermore, deficiencies in biotin and SMVT are implicated in inflammatory bowel disease, affecting intestinal inflammation, permeability, and flora. Notably, HCS and probably biotin directly influence gene expression through histone modification. In this review, we summarize the current knowledge on the molecular aspects of biotin and associated molecules in diseases related to both acute inflammatory responses and chronic inflammation, and discuss the potential therapeutic applications of biotin.
Collapse
Affiliation(s)
- Mika Sakurai-Yageta
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai 980-8573, Miyagi, Japan
| | - Yoichi Suzuki
- Department of Education and Training, Tohoku Medical Megabank Organization, Tohoku University, Sendai 980-8573, Miyagi, Japan
- Department of Clinical Genetics, Ageo Central General Hospital, Ageo 362-8588, Saitama, Japan
| |
Collapse
|
9
|
Almasi S, Jafarzadeh Shirazi MR, Rezvani MR, Ramezani M, Salehi I, Pegah A, Komaki A. The protective effect of biotin supplementation and swimming training on cognitive impairment and mental symptoms in a rat model of Alzheimer's disease: A behavioral, biochemical, and histological study. Heliyon 2024; 10:e32299. [PMID: 39035497 PMCID: PMC11259780 DOI: 10.1016/j.heliyon.2024.e32299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 07/23/2024] Open
Abstract
Vitamin B (Vit B) plays a regulatory role in cognitive memory and learning. We examined the biochemical and behavioral effects of biotin supplementation (BS) and swimming training (ST) on Alzheimer's disease (AD), the most common type of dementia, in male rats. Sixty rats were randomly assigned to six groups: control, sham (receiving phosphate-buffered saline), AD (receiving a single injection of Aβ into the lateral ventricle), ST (for 28 days and before Aβ injection), and BS (receiving BS through oral gavage for 28 days before Aβ injection). The treatments were continued until the end of the behavioral tests. Learning and memory functions were investigated through the Morris water maze (MWM) and depression and anxiety-like behaviors were tested by elevated plus-maze (EPM) and forced swimming tests. In addition, oxidative stress biomarkers, such as total thiol groups (TTG) and malondialdehyde (MDA) in serum were assessed and histological studies were performed using brain tissues. In the AD group, Aβ increased the distance traveled and escape latency in the MWM, but co-administration of BS and ST attenuated the results of the MWM, EPM, and FST tests. Furthermore, BS decreased the litigious biochemical effects of Aβ by enhancing the levels of TTG, in addition to reducing serum MDA levels. The use of BS as a potent antioxidant improved Aβ-induced memory impairment. It attenuated oxidative stress biomarkers in the brain (number of Aβ plaques) and serum of AD rats. We provide evidence for the use of BS in neurodegenerative disorders, such as AD, to elucidate the possible mechanisms.
Collapse
Affiliation(s)
- Shadi Almasi
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Mohammad Reza Rezvani
- Department of Animal Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahdi Ramezani
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Atefeh Pegah
- Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
10
|
Li L, Zhou R, Sun L. Application of Theiler's murine encephalomyelitis virus in treatment of multiple sclerosis. Front Microbiol 2024; 15:1415365. [PMID: 38989030 PMCID: PMC11233754 DOI: 10.3389/fmicb.2024.1415365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infected mice have been often used as an animal model for Multiple sclerosis (MS) due to their similar pathology in the central nervous system (CNS). So far, there has been no effective treatment or medicine to cure MS completely. The drugs used in the clinic can only reduce the symptoms of MS, delay its recurrence, and increase the interval between relapses. MS can be caused by many factors, and clinically MS drugs are used to treat MS regardless of what factors are caused rather than MS caused by a specific factor. This can lead to inappropriate medicine, which may be one of the reasons why MS has not been completely cured. Therefore, this review summarized the drugs investigated in the TMEV-induced disease (TMEV-IDD) model of MS, so as to provide medication guidance and theoretical basis for the treatment of virus-induced MS.
Collapse
Affiliation(s)
- Lin Li
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Rui Zhou
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Medical University,Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
11
|
Karachaliou CE, Livaniou E. Biotin Homeostasis and Human Disorders: Recent Findings and Perspectives. Int J Mol Sci 2024; 25:6578. [PMID: 38928282 PMCID: PMC11203980 DOI: 10.3390/ijms25126578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biotin (vitamin B7, or vitamin H) is a water-soluble B-vitamin that functions as a cofactor for carboxylases, i.e., enzymes involved in the cellular metabolism of fatty acids and amino acids and in gluconeogenesis; moreover, as reported, biotin may be involved in gene regulation. Biotin is not synthesized by human cells, but it is found in food and is also produced by intestinal bacteria. Biotin status/homeostasis in human individuals depends on several factors, including efficiency/deficiency of the enzymes involved in biotin recycling within the human organism (biotinidase, holocarboxylase synthetase), and/or effectiveness of intestinal uptake, which is mainly accomplished through the sodium-dependent multivitamin transporter. In the last years, administration of biotin at high/"pharmacological" doses has been proposed to treat specific defects/deficiencies and human disorders, exhibiting mainly neurological and/or dermatological symptoms and including biotinidase deficiency, holocarboxylase synthetase deficiency, and biotin-thiamine-responsive basal ganglia disease. On the other hand, according to warnings of the Food and Drug Administration, USA, high biotin levels can affect clinical biotin-(strept)avidin assays and thus lead to false results during quantification of critical biomarkers. In this review article, recent findings/advancements that may offer new insight in the abovementioned research fields concerning biotin will be presented and briefly discussed.
Collapse
Affiliation(s)
| | - Evangelia Livaniou
- Immunopeptide Chemistry Lab, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, P.O. Box 60037, 153 10 Agia Paraskevi, Greece;
| |
Collapse
|
12
|
Nishiwaki H, Ueyama J, Ito M, Hamaguchi T, Takimoto K, Maeda T, Kashihara K, Tsuboi Y, Mori H, Kurokawa K, Katsuno M, Hirayama M, Ohno K. Meta-analysis of shotgun sequencing of gut microbiota in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:106. [PMID: 38773112 PMCID: PMC11109112 DOI: 10.1038/s41531-024-00724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/10/2024] [Indexed: 05/23/2024] Open
Abstract
We aimed to identify gut microbial features in Parkinson's disease (PD) across countries by meta-analyzing our fecal shotgun sequencing dataset of 94 PD patients and 73 controls in Japan with five previously reported datasets from USA, Germany, China1, China2, and Taiwan. GC-MS and LC-MS/MS assays were established to quantify fecal short-chain fatty acids (SCFAs) and fecal polyamines, respectively. α-Diversity was increased in PD across six datasets. Taxonomic analysis showed that species Akkermansia muciniphila was increased in PD, while species Roseburia intestinalis and Faecalibacterium prausnitzii were decreased in PD. Pathway analysis showed that genes in the biosyntheses of riboflavin and biotin were markedly decreased in PD after adjusting for confounding factors. Five out of six categories in carbohydrate-active enzymes (CAZymes) were decreased in PD. Metabolomic analysis of our fecal samples revealed that fecal SCFAs and polyamines were significantly decreased in PD. Genes in the riboflavin and biotin biosyntheses were positively correlated with the fecal concentrations of SCFAs and polyamines. Bacteria that accounted for the decreased riboflavin biosynthesis in Japan, the USA, and Germany were different from those in China1, China2, and Taiwan. Similarly, different bacteria accounted for decreased biotin biosynthesis in the two country groups. We postulate that decreased SCFAs and polyamines reduce the intestinal mucus layer, which subsequently facilitates the formation of abnormal α-synuclein fibrils in the intestinal neural plexus in PD, and also cause neuroinflammation in PD.
Collapse
Affiliation(s)
- Hiroshi Nishiwaki
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Jun Ueyama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mikako Ito
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonari Hamaguchi
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiichi Takimoto
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Maeda
- Division of Neurology and Gerontology, Department of Internal Medicine, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Ken Kurokawa
- Advanced Genomics Center, National Institute of Genetics, Mishima, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Hirayama
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Occupational Therapy, Chubu University College of Life and Health Sciences, Kasugai, Japan.
| | - Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nagoya, Japan.
| |
Collapse
|
13
|
Mouliou DS. John Cunningham Virus and Progressive Multifocal Leukoencephalopathy: A Falsely Played Diagnosis. Diseases 2024; 12:100. [PMID: 38785755 PMCID: PMC11120163 DOI: 10.3390/diseases12050100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Progressive Multifocal Leukoencephalopathy (PML) is a possibly fatal demyelinating disease and John Cunningham Polyomavirus (JCPyV) is believed to cause this condition. The so-called JCPyV was initially reported in lymphoma and Human Immunodeficiency Virus (HIV) cases, whereas nowadays, its incidence is increasing in Multiple Sclerosis (MS) cases treated with natalizumab (Tysabri). However, there are conflicting literature data on its pathology and diagnosis, whereas some misdiagnosed reports exist, giving rise to further questions towards the topic. In reality, the so-called PML and the supposed JCPyV are not what they seem to be. In addition, novel and more frequent PML-like conditions may be reported, especially after the Coronavirus Disease 2019 (COVID-19) pandemic.
Collapse
|
14
|
Abulaban AA, Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Alanazi A, Alexiou A, Papadakis M, Batiha GES. Role of fenofibrate in multiple sclerosis. Eur J Med Res 2024; 29:113. [PMID: 38336772 PMCID: PMC10854163 DOI: 10.1186/s40001-024-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.
Collapse
Affiliation(s)
- Ahmad A Abulaban
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Division of Neurology, King Abdulaziz Medical City, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, 14132, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Departments, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Asma Alanazi
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh, Kingdom of Saudi Arabia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
15
|
Abdelrahman A, Alvarez E. Advances in Multiple Sclerosis Neurotherapeutics, Neuroprotection, and Risk Mitigation Strategies. Neurol Clin 2024; 42:115-135. [PMID: 37980110 DOI: 10.1016/j.ncl.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The treatment of patients with relapsing multiple sclerosis (MS) has advanced tremendously over the past few decades. More efficacious therapies have been approved, which can significantly reduce the inflammatory process of relapsing MS. Neuroprotection by controlling this pathophysiology is important given our current limitations to control progressive MS and induce neurorepair. Here, the authors discuss the current landscape of neurotherapeutics for relapsing MS focusing on newer disease-modifying treatments and their use. Risk mitigation of these medications can greatly improve their safety and improve their benefit-risk balance. The authors discuss treatment strategies for risk mitigation including treatment discontinuation and de-escalation.
Collapse
Affiliation(s)
- Ahmad Abdelrahman
- Department of Neurology, Rocky Mountain MS Center at the University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Enrique Alvarez
- Department of Neurology, Rocky Mountain MS Center at the University of Colorado Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
16
|
Buonvicino D, Pratesi S, Ranieri G, Pistolesi A, Guasti D, Chiarugi A. The mitochondriogenic but not the immunosuppressant effects of mTOR inhibitors prompt neuroprotection and delay disease evolution in a mouse model of progressive multiple sclerosis. Neurobiol Dis 2024; 191:106387. [PMID: 38142841 DOI: 10.1016/j.nbd.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/04/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023] Open
Abstract
INTRODUCTION Purportedly, the progression of multiple sclerosis (MS) occurs when neurodegenerative processes due to derangement of axonal bioenergetics take over the autoimmune response. However, a clear picture of the causative interrelationship between autoimmunity and axonal mitochondrial dysfunction in progressive MS (PMS) pathogenesis waits to be provided. METHODS In the present study, by adopting the NOD mouse model of PMS, we compared the pharmacological effects of the immunosuppressants dexamethasone and fingolimod with those of mTOR inhibitors rapamycin and everolimus that, in addition to immunosuppression, also regulate mitochondrial functioning. Female Non-Obese Diabetic (NOD) mice were immunized with MOG35-55 and treated with drugs to evaluate functional, immune and mitochondrial parameters during disease evolution. RESULTS We found that dexamethasone and fingolimod did not affect the pattern of progression as well as survival. Conversely, mTOR inhibitors rapamycin and everolimus delayed disease progression and robustly extended survival of immunized mice. The same effects were obtained when treatment was delayed by 30 days after immunization. Remarkably, dexamethasone and fingolimod prompted the same degree of immunosuppression of rapamycin within both spleen and spinal cord of mice. However, only rapamycin prompted mitochondriogenesis by increasing mitochondrial content, and expression of several mitochondrial respiratory complex subunits, thereby preventing mtDNA reduction in the spinal cords of immunized mice. These pharmacodynamic effects were not reproduced in healthy NOD mice, suggesting a disease context-dependent pharmacodynamic effect. DISCUSSION Data corroborate the key role of mitochondriogenesis to treatment of MS progression, and for the first time disclose the translational potential of mTOR inhibitors in PMS therapy.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Sara Pratesi
- Centre of Immunological Research DENOTHE, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Department of Clinical and Experimental Medicine, Research Unit of Histology & Embryology, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Alruwaili M, Al-kuraishy HM, Alexiou A, Papadakis M, ALRashdi BM, Elhussieny O, Saad HM, Batiha GES. Pathogenic Role of Fibrinogen in the Neuropathology of Multiple Sclerosis: A Tale of Sorrows and Fears. Neurochem Res 2023; 48:3255-3269. [PMID: 37442896 PMCID: PMC10514123 DOI: 10.1007/s11064-023-03981-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating neurodegenerative disease of the central nervous system (CNS) due to injury of the myelin sheath by immune cells. The clotting factor fibrinogen is involved in the pathogenesis of MS by triggering microglia and the progress of neuroinflammation. Fibrinogen level is correlated with MS severity; consequently, inhibition of the fibrinogen cascade may reduce MS neuropathology. Thus, this review aimed to clarify the potential role of fibrinogen in the pathogenesis of MS and how targeting of fibrinogen affects MS neuropathology. Accumulation of fibrinogen in the CNS may occur independently or due to disruption of blood-brain barrier (BBB) integrity in MS. Fibrinogen acts as transduction and increases microglia activation which induces the progression of inflammation, oxidative stress, and neuronal injury. Besides, brain fibrinogen impairs the remyelination process by inhibiting the differentiation of oligodendrocyte precursor cells. These findings proposed that fibrinogen is associated with MS neuropathology through interruption of BBB integrity, induction of neuroinflammation, and demyelination with inhibition of the remyelination process by suppressing oligodendrocytes. Therefore, targeting of fibrinogen and/or CD11b/CD18 receptors by metformin and statins might decrease MS neuropathology. In conclusion, inhibiting the expression of CD11b/CD18 receptors by metformin and statins may decrease the pro-inflammatory effect of fibrinogen on microglia which is involved in the progression of MS.
Collapse
Affiliation(s)
- Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Pharmacology, Toxicology and Medicine, Medical Faculty, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Barakat M. ALRashdi
- Biology Department, College of Science, Jouf University, Sakaka, 41412 Saudi Arabia
| | - Omnya Elhussieny
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 Egypt
| |
Collapse
|
18
|
Créange A, Hutin E, Sedel F, Le Vigouroux L, Lefaucheur JP. High-dose pharmaceutical-grade biotin in patients with demyelinating neuropathies: a phase 2b open label, uncontrolled, pilot study. BMC Neurol 2023; 23:389. [PMID: 37899433 PMCID: PMC10614347 DOI: 10.1186/s12883-023-03440-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND We proposed to investigate high-dose pharmaceutical-grade biotin in a population of demyelinating neuropathies of different aetiologies, as a proof-of-concept. METHODS Phase IIb open label, uncontrolled, single center, pilot study in 15 patients (three groups of five patients) with chronic demyelinating peripheral neuropathy, i.e. chronic inflammatory demyelinating polyradiculoneuropathy, anti-myelin-associated glycoprotein neuropathy and Charcot-Marie-Tooth 1a or 1b. The investigational product was high-dose pharmaceutical-grade biotin (100 mg taken orally three times a day over a maximum of 52 weeks. The primary endpoint was a 10% relative improvement in 2 of the following 4 electrophysiological variables: motor nerve conduction velocity, distal motor latency, F wave latency, duration of the compound muscle action potential. The secondary endpoints included Overall Neuropathy Limitations Scale (ONLS) score, Medical Research Council (MRC) sum score, Inflammatory Neuropathy Cause and Treatment (INCAT) sensory sum score, 10-m walk test, 6-min walk test, posturography parameters, and nerve excitability variables. RESULTS The primary endpoint was reached in one patient. In the full population analysis, some secondary endpoints parameters improved: MRC score, INCAT sensory sum score, 6-min walk distance, strength-duration time constant, and rheobase. There was a positive correlation between the improvement in the 6-min walk distance and the strength-duration time constant. Regarding the safety results, 42 adverse events occurred, of which three were of severe intensity but none was considered as related to the investigational product. CONCLUSIONS Even if the primary endpoint was not met, administration of high-dose pharmaceutical-grade biotin led to an improvement in various sensory and motor parameters, gait abilities, and nerve excitability parameters. The tolerance of the treatment was satisfactory. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02967679; date 2016/12/05.
Collapse
Affiliation(s)
- Alain Créange
- AP-HP, Hôpital Henri Mondor, Service de Neurologie, 94010, Créteil, France.
- AP-HP, Hôpital Henri Mondor, CRC SEP Grand Paris Est, 94010, Créteil, France.
- Université Paris Est Créteil, EA4391, ENT, F-94010, Créteil, France.
| | - Emilie Hutin
- Laboratoire Analyse Et Restauration du Mouvement, Service de Rééducation Neurolocomotrice, AP-HP, Hôpital Henri Mondor, 94010, Créteil, France
- Université Paris Est Créteil, EA 7377, BIOTN, F-94010, Créteil, France
| | | | | | - Jean-Pascal Lefaucheur
- AP-HP, Hôpital Henri Mondor, CRC SEP Grand Paris Est, 94010, Créteil, France
- Université Paris Est Créteil, EA4391, ENT, F-94010, Créteil, France
- AP-HP, Hôpital Henri Mondor, Unité de Neurophysiologie Clinique, 94010, Créteil, France
| |
Collapse
|
19
|
Ozon EA, Iuga IDM, Mititelu M, Musuc AM, Manolescu BN, Petrescu S, Cusu JP, Rusu A, Surdu VA, Oprea E, Neacșu SM, Karampelas O, Elian V. Pharmacotechnical, Physico-Chemical, and Antioxidant Evaluation of Newly Developed Capsule Formulations. Int J Mol Sci 2023; 24:11426. [PMID: 37511185 PMCID: PMC10379583 DOI: 10.3390/ijms241411426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The excess of free radicals causes numerous imbalances in the body that lead to premature aging, the degradation of internal structures, and the appearance of numerous pathologies responsible for the increased risk of premature death. The present work aims to evaluate the physical, chemical, pharmacotechnical, and antioxidant activity of newly achieved capsule formulations. These two formulations were F1a.i., which contains melatonin:biotin:coenzyme Q10 (weight ratio of 1:2:60), and F2a.i., which contains quercetin:resveratrol:biotin:coenzyme Q10 (weight ratio of 10:10:1:10). The adequate selection of the excipient types and amounts for final capsule formulations (F1c.c., F2c.c.) was based on preformulation studies performed on the powders containing active ingredients. The antioxidant activity assessed using three methods (ABTS, DPPH, and FRAP) compared with acid ascorbic as a positive control demonstrated that the F2c.c. formulation possesses the strongest antioxidant capacity. The results confirmed the suitable formulation and the accurate selection of the types and amounts of active ingredients, as well as the auxiliary excipients used in newly developed capsule formulations as supplements with an excellent antioxidant effect on the human body.
Collapse
Affiliation(s)
- Emma Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Izabela Dana Maria Iuga
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Bogdan Nicolae Manolescu
- "C. Nenitescu" Department of Organic Chemistry, Faculty of Applied Chemistry and Science of Materials, University "Politehnica" of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Simona Petrescu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Jeanina Pandele Cusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Rusu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Eliza Oprea
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Portocalilor Way, 060101 Bucharest, Romania
| | | | - Oana Karampelas
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, 6 Traian Vuia Street, 020945 Bucharest, Romania
| | - Viviana Elian
- Department of Diabetes, Nutrition and Metabolic Diseases "Carol Davila" University of Medicine and Pharmacy, INDNBM N.C. Paulescu, 5-7 Ion Movila Street, 030167 Bucharest, Romania
| |
Collapse
|
20
|
Szepanowski F, Steubing RD, Güngör C, Zipfel J, Mausberg AK, Kleinschnitz C, Stettner M. High-dose biotin neither fosters remyelination nor stimulates malonyl coenzyme A synthesis in the regenerating nerve. Neural Regen Res 2023; 18:1623-1624. [PMID: 36571371 PMCID: PMC10075130 DOI: 10.4103/1673-5374.361542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Fabian Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Rebecca D Steubing
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Cansu Güngör
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Jaqueline Zipfel
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Anne K Mausberg
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
21
|
Sui Z, Zhu H, Luo J, Yu J, Li L, Zheng Q. Quantitative comparison of the efficacy of clinical drug treatments for primary progressive multiple sclerosis. J Clin Neurosci 2023; 113:45-53. [PMID: 37178621 DOI: 10.1016/j.jocn.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE This study proposes a comprehensive quantitative evaluation of the efficacy of drugs and placebo in clinical trials for primary progressive multiple sclerosis (PPMS). METHODS A literature search was conducted using the PubMed, EMBASE, and Cochrane library databases and the clinical studies reporting drug efficacy in the treatment of PPMS were included in the analyses. The cumulative proportion of patients without confirmed disability progression (wCDP%) was used as the main efficacy endpoint. The model-based meta-analysis method was used to describe the time course of each drug (as well as placebo) in order to rank the drug efficacy for the treatment of PPMS. RESULTS Fifteen studies involving 3779 patients were included, of which, nine were placebo-controlled and six were single-arm trials. Twelve drugs were included in the study. The results showed that, except for biotin, interferon β-1a, and interferon β-1b, whose efficacy was comparable to the placebo, the efficacy of the other 9 drugs were significantly better than placebo. Among these, ocrelizumab showed outstanding performance, with wCDP% of 72.6 at 96 weeks, while the proportions of rest of the drugs ranged between approximately 55-70%. CONCLUSION The results of this study provide the necessary quantitative information for both the rational clinical use of drugs and future clinical trials in primary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Zichao Sui
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoxiang Zhu
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieren Luo
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiesen Yu
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lujin Li
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Qingshan Zheng
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
22
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
23
|
Jeon YG, Kim YY, Lee G, Kim JB. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5:735-759. [PMID: 37142787 DOI: 10.1038/s42255-023-00786-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/15/2023] [Indexed: 05/06/2023]
Abstract
Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Ye Young Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Gung Lee
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
24
|
Zhao X, Jacob C. Mechanisms of Demyelination and Remyelination Strategies for Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24076373. [PMID: 37047344 PMCID: PMC10093908 DOI: 10.3390/ijms24076373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
All currently licensed medications for multiple sclerosis (MS) target the immune system. Albeit promising preclinical results demonstrated disease amelioration and remyelination enhancement via modulating oligodendrocyte lineage cells, most drug candidates showed only modest or no effects in human clinical trials. This might be due to the fact that remyelination is a sophistically orchestrated process that calls for the interplay between oligodendrocyte lineage cells, neurons, central nervous system (CNS) resident innate immune cells, and peripheral immune infiltrates and that this process may somewhat differ in humans and rodent models used in research. To ensure successful remyelination, the recruitment and activation/repression of each cell type should be regulated in a highly organized spatio–temporal manner. As a result, drug candidates targeting one single pathway or a single cell population have difficulty restoring the optimal microenvironment at lesion sites for remyelination. Therefore, when exploring new drug candidates for MS, it is instrumental to consider not only the effects on all CNS cell populations but also the optimal time of administration during disease progression. In this review, we describe the dysregulated mechanisms in each relevant cell type and the disruption of their coordination as causes of remyelination failure, providing an overview of the complex cell interplay in CNS lesion sites.
Collapse
|
25
|
Dwivedi S, Choudhary P, Gupta A, Singh S. Therapeutical growth in oligodendroglial fate induction via transdifferentiation of stem cells for neuroregenerative therapy. Biochimie 2023; 211:35-56. [PMID: 36842627 DOI: 10.1016/j.biochi.2023.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/20/2022] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
The merits of stem cell therapy and research are undisputed due to their widespread usage in the treatment of neurodegenerative diseases and demyelinating disorders. Cell replacement therapy especially revolves around stem cells and their induction into different cell lineages both adult and progenitor - belonging to each germ layer, prior to transplantation or disease modeling studies. The nervous system is abundant in glial cells and among these are oligodendrocytes capable of myelinating new-born neurons and remyelination of axons with lost or damaged myelin sheath. But demyelinating diseases generate tremendous deficit between myelin loss and recovery. To compensate for this loss, analyze the defects in remyelination mechanisms as well as to trigger full recovery in such patients mesenchymal stem cells (MSCs) have been induced to transdifferentiate into oligodendrocytes. But such experiments are riddled with problems like prolonged, tenuous and complicated protocols that stretch longer than the time taken for the spread of demyelination-associated after-effects. This review delves into such protocols and the combinations of different molecules and factors that have been recruited to derive bona fide oligodendrocytes from in vitro differentiation of embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and MSCs with special focus on MSC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Shrey Dwivedi
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India
| | - Sangeeta Singh
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, U.P., India.
| |
Collapse
|
26
|
High Dose Pharmaceutical Grade Biotin (MD1003) Accelerates Differentiation of Murine and Grafted Human Oligodendrocyte Progenitor Cells In Vivo. Int J Mol Sci 2022; 23:ijms232415733. [PMID: 36555377 PMCID: PMC9778913 DOI: 10.3390/ijms232415733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidences suggest a strong correlation between metabolic changes and neurodegeneration in CNS demyelinating diseases such as multiple sclerosis (MS). Biotin, an essential cofactor for five carboxylases, is expressed by oligodendrocytes and involved in fatty acid synthesis and energy production. The metabolic effect of biotin or high-dose-biotin (MD1003) has been reported on rodent oligodendrocytes in vitro, and in neurodegenerative or demyelinating animal models. However, clinical studies, showed mild or no beneficial effect of MD1003 in amyotrophic lateral sclerosis (ALS) or MS. Here, we took advantage of a mouse model of myelin deficiency to study the effects of MD1003 on the behavior of murine and grafted human oligodendrocytes in vivo. We show that MD1003 increases the number and the differentiation potential of endogenous murine oligodendroglia over time. Moreover, the levels of MD1003 are increased in the plasma and brain of pups born to treated mothers, indicating that MD1003 can pass through the mother's milk. The histological analysis of the grafted animals shows that MD1003 increased proliferation and accelerates differentiation of human oligodendroglia, but without enhancing their myelination potential. These findings provide important insights into the role of MD1003 on murine and human oligodendrocyte maturation/myelination that may explain the mitigated outcome of ALS/MS clinical trials.
Collapse
|
27
|
Horjus J, van Mourik-Banda T, Heerings MAP, Hakobjan M, De Witte W, Heersema DJ, Jansen AJ, Strijbis EMM, de Jong BA, Slettenaar AEJ, Zeinstra EMPE, Hoogervorst ELJ, Franke B, Kruijer W, Jongen PJ, Visser LJ, Poelmans G. Whole Exome Sequencing in Multi-Incident Families Identifies Novel Candidate Genes for Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms231911461. [PMID: 36232761 PMCID: PMC9570223 DOI: 10.3390/ijms231911461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative disease of the central nervous system in which auto-immunity-induced demyelination occurs. MS is thought to be caused by a complex interplay of environmental and genetic risk factors. While most genetic studies have focused on identifying common genetic variants for MS through genome-wide association studies, the objective of the present study was to identify rare genetic variants contributing to MS susceptibility. We used whole exome sequencing (WES) followed by co-segregation analyses in nine multi-incident families with two to four affected individuals. WES was performed in 31 family members with and without MS. After applying a suite of selection criteria, co-segregation analyses for a number of rare variants selected from the WES results were performed, adding 24 family members. This approach resulted in 12 exonic rare variants that showed acceptable co-segregation with MS within the nine families, implicating the genes MBP, PLK1, MECP2, MTMR7, TOX3, CPT1A, SORCS1, TRIM66, ITPR3, TTC28, CACNA1F, and PRAM1. Of these, three genes (MBP, MECP2, and CPT1A) have been previously reported as carrying MS-related rare variants. Six additional genes (MTMR7, TOX3, SORCS1, ITPR3, TTC28, and PRAM1) have also been implicated in MS through common genetic variants. The proteins encoded by all twelve genes containing rare variants interact in a molecular framework that points to biological processes involved in (de-/re-)myelination and auto-immunity. Our approach provides clues to possible molecular mechanisms underlying MS that should be studied further in cellular and/or animal models.
Collapse
Affiliation(s)
- Julia Horjus
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Tineke van Mourik-Banda
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marco A. P. Heerings
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marina Hakobjan
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Ward De Witte
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dorothea J. Heersema
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne J. Jansen
- Department of Neurology, Bravis Hospital, 4708 AE Bergen op Zoom, The Netherlands
| | - Eva M. M. Strijbis
- Department of Neurology, Amsterdam UMC, location VUmc, 1081 HV Amsterdam, The Netherlands
| | - Brigit A. de Jong
- Department of Neurology, MS Center Amsterdam, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | | | | | | | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, 6525 GD Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Wiebe Kruijer
- Independent Life Science Consultant, 3831 CE Leusden, The Netherlands
| | - Peter J. Jongen
- MS4 Research Institute, 6522 KJ Nijmegen, The Netherlands
- Department of Community & Occupational Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Leo J. Visser
- Department of Neurology, St. Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
- Department of Care Ethics, University of Humanistic Studies, 3512 HD Utrecht, The Netherlands
| | - Geert Poelmans
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Correspondence:
| |
Collapse
|
28
|
Novel Drugs in a Pipeline for Progressive Multiple Sclerosis. J Clin Med 2022; 11:jcm11123342. [PMID: 35743410 PMCID: PMC9225445 DOI: 10.3390/jcm11123342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a widely known inflammatory, demyelinating disease of the central nervous system. The pathogenesis of progressive multiple sclerosis (PMS) is a complex, multi-level process that causes therapeutic difficulties. Along with variables such as age and duration of the disease, pathogenetic mechanisms change from inflammatory to neurodegenerative processes. Therefore, the efficacy of available anti-inflammatory drugs approved for the treatment of PMS, such as ocrelizumab or siponimod, is limited in time. In search of innovative solutions, several research studies have been conducted to evaluate the effectiveness of drugs with neuroprotective or remyelinating effects in PMS, including biotin, ibudilast, simvastatin, alpha-lipoic acid, clemastine, amiloride, fluoxetine, riluzole, masitinib, opicinumab, and lamotrigine. The current review includes those compounds, which have entered the clinical phase of assessment, and the authors discuss future prospects for successful PMS treatment.
Collapse
|
29
|
Razi O, Tartibian B, Laher I, Govindasamy K, Zamani N, Rocha-Rodrigues S, Suzuki K, Zouhal H. Multimodal Benefits of Exercise in Patients With Multiple Sclerosis and COVID-19. Front Physiol 2022; 13:783251. [PMID: 35492581 PMCID: PMC9048028 DOI: 10.3389/fphys.2022.783251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/31/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease characterized by plaque formation and neuroinflammation. The plaques can present in various locations, causing a variety of clinical symptoms in patients with MS. Coronavirus disease-2019 (COVID-19) is also associated with systemic inflammation and a cytokine storm which can cause plaque formation in several areas of the brain. These concurring events could exacerbate the disease burden of MS. We review the neuro-invasive properties of SARS-CoV-2 and the possible pathways for the entry of the virus into the central nervous system (CNS). Complications due to this viral infection are similar to those occurring in patients with MS. Conditions related to MS which make patients more susceptible to viral infection include inflammatory status, blood-brain barrier (BBB) permeability, function of CNS cells, and plaque formation. There are also psychoneurological and mood disorders associated with both MS and COVID-19 infections. Finally, we discuss the effects of exercise on peripheral and central inflammation, BBB integrity, glia and neural cells, and remyelination. We conclude that moderate exercise training prior or after infection with SARS-CoV-2 can produce health benefits in patients with MS patients, including reduced mortality and improved physical and mental health of patients with MS.
Collapse
Affiliation(s)
- Omid Razi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Razi University, Kermanshah, Iran
| | - Bakhtyar Tartibian
- Department of Sports Injuries, Faculty of Physical Education and Sports Sciences, Allameh Tabataba’i University, Tehran, Iran
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karuppasamy Govindasamy
- Department of Physical Education & Sports Science, SRM Institute of Science and Technology, Kattankulathur, India
| | - Nastaran Zamani
- Department of Biology, Faculty of Science, Payame-Noor University, Tehran, Iran
| | - Silvia Rocha-Rodrigues
- Escola Superior de Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development (CIDESD), Quinta de Prados, Edifício Ciências de Desporto, Vila Real, Portugal
- Tumor & Microenvironment Interactions Group, i3S, Porto, Portugal
| | | | - Hassane Zouhal
- Laboratoire Mouvement, Sport, Santé, University of Rennes, Rennes, France
- Institut International des Sciences du Sport (2I2S), Irodouer, France
| |
Collapse
|
30
|
Sanchez JMS, DePaula-Silva AB, Libbey JE, Fujinami RS. Role of diet in regulating the gut microbiota and multiple sclerosis. Clin Immunol 2022; 235:108379. [PMID: 32156562 PMCID: PMC7483914 DOI: 10.1016/j.clim.2020.108379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/18/2019] [Accepted: 03/06/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | - Robert S. Fujinami
- Corresponding author at: University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA. (R.S. Fujinami)
| |
Collapse
|
31
|
Remyelination trial failures: Repercussions of ignoring neurorehabilitation and exercise in repair. Mult Scler Relat Disord 2022; 58:103539. [DOI: 10.1016/j.msard.2022.103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/18/2022]
|
32
|
Jan S, Anilkumar AC. Atypical Brain MRI Findings in a Child With Delayed Diagnosis of Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Cureus 2021; 13:e18103. [PMID: 34692314 PMCID: PMC8525688 DOI: 10.7759/cureus.18103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2021] [Indexed: 11/05/2022] Open
Abstract
Anti-N-methyl-D-aspartate receptor encephalitis (anti-NMDARE) is the most common cause of autoimmune encephalitis in children with a wide spectrum of clinical presentation and MRI findings. A high index of suspicion is required to avoid a delay in treatment and long-term morbidity. We present a healthy two-year-old male who developed fever and viral prodrome symptoms that rapidly progressed to acute encephalopathy, status epilepticus, quadriparesis, and abnormal movements. Brain MRI showed symmetric involvement of bilateral insula, posterior part of basal ganglia, and thalami. The patient survived the acute phase with supportive therapy but ended up with a devastating neurologic sequela, including developmental delay, inability to communicate, dysphagia, quadriparesis, and cortical visual impairment. Anti-N-methyl-D-aspartate (anti-NMDA) immunoglobulin G (IgG) antibodies were negative in serum and cerebrospinal fluid (CSF). The patient underwent an extensive inflammatory, infectious, metabolic, and genetic workup, including a whole-exome sequence (WES) and mitochondrial panel, which was unremarkable. CSF studies were unremarkable. Repeated anti-NMDA IgG antibodies were positive in serum a year after the presentation. This presentation highlights the crucial role of early immunotherapy in suspected autoimmune encephalitis (AE) cases, even at a young age, to prevent devastating neurologic outcomes. Moreover, clinicians should not rely on antibody results to treat a suspected case of AE due to possible false-negative test results, and the majority of AE cases remain without known antibodies.
Collapse
Affiliation(s)
- Saber Jan
- Pediatrics, State University of New York Upstate Medical University, Syracuse, USA
| | | |
Collapse
|
33
|
The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients 2021; 13:nu13113774. [PMID: 34836032 PMCID: PMC8620342 DOI: 10.3390/nu13113774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022] Open
Abstract
Studies on the role of nutritional factors and physical activity (PA) in the pathogenesis of multiple sclerosis (MS) go back a long time. Despite the intrinsic difficulty of studying their positive or negative role in MS, the interest of researchers on these topics increased during the last few decades, since the role of diet has been investigated with the perspective of the association with disease-modifying drugs (DMD). The association of DMD, diets, and PA might have an additive effect in modifying disease severity. Among the various diets investigated (low-carbohydrate, gluten-free, Mediterranean, low-fat, fasting-mimicking, and Western diets) only low-carbohydrate, Mediterranean, and fast-mimicking diets have shown both in animal models and in humans a positive effect on MS course and in patient-reported outcomes (PROs). However, the Mediterranean diet is easier to be maintained compared to fast-mimicking and low-carbohydrate diets, which may lead to detrimental side effects requiring careful clinical monitoring. Conversely, the Western diet, which is characterized by a high intake of highly saturated fats and carbohydrates, may lead to the activation of pro-inflammatory immune pathways and is therefore not recommended. PA showed a positive effect both in animal models as well as on disease course and PROs in humans. Training with combined exercises is considered the more effective approach.
Collapse
|
34
|
Garcia Corrales AV, Haidar M, Bogie JFJ, Hendriks JJA. Fatty Acid Synthesis in Glial Cells of the CNS. Int J Mol Sci 2021; 22:ijms22158159. [PMID: 34360931 PMCID: PMC8348209 DOI: 10.3390/ijms22158159] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty acids (FAs) are of crucial importance for brain homeostasis and neural function. Glia cells support the high demand of FAs that the central nervous system (CNS) needs for its proper functioning. Additionally, FAs can modulate inflammation and direct CNS repair, thereby contributing to brain pathologies such Alzheimer’s disease or multiple sclerosis. Intervention strategies targeting FA synthesis in glia represents a potential therapeutic opportunity for several CNS diseases.
Collapse
Affiliation(s)
- Aida V Garcia Corrales
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
35
|
Espiritu AI, Remalante-Rayco PPM. High-dose biotin for multiple sclerosis: A systematic review and meta-analyses of randomized controlled trials. Mult Scler Relat Disord 2021; 55:103159. [PMID: 34332461 DOI: 10.1016/j.msard.2021.103159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Biotin may activate the acetyl-CoA-, 3-methylcrotonyl-CoA-, propionyl-CoA-, and pyruvate carboxylases to increase myelin repair and/or synthesis, and may enhance the production of adenosine triphosphate (ATP), which may be essential to prevent neurodegeneration. The purpose of this review was to determine the effectiveness and safety of high-dose biotin (HDB) in multiple sclerosis via a systematic review of randomized controlled trials. METHODS We searched the following electronic databases for relevant articles: MEDLINE, CENTRAL, EMBASE, Scopus, and ClinicalTrials.gov website until April 2021. We considered randomized clinical trials (RCTs) that involved adult patients diagnosed with any phenotype of multiple sclerosis that conforms with the McDonald 2010/2017 criteria or the Lublin 2014 criteria. We included studies employing high-dose biotin or "MD1003" administered orally for at least 300 mg/day and given for at least three months. The methodological quality assessment of the included studies was done using the Cochrane Risk of Bias (RoB) tool. The GRADE approach was used to assess the certainty of evidence [COE]. RESULTS Out of 366 records identified, three RCTs involving 889 individuals diagnosed with MS (830 participants had progressive MS (PMS); 59 had RRMS) were pooled for analyses. The overall female:male ratio was 1.16:1. All included trials used HDB as an adjunctive treatment. The risks of bias in the three studies were low across the domains. At 12 to 15 months, there is insufficient evidence that the HDB and placebo arms differed in terms of composite improvement of MS-related disability (relative risk (RR) 2.87; 95% CI 0.29-28.40; 2 trials; 796 participants; I2 = 66%) [low COE], improvement in expanded disability status scale (IEDSS) (RR 2.27; 95% CI 0.25-20.98; 2 trials; 796 participants; I2 = 63%) [low COE], and both IEDSS and improvement in 25-foot walk time (ITW25) (IEDSS-ITW25) (RR 0.58; 95% CI 0.17-2.00; 2 trials; 796 participants; I2 = 13%) [moderate COE] among patients with PMS. Pooled data for ITW25 at 12 to 15 months yielded statistical significance (RR 2.06; 95% CI 1.04-4.09; 2 trials; 796 participants; I2 = 0%) [moderate COE] favoring HDB among patients with PMS. At 12 to 15 months, no significant differences were found in terms of mean change in EDSS (MD -0.06; 95% CI -0.14-0.02; 2 studies; 796 participants; 889 participants; I2 = 68%) among patients with PMS. Synthesized data on incidence of any AEs (RR 0.98; 95% CI 0.92-1.04; 3 trials; I2 = 0%) [high COE] and any serious AEs (RR 0.98; 95% CI 0.77-1.24; 3 trials; 889 participants; I2 = 0%) [moderate COE] were not significantly different between HDB and placebo groups. Out of 662 pooled patients in the HDB group, 31 patients (4.7%) were found to have laboratory test interference compared to zero event in the pooled placebo group [high COE]. CONCLUSIONS A moderate certainty of evidence suggests a potential benefit in favor of HDB administered for 12 to 15 months in terms of ITW25 in patients with PMS. However, an important trade-off of this benefit is the high certainty of evidence suggesting an increased incidence of laboratory test interference when HDB is taken.
Collapse
Affiliation(s)
- Adrian I Espiritu
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines; Department of Neurosciences, College of Medicine and Philippine General Hospital, University of the Philippines Manila, Manila, Philippines; Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, ON M5B 1W8, Canada.
| | - Patricia Pauline M Remalante-Rayco
- Department of Clinical Epidemiology, College of Medicine, University of the Philippines Manila, Manila, Philippines; Division of Rheumatology, Department of Medicine, University of Toronto and University Health Network Toronto Western Hospital, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
36
|
Li D, Ferguson A, Cervinski MA, Lynch KL, Kyle PB. AACC Guidance Document on Biotin Interference in Laboratory Tests. J Appl Lab Med 2021; 5:575-587. [PMID: 32445355 DOI: 10.1093/jalm/jfz010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Laboratory tests that use streptavidin-biotin binding mechanisms have the potential to be affected by high circulating biotin concentrations, which would produce positive and negative interference in biotinylated competitive and noncompetitive (sandwich) immunoassays, respectively. Consumption of high-dose biotin supplements for cosmetic or health-related reasons has drawn attention to biotin interference in clinical laboratory tests. Case reports and in vivo studies show that ingestion of supplemental biotin can cause clinically significant errors in select biotinylated immunoassays. CONTENT This AACC Academy document is intended to provide guidance to laboratorians and clinicians for preventing, identifying, and dealing with biotin interference. In vivo and in vitro spiking studies have demonstrated that biotin concentrations required to cause interference vary by test and by manufacturer. This document includes discussion of biotin's mechanisms for interference in immunoassays, pharmacokinetics, and results of in vitro and in vivo studies and cites examples of assays known to be affected by high biotin concentrations. This document also provides guidance recommendations intended to assist laboratories and clinicians in identifying and addressing biotin interference in laboratory testing. SUMMARY The recent increase in the use of high-dose biotin supplements requires laboratorians and clinicians to be mindful of the potential for biotin interference in biotinylated immunoassay-based laboratory tests. Laboratories, clinicians, regulators, and patients should work together to ensure accurate laboratory results. Laboratories have several options for identifying suspected biotin interference in specimens. Alternatively, the relatively fast elimination of biotin allows the potential for rapid follow-up specimen analysis if necessary.
Collapse
Affiliation(s)
- Danni Li
- Department of Lab Medicine and Pathology, University of Minnesota Medical Center, Minneapolis, MN
| | - Angela Ferguson
- Department of Pathology and Laboratory Medicine, Children's Mercy Kansas City, Kansas City, MO
| | - Mark A Cervinski
- Department of Pathology and Laboratory Medicine, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Kara L Lynch
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA
| | - Patrick B Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS
| |
Collapse
|
37
|
Blum JL, Ellis M, Chen JX, Mendes O, Sylla S, Ojalvo SP, Komorowski J. Toxicologic evaluation of a novel, highly soluble biotin salt, magnesium biotinate. Food Chem Toxicol 2021; 153:112267. [PMID: 34000342 DOI: 10.1016/j.fct.2021.112267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
A novel, highly soluble biotin salt, magnesium biotinate (MgB), was assessed for general and genetic toxicity using several toxicologic tests. This battery of tests included in vitro bacterial reverse mutation test, in vitro mammalian micronucleus assay, and oral acute, 14-day, and 90-day repeat-dose toxicity in Sprague-Dawley (SD) rats. The results of the in vitro studies indicate that MgB is not mutagenic, clastogenic, or aneugenic. The acute oral toxicity study established an LD50 ≥ 5000 mg MgB/kg. In the 14-day oral toxicity study, doses of MgB up to 2500 mg MgB/kg/day produced no clinical signs or mortality. In the 90-day oral toxicity study, administration of 600 mg MgB/kg/day resulted in no clinical signs and was determined to be the no-observed-adverse-effect-level (NOAEL), which equates to 39 g biotin/day for a 70 kg human. Since MgB is composed of 93% biotin, the 600 mg NOAEL equates to approximately 1.3 million times the current recommended daily allowance of 30 μg biotin/day and 3900 times supplement levels of 10 mg biotin/day. Based on the toxicologic profile and lack of findings in various in vitro and in vivo studies, MgB may be considered safe for long-term human use.
Collapse
Affiliation(s)
- Jason L Blum
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ, 08810, United States
| | - Melissa Ellis
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ, 08810, United States
| | - Jayson X Chen
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ, 08810, United States
| | - Odete Mendes
- Product Safety Labs, 2394 US Highway 130, Dayton, NJ, 08810, United States
| | - Sarah Sylla
- JDS Therapeutics LLC, Harrison, NY, 10528, United States
| | | | | |
Collapse
|
38
|
Abstract
Proteome-wide profiling of protein phosphorylation has been widely used to reveal the underlying mechanism of diverse cellular signaling events. Yet, characterizing subcellular phosphoproteome with high spatial-temporal resolution has remained challenging. Herein, we developed a subcellular-specific uncaging-assisted biotinylation and mapping of phosphoproteome (SubMAPP) strategy to monitor the phosphorylation dynamics of subcellular proteome in living cells and animals. Our method capitalizes on the genetically encoded bioorthogonal decaging strategy, which enables the rapid activation of subcellular localized proximity labeling biotin ligase through either light illumination or small-molecule triggers. By further adopting an integrated orthogonal pull-down strategy with quantitative mass spectrometry, SubMAPP allowed for the investigation of subcellular phosphoproteome dynamics, revealing the altered phosphorylation patterns of endoplasmic reticulum (ER) luminal proteins under ER stress. Finally, we further expanded the scope of the SubMAPP strategy to primary neuron culture and living mice.
Collapse
|
39
|
Holloman JP, Axtell RC, Monson NL, Wu GF. The Role of B Cells in Primary Progressive Multiple Sclerosis. Front Neurol 2021; 12:680581. [PMID: 34163430 PMCID: PMC8215437 DOI: 10.3389/fneur.2021.680581] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The success of ocrelizumab in reducing confirmed disability accumulation in primary progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells as causal agents in the pathogenesis of PPMS. This review explores the possible mechanisms by which B cells contribute to disease progression in PPMS, specifically exploring cytokine production, antigen presentation, and antibody synthesis. B cells may contribute to disease progression in PPMS through cytokine production, specifically GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS. In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production of IL-10 may contribute to disease worsening. B cells are also capable of potent antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate interactions. B cells may also contribute to disease activity via antibody synthesis, although it's unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement. Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS.
Collapse
Affiliation(s)
- Jameson P Holloman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States
| | - Robert C Axtell
- Department of Arthritis and Clinical Immunology Research, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Department of Microbiology and Immunology, Oklahoma University Health Science Center, Oklahoma City, OK, United States
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, United States.,Department of Immunology, University of Texas Southwestern, Dallas, TX, United States
| | - Gregory F Wu
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
40
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
41
|
Vejux A, Ghzaiel I, Nury T, Schneider V, Charrière K, Sghaier R, Zarrouk A, Leoni V, Moreau T, Lizard G. Oxysterols and multiple sclerosis: Physiopathology, evolutive biomarkers and therapeutic strategy. J Steroid Biochem Mol Biol 2021; 210:105870. [PMID: 33684483 DOI: 10.1016/j.jsbmb.2021.105870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis is an autoimmune disease that affects the central nervous system. Dysfunction of the immune system leads to lesions that cause motor, sensory, cognitive, visual and/or sphincter disturbances. In the long term, these disorders can progress towards an irreversible handicap. The diagnosis takes time because there are no specific criteria to diagnose multiple sclerosis. To realize the diagnosis, a combination of clinical, biological, and radiological arguments is therefore required. Hence, there is a need to identify multiple sclerosis biomarkers. Some biomarkers target immunity through the detection of oligoclonal bands, the measurement of the IgG index and cytokines. During the physiopathological process, the blood-brain barrier can be broken, and this event can be identified by measuring metalloproteinase activity and diffusion of gadolinium in the brain by magnetic resonance imaging. Markers of demyelination and of astrocyte and microglial activity may also be of interest as well as markers of neuronal damage and mitochondrial status. The measurement of different lipids in the plasma and cerebrospinal fluid can also provide suitable information. These different lipids include fatty acids, fatty acid peroxidation products, phospholipids as well as oxidized derivatives of cholesterol (oxysterols). Oxysterols could constitute new biomarkers providing information on the form of multiple sclerosis, the outcome of the disease and the answer to treatment.
Collapse
Affiliation(s)
- Anne Vejux
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| | - Imen Ghzaiel
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia
| | - Thomas Nury
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Vincent Schneider
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Karine Charrière
- Centre Hospitalier Universitaire de Besançon, Centre d'Investigation Clinique, INSERM CIC 1431, 25030, Besançon Cedex, France
| | - Randa Sghaier
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France
| | - Amira Zarrouk
- Faculty of Medicine, LR12ES05, Lab-NAFS "Nutrition - Functional Food & Vascular Health", University of Monastir, Monastir, Tunisia; Laboratory of Biochemistry, Faculty of Medicine, University of Sousse, Sousse, Tunisia
| | - Valerio Leoni
- Laboratory of Clinical Chemistry, Hospital of Varese, ASST-Settelaghi, Varese, Italy
| | - Thibault Moreau
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France; University Hospital, Department of Neurology, Dijon, France
| | - Gérard Lizard
- Team Bio-PeroxIL, "Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism" (EA7270), University Bourgogne Franche-Comté, Inserm, Dijon, France.
| |
Collapse
|
42
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
43
|
Li H, Lian G, Wang G, Yin Q, Su Z. A review of possible therapies for multiple sclerosis. Mol Cell Biochem 2021; 476:3261-3270. [PMID: 33886059 DOI: 10.1007/s11010-021-04119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/23/2021] [Indexed: 01/22/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune chronic inflammatory disease of the central nervous system with a wide range of symptoms, like executive function defect, cognitive dysfunction, blurred vision, decreased sensation, spasticity, fatigue, and other symptoms. This neurological disease is characterized by the destruction of the blood-brain barrier, loss of myelin, and damage to neurons. It is the result of immune cells crossing the blood-brain barrier into the central nervous system and attacking self-antigens. Heretofore, many treatments proved that they can retard the progression of the disease even though there is no cure. Therefore, treatments aimed at improving patients' quality of life and reducing adverse drug reactions and costs are essential. In this review, the treatment approaches to alleviate the progress of MS include the following: pharmacotherapy, antibody therapy, cell therapy, gene therapy, and surgery. The current treatment methods of MS are described in terms of the prevention of myelin shedding, the promotion of myelin regeneration, and the protection of neurons.
Collapse
Affiliation(s)
- Hui Li
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Gaojian Lian
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Guang Wang
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Qianmei Yin
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China
| | - Zehong Su
- Hengyang Medical School, University of South China, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
44
|
Cayre M, Falque M, Mercier O, Magalon K, Durbec P. Myelin Repair: From Animal Models to Humans. Front Cell Neurosci 2021; 15:604865. [PMID: 33935649 PMCID: PMC8079744 DOI: 10.3389/fncel.2021.604865] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
It is widely thought that brain repair does not occur, but myelin regeneration provides clear evidence to the contrary. Spontaneous remyelination may occur after injury or in multiple sclerosis (MS). However, the efficiency of remyelination varies considerably between MS patients and between the lesions of each patient. Myelin repair is essential for optimal functional recovery, so a profound understanding of the cells and mechanisms involved in this process is required for the development of new therapeutic strategies. In this review, we describe how animal models and modern cell tracing and imaging methods have helped to identify the cell types involved in myelin regeneration. In addition to the oligodendrocyte progenitor cells identified in the 1990s as the principal source of remyelinating cells in the central nervous system (CNS), other cell populations, including subventricular zone-derived neural progenitors, Schwann cells, and even spared mature oligodendrocytes, have more recently emerged as potential contributors to CNS remyelination. We will also highlight the conditions known to limit endogenous repair, such as aging, chronic inflammation, and the production of extracellular matrix proteins, and the role of astrocytes and microglia in these processes. Finally, we will present the discrepancies between observations in humans and in rodents, discussing the relationship of findings in experimental models to myelin repair in humans. These considerations are particularly important from a therapeutic standpoint.
Collapse
Affiliation(s)
- Myriam Cayre
- Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut de Biologie du Développement de Marseille (IBDM-UMR 7288), Marseille, France
| | | | | | | | | |
Collapse
|
45
|
Khatri DK, Kadbhane A, Patel M, Nene S, Atmakuri S, Srivastava S, Singh SB. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100022. [PMID: 34909657 PMCID: PMC8663985 DOI: 10.1016/j.crphar.2021.100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (ND) are of vast origin which are characterized by gradual progressive loss of neurons in the brain region. ND can be classified according to the clinical symptoms present (e.g. Cognitive decline, hyperkinetic, and hypokinetic movements disorder) or by the pathological protein deposited (e.g., Amyloid, tau, Alpha-synuclein, TDP-43). Alzheimer's disease preceded by Parkinson's is the most prevalent form of ND world-wide. Multiple factors like aging, genetic mutations, environmental factors, gut microbiota, blood-brain barrier microvascular complication, etc. may increase the predisposition towards ND. Genetic mutation is a major contributor in increasing the susceptibility towards ND, the concept of one disease-one gene is obsolete and now multiple genes are considered to be involved in causing one particular disease. Also, the involvement of multiple pathological mechanisms like oxidative stress, neuroinflammation, mitochondrial dysfunction, etc. contributes to the complexity and makes them difficult to be treated by traditional mono-targeted ligands. In this aspect, the Poly-pharmacological drug approach which targets multiple pathological pathways at the same time provides the best way to treat such complex networked CNS diseases. In this review, we have provided an overview of ND and their pathological origin, along with a brief description of various genes associated with multiple diseases like Alzheimer's, Parkinson's, Multiple sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), Huntington's and a comprehensive detail about the Poly-pharmacology approach (MTDLs and Fixed-dose combinations) along with their merits over the traditional single-targeted drug is provided. This review also provides insights into current repurposing strategies along with its regulatory considerations.
Collapse
Affiliation(s)
- Dharmendra Kumar Khatri
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| | | | | | | | | | | | - Shashi Bala Singh
- Corresponding authors. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
46
|
Raffaele S, Boccazzi M, Fumagalli M. Oligodendrocyte Dysfunction in Amyotrophic Lateral Sclerosis: Mechanisms and Therapeutic Perspectives. Cells 2021; 10:cells10030565. [PMID: 33807572 PMCID: PMC8000560 DOI: 10.3390/cells10030565] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Myelin is the lipid-rich structure formed by oligodendrocytes (OLs) that wraps the axons in multilayered sheaths, assuring protection, efficient saltatory signal conduction and metabolic support to neurons. In the last few years, the impact of OL dysfunction and myelin damage has progressively received more attention and is now considered to be a major contributing factor to neurodegeneration in several neurological diseases, including amyotrophic lateral sclerosis (ALS). Upon OL injury, oligodendrocyte precursor cells (OPCs) of adult nervous tissue sustain the generation of new OLs for myelin reconstitution, but this spontaneous regeneration process fails to successfully counteract myelin damage. Of note, the functions of OPCs exceed the formation and repair of myelin, and also involve the trophic support to axons and the capability to exert an immunomodulatory role, which are particularly relevant in the context of neurodegeneration. In this review, we deeply analyze the impact of dysfunctional OLs in ALS pathogenesis. The possible mechanisms underlying OL degeneration, defective OPC maturation, and impairment in energy supply to motor neurons (MNs) have also been examined to provide insights on future therapeutic interventions. On this basis, we discuss the potential therapeutic utility in ALS of several molecules, based on their remyelinating potential or capability to enhance energy metabolism.
Collapse
|
47
|
Abstract
IMPORTANCE Multiple sclerosis (MS) is an autoimmune-mediated neurodegenerative disease of the central nervous system characterized by inflammatory demyelination with axonal transection. MS affects an estimated 900 000 people in the US. MS typically presents in young adults (mean age of onset, 20-30 years) and can lead to physical disability, cognitive impairment, and decreased quality of life. This review summarizes current evidence regarding diagnosis and treatment of MS. OBSERVATIONS MS typically presents in young adults aged 20 to 30 years with unilateral optic neuritis, partial myelitis, sensory disturbances, or brainstem syndromes such as internuclear ophthalmoplegia developing over several days. The prevalence of MS worldwide ranges from 5 to 300 per 100 000 people and increases at higher latitudes. Overall life expectancy is less than in the general population (75.9 vs 83.4 years), and MS more commonly affects women (female to male sex distribution of nearly 3:1). Diagnosis is made based on a combination of signs and symptoms, radiographic findings (eg, magnetic resonance imaging [MRI] T2 lesions), and laboratory findings (eg, cerebrospinal fluid-specific oligoclonal bands), which are components of the 2017 McDonald Criteria. Nine classes of disease-modifying therapies (DMTs), with varying mechanisms of action and routes of administration, are available for relapsing-remitting MS, defined as relapses at onset with stable neurologic disability between episodes, and secondary progressive MS with activity, defined as steadily increasing neurologic disability following a relapsing course with evidence of ongoing inflammatory activity. These drugs include interferons, glatiramer acetate, teriflunomide, sphingosine 1-phosphate receptor modulators, fumarates, cladribine, and 3 types of monoclonal antibodies. One additional DMT, ocrelizumab, is approved for primary progressive MS. These DMTs reduce clinical relapses and MRI lesions (new T2 lesions, gadolinium-enhancing lesions). Efficacy rates of current DMTs, defined by reduction in annualized relapse rates compared with placebo or active comparators, range from 29%-68%. Adverse effects include infections, bradycardia, heart blocks, macular edema, infusion reactions, injection-site reactions, and secondary autoimmune adverse effects, such as autoimmune thyroid disease. CONCLUSIONS AND RELEVANCE MS is characterized by physical disability, cognitive impairment, and other symptoms that affect quality of life. Treatment with DMT can reduce the annual relapse rate by 29% to 68% compared with placebo or active comparator.
Collapse
Affiliation(s)
| | | | - Alexander D Rae-Grant
- Cleveland Clinic Mellen Center, Cleveland, Ohio
- Now with Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| |
Collapse
|
48
|
Collongues N, Kuhle J, Tsagkas C, Lamy J, Meyer N, Barro C, Parmar K, Amann M, Wuerfel J, Kappos L, Moreau T, de Seze J. Biomarkers of treatment response in patients with progressive multiple sclerosis treated with high-dose pharmaceutical-grade biotin (MD1003). Brain Behav 2021; 11:e01998. [PMID: 33314801 PMCID: PMC7882156 DOI: 10.1002/brb3.1998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND High-dose pharmaceutical-grade biotin (MD1003) has positive effects on disability in progressive multiple sclerosis (PMS), but its mechanism of action remains unclear. The objective of our study was to quantify the effect of MD1003 in patients with PMS, using clinical response, plasma neurofilament light chain (pNfL) levels, and brain (BV) or cervical spinal cord volume (CSCV). MATERIALS AND METHODS Forty-eight patients with PMS newly treated with MD1003 were followed during one year. Patients were assessed clinically using the Expanded Disability Status Scale (EDSS), the nine-hole peg test (9HPT), and the 25-foot walk time (25FWT). CSCV was quantified using CORDIAL software and BV using SIENA or SIENAX. We measured pNfL level using SIMOA at several time points. Bayesian linear and logistic regressions were used to evaluate potential prognostic factors. RESULTS Treatment response, defined as a significant decrease of EDSS, 25FWT, or 9HPT at 1 year, was observed in 13 patients (27%). A gain of volume was noted in 7/24 patients for brain and in 10/19 patients for cervical spinal cord. The strongest predictors of poor treatment response were a high pNfL level at MD1003 onset (OR 0.96; 95% CI [0.91; 1]), high age at MS onset (OR 0.95; 95% CI [0.89; 1.01]), and an increase in brain lesion load during MD1003 treatment (OR 0.81; 95% CI [0.55; 1.05]). CONCLUSIONS MD1003 treatment was associated with clinical, BV, and CSCV improvement at 1 year. The correlation between the levels of pNfL at baseline, the age at multiple sclerosis onset, and a treatment response at M12 is consistent with a better effect in less disabled patients.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| | - Jens Kuhle
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Charidimos Tsagkas
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland.,Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Julien Lamy
- ICube, Université de Strasbourg-CNRS, University of Strasbourg, Strasbourg, France
| | - Nicolas Meyer
- GMRC, Service de Santé Publique, University Hospital of Strasbourg, Strasbourg, France
| | | | - Katrin Parmar
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland.,Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Michael Amann
- Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Medical Image Analysis Centre Basel and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurological Clinic and Polyclinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Thibault Moreau
- Department of Neurology, University Hospital of Dijon, Dijon, France
| | - Jerome de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France
| |
Collapse
|
49
|
Cunniffe N, Coles A. Promoting remyelination in multiple sclerosis. J Neurol 2021; 268:30-44. [PMID: 31190170 PMCID: PMC7815564 DOI: 10.1007/s00415-019-09421-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The greatest unmet need in multiple sclerosis (MS) are treatments that delay, prevent or reverse progression. One of the most tractable strategies to achieve this is to therapeutically enhance endogenous remyelination; doing so restores nerve conduction and prevents neurodegeneration. The biology of remyelination-centred on the activation, migration, proliferation and differentiation of oligodendrocyte progenitors-has been increasingly clearly defined and druggable targets have now been identified in preclinical work leading to early phase clinical trials. With some phase 2 studies reporting efficacy, the prospect of licensed remyelinating treatments in MS looks increasingly likely. However, there remain many unanswered questions and recent research has revealed a further dimension of complexity to this process that has refined our view of the barriers to remyelination in humans. In this review, we describe the process of remyelination, why this fails in MS, and the latest research that has given new insights into this process. We also discuss the translation of this research into clinical trials, highlighting the treatments that have been tested to date, and the different methods of detecting remyelination in people.
Collapse
Affiliation(s)
- Nick Cunniffe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Alasdair Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
50
|
Błauż A, Rychlik B, Plazuk D, Peccati F, Jiménez-Osés G, Steinke U, Sierant M, Trzeciak K, Skorupska E, Miksa B. Biotin-phenosafranin as a new photosensitive conjugate for targeted therapy and imaging. NEW J CHEM 2021. [DOI: 10.1039/d0nj06170k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A biotinylated phenazine compound as a phenosafranin conjugate (Biot-PSF) was synthesized and reported for the first time.
Collapse
Affiliation(s)
- Andrzej Błauż
- Cytometry Laboratory
- Department of Molecular Biophysics
- Faculty of Biology & Environmental Protection
- University of Lodz
- 90-236 Lodz
| | - Błażej Rychlik
- Cytometry Laboratory
- Department of Molecular Biophysics
- Faculty of Biology & Environmental Protection
- University of Lodz
- 90-236 Lodz
| | - Damian Plazuk
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Lodz
- 91-403 Lodz
- Poland
| | - Francesca Peccati
- CIC bioGUNE
- Center for Cooperative Research in Bioscience
- Bizkaia Science and Technology Park
- Computational Chemistry Lab
- 48160 Derio-Bizkaia
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE
- Center for Cooperative Research in Bioscience
- Bizkaia Science and Technology Park
- Computational Chemistry Lab
- 48160 Derio-Bizkaia
| | - Urszula Steinke
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Ewa Skorupska
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Beata Miksa
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| |
Collapse
|