1
|
Gregory JM, Livesey MR, McDade K, Selvaraj BT, Barton SK, Chandran S, Smith C. Dysregulation of AMPA receptor subunit expression in sporadic ALS post-mortem brain. J Pathol 2019; 250:67-78. [PMID: 31579943 PMCID: PMC6973025 DOI: 10.1002/path.5351] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/02/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterised by progressive motor neuron degeneration. Although there are over 40 genes associated with causal monogenetic mutations, the majority of ALS patients are not genetically determined. Causal ALS mutations are being increasingly mechanistically studied, though how these mechanisms converge and diverge between the multiple known familial causes of ALS (fALS) and sporadic forms of ALS (sALS) and furthermore between different neuron types, is poorly understood. One common pathway that is implicated in selective motor neuron death is enhanced α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPAR)-mediated excitoxicity. Specifically, human in vitro and pathological evidence has linked the C9orf72 repeat expansion mutation to a relative increase in the Ca2+ -permeable AMPAR population due to AMPAR subunit dysregulation. Here, we provide the first comparative quantitative assessment of the expression profile of AMPAR subunit transcripts, using BaseScope, in post-mortem lower motor neurons (spinal cord, anterior horn), upper motor neurons (motor cortex) and neurons of the pre-frontal cortex in sALS and fALS due to mutations in SOD1 and C9orf72. Our data indicated that AMPAR dysregulation is prominent in lower motor neurons in all ALS cases. However, sALS and mutant C9orf72 cases exhibited GluA1 upregulation whereas mutant SOD1 cases displayed GluA2 down regulation. We also showed that sALS cases exhibited widespread AMPAR dysregulation in the motor and pre-frontal cortex, though the exact identity of the AMPAR subunit being dysregulated was dependent on brain region. In contrast, AMPAR dysregulation in mutant SOD1 and C9orf72 cases was restricted to lower motor neurons only. Our data highlight the complex dysregulation of AMPAR subunit expression that reflects both converging and diverging mechanisms at play between different brain regions and between ALS cohorts. © 2019 Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jenna M Gregory
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Matthew R Livesey
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Karina McDade
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Samantha K Barton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Irvin CW, Kim RB, Mitchell CS. Seeking homeostasis: temporal trends in respiration, oxidation, and calcium in SOD1 G93A Amyotrophic Lateral Sclerosis mice. Front Cell Neurosci 2015; 9:248. [PMID: 26190973 PMCID: PMC4486844 DOI: 10.3389/fncel.2015.00248] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 06/18/2015] [Indexed: 12/12/2022] Open
Abstract
Impairments in mitochondria, oxidative regulation, and calcium homeostasis have been well documented in numerous Amyotrophic Lateral Sclerosis (ALS) experimental models, especially in the superoxide dismutase 1 glycine 93 to alanine (SOD1 G93A) transgenic mouse. However, the timing of these deficiencies has been debatable. In a systematic review of 45 articles, we examine experimental measurements of cellular respiration, mitochondrial mechanisms, oxidative markers, and calcium regulation. We evaluate the quantitative magnitude and statistical temporal trend of these aggregated assessments in high transgene copy SOD1 G93A mice compared to wild type mice. Analysis of overall trends reveals cellular respiration, intracellular adenosine triphosphate, and corresponding mitochondrial elements (Cox, cytochrome c, complex I, enzyme activity) are depressed for the entire lifespan of the SOD1 G93A mouse. Oxidant markers (H2O2, 8OH2'dG, MDA) are initially similar to wild type but are double that of wild type by the time of symptom onset despite early post-natal elevation of protective heat shock proteins. All aspects of calcium regulation show early disturbances, although a notable and likely compensatory convergence to near wild type levels appears to occur between 40 and 80 days (pre-onset), followed by a post-onset elevation in intracellular calcium. The identified temporal trends and compensatory fluctuations provide evidence that the "cause" of ALS may lay within failed homeostatic regulation, itself, rather than any one particular perturbing event or cellular mechanism. We discuss the vulnerabilities of motoneurons to regulatory instability and possible hypotheses regarding failed regulation and its potential treatment in ALS.
Collapse
Affiliation(s)
- Cameron W Irvin
- Department of Biomedical Engineering, Georgia Institute of Technology - Emory University, Atlanta, GA USA
| | - Renaid B Kim
- Department of Biomedical Engineering, Georgia Institute of Technology - Emory University, Atlanta, GA USA
| | - Cassie S Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology - Emory University, Atlanta, GA USA
| |
Collapse
|
3
|
Tran LT, Gentil BJ, Sullivan KE, Durham HD. The voltage-gated calcium channel blocker lomerizine is neuroprotective in motor neurons expressing mutant SOD1, but not TDP-43. J Neurochem 2014; 130:455-66. [DOI: 10.1111/jnc.12738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/11/2014] [Accepted: 04/07/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Luan T. Tran
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| | - Benoit J. Gentil
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| | - Kathleen E. Sullivan
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| | - Heather D. Durham
- Department of Neurology/Neurosurgery; Montreal Neurological Institute; McGill University; Montreal QC Canada
| |
Collapse
|
4
|
Over-expression of N-type calcium channels in cortical neurons from a mouse model of Amyotrophic Lateral Sclerosis. Exp Neurol 2012; 247:349-58. [PMID: 23142186 DOI: 10.1016/j.expneurol.2012.11.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/24/2012] [Accepted: 11/02/2012] [Indexed: 12/13/2022]
Abstract
Voltage-gated Ca(2+) channels (VGCCs) mediate calcium entry into neuronal cells in response to membrane depolarisation and play an essential role in a variety of physiological processes. In Amyotrophic Lateral Sclerosis (ALS), a fatal neurodegenerative disease caused by motor neuron degeneration in the brain and spinal cord, intracellular calcium dysregulation has been shown, while no studies have been carried out on VGCCs. Here we show that the subtype N-type Ca(2+) channels are over expressed in G93A cultured cortical neurons and in motor cortex of G93A mice compared to Controls. In fact, by western blotting, immunocytochemical and electrophysiological experiments, we observe higher membrane expression of N-type Ca(2+) channels in G93A neurons compared to Controls. G93A cortical neurons filled with calcium-sensitive dye Fura-2, show a net calcium entry during membrane depolarization that is significantly higher compared to Control. Analysis of neuronal vitality following the exposure of neurons to a high K(+) concentration (25 mM, 5h), shows a significant reduction of G93A cellular survival compared to Controls. N-type channels are involved in the G93A higher mortality because ω-conotoxin GVIA (1 μM), which selectively blocks these channels, is able to abolish the higher G93A mortality when added to the external medium. These data provide robust evidence for an excess of N-type Ca(2+) expression in G93A cortical neurons which induces a higher mortality following membrane depolarization. These results may be central to the understanding of pathogenic pathways in ALS and provide novel molecular targets for the design of rational therapies for the ALS disorder.
Collapse
|
5
|
Inhibitory synaptic regulation of motoneurons: a new target of disease mechanisms in amyotrophic lateral sclerosis. Mol Neurobiol 2011; 45:30-42. [PMID: 22072396 DOI: 10.1007/s12035-011-8217-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/25/2011] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult-onset neurodegenerative disease. It causes the degeneration of motoneurons and is fatal due to paralysis, particularly of respiratory muscles. ALS can be inherited, and specific disease-causing genes have been identified, but the mechanisms causing motoneuron death in ALS are not understood. No effective treatments exist for ALS. One well-studied theory of ALS pathogenesis involves faulty RNA editing and abnormal activation of specific glutamate receptors as well as failure of glutamate transport resulting in glutamate excitotoxicity; however, the excitotoxicity theory is challenged by the inability of anti-glutamate drugs to have major disease-modifying effects clinically. Nevertheless, hyperexcitability of upper and lower motoneurons is a feature of human ALS and transgenic (tg) mouse models of ALS. Motoneuron excitability is strongly modulated by synaptic inhibition mediated by presynaptic glycinergic and GABAergic innervations and postsynaptic glycine receptors (GlyR) and GABA(A) receptors; yet, the integrity of inhibitory systems regulating motoneurons has been understudied in experimental models, despite findings in human ALS suggesting that they may be affected. We have found in tg mice expressing a mutant form of human superoxide dismutase-1 (hSOD1) with a Gly93 → Ala substitution (G93A-hSOD1), causing familial ALS, that subsets of spinal interneurons degenerate. Inhibitory glycinergic innervation of spinal motoneurons becomes deficient before motoneuron degeneration is evident in G93A-hSOD1 mice. Motoneurons in these ALS mice also have insufficient synaptic inhibition as reflected by smaller GlyR currents, smaller GlyR clusters on their plasma membrane, and lower expression of GlyR1α mRNA compared to wild-type motoneurons. In contrast, GABAergic innervation of ALS mouse motoneurons and GABA(A) receptor function appear normal. Abnormal synaptic inhibition resulting from dysfunction of interneurons and motoneuron GlyRs is a new direction for unveiling mechanisms of ALS pathogenesis that could be relevant to new therapies for ALS.
Collapse
|
6
|
Chang Q, Martin LJ. Motoneuron subtypes show specificity in glycine receptor channel abnormalities in a transgenic mouse model of amyotrophic lateral sclerosis. Channels (Austin) 2011; 5:299-303. [PMID: 21558795 DOI: 10.4161/chan.5.4.16206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective loss of motoneurons. Recently we studied glycine receptors (GlyRs) in motoneurons in an ALS mouse model expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). Living motoneurons in dissociated spinal cord cultures were identified by using transgenic mice expressing eGFP driven by the Hb9 promoter. We showed that GlyR-mediated currents were reduced in large-sized (diameter > 28 μm) Hb9-eGFP(+) motoneurons from G93A-SOD1 embryonic mice. Here we analyze GlyR currents in a morphologically distinct subgroup of medium-sized (diameter 10-28 μm) Hb9-eGFP(+) motoneurons, presumably gamma or slow-type alpha motoneurons. We find that glycine-induced current densities were not altered in medium-sized G93A-SOD1 motoneurons. No significant differences in glycinergic mIPSCs were observed between G93A-SOD1 and control medium-sized motoneurons. These results indicate that GlyR deficiency early in the disease process of ALS is specific for large alpha motoneurons.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
7
|
Glycine receptor channels in spinal motoneurons are abnormal in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 2011; 31:2815-27. [PMID: 21414903 DOI: 10.1523/jneurosci.2475-10.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly evolving and fatal adult-onset neurological disease characterized by progressive degeneration of motoneurons. Our previous study showed that glycinergic innervation of spinal motoneurons is deficient in an ALS mouse model expressing a mutant form of human superoxide dismutase-1 with a Gly93→Ala substitution (G93A-SOD1). In this study, we have examined, using whole-cell patch-clamp recordings, glycine receptor (GlyR)-mediated currents in spinal motoneurons from these transgenic mice. We developed a dissociated spinal cord culture model using embryonic transgenic mice expressing enhanced green fluorescent protein (eGFP) driven by the Hb9 promoter. Motoneurons were identified as Hb9-eGFP-expressing (Hb9-eGFP(+)) neurons with a characteristic morphology. To examine GlyRs in ALS motoneurons, we bred G93A-SOD1 mice to Hb9-eGFP mice and compared glycine-evoked currents in cultured Hb9-eGFP(+) motoneurons prepared from G93A-SOD1 embryos and from their nontransgenic littermates. Glycine-evoked current density was significantly smaller in the G93A-SOD1 motoneurons compared with control. Furthermore, the averaged current densities of spontaneous glycinergic miniature IPSCs (mIPSCs) were significantly smaller in the G93A-SOD1 motoneurons than in control motoneurons. No significant differences in GABA-induced currents and GABAergic mIPSCs were observed between G93A-SOD1 and control motoneurons. Quantitative single-cell reverse transcription-PCR found lower GlyRα1 subunit mRNA expression in G93A-SOD1 motoneurons, indicating that the reduction of GlyR current may result from the downregulation of GlyR mRNA expression in motoneurons. Immunocytochemistry demonstrated a decrease of surface postsynaptic GlyR on G93A-SOD1 motoneurons. Our study suggests that selective alterations in GlyR function contribute to inhibitory insufficiency in motoneurons early in the disease process of ALS.
Collapse
|
8
|
Quinlan KA, Schuster JE, Fu R, Siddique T, Heckman CJ. Altered postnatal maturation of electrical properties in spinal motoneurons in a mouse model of amyotrophic lateral sclerosis. J Physiol 2011; 589:2245-60. [PMID: 21486770 DOI: 10.1113/jphysiol.2010.200659] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Spinal motoneurons are highly vulnerable in amyotrophic lateral sclerosis (ALS).Previous research using a standard animal model, the mutant superoxide dismutase-1 (SOD1)mouse, has revealed deficits in many cellular properties throughout its lifespan. The electrical properties underlying motoneuron excitability are some of the earliest to change; starting at 1 week postnatal, persistent inward currents (PICs) mediated by Na+ are upregulated and electrical conductance, a measure of cell size, increases. However, during this period these properties and many others undergo large developmental changes which have not been fully analysed.Therefore, we undertook a systematic analysis of electrical properties in more than 100 normal and mutant SOD1 motoneurons from 0 to 12 days postnatal, the neonatal to juvenile period.We compared normal mice with the most severe SOD1 model, the G93A high-expressor line. We found that the Na+ PIC and the conductance increased during development. However, mutant SOD1 motoneurons showed much greater increases than normal motoneurons; the mean Na+PIC in SOD1 motoneurons was double that of wild-type motoneurons. Additionally, in mutant SOD1 motoneurons the PIC mediated by Ca2+ increased, spike width decreased and the time course of the after-spike after-hyperpolarization shortened. These changes were advances of the normal effects of maturation. Thus, our results show that the development of normal and mutant SOD1 motoneurons follows generally similar patterns, but that the rate of development is accelerated in the mutant SOD1 motoneurons. Statistical analysis of all measured properties indicates that approximately 55% of changes attributed to the G93A SOD1 mutation can be attributed to an increased rate of maturation.
Collapse
Affiliation(s)
- K A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
9
|
Schomburg ED, Steffens H, Zschüntzsch J, Dibaj P, Keller BU. Fatigability of spinal reflex transmission in a mouse model (SOD1(G93A) ) of amyotrophic lateral sclerosis. Muscle Nerve 2011; 43:230-6. [PMID: 21254088 DOI: 10.1002/mus.21835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons. To analyze the progressive motor deficits during the course of this disease, we investigated fatigability and ability of recovery of spinal motor neurons by testing monosynaptic reflex transmission with increasing stimulus frequencies in the lumbar spinal cord of the SOD1(G93A) mouse model for ALS in a comparison with wild-type (WT) mice. Monosynaptic reflexes in WT and SOD1(G93A) mice without behavioral deficits showed no difference with respect to their resistance to increasing stimulus frequencies. During the progression of motor deficits in SOD1(G93A) mice, the vulnerability of monosynaptic reflexes to higher frequencies increased, the required time for reflex recovery was extended, and recovery was often incomplete. Fatigability and demand for recovery of spinal motor neurons in SOD1(G93A) mice rose with increasing motor deficits. This supports the assumption that impairment of the energy supply may contribute to the pathogenesis of ALS.
Collapse
Affiliation(s)
- Eike D Schomburg
- Department of Physiology, Georg August University of Göttingen, Waldweg 33, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
10
|
Venerosi A, Martire A, Rungi A, Pieri M, Ferrante A, Zona C, Popoli P, Calamandrei G. Complex behavioral and synaptic effects of dietary branched chain amino acids in a mouse model of amyotrophic lateral sclerosis. Mol Nutr Food Res 2011; 55:541-52. [DOI: 10.1002/mnfr.201000296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/13/2010] [Accepted: 10/28/2010] [Indexed: 12/23/2022]
|
11
|
Meehan CF, Moldovan M, Marklund SL, Graffmo KS, Nielsen JB, Hultborn H. Intrinsic properties of lumbar motor neurones in the adult G127insTGGG superoxide dismutase-1 mutant mouse in vivo: evidence for increased persistent inward currents. Acta Physiol (Oxf) 2010; 200:361-76. [PMID: 20874803 DOI: 10.1111/j.1748-1716.2010.02188.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by a preferential loss of motor neurones. Previous publications using in vitro neonatal preparations suggest an increased excitability of motor neurones in various superoxide dismutase-1 (SOD1) mutant mice models of ALS which may contribute to excitotoxicity of the motor neurones. METHODS Using intracellular recording, we tested this hypothesis in vivo in the adult presymptomatic G127insTGGG (G127X) SOD1 mutant mouse model of ALS. RESULTS At resting membrane potentials the basic intrinsic properties of lumbar motor neurones in the adult presymptomatic G127X mutant are not significantly different from those of wild type. However, at more depolarized membrane potentials, motor neurones in the G127X SOD1 mutants can sustain higher frequency firing, showing less spike frequency adaption (SFA) and with persistent inward currents (PICs) being activated at lower firing frequencies and being more pronounced. CONCLUSION We demonstrated that, in vivo, at resting membrane potential, spinal motor neurones of the adult G127X mice do not show an increased excitability. However, when depolarized they show evidence of an increased PIC and less SFA which may contribute to excitotoxicity of these neurones as the disease progresses.
Collapse
Affiliation(s)
- C F Meehan
- Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
12
|
Rossi S, De Chiara V, Musella A, Cozzolino M, Bernardi G, Maccarrone M, Mercuri NB, Carrì MT, Centonze D. Abnormal sensitivity of cannabinoid CB1 receptors in the striatum of mice with experimental amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2010; 11:83-90. [PMID: 19452308 DOI: 10.3109/17482960902977954] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons. However, additional neuronal systems are also involved, and the aim of this study was to investigate the involvement of the nucleus striatum. By means of neurophysiological recordings in slices, we have investigated both excitatory and inhibitory synaptic transmission in the striatum of G93A-SOD1 ALS mice, along with the sensitivity of these synapses to cannabinoid CB1 receptor stimulation. We have observed reduced frequency of glutamate-mediated spontaneous excitatory postsynaptic currents (EPSCs) and increased frequency of GABA-mediated spontaneous inhibitory postsynaptic currents (IPSCs) recorded from striatal neurons of ALS mice, possibly due to presynaptic defects in transmitter release. The sensitivity of cannabinoid CB1 receptors controlling both glutamate and GABA transmission was remarkably potentiated in ALS mice, indicating that adaptations of the endocannabinoid system might be involved in the pathophysiology of ALS. In conclusion, our data identify possible physiological correlates of striatal dysfunction in ALS mice, and suggest that cannabinoid CB1 receptors might be potential therapeutic targets for this dramatic disease.
Collapse
Affiliation(s)
- Silvia Rossi
- Clinica Neurologica, Dipartimento di Neuroscienze, Università Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dynamic NAD(P)H post-synaptic autofluorescence signals for the assessment of mitochondrial function in a neurodegenerative disease: monitoring the primary motor cortex of G93A mice, an amyotrophic lateral sclerosis model. Mitochondrion 2009; 10:108-14. [PMID: 19900586 DOI: 10.1016/j.mito.2009.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/18/2009] [Accepted: 11/03/2009] [Indexed: 12/14/2022]
Abstract
Abnormal mitochondrial function was reported in patients and models for amyotrophic lateral sclerosis (ALS). It is therefore important to set up sensitive tools for the monitoring of active agents that enhance energy metabolism delay onset, and extend lifespan of transgenic G93A-SOD1 ALS mice. In this report, primary motor cortex slices from G93A mice at different stages of disease were studied, using NAD(P)H autofluorescence post-synaptic signals following ultraviolet stimuli, as a probe to evaluate mitochondrial function. We observed consistent age-related alterations of responses in G93A primary motor cortex slices versus controls. We conclude that NAD(P)H autofluorescence post-synaptic signal is a highly sensitive real-time technique to detect mitochondrial function failure in primary cortex from living tissues.
Collapse
|
14
|
Duncan K. The role of AMPA receptor-mediated excitotoxicity in ALS: Is deficient RNA editing to blame? ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.cacc.2009.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Spadoni O, Crestini A, Piscopo P, Malvezzi-Campeggi L, Carunchio I, Pieri M, Zona C, Confaloni A. Gene expression profiles of APP and BACE1 in Tg SOD1G93A cortical cells. Cell Mol Neurobiol 2009; 29:635-41. [PMID: 19214738 PMCID: PMC11506110 DOI: 10.1007/s10571-009-9356-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 01/23/2009] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease defined by motor neuron loss. Transgenic mouse model (Tg SOD1G93A) shows pathological features that closely mimic those seen in ALS patients. An hypothetic link between AD and ALS was suggested by finding an higher amount of amyloid precursor protein (APP) in the spinal cord anterior horn neurons, and of Abeta peptides in ALS patients skin. In this work, we have investigated the expression of some genes involved in Alzheimer's disease, as APP, beta- and gamma-secretase, in an animal model of ALS, to understand some possible common molecular mechanisms between these two pathologies. For gene expression analysis, we carried out a quantitative RT-PCR in ALS mice and in transgenic mice over-expressing human wild-type SOD1 (Tg hSOD1). We found that APP and BACE1 mRNA levels were increased 1.5-fold in cortical cells of Tg SOD1G93A mice respect to Tg hSOD1, whereas the expression of gamma-secretase genes, as PSEN1, PSEN2, Nicastrin, and APH1a, showed no statistical differences between wild-type and ALS mice. Biochemical analysis carried out by immunostaining and western blotting, did not show any significant modulation of the protein expression compared to the genes, suggesting the existence of post-translational mechanisms that modify protein levels.
Collapse
Affiliation(s)
- Ornella Spadoni
- Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina, Elena 299, Rome, Italy
| | - Alessio Crestini
- Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina, Elena 299, Rome, Italy
| | - Paola Piscopo
- Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina, Elena 299, Rome, Italy
| | - Lorenzo Malvezzi-Campeggi
- Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina, Elena 299, Rome, Italy
| | - Irene Carunchio
- Department of Neuroscience, University of Rome “Tor Vergata” and Fondazione S. Lucia, Rome, Italy
| | - Massimo Pieri
- Department of Neuroscience, University of Rome “Tor Vergata” and Fondazione S. Lucia, Rome, Italy
| | - Cristina Zona
- Department of Neuroscience, University of Rome “Tor Vergata” and Fondazione S. Lucia, Rome, Italy
| | - Annamaria Confaloni
- Department of Cellular Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina, Elena 299, Rome, Italy
| |
Collapse
|
16
|
Chang Q, Martin LJ. Glycinergic innervation of motoneurons is deficient in amyotrophic lateral sclerosis mice: a quantitative confocal analysis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:574-85. [PMID: 19116365 PMCID: PMC2630565 DOI: 10.2353/ajpath.2009.080557] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2008] [Indexed: 12/13/2022]
Abstract
Altered motoneuron excitability is involved in amyotrophic lateral sclerosis pathobiology. To test the hypothesis that inhibitory interneuron innervation of spinal motoneurons is abnormal in an amyotrophic lateral sclerosis mouse model, we measured GABAergic, glycinergic, and cholinergic immunoreactive terminals on spinal motoneurons in mice expressing a mutant form of human superoxide dismutase-1 with a Gly93-->Ala substitution (G93A-SOD1) and in controls at different ages. Glutamic acid decarboxylase, glycine transporter-2, and choline acetyltransferase were used as markers for GABAergic, glycinergic, and cholinergic terminals, respectively. Triple immunofluorescent labeling of boutons contacting motoneurons was visualized by confocal microscopy and analyzed quantitatively. Glycine transporter-2-bouton density on lateral motoneurons was decreased significantly in G93A-SOD1 mice compared with controls. This reduction was absent at 6 weeks of age but present in asymptomatic 8-week-old mice and worsened with disease progression from 12 to 14 weeks of age. Motoneurons lost most glycinergic innervation by 16 weeks of age (end-stage) when there was a significant decrease in the numbers of motoneurons and choline acetyltransferase-positive boutons. No significant differences in glutamic acid decarboxylase-bouton densities were found in G93A-SOD1 mice. Reduction of glycinergic innervation preceded mitochondrial swelling and vacuolization. Calbindin-positive Renshaw cell number was decreased significantly at 12 weeks of age in G93A-SOD1 mice. Thus, either the selective loss of inhibitory glycinergic regulation of motoneuron function or glycinergic interneuron degeneration contributes to motoneuron degeneration in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Qing Chang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
17
|
Pieri M, Carunchio I, Curcio L, Mercuri NB, Zona C. Increased persistent sodium current determines cortical hyperexcitability in a genetic model of amyotrophic lateral sclerosis. Exp Neurol 2009; 215:368-79. [DOI: 10.1016/j.expneurol.2008.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 11/06/2008] [Accepted: 11/08/2008] [Indexed: 12/11/2022]
|
18
|
Carunchio I, Mollinari C, Pieri M, Merlo D, Zona C. GAB(A) receptors present higher affinity and modified subunit composition in spinal motor neurons from a genetic model of amyotrophic lateral sclerosis. Eur J Neurosci 2009; 28:1275-85. [PMID: 18973555 DOI: 10.1111/j.1460-9568.2008.06436.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by the selective degeneration of motor neurons in the spinal cord, brainstem and cerebral cortex. In this study we have analysed the electrophysiological properties of GABA(A) receptors and GABA(A) alpha1 and alpha2 subunits expression in spinal motor neurons in culture obtained from a genetic model of ALS (G93A) and compared with transgenic wild type SOD1 (SOD1) and their corresponding non transgenic litter mates (Control). Although excitotoxic motor neuron death has been extensively studied in relation to Ca(2+)-dependent processes, strong evidence indicates that excitotoxic cell death is also remarkably dependent on Cl(-) ions and on GABA(A) receptor activation. In this study we have analysed the electrophysiological properties of GABA(A) receptors and the expression of GABA(A)alpha(1) and alpha(2) subunits in cultured motor neurons obtained from a genetic model of amyotrophic lateral sclerosis (G93A) and compared them with transgenic wild-type Cu,Zn superoxide dismutase and their corresponding non-transgenic littermates (Control). In all tested motor neurons, the application of gamma-aminobutyric acid (GABA) (0.5-100 mum) evoked an inward current that was reversibly blocked by bicuculline (100 mum), thus indicating that it was mediated by the activation of GABA(A) receptors. Our results indicate that the current density at high GABA concentrations is similar in control, Cu,Zn superoxide dismutase and G93A motor neurons. However, the dose-response curve significantly shifted toward lower concentration values in G93A motor neurons and the extent of desensitization also increased in these neurons. Finally, multiplex single-cell real-time polymerase chain reaction and immunofluorescence revealed that the amount of GABA(A)alpha(1) subunit was significantly increased in G93A motor neurons, whereas the levels of alpha(2) subunit were unchanged. These data show that the functionality and expression of GABA(A) receptors are altered in G93A motor neurons inducing a higher Cl(-) influx into the cell with a possible consequent neuronal excitotoxicity acceleration.
Collapse
Affiliation(s)
- Irene Carunchio
- Department of Neuroscience, University of Rome 'Tor Vergata', Via Montpellier 1, 00173 Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Guatteo E, Carunchio I, Pieri M, Albo F, Canu N, Mercuri NB, Zona C. Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels' activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 2007; 28:90-100. [PMID: 17706428 DOI: 10.1016/j.nbd.2007.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 06/28/2007] [Accepted: 07/01/2007] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem and motor cortex. By combining electrophysiological recordings with imaging techniques, clearance/buffering capacity of cultured spinal cord motor neurons after a calcium accumulation has been analyzed in response to AMPA receptors' (AMPARs') activation and to depolarizing stimuli in a genetic mouse model of ALS (G93A). Our studies demonstrate that the amplitude of the calcium signal in response to AMPARs' or voltage-dependent calcium channels' activation is not significantly different in controls and G93A motor neurons. On the contrary, in G93A motor neurons, the [Ca(2+)](i) recovery to basal level is significantly slower compared to control neurons following AMPARs but not voltage-dependent calcium channels' activation. This difference was not observed in G93A cultured cortical neurons. This observation is the first to indicate a specific alteration of the calcium clearance linked to AMPA receptors' activation in G93A motor neurons and the involvement of AMPA receptor regulatory proteins controlling both AMPA receptor functionality and the sequence of events connected to them.
Collapse
Affiliation(s)
- Ezia Guatteo
- Fondazione S. Lucia, Centro Europeo Ricerca sul Cervello, Via del Fosso di Fiorano, 00173 Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Jankelowitz SK, Howells J, Burke D. Plasticity of inwardly rectifying conductances following a corticospinal lesion in human subjects. J Physiol 2007; 581:927-40. [PMID: 17363389 PMCID: PMC2170828 DOI: 10.1113/jphysiol.2006.123661] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
This study investigated whether there are changes in the excitability of motor axons in peripheral nerves of patients with corticospinal lesions, reflecting plasticity of the motoneuron due to altered descending drives and/or changes in afferent feedback. The excitability of motor and sensory axons in peripheral nerves of the affected limb of 11 patients with unilateral hemiparesis due to stroke was compared with that for the unaffected limbs and with data for 12 age-matched controls. There was significantly less accommodation to hyperpolarizing currents in motor axons on the affected side. There were small differences between the data for the unaffected side and that of the control subjects but these were not statistically significant. Other findings indicate that there was no change in resting membrane potential. There was no comparable alteration in the excitability of sensory axons. The changes in response of motor axons to hyperpolarizing currents could be reproduced in a computer model of the human motor axon by reducing the hyperpolarization-activated conductance, IH, by 30% and the quantitatively small leak conductance by 77%. The data for the uninvolved side matched the data for control subjects best when IH was increased. These findings are consistent with modulation of IH by activity. They demonstrate a change in the biophysical properties of motor axons not directly affected by the pathology and synaptically remote from the lesion, and have implications for 'trans-synaptic' changes in central nervous system pathways. In human subjects studies of motor axon properties may allow insight into processes affecting the motoneuron.
Collapse
Affiliation(s)
- Stacey K Jankelowitz
- Medical Foundation Building - K25, The University of Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
21
|
Barber SC, Shaw PJ. Chapter 4 Molecular mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:57-87. [PMID: 18808889 DOI: 10.1016/s0072-9752(07)80007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
22
|
Zona C, Pieri M, Carunchio I. Voltage-Dependent Sodium Channels in Spinal Cord Motor Neurons Display Rapid Recovery From Fast Inactivation in a Mouse Model of Amyotrophic Lateral Sclerosis. J Neurophysiol 2006; 96:3314-22. [PMID: 16899637 DOI: 10.1152/jn.00566.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a substantial loss of motor neurons in the spinal cord, brain stem, and motor cortex. Previous evidence showed that in a mouse model of a familial form of ALS expressing high levels of the human mutated protein Cu,Zn superoxide dismutase (Gly93→Ala, G93A), the firing properties of single motor neurons are altered to induce neuronal hyperexcitability. To determine whether the functionality of the macroscopic voltage-dependent Na+ currents is modified in G93A motor neurons, in the present work their physiological properties were examined. The voltage-dependent sodium channels were studied in dissociated motor neurons in culture from nontransgenic mice (Control), from transgenic mice expressing high levels of the human wild-type protein [superoxide dismutase 1 (SOD1)], and from G93A mice, using the whole cell configuration of the patch-clamp recording technique. The voltage dependency of activation and of steady-state inactivation, the kinetics of fast inactivation and slow inactivation of the voltage-dependent Na+ channels were not modified in the mutated mice. Conversely, the recovery from fast inactivation was significantly faster in G93A motor neurons than that in Control and SOD1. The recovery from fast inactivation was still significantly faster in G93A motor neurons exposed for different times (3–48 h) and concentrations (5–500 μM) to edaravone, a free-radical scavenger. Clarification of the importance of these changes in membrane ion channel functionality may have diagnostic and therapeutic implications in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Cristina Zona
- Department of Neuroscience, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy.
| | | | | |
Collapse
|
23
|
Durand J, Amendola J, Bories C, Lamotte d'Incamps B. Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. ACTA ACUST UNITED AC 2006; 99:211-20. [PMID: 16448809 DOI: 10.1016/j.jphysparis.2005.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice. Several hypotheses have been advanced to explain the selective loss of motor neurons such as apoptosis, neurofilament disorganisation, oxidative stress, mitochondrial dysfunction, astrogliosis and excitotoxicity. Although disease onset appears at adulthood, recent studies have detected abnormalities during embryonic and postnatal maturation in animal models of ALS. We reported that SOD1(G85R) mutant mice exhibit specific delays in acquiring sensory-motor skills during the first week after birth. In addition, physiological measurements on in vitro spinal cord preparations reveal defects in evoking rhythmic activity with N-methyl-DL-aspartate and serotonin at lumbar, but not sacral roots. This is potentially significant, as functions involving sacral roots are spared at late stages of the disease. Moreover, electrical properties of SOD1 lumbar motoneurons are altered as early as the second postnatal week when mice begin to walk. Alterations concern the input resistance and the gain of SOD1 motoneurons which are lower than in control motoneurons. Whether or not the early changes in discharge firing are responsible for the uncoupling between motor axon terminals and muscles is still an open question. A link between these early electrical abnormalities and the late degeneration of motoneurons is proposed in this short review. Our data suggest that ALS, as other neurodegenerative diseases, could be a consequence of an abnormal development of neurons and network properties. We hypothesize that the SOD1 mutation could induce early changes during the period of maturation of motor systems and that compensatory mechanisms-linked to developmental spinal plasticity-might explain the late onset of the disease.
Collapse
Affiliation(s)
- Jacques Durand
- CNRS UMR 6196, Plasticité et Physiopathologie de la Motricité, Université de la Méditerranée, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
24
|
Kawahara Y, Kwak S. Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? ACTA ACUST UNITED AC 2006; 6:131-44. [PMID: 16183555 DOI: 10.1080/14660820510037872] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It has been repeatedly reported that spinal motor neurons are selectively vulnerable to AMPA receptor-mediated excitotoxicity. Therefore, identifying the uniqueness of AMPA receptors that are expressed on motor neurons, especially in individuals affected with sporadic amyotrophic lateral sclerosis (ALS) is essential for elucidating the etiology of this disorder. The mechanism that initiates motor neuronal death appears to be an exaggerated influx of Ca(2+) through AMPA receptors. The determinants that affect this Ca(2+) influx are Ca(2+) permeability, which is regulated by the presence of the GluR2 subunit and by RNA editing at the Q/R site of GluR2; channel desensitization, which is regulated by alternative splicing at the flip/flop site and by RNA editing at the R/G site of GluR subunits; and receptor density on the cell surface, which is controlled by many factors including regulatory proteins, direct phosphorylation and RNA editing at the Q/R site. This review focuses on recent progress on the molecular dynamics of AMPA receptors and discusses the pathophysiology of selective motor neuron death mediated by AMPA receptors in individuals affected with sporadic ALS.
Collapse
|
25
|
Avossa D, Grandolfo M, Mazzarol F, Zatta M, Ballerini L. Early signs of motoneuron vulnerability in a disease model system: Characterization of transverse slice cultures of spinal cord isolated from embryonic ALS mice. Neuroscience 2006; 138:1179-94. [PMID: 16442737 DOI: 10.1016/j.neuroscience.2005.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 11/10/2005] [Accepted: 12/02/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the SOD1 gene are associated with familial amyotrophic lateral sclerosis. The mechanisms by which these mutations lead to cell loss within the spinal cord ventral horns are unknown. In the present report we used the G93A transgenic mouse model of amyotrophic lateral sclerosis to develop and characterize an in vitro tool for the investigation of subtle alterations of spinal tissue prior to frank neuronal degeneration. To this aim, we developed organotypic slice cultures from wild type and G93A embryonic spinal cords. We combined immunocytochemistry and electron microscopy techniques to compare wild type and G93A spinal cord tissues after 14 days of growth under standard in vitro conditions. By SMI32 and choline acetyl transferase immunostaining, the distribution and morphology of motoneurons were compared in the two culture groups. Wild type and mutant cultures displayed no differences in the analyzed parameters as well as in the number of motoneurons. Similar results were observed when glial fibrillary acidic protein and myelin basic protein-positive cells were examined. Cell types within the G93A slice underwent maturation and slices could be maintained in culture for at least 3 weeks when prepared from embryos. Electron microscopy investigation confirmed the absence of early signs of mitochondria vacuolization or protein aggregate formation in G93A ventral horns. However, a significantly different ratio between inhibitory and excitatory synapses was present in G93A cultures, when compared with wild type ones, suggesting the expression of subtle synaptic dysfunction in G93A cultured tissue. When compared with controls, G93A motoneurons exhibited increased vulnerability to AMPA glutamate receptor-mediated excitotoxic stress prior to clear disease appearance. This in vitro disease model may thus represent a valuable tool to test early mechanisms contributing to motoneuron degeneration and potential therapeutic molecular interventions.
Collapse
Affiliation(s)
- D Avossa
- Neurobiology Sector and Istituto Nazionale di Fisica della Materia Unit, International School for Advanced Studies, via Beirut 2-4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
26
|
Pieri M, Severini C, Amadoro G, Carunchio I, Barbato C, Ciotti MT, Zona C. AMPA receptors are modulated by tachykinins in rat cerebellum neurons. J Neurophysiol 2005; 94:2484-90. [PMID: 16160091 DOI: 10.1152/jn.00436.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The peptides of the tachykinin family are widely distributed within the mammalian peripheral and central nervous systems and play a well-recognized role as neuromodulators, although their direct action on cerebellum granule cells have not yet been demonstrated. We have examined the effect of the best known members of the family, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors from rat cerebellar granule cells in culture to assess the ability of these peptides to regulate the glutamatergic input. Both NKA and NKB, but not SP, produce a significant enhancement of ionic current through AMPA receptors activated by the agonist kainate in 53.5 and 46% of patched neurons, respectively. This effect was not observable in the presence of MEN 10,627 and Trp(7)betaAla(8), NKA and NKB competitive antagonist receptors, respectively, indicating that the current modulations were mediated by the respective receptors. NKB also produces a significant enhancement of ionic current through the AMPA receptors activated directly by its agonist AMPA and cyclothiazide, an allosteric modulator that selectively suppresses desensitization of AMPA receptors. The presence of NK3 receptors was demonstrated in these neurons by RT-PCR amplification of total RNA extracted from cerebellar granule cells, using NK3-specific primer pairs. Immunocytochemistry experiments, using a specific polyclonal antibody directed against NK3, also confirmed the presence of NK3 receptors and their co-localization with the GLUR2 AMPA subunit in about 54% of cerebellar granule neurons. This study adds the tachykinins to the list of neuromodulators capable of exerting a excitatory action on cerebellar granule cells.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Animals, Newborn
- Blotting, Northern/methods
- Cells, Cultured
- Cerebellum/cytology
- Drug Interactions
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Fluorescent Antibody Technique/methods
- Gene Expression Regulation/drug effects
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons/drug effects
- Neurons/metabolism
- Patch-Clamp Techniques/methods
- Peptides, Cyclic/pharmacology
- Protein Subunits/physiology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred WF
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Neurokinin-3/genetics
- Receptors, Neurokinin-3/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Tachykinins/agonists
- Tachykinins/antagonists & inhibitors
- Tachykinins/pharmacology
Collapse
Affiliation(s)
- Massimo Pieri
- Department of Neuroscience, University of Rome Tor Vergata, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Kuner R, Groom AJ, Bresink I, Kornau HC, Stefovska V, Müller G, Hartmann B, Tschauner K, Waibel S, Ludolph AC, Ikonomidou C, Seeburg PH, Turski L. Late-onset motoneuron disease caused by a functionally modified AMPA receptor subunit. Proc Natl Acad Sci U S A 2005; 102:5826-31. [PMID: 15827116 PMCID: PMC556301 DOI: 10.1073/pnas.0501316102] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disorder of the central nervous system in middle and old age that leads to progressive loss of spinal motoneurons. Transgenic mice overexpressing mutated human Cu(2+)/Zn(2+) superoxide dismutase 1 (SOD1) reproduce clinical features of the familial form of ALS. However, changes in SOD1 activity do not correlate with severity of motor decline in sporadic cases, indicating that targets unrelated to superoxide metabolism contribute to the pathogenesis of the disease. We show here that transgenic expression in mice of GluR-B(N)-containing L-alpha-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) receptors with increased Ca(2+) permeability leads to late-onset degeneration of neurons in the spinal cord and decline of motor functions. Neuronal death progresses over the entire lifespan but manifests clinically in late adulthood, resembling the course of a slow neurodegenerative disorder. Additional transgenic expression of mutated human SOD1 accelerates disease progression, aggravates the severity of motor decline, and decreases survival. These observations link persistently elevated Ca(2+) influx through AMPA channels with progressive motor decline and late-onset degeneration of spinal motoneurons, indicating that functionally altered AMPA channels may be causally related to pathogenesis of sporadic ALS in humans.
Collapse
Affiliation(s)
- Rohini Kuner
- Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Spalloni A, Pascucci T, Albo F, Ferrari F, Puglisi-Allegra S, Zona C, Bernardi G, Longone P. Altered vulnerability to kainate excitotoxicity of transgenic-Cu/Zn SOD1 neurones. Neuroreport 2004; 15:2477-80. [PMID: 15538178 DOI: 10.1097/00001756-200411150-00009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurotoxicity of the AMPA/kainate receptor agonist kainate was investigated in motor and cortical neurones from mice over-expressing the wild-type and G93A mutant form of Cu/Zn superoxide dismutase (SOD1) human gene, a mouse model of familial amyotrophic lateral sclerosis. G93A mutant motor neurones were more vulnerable and wild-type SOD1 motor neurones were more resistant to kainate toxicity than were controls. Voltage-gated Na channels blockage prevented G93A mutant SOD1 motor neurone death. Cortical cultures exhibited fewer differences in their vulnerability to kainate toxicity. These results demonstrate that SOD1 over-expression selectively affects the sensitivity to kainate excitotoxicity of motor neurones but not neocortical neurones, and that wild-type SOD1 expression increases the resistance to excitotoxicity of motor neurones.
Collapse
Affiliation(s)
- Alida Spalloni
- IRCCS Fondazione Santa Lucia Via Ardeatina 306 00179 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhao W, Xie W, Le W, Beers DR, He Y, Henkel JS, Simpson EP, Yen AA, Xiao Q, Appel SH. Activated Microglia Initiate Motor Neuron Injury by a Nitric Oxide and Glutamate-Mediated Mechanism. J Neuropathol Exp Neurol 2004; 63:964-77. [PMID: 15453095 DOI: 10.1093/jnen/63.9.964] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent studies suggest that motor neuron (MN) death may be non-cell autonomous, with cell injury mediated by interactions involving non-neuronal cells, such as microglia and astrocytes. To help define these interactions, we used primary MN cultures to investigate the effects of microglia activated by lipopolysaccharide or IgG immune complexes from patients with amyotrophic lateral sclerosis. Following activation, microglia induced MN injury, which was prevented by a microglial iNOS inhibitor as well as by catalase or glutathione. Glutamate was also required since inhibition of the MN AMPA/kainate receptor by CNQX prevented the toxic effects of activated microglia. Peroxynitrite and glutamate were synergistic in producing MN injury. Their toxic effects were also blocked by CNQX and prevented by calcium removal from the media. The addition of astrocytes to cocultures of MN and activated microglia prevented MN injury by removing glutamate from the media. The protective effects could be reversed by inhibiting astrocytic glutamate transport with dihydrokainic acid or pretreating astrocytes with H2O2. Astrocytic glutamate uptake was also decreased by activated microglia or by added peroxynitrite. These data suggest that free radicals released from activated microglia may initiate MN injury by increasing the susceptibility of the MN AMPA/kainate receptor to the toxic effects of glutamate.
Collapse
Affiliation(s)
- Weihua Zhao
- Department of Neurology, Baylor College of Medicine, One Baylor Plaza, NB 302, Houston, TX, 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Albo F, Pieri M, Zona C. Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J Neurosci Res 2004; 78:200-7. [PMID: 15378511 DOI: 10.1002/jnr.20244] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We investigated the interaction of riluzole, a therapeutic agent used in amyotrophic lateral sclerosis (ALS), with alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor channels in mouse spinal motor neurons in culture using whole-cell patch-clamp recording techniques. Kainate elicited concentration-dependent (EC(50) = 35 microM) inward currents in all the patched cells. These responses were mediated primarily through the activation of AMPA receptors with a negligible contribution from kainate receptors, because bath application of 100 microM GYKI53655, a potent noncompetitive AMPA receptor antagonist, completely blocked the kainate-induced currents. Riluzole (0.5-100 microM) reduced in a dose-dependent manner the kainate-induced currents with an IC(50) of 1.54 microM in all tested neurons (n = 25) and this effect was found to be reversible. The response to kainate decreased in the presence of 1 microM riluzole in all spinal motor neurons tested, without changing its EC(50), indicating a noncompetitive mechanism of inhibition. The amplitude of the responses induced by kainate under control condition and during riluzole was a linear function of the membrane potential. The reversal potential of the current was not significantly different in the two experimental conditions, whereas the total conductance of the motor neurons for the currents induced by 100 microM kainate was reduced significantly in the presence of 1 microM riluzole (P < 0.05). These results reveal an interaction of riluzole with glutamatergic neurotransmission in spinal cord motor neurons and can contribute to explain its beneficial effect in the ALS treatment.
Collapse
|