1
|
Bonfanti L, La Rosa C, Ghibaudi M, Sherwood CC. Adult neurogenesis and "immature" neurons in mammals: an evolutionary trade-off in plasticity? Brain Struct Funct 2024; 229:1775-1793. [PMID: 37833544 PMCID: PMC11485216 DOI: 10.1007/s00429-023-02717-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Neuronal plasticity can vary remarkably in its form and degree across animal species. Adult neurogenesis, namely the capacity to produce new neurons from neural stem cells through adulthood, appears widespread in non-mammalian vertebrates, whereas it is reduced in mammals. A growing body of comparative studies also report variation in the occurrence and activity of neural stem cell niches between mammals, with a general trend of reduction from small-brained to large-brained species. Conversely, recent studies have shown that large-brained mammals host large amounts of neurons expressing typical markers of neurogenesis in the absence of cell division. In layer II of the cerebral cortex, populations of prenatally generated, non-dividing neurons continue to express molecules indicative of immaturity throughout life (cortical immature neurons; cINs). After remaining in a dormant state for a very long time, these cINs retain the potential of differentiating into mature neurons that integrate within the preexisting neural circuits. They are restricted to the paleocortex in small-brained rodents, while extending into the widely expanded neocortex of highly gyrencephalic, large-brained species. The current hypothesis is that these populations of non-newly generated "immature" neurons might represent a reservoir of developmentally plastic cells for mammalian species that are characterized by reduced stem cell-driven adult neurogenesis. This indicates that there may be a trade-off between various forms of plasticity that coexist during brain evolution. This balance may be necessary to maintain a "reservoir of plasticity" in brain regions that have distinct roles in species-specific socioecological adaptations, such as the neocortex and olfactory structures.
Collapse
Affiliation(s)
- Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy.
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy.
| | - Chiara La Rosa
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
| | - Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095, Turin, Grugliasco, Italy
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Sorrells SF. Which neurodevelopmental processes continue in humans after birth? Front Neurosci 2024; 18:1434508. [PMID: 39308952 PMCID: PMC11412957 DOI: 10.3389/fnins.2024.1434508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024] Open
Abstract
Once we are born, the number and location of nerve cells in most parts of the brain remain unchanged. These types of structural changes are therefore a significant form of flexibility for the neural circuits where they occur. In humans, the postnatal birth of neurons is limited; however, neurons do continue to migrate into some brain regions throughout infancy and even into adolescence. In human infants, multiple migratory pathways deliver interneurons to destinations across the frontal and temporal lobe cortex. Shorter-range migration of excitatory neurons also appears to continue during adolescence, particularly near the amygdala paralaminar nucleus, a region that follows a delayed trajectory of growth from infancy to adulthood. The significance of the timing for when different brain regions recruit new neurons through these methods is unknown; however, both processes of protracted migration and maturation are prominent in humans. Mechanisms like these that reconfigure neuronal circuits are a substrate for critical periods of plasticity and could contribute to distinctive circuit functionality in human brains.
Collapse
|
3
|
Saxon D, Alderman PJ, Sorrells SF, Vicini S, Corbin JG. Neuronal Subtypes and Connectivity of the Adult Mouse Paralaminar Amygdala. eNeuro 2024; 11:ENEURO.0119-24.2024. [PMID: 38811163 PMCID: PMC11208988 DOI: 10.1523/eneuro.0119-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024] Open
Abstract
The paralaminar nucleus of the amygdala (PL) comprises neurons that exhibit delayed maturation. PL neurons are born during gestation but mature during adolescent ages, differentiating into excitatory neurons. These late-maturing PL neurons contribute to the increase in size and cell number of the amygdala between birth and adulthood. However, the function of the PL upon maturation is unknown, as the region has only recently begun to be characterized in detail. In this study, we investigated key defining features of the adult mouse PL; the intrinsic morpho-electric properties of its neurons, and its input and output circuit connectivity. We identify two subtypes of excitatory neurons in the PL based on unsupervised clustering of electrophysiological properties. These subtypes are defined by differential action potential firing properties and dendritic architecture, suggesting divergent functional roles. We further uncover major axonal inputs to the adult PL from the main olfactory network and basolateral amygdala. We also find that axonal outputs from the PL project reciprocally to these inputs and to diverse targets including the amygdala, frontal cortex, hippocampus, hypothalamus, and brainstem. Thus, the adult mouse PL is centrally placed to play a major role in the integration of olfactory sensory information, to coordinate affective and autonomic behavioral responses to salient odor stimuli.
Collapse
Affiliation(s)
- David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
| | - Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC 20007
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011
| |
Collapse
|
4
|
Alderman PJ, Saxon D, Torrijos-Saiz LI, Sharief M, Page CE, Baroudi JK, Biagiotti SW, Butyrkin VA, Melamed A, Kuo CT, Vicini S, García-Verdugo JM, Herranz-Pérez V, Corbin JG, Sorrells SF. Delayed maturation and migration of excitatory neurons in the juvenile mouse paralaminar amygdala. Neuron 2024; 112:574-592.e10. [PMID: 38086370 PMCID: PMC10922384 DOI: 10.1016/j.neuron.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
The human amygdala paralaminar nucleus (PL) contains many immature excitatory neurons that undergo prolonged maturation from birth to adulthood. We describe a previously unidentified homologous PL region in mice that contains immature excitatory neurons and has previously been considered part of the amygdala intercalated cell clusters or ventral endopiriform cortex. Mouse PL neurons are born embryonically, not from postnatal neurogenesis, despite a subset retaining immature molecular and morphological features in adults. During juvenile-adolescent ages (P21-P35), the majority of PL neurons undergo molecular, structural, and physiological maturation, and a subset of excitatory PL neurons migrate into the adjacent endopiriform cortex. Alongside these changes, PL neurons develop responses to aversive and appetitive olfactory stimuli. The presence of this homologous region in both humans and mice points to the significance of this conserved mechanism of neuronal maturation and migration during adolescence, a key time period for amygdala circuit maturation and related behavioral changes.
Collapse
Affiliation(s)
- Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lucía I Torrijos-Saiz
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain
| | - Malaz Sharief
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jude K Baroudi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sean W Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vladimir A Butyrkin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Anna Melamed
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jose M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
5
|
Villard J, Chareyron LJ, Piguet O, Lambercy P, Lonchampt G, Lavenex PB, Amaral DG, Lavenex P. Structural plasticity in the entorhinal and perirhinal cortices following hippocampal lesions in rhesus monkeys. Hippocampus 2023; 33:1094-1112. [PMID: 37337377 PMCID: PMC10543642 DOI: 10.1002/hipo.23567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/19/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Immature neurons expressing the Bcl2 protein are present in various regions of the mammalian brain, including the amygdala and the entorhinal and perirhinal cortices. Their functional role is unknown but we have previously shown that neonatal and adult hippocampal lesions increase their differentiation in the monkey amygdala. Here, we assessed whether hippocampal lesions similarly affect immature neurons in the entorhinal and perirhinal cortices. Since Bcl2-positive cells were found mainly in areas Eo, Er, and Elr of the entorhinal cortex and in layer II of the perirhinal cortex, we also used Nissl-stained sections to determine the number and soma size of immature and mature neurons in layer III of area Er and layer II of area 36 of the perirhinal cortex. We found different structural changes in these regions following hippocampal lesions, which were influenced by the time of the lesion. In neonate-lesioned monkeys, the number of immature neurons in the entorhinal and perirhinal cortices was generally higher than in controls. The number of mature neurons was also higher in layer III of area Er of neonate-lesioned monkeys but no differences were found in layer II of area 36. In adult-lesioned monkeys, the number of immature neurons in the entorhinal cortex was lower than in controls but did not differ from controls in the perirhinal cortex. The number of mature neurons in layer III of area Er did not differ from controls, but the number of small, mature neurons in layer II of area 36 was lower than in controls. In sum, hippocampal lesions impacted populations of mature and immature neurons in discrete regions and layers of the entorhinal and perirhinal cortices, which are interconnected with the amygdala and provide major cortical inputs to the hippocampus. These structural changes may contribute to some functional recovery following hippocampal injury in an age-dependent manner.
Collapse
Affiliation(s)
- Justine Villard
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Loïc J. Chareyron
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Olivia Piguet
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pauline Lambercy
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Gianni Lonchampt
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
- Faculty of Psychology, UniDistance Suisse, Switzerland
| | - David G. Amaral
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California at Davis
- California National Primate Research Center, University of California at Davis
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Switzerland
| |
Collapse
|
6
|
McHale-Matthews AC, DeCampo DM, Love T, Cameron JL, Fudge JL. Immature neurons in the primate amygdala: Changes with early development and disrupted early environment. Dev Cogn Neurosci 2023; 61:101248. [PMID: 37120994 PMCID: PMC10173404 DOI: 10.1016/j.dcn.2023.101248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/11/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023] Open
Abstract
In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL's potential for cellular growth during development, we compared PL neurons in (1) infant and adolescent macaques (control, maternally-reared), and in (2) infant macaques that experienced separation from their mother in the first month of life compared to control maternally-reared infants. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL. There were also fewer total neurons (immature plus mature) in adolescent versus infant PL, suggesting that some neurons move out of the PL by adolescence. Maternal separation did not change mean immature or mature neuron counts in infant PL. However, across all infant animals, immature neuron soma volume was strongly correlated with mature neuron counts. TBR1 mRNA, a transcript required for glutamatergic neuron maturation, is significantly reduced in the maternally-separated infant PL (DeCampo et al., 2017), and was also positively correlated with mature neuron counts in infant PL. We conclude that immature neurons gradually mature by adolescence, and that the stress of maternal separation may shift this trajectory, as revealed by correlations between TBR1 mRNA and mature neuron numbers across animals.
Collapse
Affiliation(s)
- Alexandra C McHale-Matthews
- University of Rochester, School of Medicine and Dentistry, Department of Neuroscience, Rochester, NY 14642, USA
| | | | - Tanzy Love
- University of Rochester, School of Medicine and Dentistry, Department of Biostatistics, Rochester, NY 14642, USA
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Julie L Fudge
- University of Rochester, School of Medicine and Dentistry, Department of Neuroscience, Rochester, NY 14642, USA; University of Rochester, School of Medicine and Dentistry, Department of Psychiatry, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Li YN, Hu DD, Cai XL, Wang Y, Yang C, Jiang J, Zhang QL, Tu T, Wang XS, Wang H, Tu E, Wang XP, Pan A, Yan XX, Wan L. Doublecortin-Expressing Neurons in Human Cerebral Cortex Layer II and Amygdala from Infancy to 100 Years Old. Mol Neurobiol 2023; 60:3464-3485. [PMID: 36879137 DOI: 10.1007/s12035-023-03261-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/04/2023] [Indexed: 03/08/2023]
Abstract
A cohort of morphologically heterogenous doublecortin immunoreactive (DCX +) "immature neurons" has been identified in the cerebral cortex largely around layer II and the amygdala largely in the paralaminar nucleus (PLN) among various mammals. To gain a wide spatiotemporal view on these neurons in humans, we examined layer II and amygdalar DCX + neurons in the brains of infants to 100-year-old individuals. Layer II DCX + neurons occurred throughout the cerebrum in the infants/toddlers, mainly in the temporal lobe in the adolescents and adults, and only in the temporal cortex surrounding the amygdala in the elderly. Amygdalar DCX + neurons occurred in all age groups, localized primarily to the PLN, and reduced in number with age. The small-sized DCX + neurons were unipolar or bipolar, and formed migratory chains extending tangentially, obliquely, and inwardly in layers I-III in the cortex, and from the PLN to other nuclei in the amygdala. Morphologically mature-looking neurons had a relatively larger soma and weaker DCX reactivity. In contrast to the above, DCX + neurons in the hippocampal dentate gyrus were only detected in the infant cases in parallelly processed cerebral sections. The present study reveals a broader regional distribution of the cortical layer II DCX + neurons than previously documented in human cerebrum, especially during childhood and adolescence, while both layer II and amygdalar DCX + neurons persist in the temporal lobe lifelong. Layer II and amygdalar DCX + neurons may serve as an essential immature neuronal system to support functional network plasticity in human cerebrum in an age/region-dependent manner.
Collapse
Affiliation(s)
- Ya-Nan Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Dan-Dan Hu
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Tian Tu
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China.,Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, 410007, Hunan, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410031, Hunan, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China.
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, 410013, Hunan, China.
| |
Collapse
|
8
|
McHale-Matthews AC, DeCampo DM, Love T, Cameron JL, Fudge JL. Immature neurons in the primate amygdala: changes with early development and disrupted early environment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528076. [PMID: 36798176 PMCID: PMC9934690 DOI: 10.1101/2023.02.10.528076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
In human and nonhuman primates, the amygdala paralaminar nucleus (PL) contains immature neurons. To explore the PL’s potential for cellular growth during development, we compared PL cells in 1) infant and adolescent macaques (control, maternally-reared), and in 2) infant macaques that experienced separation from their mother in the first month of life. In maternally-reared animals, the adolescent PL had fewer immature neurons, more mature neurons, and larger immature soma volumes compared to infant PL. There were also fewer total neurons (immature plus mature) in adolescent versus infant PL, suggesting that some neurons move out of the PL by adolescence. Maternal separation did not change mean immature or mature neuron counts in infant PL. However, across all infant animals, immature neuron soma volume was strongly correlated with mature neuron counts. tbr-1 mRNA, a transcript required for glutamatergic neuron maturation, is significantly reduced in the maternally-separated infant PL (DeCampo et al, 2017), and was also positively correlated with mature neuron counts in infant PL. We conclude that immature neurons gradually mature by adolescence, and that the stress of maternal separation may shift this trajectory, as revealed by correlations between tbr1mRNA and mature neuron numbers across animals.
Collapse
Affiliation(s)
| | | | - Tanzy Love
- University of Rochester, School of Medicine and Dentistry, Department of Biostatistics, Rochester, NY 14642
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213
| | - Julie L Fudge
- University of Rochester, School of Medicine and Dentistry Department of Neuroscience Rochester, NY 14642
- University of Rochester, School of Medicine and Dentistry, Department of Psychiatry Rochester, NY 14642
| |
Collapse
|
9
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
10
|
Amaral DG, Nordahl CW. Amygdala Involvement in Autism: Early Postnatal Changes, But What Are the Behavioral Consequences? Am J Psychiatry 2022; 179:522-524. [PMID: 35921392 DOI: 10.1176/appi.ajp.20220509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David G Amaral
- Department of Psychiatry and Behavioral Sciences, the MIND Institute, University of California, Davis, Sacramento
| | - Christine Wu Nordahl
- Department of Psychiatry and Behavioral Sciences, the MIND Institute, University of California, Davis, Sacramento
| |
Collapse
|
11
|
Ai JQ, Luo R, Tu T, Yang C, Jiang J, Zhang B, Bi R, Tu E, Yao YG, Yan XX. Doublecortin-Expressing Neurons in Chinese Tree Shrew Forebrain Exhibit Mixed Rodent and Primate-Like Topographic Characteristics. Front Neuroanat 2021; 15:727883. [PMID: 34602987 PMCID: PMC8481370 DOI: 10.3389/fnana.2021.727883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Doublecortin (DCX) is transiently expressed in new-born neurons in the subventricular zone (SVZ) and subgranular zone (SGZ) related to adult neurogenesis in the olfactory bulb (OB) and hippocampal formation. DCX immunoreactive (DCX+) immature neurons also occur in the cerebral cortex primarily over layer II and the amygdala around the paralaminar nucleus (PLN) in various mammals, with interspecies differences pointing to phylogenic variation. The tree shrews (Tupaia belangeri) are phylogenetically closer to primates than to rodents. Little is known about DCX+ neurons in the brain of this species. In the present study, we characterized DCX immunoreactivity (IR) in the forebrain of Chinese tree shrews aged from 2 months- to 6 years-old (n = 18). DCX+ cells were present in the OB, SVZ, SGZ, the piriform cortex over layer II, and the amygdala around the PLN. The numerical densities of DCX+ neurons were reduced in all above neuroanatomical regions with age, particularly dramatic in the DG in the 5–6 years-old animals. Thus, DCX+ neurons are present in the two established neurogenic sites (SVZ and SGZ) in the Chinese tree shrew as seen in other mammals. DCX+ cortical neurons in this animal exhibit a topographic pattern comparable to that in mice and rats, while these immature neurons are also present in the amygdala, concentrating around the PLN as seen in primates and some nonprimate mammals.
Collapse
Affiliation(s)
- Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Rongcan Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Bo Zhang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.,CSA Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
12
|
Life and Death of Immature Neurons in the Juvenile and Adult Primate Amygdala. Int J Mol Sci 2021; 22:ijms22136691. [PMID: 34206571 PMCID: PMC8268704 DOI: 10.3390/ijms22136691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, a large population of immature neurons has been documented in the paralaminar nucleus of the primate amygdala. A substantial fraction of these immature neurons differentiate into mature neurons during postnatal development or following selective lesion of the hippocampus. Notwithstanding a growing number of studies on the origin and fate of these immature neurons, fundamental questions about the life and death of these neurons remain. Here, we briefly summarize what is currently known about the immature neurons present in the primate ventral amygdala during development and in adulthood, as well as following selective hippocampal lesions. We provide evidence confirming that the distribution of immature neurons extends to the anterior portions of the entorhinal cortex and layer II of the perirhinal cortex. We also provide novel arguments derived from stereological estimates of the number of mature and immature neurons, which support the view that the migration of immature neurons from the lateral ventricle accompanies neuronal maturation in the primate amygdala at all ages. Finally, we propose and discuss the hypothesis that increased migration and maturation of neurons in the amygdala following hippocampal dysfunction may be linked to behavioral alterations associated with certain neurodevelopmental disorders.
Collapse
|
13
|
Sorrells SF, Paredes MF, Velmeshev D, Herranz-Pérez V, Sandoval K, Mayer S, Chang EF, Insausti R, Kriegstein AR, Rubenstein JL, Manuel Garcia-Verdugo J, Huang EJ, Alvarez-Buylla A. Immature excitatory neurons develop during adolescence in the human amygdala. Nat Commun 2019; 10:2748. [PMID: 31227709 PMCID: PMC6588589 DOI: 10.1038/s41467-019-10765-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Dmitry Velmeshev
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Universitat Jaume I, 12071, Castelló de la Plana, Spain
| | - Kadellyn Sandoval
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Simone Mayer
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine and CRIB, University of Castilla-La Mancha, 02006, Albacete, Spain
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - John L Rubenstein
- Department of Psychiatry, Rock Hall, University of California, San Francisco, San Francisco, CA, 94158-2324, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, 46980, Valencia, Spain
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
14
|
Schumann CM, Scott JA, Lee A, Bauman MD, Amaral DG. Amygdala growth from youth to adulthood in the macaque monkey. J Comp Neurol 2019; 527:3034-3045. [PMID: 31173365 DOI: 10.1002/cne.24728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/11/2022]
Abstract
Emerging evidence suggests that the human amygdala undergoes extensive growth through adolescence, coinciding with the acquisition of complex socioemotional learning. Our objective was to longitudinally map volumetric growth of the nonhuman primate amygdala in a controlled, naturalistic social environment from birth to adulthood. Magnetic resonance images were collected at five time-points in 24 male and female rhesus macaques from 6 months to adulthood at 5 years. We then compared amygdala growth to other brain regions, including newly collected isocortical gray and white matter volumes, and previously published data on the same cohort. We found that amygdala volume increases by nearly 50% from age 6 months to 5 years. This dramatic growth is in contrast to overall brain and hippocampal volume, which peak near 3 years, white matter, which slows from 3 to 5 years, and isocortical gray, which has a net decrease. Similar to isocortical gray and hippocampal volumes, amygdala volume is ~8% larger in males than females. Rate of growth does not differ by sex. Although the underlying neurobiological substrate for protracted amygdala growth into adulthood is unclear, we propose it may be due in part to the unique cellular development of immature neurons in paralaminar nucleus that mature in size and connectivity with age. Prolonged amygdala maturation raises the possibility that environmental and genetic perturbations that disrupt this trajectory may contribute to the emergence of psychiatric disorders, such as anxiety, depression, schizophrenia, and autism; all in which the amygdala is strongly implicated.
Collapse
Affiliation(s)
- Cynthia M Schumann
- Department of Psychiatry and Behavioral Sciences; and the MIND Institute, University of California, Davis School of Medicine, Sacramento, California
| | - Julia A Scott
- Department of Bioengineering, Santa Clara University, Santa Clara, California
| | - Aaron Lee
- Center for Virtual Care, University of California, Davis School of Medicine, Sacramento, California
| | - Melissa D Bauman
- Department of Psychiatry and Behavioral Sciences; and the MIND Institute, University of California, Davis School of Medicine, Sacramento, California.,California National Primate Research Center, University of California, Davis, California
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences; and the MIND Institute, University of California, Davis School of Medicine, Sacramento, California.,California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
15
|
Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism. Proc Natl Acad Sci U S A 2018; 115:3710-3715. [PMID: 29559529 PMCID: PMC5889677 DOI: 10.1073/pnas.1801912115] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Remarkably little is known about the postnatal cellular development of the human amygdala. It plays a central role in mediating emotional behavior and has an unusually protracted development well into adulthood, increasing in size by 40% from youth to adulthood. Variation from this typical neurodevelopmental trajectory could have profound implications on normal emotional development. We report the results of a stereological analysis of the number of neurons in amygdala nuclei of 52 human brains ranging from 2 to 48 years of age [24 neurotypical and 28 autism spectrum disorder (ASD)]. In neurotypical development, the number of mature neurons in the basal and accessory basal nuclei increases from childhood to adulthood, coinciding with a decrease of immature neurons within the paralaminar nucleus. Individuals with ASD, in contrast, show an initial excess of amygdala neurons during childhood, followed by a reduction in adulthood across nuclei. We propose that there is a long-term contribution of mature neurons from the paralaminar nucleus to other nuclei of the neurotypical human amygdala and that this growth trajectory may be altered in ASD, potentially underlying the volumetric changes detected in ASD and other neurodevelopmental or neuropsychiatric disorders.
Collapse
|
16
|
Chareyron LJ, Amaral DG, Lavenex P. Selective lesion of the hippocampus increases the differentiation of immature neurons in the monkey amygdala. Proc Natl Acad Sci U S A 2016; 113:14420-14425. [PMID: 27911768 PMCID: PMC5167145 DOI: 10.1073/pnas.1604288113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A large population of immature neurons is present in the ventromedial portion of the adult primate amygdala, a region that receives substantial direct projections from the hippocampal formation. Here, we show the effects of neonatal (n = 8) and adult (n = 6) hippocampal lesions on the populations of mature and immature neurons in the paralaminar, lateral, and basal nuclei of the adult monkey amygdala. Compared with unoperated controls (n = 7), the number of mature neurons was about 70% higher in the paralaminar nucleus of neonate- and adult-lesioned monkeys, and 40% higher in the lateral and basal nuclei of neonate-lesioned monkeys. The number of immature neurons in the paralaminar nucleus was 40% higher in neonate-lesioned monkeys and 30% lower in adult-lesioned monkeys. Similar changes in neuron numbers were also found in two monkeys with nonexperimental, selective, bilateral hippocampal damage. These changes in neuron numbers following hippocampal lesions appear to reflect the differentiation of immature neurons present in the paralaminar nucleus. After adult lesions, the differentiation of immature neurons was essentially restricted to the paralaminar nucleus and was associated with a decrease in the population of immature neurons. In contrast, after neonatal lesions, the differentiation of immature neurons involved the paralaminar, lateral, and basal nuclei. It was associated with an increase in the population of immature neurons in the paralaminar nucleus. Such lesion-induced neuronal plasticity sheds new light on potential mechanisms that may facilitate functional recovery following focal brain injury.
Collapse
Affiliation(s)
- Loïc J Chareyron
- Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California, Davis, CA 95616
- California National Primate Research Center, University of California, Davis, CA 95616
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, 1700 Fribourg, Switzerland;
- Laboratory for Experimental Research on Behavior, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
de Campo DM, Cameron JL, Miano JM, Lewis DA, Mirnics K, Fudge JL. Maternal deprivation alters expression of neural maturation gene tbr1 in the amygdala paralaminar nucleus in infant female macaques. Dev Psychobiol 2016; 59:235-249. [PMID: 27917473 DOI: 10.1002/dev.21493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2016] [Indexed: 12/12/2022]
Abstract
Early parental loss is associated with social-emotional dysregulation and amygdala physiologic changes. Previously, we examined whole amygdala gene expression in infant monkeys exposed to early maternal deprivation. Here, we focus on an amygdala region with immature neurons at birth: the paralaminar nucleus (PL). We hypothesized that 1) the normal infant PL is enriched in a subset of neural maturation (NM) genes compared to a nearby amygdala subregion; and 2) maternal deprivation would downregulate expression of NM transcripts (mRNA). mRNAs for bcl2, doublecortin, neuroD1, and tbr1-genes expressed in post-mitotic neurons-were enriched in the normal PL. Maternal deprivation at either 1 week or 1 month of age resulted in PL-specific downregulation of tbr1-a transcription factor necessary for directing neuroblasts to a glutamatergic phenotype. tbr1 expression also correlated with typical social behaviors. We conclude that maternal deprivation influences glutamatergic neuronal development in the PL, possibly influencing circuits mediating social learning.
Collapse
Affiliation(s)
- Danielle M de Campo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York.,Department of Medicine, University of Rochester Medical Center, Rochester, New York.,Department of Psychiatry, University of Rochester Medical Center, Rochester, New York
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph M Miano
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karoly Mirnics
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York.,Department of Medicine, University of Rochester Medical Center, Rochester, New York.,Department of Psychiatry, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
18
|
Proliferating cells in the adolescent rat amygdala: Characterization and response to stress. Neuroscience 2015; 311:105-17. [PMID: 26476262 DOI: 10.1016/j.neuroscience.2015.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/24/2015] [Accepted: 10/02/2015] [Indexed: 12/27/2022]
Abstract
The amygdala is a heterogeneous group of nuclei that plays a role in emotional and social learning. As such, there has been increased interest in its development in adolescent animals, a period in which emotional/social learning increases dramatically. While many mechanisms of amygdala development have been studied, the role of cell proliferation during adolescence has received less attention. Using bromodeoxyuridine (BrdU) injections in adolescent and adult rats, we previously found an almost fivefold increase in BrdU-positive cells in the amygdala of adolescents compared to adults. Approximately one third of BrdU-labeled cells in the amygdala contained the putative neural marker doublecortin (DCX), suggesting a potential for neurogenesis. To further investigate this possibility in adolescents, we examined the proliferative dynamics of DCX/BrdU-labeled cells. Surprisingly, DCX/BrdU-positive cells were found to comprise a stable subpopulation of BrdU-containing cells across survivals up to 56 days, and there was no evidence of neural maturation by 28 days after BrdU injection. Additionally, we found that approximately 50% of BrdU+ cells within the adolescent amygdala contain neural-glial antigen (NG2) and are therefore presumptive oligodendrocyte precursors (OPCs). We next characterized the response to a short-lived stressor (3-day repeated variable stress, RVS). The total BrdU-labeled cell number decreased by ∼30% by 13 days following RVS (10 days post-BrdU injection) as assessed by stereologic counting methods, but the DCX/BrdU-labeled subpopulation was relatively resistant to RVS effects. In contrast, NG2/BrdU-labeled cells were strongly influenced by RVS. We conclude that typical neurogenesis is not a feature of the adolescent amygdala. These findings point to several possibilities, including the possibility that DCX/BrdU cells are late-developing neural precursors, or a unique subtype of NG2 cell that is relatively resistant to stress. In contrast, many proliferating OPCs are significantly impacted by a short-lived stressor, suggesting consequences for myelination in the developing amygdala.
Collapse
|
19
|
Saul ML, Helmreich DL, Callahan LM, Fudge JL. Differences in amygdala cell proliferation between adolescent and young adult rats. Dev Psychobiol 2013; 56:517-28. [PMID: 23775606 DOI: 10.1002/dev.21115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 03/12/2013] [Indexed: 01/10/2023]
Abstract
Adolescence is characterized by changes in both behavior and neural organization. During this period, the amygdala, a structure that mediates social and emotional behaviors, is changing in terms of neural and glia density. We examined cell proliferation within the amygdala of adolescent (post natal day (PND) 31) and adult (PND 70) male Sprague-Dawley rats using BrdU (bromodeoxyuridine) to label dividing cells. BrdU-labeled cells were distributed throughout the amygdala, often found in fibers surrounding major nuclei. Using two independent cell counting strategies under light and confocal microcopy, respectively, we found significantly more labeled cells in the amygdala in adolescent compared to adult animals (239.3 ± 87.18 vs. 44.75 ± 13.68; n=4/group; p<.05). BrdU/doublecortin (DCX) positive cells constitute approximately 30% of all dividing cells in the amygdala in both adolescents and adults. These data suggest that compared to young adulthood, adolescence is a relatively active period of cell proliferation in the amygdala. Moreover, the normal decline in dividing cells with age does not preferentially affect cells co-containing DCX-immunoreactivity.
Collapse
Affiliation(s)
- Michele L Saul
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642
| | | | | | | |
Collapse
|
20
|
Zhang W, Rosenkranz JA. Repeated restraint stress increases basolateral amygdala neuronal activity in an age-dependent manner. Neuroscience 2012; 226:459-74. [PMID: 22986163 PMCID: PMC3506707 DOI: 10.1016/j.neuroscience.2012.08.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 12/20/2022]
Abstract
Chronic stress is a precipitating factor for affective disorders such as depression and anxiety. This is associated with the effects of chronic stress on the amygdala. Adolescents may be more vulnerable to the effects of chronic stress, which may be related to its impact on amygdala function. However, the stress-induced changes in amygdala neuronal activity, and the age-dependent impact of chronic stress on amygdala neuronal activity have not been studied in depth. In this study, we investigated how repeated restraint impacts basolateral amygdala (BLA) projection neuron activity in both adolescent and adult rats. Using in vivo extracellular recordings from anesthetized rats, we found that repeated restraint increased the number of spontaneously firing neurons in the BLA of adolescent rats, but did not significantly increase the firing rate. In contrast, repeated restraint increased the firing rate of BLA neurons in adult rats, but did not change the number of spontaneously firing neurons. This is the first direct evidence of how stress differently impacts amygdala physiology in adolescent and adult rats. These findings may shed light on the mechanism by which chronic stress may age-dependently precipitate psychiatric disorders.
Collapse
Affiliation(s)
- W Zhang
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | | |
Collapse
|
21
|
Chareyron LJ, Lavenex PB, Amaral DG, Lavenex P. Postnatal development of the amygdala: A stereological study in macaque monkeys. J Comp Neurol 2012; 520:1965-84. [PMID: 22173686 PMCID: PMC4043192 DOI: 10.1002/cne.23023] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abnormal development of the amygdala has been linked to several neurodevelopmental disorders, including schizophrenia and autism. However, the postnatal development of the amygdala is not easily explored at the cellular level in humans. Here we performed a stereological analysis of the macaque monkey amygdala in order to characterize the cellular changes underlying its normal structural development in primates. The lateral, basal, and accessory basal nuclei exhibited the same developmental pattern, with a large increase in volume between birth and 3 months of age, followed by slower growth continuing beyond 1 year of age. In contrast, the medial nucleus was near adult size at birth. At birth, the volume of the central nucleus was half of the adult value; this nucleus exhibited significant growth even after 1 year of age. Neither neuronal soma size, nor neuron or astrocyte numbers changed during postnatal development. In contrast, oligodendrocyte numbers increased substantially, in parallel with an increase in amygdala volume, after 3 months of age. At birth, the paralaminar nucleus contained a large pool of immature neurons that gradually developed into mature neurons, leading to a late increase in the volume of this nucleus. Our findings revealed that distinct amygdala nuclei exhibit different developmental profiles and that the amygdala is not fully mature for some time postnatally. We identified different periods during which pathogenic factors might lead to the abnormal development of distinct amygdala circuits, which may contribute to different human neurodevelopmental disorders associated with alterations of amygdala structure and functions.
Collapse
Affiliation(s)
- Loïc J. Chareyron
- Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, Switzerland
| | - Pamela Banta Lavenex
- Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, Switzerland
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, Center for Neuroscience, California National Primate Research Center, M.I.N.D. Institute, UC Davis, Davis, California, USA
| | - Pierre Lavenex
- Laboratory of Brain and Cognitive Development, Department of Medicine, University of Fribourg, Switzerland
| |
Collapse
|
22
|
Fudge JL, deCampo DM, Becoats KT. Revisiting the hippocampal-amygdala pathway in primates: association with immature-appearing neurons. Neuroscience 2012; 212:104-19. [PMID: 22521814 PMCID: PMC3367117 DOI: 10.1016/j.neuroscience.2012.03.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 12/15/2022]
Abstract
Elucidation of the 'fear circuit' has opened exciting avenues for understanding and treating human anxiety disorders. However, the translation of rodent to human studies, and vice versa, depends on understanding the homology in relevant circuits across species. Although abundant evidence indicates that the hippocampal-amygdala circuit mediates contextual fear learning, previous studies indicate that this pathway is more restricted in primates than in rodents. Moreover, cellular components of the amygdala differ across species. The paralaminar nucleus (PL) of the amygdala, a structure that is closely associated with the basal nucleus, is one example, having no clear homologue in rodents. In both human and nonhuman primates, the PL contains a subpopulation of immature-appearing neurons, which merge into the corticoamygdaloid transition area (CTA). To understand whether immature-appearing neurons are positioned to participate in fear circuitry, we first mapped the hippocampal-amygdala projection in the monkey. We then determined whether immature-appearing neurons were targets of this path. Retrograde results show that the hippocampal inputs to the amygdala originate in uncal region (CA1') and the rostral prosubiculum, consistent with earlier studies. The amygdalohippocampal area, ventral basal nucleus, the medial paralaminar nucleus, and its confluence with the CTA are the main targets of this projection. Immature neurons are prominent in the PL and CTA, and are overlapped by anterogradely labeled fibers from CA1', particularly in the medial PL and CTA. Hippocampal inputs to the amygdala are more focused in higher primates compared to rodents, supporting previous anatomic studies and recent data from human functional imaging studies of contextual fear. At the cellular level, a hippocampal interaction with immature neurons in the amygdala suggests a novel substrate for cellular plasticity, with implications for mechanisms underlying contextual learning and emotional memory processes.
Collapse
Affiliation(s)
- J L Fudge
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
23
|
deCampo D, Fudge J. Where and what is the paralaminar nucleus? A review on a unique and frequently overlooked area of the primate amygdala. Neurosci Biobehav Rev 2012; 36:520-35. [PMID: 21906624 PMCID: PMC3221880 DOI: 10.1016/j.neubiorev.2011.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/25/2011] [Accepted: 08/18/2011] [Indexed: 12/16/2022]
Abstract
The primate amygdala is composed of multiple subnuclei that play distinct roles in amygdala function. While some nuclei have been areas of focused investigation, others remain virtually unknown. One of the more obscure regions of the amygdala is the paralaminar nucleus (PL). The PL in humans and non-human primates is relatively expanded compared to lower species. Long considered to be part of the basal nucleus, the PL has several interesting features that make it unique. These features include a dense concentration of small cells, high concentrations of receptors for corticotropin releasing hormone and benzodiazepines, and dense innervation of serotonergic fibers. More recently, high concentrations of immature-appearing cells have been noted in the primate PL, suggesting special mechanisms of neural plasticity. Following a brief overview of amygdala structure and function, this review will provide an introduction to the history, embryology, anatomical connectivity, immunohistochemical and cytoarchitectural properties of the PL. Our conclusion is that the PL is a unique subregion of the amygdala that may yield important clues about the normal growth and function of the amygdala, particularly in higher species.
Collapse
Affiliation(s)
| | - Julie Fudge
- Department of Neurobiology and Anatomy
- Department of Psychiatry
| |
Collapse
|
24
|
Fudge JL, Tucker T. Amygdala projections to central amygdaloid nucleus subdivisions and transition zones in the primate. Neuroscience 2009; 159:819-41. [PMID: 19272304 PMCID: PMC2670361 DOI: 10.1016/j.neuroscience.2009.01.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 01/02/2009] [Accepted: 01/06/2009] [Indexed: 11/19/2022]
Abstract
In rats and primates, the central nucleus of the amygdala (CeN) is most known for its role in responses to fear stimuli. Recent evidence also shows that the CeN is required for directing attention and behaviors when the salience of competing stimuli is in flux. To examine how information flows through this key output region of the primate amygdala, we first placed small injections of retrograde tracers into the subdivisions of the central nucleus in Old world primates, and examined inputs from specific amygdaloid nuclei. The amygdalostriatal area and interstitial nucleus of the posterior limb of the anterior commissure (IPAC) were distinguished from the CeN using histochemical markers, and projections to these regions were also described. As expected, the basal nucleus and accessory basal nucleus are the main afferent connections of the central nucleus and transition zones. The medial subdivision of the central nucleus (CeM) receives a significantly stronger input from all regions compared to the lateral core subdivision (CeLcn). The corticoamygdaloid transition zone (a zone of confluence of the medial parvicellular basal nucleus, paralaminar nucleus, and the sulcal periamygdaloid cortex) provides the main input to the CeLcn. The IPAC and amygdalostriatal area can be divided in medial and lateral subregions, and receive input from the basal and accessory basal nucleus, with differential inputs according to subdivision. The piriform cortex and lateral nucleus, two important sensory interfaces, send projections to the transition zones. In sum, the CeM receives broad inputs from the entire amygdala, whereas the CeLcn receives more restricted inputs from the relatively undifferentiated corticoamygdaloid transition region. Like the CeN, the transition zones receive most of their input from the basal nucleus and accessory basal nucleus, however, inputs from the piriform cortex and lateral nucleus, and a lack of input from the parvicellular accessory basal nucleus, are distinguishing afferent features.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
25
|
Ernst M, Fudge JL. A developmental neurobiological model of motivated behavior: anatomy, connectivity and ontogeny of the triadic nodes. Neurosci Biobehav Rev 2009; 33:367-82. [PMID: 19028521 PMCID: PMC2696617 DOI: 10.1016/j.neubiorev.2008.10.009] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 09/07/2008] [Accepted: 10/23/2008] [Indexed: 10/21/2022]
Abstract
Adolescence is the transition period that prepares individuals for fulfilling their role as adults. Most conspicuous in this transition period is the peak level of risk-taking behaviors that characterize adolescent motivated behavior. Significant neural remodeling contributes to this change. This review focuses on the functional neuroanatomy underlying motivated behavior, and how ontogenic changes can explain the typical behavioral patterns in adolescence. To help model these changes and provide testable hypotheses, a neural systems-based theory is presented. In short, the Triadic Model proposes that motivated behavior is governed by a carefully orchestrated articulation among three systems, approach, avoidance and regulatory. These three systems map to distinct, but overlapping, neural circuits, whose representatives are the striatum, the amygdala and the medial prefrontal cortex. Each of these system-representatives will be described from a functional anatomy perspective that includes a review of their connectivity and what is known of their ontogenic changes.
Collapse
Affiliation(s)
- Monique Ernst
- Mood and Anxiety Disorders, Program National Institute of Mental Health, National Institutes of Health, 15K North Drive, Bethesda, MD 20892, United States
| | | |
Collapse
|
26
|
Fan L, Pandey SC, Cohen RS. Estrogen affects levels of Bcl-2 protein and mRNA in medial amygdala of ovariectomized rats. J Neurosci Res 2009; 86:3655-64. [PMID: 18655204 DOI: 10.1002/jnr.21801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The survival factor Bcl-2 is a cyclic AMP response element-binding protein (CREB) gene product implicated in mediating some of estrogen's effects on neuroprotection. Previously, we showed an effect of estradiol benzoate (E) on numbers of neuron-specific protein (NeuN)- and phosphorylated CREB (pCREB)-positive cells in medial (MeA), but not central (CeA), amygdala of ovariectomized rats. To determine whether these effects are accompanied by an E-induced increase in Bcl-2, we examined the effects of E on levels of Bcl-2 protein and mRNA in MeA and CeA of ovariectomized rats treated with E regimens resulting in moderate (2.5 microg E for 4 or 14 days) or high (10 microg E for 14 days) plasma estradiol levels. As a physiological control, we showed that all E treatments increased uterine wet weight relative to vehicle; 10 microg E for 14 days also increased uterine weight compared with that seen with lower E levels. Western blot analysis revealed that all E groups displayed an increase in uterine Bcl-2 protein levels compared with vehicle. We found that 2.5 microg and 10 microg E for 14 days increased levels of Bcl-2 gold immunolabeling compared with vehicle and 2.5 microg E for 4 days in MeA, but not CeA. We measured Bcl-2 mRNA levels in vehicle and 2.5 microg E-treated 14-day groups. There was a significant increase in Bcl-2 mRNA levels in MeA, but not CeA, of E-treated ovariectomized rats compared with vehicle controls. The E-induced increase in protein and mRNA levels of Bcl-2 in MeA may be important for neuroprotection in this region.
Collapse
Affiliation(s)
- Lu Fan
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
27
|
Kosten TA, Galloway MP, Duman RS, Russell DS, D'Sa C. Repeated unpredictable stress and antidepressants differentially regulate expression of the bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 2008; 33:1545-58. [PMID: 17700647 DOI: 10.1038/sj.npp.1301527] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Apoptosis has been proposed as a contributing cellular mechanism to the structural alterations that have been observed in stress-related mood disorders. Antidepressants, on the other hand, are hypothesized to exert trophic and/or neuroprotective actions. The present study examined the regulation of the major antiapoptotic (Bcl-2, Bcl-xl) and proapoptotic (Bax) genes by repeated unpredictable stress (an animal model of depression) and antidepressant treatments (ADT). In adult rats, exposure to unpredictable stress reduced Bcl-2 mRNA levels in the central nucleus of the amygdala (CeA), cingulate (Cg), and frontal (Fr) cortices. Bcl-xl mRNA was significantly decreased in hippocampal subfields. In contrast, chronic administration of clinically effective antidepressants from four different classes, ie fluoxetine, reboxetine, tranylcypromine, and electroconvulsive seizures (ECS) upregulated Bcl-2 mRNA expression in the Cg, Fr, and CeA. Reboxetine, tranylcypromine, and ECS selectively increased Bcl-xl, but not Bcl-2 mRNA expression in the hippocampus. Chemical ADT but not ECS, robustly enhanced Bcl-2 expression in the medial amygdaloid nucleus and ventromedial hypothalamus. Fluoxetine did not influence Bcl-xl expression in the hippocampus, but it was the only ADT that decreased Bax expression in this region. In the CeA, again in direct contrast to the stress effects, exposure to all classes of ADTs significantly increased Bcl-2 mRNA. The selective regulation of Bcl-xl and Bax in hippocampal subfields and of Bcl-2 in the Cg cortex, amygdala, and hypothalamus suggests that these cellular adaptations contribute to the long-term neural plastic adaptations to stress and ADTs in cortical, hypothalamic, and limbic brain structures.
Collapse
Affiliation(s)
- Therese A Kosten
- Department of Psychiatry, Menninger Department of Psychiatry, Baylor College of Medicine and Michael E DeBakey Veterans Affairs, Houston, TX, USA
| | | | | | | | | |
Collapse
|
28
|
Brain Atrophy in a Murine Model of Chronic Fatigue Syndrome and Beneficial Effect of Hochu-ekki-to (TJ-41). Neurochem Res 2008; 33:1759-67. [DOI: 10.1007/s11064-008-9620-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/31/2008] [Indexed: 11/25/2022]
|
29
|
O'Rourke H, Fudge JL. Distribution of serotonin transporter labeled fibers in amygdaloid subregions: implications for mood disorders. Biol Psychiatry 2006; 60:479-90. [PMID: 16414028 PMCID: PMC2424282 DOI: 10.1016/j.biopsych.2005.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
BACKGROUND The serotonin transporter 5-HTT mediates responses to serotonin reuptake inhibitors (SSRIs), a mainstay treatment in mood disorders. The amygdala, a key emotional processing center, has functional abnormalities in mood disorders, which resolve following successful SSRI treatment. To better understand the effects of SSRIs in mood disorders, we examined the distribution of 5-HTT labeled fibers relative to specific nuclear groups in the amygdala. METHODS Immunocytochemical techniques were used to chart 5-HTT labeled fibers in the amygdala in coronal sections through the brain of six adult Macaques. Nissl staining was used to define nuclear groups in the amygdala. RESULTS The serotonin transporter 5-HTT is distributed heterogeneously in the primate amygdala, with the lateral subdivision of the central nucleus, intercalated cell islands, amygdalohippocampal area, and the paralaminar nucleus showing the heaviest concentrations. CONCLUSIONS 5HTT-labeled fibers are very densely concentrated in output regions of the amygdala. High concentrations of 5-HTT-positive fibers in the central nucleus indicate that tight regulation of serotonin is critical in modulating fear responses mediated by this nucleus. High concentrations of 5-HTT-labeled fibers in the intercalated islands and parvicellular basal nucleus/paralaminar nucleus, which contain immature -appearing neurons, suggest a potential trophic role for serotonin in these subregions.
Collapse
Affiliation(s)
- Howard O'Rourke
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | |
Collapse
|
30
|
Heimer L, Van Hoesen GW. The limbic lobe and its output channels: implications for emotional functions and adaptive behavior. Neurosci Biobehav Rev 2005; 30:126-47. [PMID: 16183121 DOI: 10.1016/j.neubiorev.2005.06.006] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 06/30/2005] [Accepted: 06/30/2005] [Indexed: 11/17/2022]
Abstract
Current dissatisfaction with the limbic system concept reflects a desire to move beyond the limbic system in efforts to explain key facets of emotional functions and motivational behavior. This review promotes an anatomical viewpoint, which originated as a result of histotechnical advances. These improvements paved the way for anatomical discoveries, which in turn led to the concepts of the ventral striatopallidal system and extended amygdala. These two systems, together with the basal nucleus of Meynert and the septum-diagonal band system, serve as output channels for an expanded version of the classic limbic lobe of Broca, which contains all non-isocortical parts of the cortical mantle together with the large laterobasal-cortical amygdaloid complex. Thus defined, the limbic lobe contains all of the major cortical (e.g. orbitofrontal, cingulate and insular cortices in addition to the hippocampal formation) and cortical-like (laterobasal-cortical amygdala) structures known to be especially important for emotional and motivational functions. In their role as output channels for the limbic lobe, the basal forebrain functional-anatomical systems contribute to the establishment of a number of cortico-subcortical circuits, which provide an important part of the anatomical substrate for the elaboration of emotional functions and adaptive behavior.
Collapse
Affiliation(s)
- Lennart Heimer
- Department of Neurosurgery and Neuroscience, University of Virginia, Box 800212, Charlottesville, VA 22908, USA
| | | |
Collapse
|