1
|
Duyvesteyn E, Vizcarra VS, Waight E, Balbuena E, Hablitz LM. Biological Fluid Flows: Signaling Mediums for Circadian Timing. J Biol Rhythms 2025; 40:234-248. [PMID: 40145493 DOI: 10.1177/07487304251323318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
While there is extensive literature on both the neuronal circuitry of rhythms and the intracellular molecular clock, there is a large component of signaling that has been understudied: interstitial fluid (ISF)-fluid that surrounds the cells in the extracellular space of tissue. In this review, we highlight evidence in the circadian literature supporting ISF signaling as key to circadian synchronization and entrainment and propose new mechanisms of how fluid movement between the brain and periphery may act as zeitgebers by examining the main ISF pathways of the body, focusing on circadian regulation of the glymphatic and lymphatic systems. We identify key pieces of circadian research that point to ISF as an important timing medium, expand on the basics of cerebrospinal fluid (CSF) and ISF production, and outline the basic structure and function of the glymphatic and lymphatic systems.
Collapse
Affiliation(s)
- Evalien Duyvesteyn
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Velia S Vizcarra
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Emma Waight
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Estephanie Balbuena
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
2
|
Doroszkiewicz J, Winkel I, Mroczko B. Comparative analysis of neuroinflammatory pathways in Alzheimer's disease, Parkinson's disease, and multiple sclerosis: insights into similarities and distinctions. Front Neurosci 2025; 19:1579511. [PMID: 40364858 PMCID: PMC12069400 DOI: 10.3389/fnins.2025.1579511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Neurodegenerative diseases, contributing to the significant socioeconomic burden due to aging society, are gaining increasing interest. Despite each disease having different etiologies, neuroinflammation is believed to play a crucial role in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). In addition to the pathogenic function of inflammation in the brain there is growing evidence that immune responses are essential for neuroregeneration. This review compares and contrasts the neuroinflammatory pathways that selected neurodegenerative diseases share and have in common. In AD, tau tangles and beta-amyloid plaques cause microglia and astrocytes to become activated in an inflammatory response. Alpha-synuclein aggregation stimulate neuroinflammation in Parkinson's disease, especially in the substantia nigra. In Multiple Sclerosis an autoimmune attack on myelin is connected to inflammation via invading immune cells. Commonalities include the release of pro-inflammatory mediators like cytokines and activation of signaling pathways such as NF-κB and MAPK. Comprehending these common routes is essential for discovering early diagnostic possibilities for the diseases and possible tailored treatments. Our work underscores the potential for insights into disease mechanisms. Identifying common targets offers promise for advancing our understanding and potential future treatment approaches across these debilitating disorders.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Kawamura K, Kumata K, Yamasaki T, Ogawa M, Kurihara Y, Nengaki N, Nakamura Y, Ono M, Takado Y, Igarashi H, Zhang MR. Efficient one-pot radiosynthesis of the 11C-labeled aquaporin-4 inhibitor TGN-020. EJNMMI Radiopharm Chem 2025; 10:17. [PMID: 40186669 PMCID: PMC11972257 DOI: 10.1186/s41181-025-00338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND [11C]TGN-020 has been developed as a positron emission tomography (PET) tracer for imaging aquaporin-4 (AQP4) in the brain and used in clinical studies. Previously, [11C]TGN-020 was synthesized through the acylation of [11C]nicotinic acid, produced by the reaction of 3-bromopyridine and n-butyllithium with [11C]CO2, with 2-amino-1,3,4-thiadiazole. In this study, to enhance the automated radiosynthesis efficiency of [11C]TGN-020, we optimized its radiosynthesis procedure using our in-house developed 11C-labeling synthesizer. RESULTS [11C]TGN-020 was synthesized via direct [11C]CO2 fixation using n-butyllithium and 3-bromopyridine in tetrahydrofuran, followed by treatment of lithium [11C]nicotinic acetate with isobutyl chloroformate and subsequent acylation with 2-amino-1,3,4-thiadiazole in the presence of N,N-diisopropylethylamine. The optimized process significantly improved the radiosynthesis efficiency of [11C]TGN-020, achieving a high radiochemical yield based on [11C]CO2 (610‒1700 MBq, 2.8 ± 0.7%) at the end of synthesis (n = 12) and molar activity (Am) of 160-360 GBq/μmol at the end of synthesis (n = 5). The radiosynthesis time and radiochemical purity were approximately 60 min and > 95% (n = 12), respectively. PET studies based on [11C]TGN-020 with different Am values were performed using healthy rats. The radioactive uptake of [11C]TGN-020 with high Am in the cerebral cortex was slightly higher than that with low Am. CONCLUSIONS [11C]TGN-020 with high Am was obtained in reproducible radiochemical yield. Overall, the proposed optimization process for the radiosynthesis of [11C]TGN-020 can facilitate its application as a PET radiopharmaceutical for clinical use.
Collapse
Affiliation(s)
- Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan.
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., Tokyo, 141-0032, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., Tokyo, 141-0032, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
- SHI Accelerator Service Ltd., Tokyo, 141-0032, Japan
| | - Yukimi Nakamura
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Maiko Ono
- Quantum Life Spin Group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Yuhei Takado
- Quantum Life Spin Group, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), Chiba, 263-8555, Japan
| |
Collapse
|
4
|
Schulz LN, Redwan A, Edwards S, Hamilton MG, Isaacs AM. Hydrocephalus Pathophysiology and Epidemiology. Neurosurg Clin N Am 2025; 36:113-126. [PMID: 40054966 DOI: 10.1016/j.nec.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
Adult hydrocephalus is a common neurologic condition with an estimated prevalence of 85 per 100,000 globally, caused by abnormal cerebrospinal fluid (CSF) accumulation within the cerebral ventricles. Subtypes include idiopathic normal pressure hydrocephalus, posthemorrhagic, postinfectious, posttraumatic, and tumor-associated forms. Its pathophysiology involves glymphatic dysfunction, neuroinflammation, vascular compromise, and impaired CSF absorption. Despite advances in treatment, significant gaps remain in understanding its epidemiology, particularly in regards to regional variability and comorbidities, alongside unresolved questions about glymphatic pathways and neurodegenerative overlap. Standardized diagnostic and therapeutic frameworks are urgently needed.
Collapse
Affiliation(s)
- Lauren N Schulz
- Department of Neurological Surgery, Ohio State University College of Medicine, 410 W, 10th Avenue, Columbus, OH 43210, USA
| | - Asma Redwan
- Department of Neurological Surgery, Ohio State University College of Medicine, 410 W, 10th Avenue, Columbus, OH 43210, USA
| | - Sara Edwards
- Division of Neurosurgery, Department of Clinical Neurosciences, Cumming School of Medicine, Foothills Hospital, 1403 - 29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Mark G Hamilton
- Division of Neurosurgery, Department of Clinical Neurosciences, Cumming School of Medicine, Foothills Hospital, 1403 - 29th Street NW, Calgary, Alberta T2N 2T9, Canada
| | - Albert M Isaacs
- Department of Neurological Surgery, Ohio State University College of Medicine, 410 W, 10th Avenue, Columbus, OH 43210, USA; Department of Pediatric Neurosurgery, Nationwide Children's Hospital, 4th Floor Faculty Office Building, 700 Children's Drive, Columbus, OH 43205, USA.
| |
Collapse
|
5
|
Taha B, McGovern R, Lam C. A synthesized view of the CSF-blood barrier and its surgical implications for aging disorders. Front Aging Neurosci 2025; 16:1492449. [PMID: 39981073 PMCID: PMC11841429 DOI: 10.3389/fnagi.2024.1492449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/30/2024] [Indexed: 02/22/2025] Open
Abstract
In this review, we explore the mechanisms of the blood-cerebrospinal fluid (CSF) barrier and CSF transport. We briefly review the mathematical framework for CSF transport as described by a set of well-studied partial differential equations. Moreover, we describe the major contributors of CSF flow through both diffusive and convective forces beginning at the molecular level and extending into macroscopic clinical observations. In addition, we review neurosurgical perspectives in understanding CSF outflow pathways. Finally, we discuss the implications of flow dysregulation in the context of neurodegenerative diseases and discuss the rising role of perivascular drainage pathways including glymphatics.
Collapse
Affiliation(s)
- Birra Taha
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Cornelius Lam
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
- Minneapolis VA Health Care System, Veterans Health Administration, United States Department of Veterans Affairs, Minneapolis, MN, United States
| |
Collapse
|
6
|
Bravi B, Paolini M, Maccario M, Milano C, Raffaelli L, Melloni EMT, Zanardi R, Colombo C, Benedetti F. Abnormal choroid plexus, hippocampus, and lateral ventricles volumes as markers of treatment-resistant major depressive disorder. Psychiatry Clin Neurosci 2025; 79:69-77. [PMID: 39563010 PMCID: PMC11789456 DOI: 10.1111/pcn.13764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Abstract
AIM One-third of patients with major depressive disorder (MDD) do not achieve full remission and have high relapse rates even after treatment, leading to increased medical costs and reduced quality of life and health status. The possible specificity of treatment-resistant depression (TRD) neurobiology is still under investigation, with risk factors such as higher inflammatory markers being identified. Given recent findings on the role of choroid plexus (ChP) in neuroinflammation and hippocampus in treatment response, the aim of the present study was to evaluate inflammatory- and trophic-related differences in these regions along with ventricular volumes among patients with treatment-sensitive depression (TSD), TRD, and healthy controls (HCs). METHODS ChP, hippocampal, and ventricular volumes were assessed in 197 patients with MDD and 58 age- and sex-matched HCs. Volumes were estimated using FreeSurfer 7.2. Treatment resistance status was defined as failure to respond to at least two separate antidepressant treatments. Region of interest volumes were then compared among groups. RESULTS We found higher ChP volumes in patients with TRD compared with patients with TSD and HCs. Our results also showed lower hippocampal volumes and higher lateral ventricular volumes in TRD compared with both patients without TRD and HCs. CONCLUSIONS These findings corroborate the link between TRD and neuroinflammation, as ChP volume could be considered a putative marker of central immune activity. The lack of significant differences in all of the region of interest volumes between patients with TSD and HCs may highlight the specificity of these features to TRD, possibly providing new insights into the specific neurobiological underpinnings of this condition.
Collapse
Affiliation(s)
- Beatrice Bravi
- Psychiatry & Clinical Psychobiology, Division of NeuroscienceIRCCS San Raffaele HospitalMilanItaly
- University Vita‐Salute San RaffaeleMilanItaly
| | - Marco Paolini
- Psychiatry & Clinical Psychobiology, Division of NeuroscienceIRCCS San Raffaele HospitalMilanItaly
| | - Melania Maccario
- University Vita‐Salute San RaffaeleMilanItaly
- Mood Disorders UnitIRCCS San Raffaele HospitalMilanItaly
| | - Chiara Milano
- Psychiatry & Clinical Psychobiology, Division of NeuroscienceIRCCS San Raffaele HospitalMilanItaly
| | - Laura Raffaelli
- Psychiatry & Clinical Psychobiology, Division of NeuroscienceIRCCS San Raffaele HospitalMilanItaly
- University Vita‐Salute San RaffaeleMilanItaly
| | | | - Raffaella Zanardi
- University Vita‐Salute San RaffaeleMilanItaly
- Mood Disorders UnitIRCCS San Raffaele HospitalMilanItaly
| | - Cristina Colombo
- University Vita‐Salute San RaffaeleMilanItaly
- Mood Disorders UnitIRCCS San Raffaele HospitalMilanItaly
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of NeuroscienceIRCCS San Raffaele HospitalMilanItaly
- University Vita‐Salute San RaffaeleMilanItaly
| |
Collapse
|
7
|
Olakorede I, Bögli SY, Czosnyka Z, Czosnyka M, Smielewski P. CSF production rate, resistance to reabsorption, and intracranial pressure: a systematic review and meta-analysis. Brain Commun 2025; 7:fcaf044. [PMID: 39949404 PMCID: PMC11822472 DOI: 10.1093/braincomms/fcaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Davson's equation relates the state of stable intracranial pressure (ICP) to the production rate of CSF (IF) and resistance to CSF outflow (ROUT). Both parameters are assumed to be independent of ICP, but results are conflicting. The objective is to define the relationship between ICP, IF and ROUT using a systematic literature review. Medline and Embase were searched from inception up to 12 February 2024. Experimental studies exploring the association between ICP, IF, and ROUT were included. Individual measurements of ICP, IF and/or ROUT were extracted from tables or graphs, alongside descriptive parameters (population, ICP measurement site, disease, and computational method). Linear regression and mixed effects models were applied. From 1304 references, 25 articles were included in our meta-analysis. IF is approximately constant across all pathologies independent of the ICP level, population, disease, ICP measurement site and the measurement/estimation method. Conversely, ICP was positively correlated with ROUT. The intercorrelation, however, differed by population, disease, ICP measurement site and estimation method. Additionally, IF derived from Davson's Equation compared with the measured IF were similar for patients with hydrocephalus but differed for patients with acute brain injury. Davson's Equation describes the various components of cerebrospinal fluid dynamics. The results underline important caveats for its use in patients with acute brain injury wherein the estimated values differ from the measured ones. Overall, additional metrics describing the cerebrovascular system or the underlying disease have to be taken into account for more accurate estimations.
Collapse
Affiliation(s)
- Ihsane Olakorede
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Stefan Y Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Zofia Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
8
|
Kern L, Mastandrea I, Melekhova A, Elinav E. Mechanisms by which microbiome-derived metabolites exert their impacts on neurodegeneration. Cell Chem Biol 2025; 32:25-45. [PMID: 39326420 DOI: 10.1016/j.chembiol.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024]
Abstract
Recent developments in microbiome research suggest that the gut microbiome may remotely modulate central and peripheral neuronal processes, ranging from early brain development to age-related changes. Dysbiotic microbiome configurations have been increasingly associated with neurological disorders, such as neurodegeneration, but causal understanding of these associations remains limited. Most mechanisms explaining how the microbiome may induce such remote neuronal effects involve microbially modulated metabolites that influx into the 'sterile' host. Some metabolites are able to cross the blood-brain barrier (BBB) to reach the central nervous system, where they can impact a variety of cells and processes. Alternatively, metabolites may directly signal to peripheral nerves to act as neurotransmitters or exert modulatory functions, or impact immune responses, which, in turn, modulate neuronal function and associated disease propensity. Herein, we review the current knowledge highlighting microbiome-modulated metabolite impacts on neuronal disease, while discussing unknowns, controversies and prospects impacting this rapidly evolving research field.
Collapse
Affiliation(s)
- Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ignacio Mastandrea
- Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Melekhova
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Microbiome & Cancer Division, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Arkoudis NA, Davoutis E, Siderakis M, Papagiannopoulou G, Gouliopoulos N, Tsetsou I, Efthymiou E, Moschovaki-Zeiger O, Filippiadis D, Velonakis G. Idiopathic intracranial hypertension: Imaging and clinical fundamentals. World J Radiol 2024; 16:722-748. [PMID: 39801664 PMCID: PMC11718525 DOI: 10.4329/wjr.v16.i12.722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/15/2024] [Accepted: 12/11/2024] [Indexed: 12/27/2024] Open
Abstract
Neuroimaging is a paramount element for the diagnosis of idiopathic intracranial hypertension, a condition characterized by signs and symptoms of raised intracranial pressure without the identification of a mass or hydrocephalus being recognized. The primary purpose of this review is to deliver an overview of the spectrum and the specific role of the various imaging findings associated with the condition while providing imaging examples and educational concepts. Clinical perspectives and insights into the disease, including treatment options, will also be discussed.
Collapse
Affiliation(s)
- Nikolaos-Achilleas Arkoudis
- Research Unit of Radiology and Medical Imaging, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
- 2nd Department of Radiology, Attikon University General Hospital, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| | - Efstathia Davoutis
- School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Manos Siderakis
- Department of Radiology, Agios Savas Anticancer Hospital, Athens 11522, Greece
| | - Georgia Papagiannopoulou
- 2nd Department of Neurology, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| | - Nikolaos Gouliopoulos
- 2nd Department of Ophthalmology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| | - Ilianna Tsetsou
- Department of Imaging and Interventional Radiology, “Sotiria” General and Chest Diseases Hospital of Athens, Athens 11527, Greece
| | - Evgenia Efthymiou
- Research Unit of Radiology and Medical Imaging, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
- 2nd Department of Radiology, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| | - Ornella Moschovaki-Zeiger
- 2nd Department of Radiology, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| | - Dimitrios Filippiadis
- 2nd Department of Radiology, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece
- 2nd Department of Radiology, Attikon University General Hospital, School of Medicine, National and Kapodistrian University of Athens, Chaidari 12462, Greece
| |
Collapse
|
10
|
Kursancew ACS, Faller CJ, Bortoluzzi DP, Niero LB, Brandão B, Danielski LG, Petronilho F, Generoso JS. Neuroinflammatory Response in the Traumatic Brain Injury: An Update. Neurochem Res 2024; 50:64. [PMID: 39718667 DOI: 10.1007/s11064-024-04316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
The central nervous system (CNS) comprises membranes and barriers that are vital to brain homeostasis. Membranes form a robust shield around neural structures, ensuring protection and structural integrity. At the same time, barriers selectively regulate the exchange of substances between blood and brain tissue, which is essential for maintaining homeostasis. Another highlight is the glymphatic system, which cleans metabolites and waste from the brain. Traumatic brain injury (TBI) represents a significant cause of disability and mortality worldwide, resulting from the application of direct mechanical force to the head that results in a primary injury. Therefore, this review aims to elucidate the mechanisms associated with the secondary injury cascade, in which there is intense activation of glial cells, dysfunction of the glymphatic system, glutamatergic neurotoxicity, additional molecular and biochemical changes that lead to a neuroinflammatory process, and oxidative stress and in which way they can be associated with cognitive damage that is capable of lasting for an extended period.
Collapse
Affiliation(s)
- Amanda C S Kursancew
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Cristiano Julio Faller
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Daniel Paulo Bortoluzzi
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Luana Budny Niero
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Beatriz Brandão
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Lucineia Gainski Danielski
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jaqueline S Generoso
- Laboratory of Experimental Neurology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
11
|
Muccio M, Sun Z, Chu D, Damadian BE, Minkoff L, Bonanni L, Ge Y. The impact of body position on neurofluid dynamics: present insights and advancements in imaging. Front Aging Neurosci 2024; 16:1454282. [PMID: 39582951 PMCID: PMC11582045 DOI: 10.3389/fnagi.2024.1454282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
The intricate neurofluid dynamics and balance is essential in preserving the structural and functional integrity of the brain. Key among these forces are: hemodynamics, such as heartbeat-driven arterial and venous blood flow, and hydrodynamics, such as cerebrospinal fluid (CSF) circulation. The delicate interplay between these dynamics is crucial for maintaining optimal homeostasis within the brain. Currently, the widely accepted framework for understanding brain functions is the Monro-Kellie's doctrine, which posits a constant sum of intracranial CSF, blood flow and brain tissue volumes. However, in recent decades, there has been a growing interest in exploring the dynamic interplay between these elements and the impact of external factors, such as daily changes in body position. CSF circulation in particular plays a crucial role in the context of neurodegeneration and dementia, since its dysfunction has been associated with impaired clearance mechanisms and accumulation of toxic substances. Despite the implementation of various invasive and non-invasive imaging techniques to investigate the intracranial hemodynamic or hydrodynamic properties, a comprehensive understanding of how all these elements interact and are influenced by body position remains wanted. Establishing a comprehensive overview of this topic is therefore crucial and could pave the way for alternative care approaches. In this review, we aim to summarize the existing understanding of intracranial hemodynamic and hydrodynamic properties, fundamental for brain homeostasis, along with factors known to influence their equilibrium. Special attention will be devoted to elucidating the effects of body position shifts, given their significance and remaining ambiguities. Furthermore, we will explore recent advancements in imaging techniques utilized for real time and non-invasive measurements of dynamic body fluid properties in-vivo.
Collapse
Affiliation(s)
- Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| | - David Chu
- FONAR Corporation, Melville, NY, United States
| | - Brianna E. Damadian
- Department of Radiology, Northwell Health-Lenox Hill Hospital, New York, NY, United States
| | | | | | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Mishra KA, Sethi KK. Unveiling tomorrow: Carbonic anhydrase activators and inhibitors pioneering new frontiers in Alzheimer's disease. Arch Pharm (Weinheim) 2024:e2400748. [PMID: 39506506 DOI: 10.1002/ardp.202400748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and a principal basis of dementia in the elderly population globally. Recently, human carbonic anhydrases (hCAs, EC 4.2.1.1) were demonstrated as possible new targets for treating AD. hCAs are vital for maintaining pH balance and performing other physiological processes as they catalyze the reversible hydration of carbon dioxide to bicarbonate and a proton. Current research indicates that hCA plays a role in brain functions critical for transmitting neural signals. Activation of carbonic anhydrase (CA) has emerged as a promising avenue in addressing memory loss and cognitive issues. Conversely, the exploration of CA inhibition represents a novel frontier in this field. By enhancing glial fitness and cerebrovascular health and blocking amyloid-β (Aβ)-induced mitochondrial dysfunction pathways, cytochrome C (CytC) release, caspase 9 activation, and H2O2 generation in neurons, CA inhibitors improve cognition and lessen the pathology caused by Aβ. Recent research has pushed hCAs into the spotlight as critical players in AD pathogenesis and precise therapeutic targets. The captivating dilemma of choosing between hCA inhibitors and activators looms large, as inhibitors reduce Aβ aggregation and improve cerebral blood flow, while activators enhance cerebrovascular functions and restore pH balance. The current review sheds light on the clinical evidence for hCAs and the roles of inhibitors and activators in AD. Additionally, this review offers a fascinating outlook on the data that may aid medicinal chemists in designing and developing new leads that are more effective and selective for upcoming in vitro and in vivo studies, allowing for the discovery and introduction of novel drug candidates for the treatment of AD to the market and into the clinical pipeline.
Collapse
Affiliation(s)
- Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Guwahati, Guwahati, Assam, India
| |
Collapse
|
13
|
Jeon SY, You Y, Kang C, Park JS, Jeong W, Ahn HJ, Min JH, In YN, Lee IH. Alteration in cerebrospinal fluid flow based on the neurological prognosis of out-of-hospital cardiac arrest patients. Sci Rep 2024; 14:24526. [PMID: 39424674 PMCID: PMC11489757 DOI: 10.1038/s41598-024-76205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
We evaluated alterations in cerebrospinal fluid (CSF) flow based on the neurological prognosis of out-of-hospital cardiac arrest (OHCA) patients. This prospective observational study was conducted from May 2023 to June 2024. Stroke distance was measured using magnetic resonance imaging flowmetry immediately and at 72 h after return of spontaneous circulation (ROSC), with negative values indicating caudocranial direction. The caudocranial direction of CSF flow was observed in 17 (56.7%) patients immediately after ROSC, and in 20 (66.7%) patients at 72 h after ROSC. There was no significant difference in the occurrence of caudocranial CSF flow immediately after ROSC between the groups with good and poor neurological prognosis [6 (50.0%) vs. 11 (61.1%); p = 0.55]. However, the occurrence of caudocranial CSF flow at 72 h after ROSC was significantly higher in the group with poor neurological prognosis compared to the group with good neurological prognosis [3 (25.0%) vs. 17 (94.4%); p < 0.001]. This study demonstrated that the occurrence of caudocranial CSF flow at 72 h after ROSC was significantly higher in the group with poor neurological prognosis compared to the group with good neurological prognosis.
Collapse
Affiliation(s)
- So-Young Jeon
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea.
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea.
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Emergency Medicine, Chungnam National University Sejong Hospital, Sejong, Republic of Korea
| | - In Ho Lee
- Department of Radiology, Chungnam National University Hospital, 282, Munhwa-ro, Jung-gu, Daejeon, Republic of Korea
- Department of Radiology, College of Medicine, Chungnam National University School of Medicine, 282, Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Lallai V, Lam TT, Garcia-Milian R, Chen YC, Fowler JP, Manca L, Piomelli D, Williams K, Nairn AC, Fowler CD. Proteomic Profile of Circulating Extracellular Vesicles in the Brain after Δ9-Tetrahydrocannabinol Inhalation. Biomolecules 2024; 14:1143. [PMID: 39334909 PMCID: PMC11430348 DOI: 10.3390/biom14091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Given the increasing use of cannabis in the US, there is an urgent need to better understand the drug's effects on central signaling mechanisms. Extracellular vesicles (EVs) have been identified as intercellular signaling mediators that contain a variety of cargo, including proteins. Here, we examined whether the main psychoactive component in cannabis, Δ9-tetrahydrocannabinol (THC), alters EV protein signaling dynamics in the brain. We first conducted in vitro studies, which found that THC activates signaling in choroid plexus epithelial cells, resulting in transcriptional upregulation of the cannabinoid 1 receptor and immediate early gene c-fos, in addition to the release of EVs containing RNA cargo. Next, male and female rats were examined for the effects of either acute or chronic exposure to aerosolized ('vaped') THC on circulating brain EVs. Cerebrospinal fluid was extracted from the brain, and EVs were isolated and processed with label-free quantitative proteomic analyses via high-resolution tandem mass spectrometry. Interestingly, circulating EV-localized proteins were differentially expressed based on acute or chronic THC exposure in a sex-specific manner. Taken together, these findings reveal that THC acts in the brain to modulate circulating EV signaling, thereby providing a novel understanding of how exogenous factors can regulate intercellular communication in the brain.
Collapse
Affiliation(s)
- Valeria Lallai
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
| | - TuKiet T. Lam
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
- Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Bioinformatics Support Hub, Harvey Cushing/John Whitney Medical Library, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yen-Chu Chen
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - James P. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - Letizia Manca
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
| | - Daniele Piomelli
- Department and Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
| | - Kenneth Williams
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
- Department of Psychiatry, Yale University, New Haven, CT 06511, USA
| | - Christie D. Fowler
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697, USA; (V.L.); (Y.-C.C.); (J.P.F.)
- Yale/NIDA Neuroproteomics Center, Yale University, New Haven, CT 06511, USA; (T.T.L.); (R.G.-M.); (K.W.); (A.C.N.)
| |
Collapse
|
15
|
van Osch MJP, Wåhlin A, Scheyhing P, Mossige I, Hirschler L, Eklund A, Mogensen K, Gomolka R, Radbruch A, Qvarlander S, Decker A, Nedergaard M, Mori Y, Eide PK, Deike K, Ringstad G. Human brain clearance imaging: Pathways taken by magnetic resonance imaging contrast agents after administration in cerebrospinal fluid and blood. NMR IN BIOMEDICINE 2024; 37:e5159. [PMID: 38634301 DOI: 10.1002/nbm.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Over the last decade, it has become evident that cerebrospinal fluid (CSF) plays a pivotal role in brain solute clearance through perivascular pathways and interactions between the brain and meningeal lymphatic vessels. Whereas most of this fundamental knowledge was gained from rodent models, human brain clearance imaging has provided important insights into the human system and highlighted the existence of important interspecies differences. Current gold standard techniques for human brain clearance imaging involve the injection of gadolinium-based contrast agents and monitoring their distribution and clearance over a period from a few hours up to 2 days. With both intrathecal and intravenous injections being used, which each have their own specific routes of distribution and thus clearance of contrast agent, a clear understanding of the kinetics associated with both approaches, and especially the differences between them, is needed to properly interpret the results. Because it is known that intrathecally injected contrast agent reaches the blood, albeit in small concentrations, and that similarly some of the intravenously injected agent can be detected in CSF, both pathways are connected and will, in theory, reach the same compartments. However, because of clear differences in relative enhancement patterns, both injection approaches will result in varying sensitivities for assessment of different subparts of the brain clearance system. In this opinion review article, the "EU Joint Programme - Neurodegenerative Disease Research (JPND)" consortium on human brain clearance imaging provides an overview of contrast agent pharmacokinetics in vivo following intrathecal and intravenous injections and what typical concentrations and concentration-time curves should be expected. This can be the basis for optimizing and interpreting contrast-enhanced MRI for brain clearance imaging. Furthermore, this can shed light on how molecules may exchange between blood, brain, and CSF.
Collapse
Affiliation(s)
- Matthias J P van Osch
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Wåhlin
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Paul Scheyhing
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ingrid Mossige
- Division of Radiology and Nuclear Medicine, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Lydiane Hirschler
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Anders Eklund
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
| | - Klara Mogensen
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Ryszard Gomolka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Radbruch
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Sara Qvarlander
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Andreas Decker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- KG Jebsen Centre for Brain Fluid Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Katerina Deike
- Department of Neuroradiology, University Medical Center Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Geir Ringstad
- Department of Radiology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
- Department of Geriatrics and Internal Medicine, Sorlandet Hospital, Arendal, Norway
| |
Collapse
|
16
|
Cao X, Lu J, Chen C, Gui J. Exploring the correlation and difference between cerebrospinal fluid in the lateral ventricle and lumbar subarachnoid based on infants with intraventricular hemorrhage treated by the ommaya reservoir. Heliyon 2024; 10:e32252. [PMID: 38912498 PMCID: PMC11190596 DOI: 10.1016/j.heliyon.2024.e32252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
Objective To explore the relationship and difference between ventricular and lumbar cerebrospinal fluid(CSF), this study presents equations transforming their measures. By assessing the viability of substituting lumbar puncture, we aim to minimize the associated medical risks and trauma faced by infants with intraventricular hemorrhage(IVH) from anesthesia and lumbar puncture. Methods We retrospectively analyzed CSF data from 27 infants diagnosed with IVH treated by Ommaya reservoir and lumbar puncture at our center, comprising 35 paired samples. Paired-sample and regression analyses were employed to determine test correlations, differences, and to derive transformation equations for the measurements. Results Comparative analyses between the CSF from the lateral ventricle and the lumbar vertebrae revealed significant differences in the levels of chloride, glucose, protein, erythrocytes, total cells, and Pandy's test. Specifically:1. Levels of chloride, glucose, protein, and Pandy's test were higher in the lumbar vertebrae.2. Conversely, erythrocyte and total cell counts were higher in the lateral ventricle.There were no significant differences observed for lumbar lactate dehydrogenase(LDH), leukocytes, occult blood, clot, clarity, and color. Nevertheless, significant correlations were identified between various measures, including LDH, glucose, chloride, protein, erythrocyte, leukocyte, total cell count, Pandy's test, occult blood, clot, transparency, and color. Interestingly, the correlation strength and equation fit for each component are inversely proportional to its molecular weight.Notably, well-fitting regression equations were found for LDH, glucose, chloride, protein, leukocytes, erythrocytes, and total cells. Conclusion In infants with IVH and unobstructed CSF channels, a robust correlation was noted between ventricular CSF sourced via the Ommaya reservoir and lumbar CSF. This correlation tended to be inversely related to molecular weight, with smaller molecular weights showing lesser disparities. Ventricular CSF data could anticipate lumbar CSF trends, and using regression equations with Ommaya-obtained CSF, one can derive approximate values for lumbar CSF.
Collapse
Affiliation(s)
- Xingyu Cao
- Department of Pediatric Neurosurgery, Guangdong Women and Children Hospital, No.521 Xingnan Avenue, Panyu District, Guangzhou City, Guangdong Province, China
| | - Jiazhang Lu
- Department of Pediatric Neurosurgery, Guangdong Women and Children Hospital, No.521 Xingnan Avenue, Panyu District, Guangzhou City, Guangdong Province, China
| | - Chengxian Chen
- Department of Pediatric Neurosurgery, Guangdong Women and Children Hospital, No.521 Xingnan Avenue, Panyu District, Guangzhou City, Guangdong Province, China
| | - Jian Gui
- Department of Pediatric Neurosurgery, Guangdong Women and Children Hospital, No.521 Xingnan Avenue, Panyu District, Guangzhou City, Guangdong Province, China
| |
Collapse
|
17
|
Ha WS, Chu MK. Altered immunity in migraine: a comprehensive scoping review. J Headache Pain 2024; 25:95. [PMID: 38844851 PMCID: PMC11157828 DOI: 10.1186/s10194-024-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The pathogenesis of migraine remains unclear; however, a large body of evidence supports the hypothesis that immunological mechanisms play a key role. Therefore, we aimed to review current studies on altered immunity in individuals with migraine during and outside attacks. METHODS We searched the PubMed database to investigate immunological changes in patients with migraine. We then added other relevant articles on altered immunity in migraine to our search. RESULTS Database screening identified 1,102 articles, of which 41 were selected. We added another 104 relevant articles. We found studies reporting elevated interictal levels of some proinflammatory cytokines, including IL-6 and TNF-α. Anti-inflammatory cytokines showed various findings, such as increased TGF-β and decreased IL-10. Other changes in humoral immunity included increased levels of chemokines, adhesion molecules, and matrix metalloproteinases; activation of the complement system; and increased IgM and IgA. Changes in cellular immunity included an increase in T helper cells, decreased cytotoxic T cells, decreased regulatory T cells, and an increase in a subset of natural killer cells. A significant comorbidity of autoimmune and allergic diseases with migraine was observed. CONCLUSIONS Our review summarizes the findings regarding altered humoral and cellular immunological findings in human migraine. We highlight the possible involvement of immunological mechanisms in the pathogenesis of migraine. However, further studies are needed to expand our knowledge of the exact role of immunological mechanisms in migraine pathogenesis.
Collapse
Affiliation(s)
- Woo-Seok Ha
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Min Kyung Chu
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
18
|
Zhou L, Butler TA, Wang XH, Xi K, Tanzi EB, Glodzik L, Chiang GC, de Leon MJ, Li Y. Multimodal assessment of brain fluid clearance is associated with amyloid-beta deposition in humans. J Neuroradiol 2024; 51:101164. [PMID: 37907155 PMCID: PMC11058119 DOI: 10.1016/j.neurad.2023.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/09/2023] [Accepted: 10/28/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE The present study investigates a multimodal imaging assessment of glymphatic function and its association with brain amyloid-beta deposition. METHODS Two brain CSF clearance measures (vCSF and DTI-ALPS) were derived from dynamic PET and MR diffusion tensor imaging (DTI) for 50 subjects, 24/50 were Aβ positive (Aβ+). T1W, T2W, DTI, T2FLAIR, and 11C-PiB and 18F-MK-6240 PET were acquired. Multivariate linear regression models were assessed with both vCSF and DTI-ALPS as independent variables and brain Aβ as the dependent variable. Three types of models were evaluated, including the vCSF-only model, the ALPS-only model and the vCSF+ALPS combined model. Models were applied to the whole group, and Aβ subgroups. All analyses were controlled for age, gender, and intracranial volume. RESULTS Sample demographics (N=50) include 20 males and 30 females with a mean age of 69.30 (sd=8.55). Our results show that the combination of vCSF and ALPS associates with Aβ deposition (p < 0.05, R2 = 0.575) better than either vCSF (p < 0.05, R2 = 0.431) or ALPS (p < 0.05, R2 = 0.372) alone in the Aβ+ group. We observed similar results in whole-group analyses (combined model: p < 0.05, R2 = 0.287; vCSF model: p <0.05, R2 = 0.175; ALPS model: p < 0.05, R2 = 0.196) with less significance. Our data also showed that vCSF has higher correlation (r = -0.548) in subjects with mild Aβ deposition and DTI-ALPS has higher correlation (r=-0.451) with severe Aβ deposition subjects. CONCLUSION The regression model with both vCSF and DTI-ALPS is better associated with brain Aβ deposition. These two independent brain clearance measures may better explain the variation in Aβ deposition than either term individually. Our results suggest that vCSF and DTI-ALPS reflect complementary aspects of brain clearance functions.
Collapse
Affiliation(s)
- Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Xiuyuan H Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Emily B Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 E 61st St, Feil 2, New York, NY 10065, United States.
| |
Collapse
|
19
|
Sládek M, Houdek P, Myung J, Semenovykh K, Dočkal T, Sumová A. The circadian clock in the choroid plexus drives rhythms in multiple cellular processes under the control of the suprachiasmatic nucleus. Fluids Barriers CNS 2024; 21:46. [PMID: 38802875 PMCID: PMC11131265 DOI: 10.1186/s12987-024-00547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Choroid plexus (ChP), the brain structure primarily responsible for cerebrospinal fluid production, contains a robust circadian clock, whose role remains to be elucidated. The aim of our study was to [1] identify rhythmically controlled cellular processes in the mouse ChP and [2] assess the role and nature of signals derived from the master clock in the suprachiasmatic nuclei (SCN) that control ChP rhythms. To accomplish this goal, we used various mouse models (WT, mPer2Luc, ChP-specific Bmal1 knockout) and combined multiple experimental approaches, including surgical lesion of the SCN (SCNx), time-resolved transcriptomics, and single cell luminescence microscopy. In ChP of control (Ctrl) mice collected every 4 h over 2 circadian cycles in darkness, we found that the ChP clock regulates many processes, including the cerebrospinal fluid circadian secretome, precisely times endoplasmic reticulum stress response, and controls genes involved in neurodegenerative diseases (Alzheimer's disease, Huntington's disease, and frontotemporal dementia). In ChP of SCNx mice, the rhythmicity detected in vivo and ex vivo was severely dampened to a comparable extent as in mice with ChP-specific Bmal1 knockout, and the dampened cellular rhythms were restored by daily injections of dexamethasone in mice. Our data demonstrate that the ChP clock controls tissue-specific gene expression and is strongly dependent on the presence of a functional connection with the SCN. The results may contribute to the search for a novel link between ChP clock disruption and impaired brain health.
Collapse
Affiliation(s)
- Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Jihwan Myung
- Graduate Institute of Mind, Brain and Consciousness (GIMBC), Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre (BCRC), TMU-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kateryna Semenovykh
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Tereza Dočkal
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic
| | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague 4, 14200, Czech Republic.
| |
Collapse
|
20
|
Hatami-Fard G, Anastasova-Ivanova S. Advancements in Cerebrospinal Fluid Biosensors: Bridging the Gap from Early Diagnosis to the Detection of Rare Diseases. SENSORS (BASEL, SWITZERLAND) 2024; 24:3294. [PMID: 38894085 PMCID: PMC11174891 DOI: 10.3390/s24113294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024]
Abstract
Cerebrospinal fluid (CSF) is a body fluid that can be used for the diagnosis of various diseases. However, CSF collection requires an invasive and painful procedure called a lumbar puncture (LP). This procedure is applied to any patient with a known risk of central nervous system (CNS) damage or neurodegenerative disease, regardless of their age range. Hence, this can be a very painful procedure, especially in infants and elderly patients. On the other hand, the detection of disease biomarkers in CSF makes diagnoses as accurate as possible. This review aims to explore novel electrochemical biosensing platforms that have impacted biomedical science. Biosensors have emerged as techniques to accelerate the detection of known biomarkers in body fluids such as CSF. Biosensors can be designed and modified in various ways and shapes according to their ultimate applications to detect and quantify biomarkers of interest. This process can also significantly influence the detection and diagnosis of CSF. Hence, it is important to understand the role of this technology in the rapidly progressing field of biomedical science.
Collapse
Affiliation(s)
- Ghazal Hatami-Fard
- The Hamlyn Centre, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
21
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
22
|
Fan KQ, Huang T, Yu JS, Li YY, Jin J. The clinical features and potential mechanisms of cognitive disorders in peripheral autoimmune and inflammatory diseases. FUNDAMENTAL RESEARCH 2024; 4:226-236. [PMID: 38933510 PMCID: PMC11197673 DOI: 10.1016/j.fmre.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
According to a study from World Health Organization's Global Burden of Disease, mental and neurological disorders have accounted for 13% of global diseases in recent years and are on the rise. Neuropsychiatric conditions or neuroinflammatory disorders are linked by the presence of an exaggerated immune response both peripherally and in the central nervous system (CNS). Cognitive dysfunction (CD) encompasses a complex group of diseases and has frequently been described in the field of autoimmune diseases, especially in multiple non-CNS-related autoimmune diseases. Recent studies have provided various hypotheses regarding the occurrence of cognitive impairment in autoimmune diseases, including that abnormally activated immune cells can disrupt the integrity of the blood-brain barrier (BBB) to trigger a central neuroinflammatory response. When the BBB is intact, autoantibodies and pro-inflammatory molecules in peripheral circulation can enter the brain to activate microglia, inducing CNS inflammation and CD. However, the mechanisms explaining the association between the immune system and neural function and their contribution to diseases are uncertain. In this review, we used clinical statistics to illustrate the correlation between CD and autoimmune diseases that do not directly affect the CNS, summarized the clinical features and mechanisms by which autoimmune diseases trigger cognitive impairment, and explored existing knowledge regarding the link between CD and autoimmune diseases from the perspective of the field of neuroimmunology.
Collapse
Affiliation(s)
- Ke-qi Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Tao Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| | - Jian-shuai Yu
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yi-yuan Li
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jin Jin
- MOE Laboratory of Biosystem Homeostasis and Protection, and Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Sir Run Shaw Hospital, College of Medicine Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
23
|
Ang PS, Zhang DM, Azizi SA, Norton de Matos SA, Brorson JR. The glymphatic system and cerebral small vessel disease. J Stroke Cerebrovasc Dis 2024; 33:107557. [PMID: 38198946 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Cerebral small vessel disease is a group of pathologies in which alterations of the brain's blood vessels contribute to stroke and neurocognitive changes. Recently, a neurotoxic waste clearance system composed of perivascular spaces abutting the brain's blood vessels, termed the glymphatic system, has been identified as a key player in brain homeostasis. Given that small vessel disease and the glymphatic system share anatomical structures, this review aims to reexamine small vessel disease in the context of the glymphatic system and highlight novel aspects of small vessel disease physiology. MATERIALS AND METHODS This review was conducted with an emphasis on studies that examined aspects of small vessel disease and on works characterizing the glymphatic system. We searched PubMed for relevant articles using the following keywords: glymphatics, cerebral small vessel disease, arterial pulsatility, hypertension, blood-brain barrier, endothelial dysfunction, stroke, diabetes. RESULTS Cerebral small vessel disease and glymphatic dysfunction are anatomically connected and significant risk factors are shared between the two. These include hypertension, type 2 diabetes, advanced age, poor sleep, obesity, and neuroinflammation. There is clear evidence that CSVD hinders the effective functioning of glymphatic system. CONCLUSION These shared risk factors, as well as the model of cerebral amyloid angiopathy pathogenesis, hint at the possibility that glymphatic dysfunction could independently contribute to the pathogenesis of cerebral small vessel disease. However, the current evidence supports a model of cascading dysfunction, wherein concurrent small vessel and glymphatic injury hinder glymphatic-mediated recovery and promote the progression of subclinical to clinical disease.
Collapse
Affiliation(s)
- Phillip S Ang
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Douglas M Zhang
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | - Saara-Anne Azizi
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States
| | | | - James R Brorson
- University of Chicago Pritzker School of Medicine, Chicago, IL 60637, United States; Department of Neurology, The University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
24
|
Passarelli JP, Nimjee SM, Townsend KL. Stroke and Neurogenesis: Bridging Clinical Observations to New Mechanistic Insights from Animal Models. Transl Stroke Res 2024; 15:53-68. [PMID: 36462099 DOI: 10.1007/s12975-022-01109-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/04/2022]
Abstract
Stroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s. Now, adult neurogenesis has been extensively studied in human and mouse neurogenic brain niches, of which the subventricular zone of the lateral ventricles and subgranular zone of the dentate gyrus are best studied. Numerous other niches are under investigation for neurogenic potential. This review offers a basic overview to stroke in the clinical setting, a focused summary of recent and foundational research literature on cortical neurogenesis and post-stroke brain plasticity, and insights regarding how the meninges and choroid plexus have emerged as key players in neurogenesis and neuroplasticity in the context of focal cerebral ischemia disrupting the anterior circulation. The choroid plexus and meninges are vital as they are integral sites for neuroimmune interactions, glymphatic perfusion, and niche signaling pertinent to neural stem cells and neurogenesis. Modulating neuroimmune interactions with a focus on astrocyte activity, potentially through manipulation of the choroid plexus and meningeal niches, may reduce the exacerbation of stroke by inflammatory mediators and create an environment conducive to neurorecovery. Furthermore, addressing impaired glymphatic perfusion after ischemic stroke likely supports a neurogenic environment by clearing out inflammatory mediators, neurotoxic metabolites, and other accumulated waste. The meninges and choroid plexus also contribute more directly to promoting neurogenesis: the meninges are thought to harbor neural stem cells and are a niche amenable to neural stem/progenitor cell migration. Additionally, the choroid plexus has secretory functions that directly influences stem cells through signaling mechanisms and growth factor actions. More research to better understand the functions of the meninges and choroid plexus may lead to novel approaches for stimulating neuronal recovery after ischemic stroke.
Collapse
Affiliation(s)
| | - Shahid M Nimjee
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
25
|
Aragón C, Robinson D, Kocher M, Barrick K, Chen L, Zierhut H. Genetic etiologies and diagnostic methods for congenital ventriculomegaly and hydrocephalus: A scoping review. Birth Defects Res 2024; 116:e2287. [PMID: 38116905 DOI: 10.1002/bdr2.2287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/30/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Congenital hydrocephalus (CH) is a life-threatening neurological condition that results from an imbalance in production, flow, or absorption of cerebrospinal fluid. Predicted outcomes from in utero diagnosis are frequently unclear. Moreover, conventional treatments consisting primarily of antenatal and postnatal surgeries are often unsuccessful, leading to high mortality rates. Causes of CH can range from secondary insults to germline pathogenic variants, complicating diagnostic processes and treatment outcomes. Currently, an updated summary of CH genetic etiologies in conjunction with clinical testing methodologies is lacking. This review addresses this need by generating a centralized survey of known genetic causes and available molecular tests for CH. METHODS The scoping review protocol was registered with the Open Science Framework and followed the Arksey and O'Malley framework and the Joanna Briggs Institute methodology. The Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) was utilized to define search guidelines and screening criteria. RESULTS Our survey revealed a high number of genetic etiologies associated with CH, ranging from single gene variants to multifactorial birth defects, and additionally uncovered diagnostic challenges that are further complicated by changes in testing approaches over the years. Furthermore, we discovered that most of the existing literature consists of case reports, underscoring the need for studies that utilize CH patient research cohorts as well as more mechanistic studies. CONCLUSIONS The pursuit of such studies will facilitate novel gene discovery while recognizing phenotypic complexity. Addressing these research gaps could ultimately inform evidence-based diagnostic guidelines to improve patient care.
Collapse
Affiliation(s)
- Caroline Aragón
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - D'aviyan Robinson
- Department of Biology Teaching and Learning, University of Minnesota, Minneapolis, Minnesota, USA
| | - Megan Kocher
- University of Minnesota Libraries, Minneapolis, Minnesota, USA
| | - Katie Barrick
- University of Minnesota Libraries, Minneapolis, Minnesota, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heather Zierhut
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
26
|
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, Jackson HK, Moreira LR, Palacio PL, Hill AF, Quinn JF, Van Keuren‐Jensen KR, McFarland TJ, Palade J, Sribnick EA, Su H, Vekrellis K, Coyle B, Yang Y, Falcón‐Perez JM, Nieuwland R, Saugstad JA, International Society for Extracellular Vesicles Cerebrospinal Fluid Task Force. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles 2024; 13:e12397. [PMID: 38158550 PMCID: PMC10756860 DOI: 10.1002/jev2.12397] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Cerebrospinal fluid (CSF) is a clear, transparent fluid derived from blood plasma that protects the brain and spinal cord against mechanical shock, provides buoyancy, clears metabolic waste and transports extracellular components to remote sites in the brain. Given its contact with the brain and the spinal cord, CSF is the most informative biofluid for studies of the central nervous system (CNS). In addition to other components, CSF contains extracellular vesicles (EVs) that carry bioactive cargoes (e.g., lipids, nucleic acids, proteins), and that can have biological functions within and beyond the CNS. Thus, CSF EVs likely serve as both mediators of and contributors to communication in the CNS. Accordingly, their potential as biomarkers for CNS diseases has stimulated much excitement for and attention to CSF EV research. However, studies on CSF EVs present unique challenges relative to EV studies in other biofluids, including the invasive nature of CSF collection, limited CSF volumes and the low numbers of EVs in CSF as compared to plasma. Here, the objectives of the International Society for Extracellular Vesicles CSF Task Force are to promote the reproducibility of CSF EV studies by providing current reporting and best practices, and recommendations and reporting guidelines, for CSF EV studies. To accomplish this, we created and distributed a world-wide survey to ISEV members to assess methods considered 'best practices' for CSF EVs, then performed a detailed literature review for CSF EV publications that was used to curate methods and resources. Based on responses to the survey and curated information from publications, the CSF Task Force herein provides recommendations and reporting guidelines to promote the reproducibility of CSF EV studies in seven domains: (i) CSF Collection, Processing, and Storage; (ii) CSF EV Separation/Concentration; (iii) CSF EV Size and Number Measurements; (iv) CSF EV Protein Studies; (v) CSF EV RNA Studies; (vi) CSF EV Omics Studies and (vii) CSF EV Functional Studies.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Setty M. Magaña
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Júlia Costa
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de Lisboa, Avenida da RepúblicaOeirasPortugal
| | - John P. Nolan
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Laura J. Vella
- Department of Surgery, The Royal Melbourne HospitalThe University of MelbourneParkvilleVictoriaAustralia
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | - Hannah K. Jackson
- Department of PathologyUniversity of CambridgeCambridgeUK
- Exosis, Inc.Palm BeachFloridaUSA
| | - Lissette Retana Moreira
- Department of Parasitology, Faculty of MicrobiologyUniversity of Costa RicaSan JoséCosta Rica, Central America
- Centro de Investigación en Enfermedades TropicalesUniversity of Costa RicaSan JoséCosta Rica, Central America
| | - Paola Loreto Palacio
- Center for Clinical and Translational Research, Abigail Wexner Research InstituteNationwide Children's HospitalColumbusOhioUSA
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneVictoriaAustralia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVictoriaAustralia
| | - Joseph F. Quinn
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
- Portland VA Medical CenterPortlandOregonUSA
| | | | - Trevor J. McFarland
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Joanna Palade
- Neurogenomics DivisionTranslational Genomics Research InstitutePhoenixArizonaUSA
| | - Eric A. Sribnick
- Department of NeurosurgeryNationwide Children's Hospital, The Ohio State UniversityColumbusOhioUSA
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkville, MelbourneVictoriaAustralia
| | | | - Beth Coyle
- Children's Brain Tumour Research Centre, School of MedicineUniversity of Nottingham Biodiscovery Institute, University of NottinghamNottinghamNottinghamshireUK
| | - You Yang
- Scintillon Institute for Biomedical and Bioenergy ResearchSan DiegoCaliforniaUSA
| | - Juan M. Falcón‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y DigestivasMadridSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | |
Collapse
|
27
|
Yang H, Wei XS, Gong J, Du XM, Feng HB, Su C, Gilmore C, Yue C, Yu SB, Li C, Sui HJ. The relationship between myodural bridge, atrophy and hyperplasia of the suboccipital musculature, and cerebrospinal fluid dynamics. Sci Rep 2023; 13:18882. [PMID: 37919345 PMCID: PMC10622500 DOI: 10.1038/s41598-023-45820-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023] Open
Abstract
The Myodural Bridge (MDB) is a physiological structure that is highly conserved in mammals and many of other tetrapods. It connects the suboccipital muscles to the cervical spinal dura mater (SDM) and transmits the tensile forces generated by the suboccipital muscles to the SDM. Consequently, the MDB has broader physiological potentials than just fixing the SDM. It has been proposed that MDB significantly contributes to the dynamics of cerebrospinal fluid (CSF) movements. Animal models of suboccipital muscle atrophy and hyperplasia were established utilizing local injection of BTX-A and ACE-031. In contrast, animal models with surgical severance of suboccipital muscles, and without any surgical operation were set as two types of negative control groups. CSF secretion and reabsorption rates were then measured for subsequent analysis. Our findings demonstrated a significant increase in CSF secretion rate in rats with the hyperplasia model, while there was a significant decrease in rats with the atrophy and severance groups. We observed an increase in CSF reabsorption rate in both the atrophy and hyperplasia groups, but no significant change was observed in the severance group. Additionally, our immunohistochemistry results revealed no significant change in the protein level of six selected choroid plexus-CSF-related proteins among all these groups. Therefore, it was indicated that alteration of MDB-transmitted tensile force resulted in changes of CSF secretion and reabsorption rates, suggesting the potential role that MDB may play during CSF circulation. This provides a unique research insight into CSF dynamics.
Collapse
Affiliation(s)
- Heng Yang
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China
| | - Xiao-Song Wei
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China
| | - Jin Gong
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China
| | - Xue-Mei Du
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hong-Bo Feng
- Department of Nuclear Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chang Su
- The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | | | - Chen Yue
- Department of Gynecology ands Obstetrics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Sheng-Bo Yu
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China
| | - Chan Li
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China.
| | - Hong-Jin Sui
- Department of Anatomy, Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
28
|
Lim J, Rhee S, Choi H, Lee J, Kuttappan S, Yves Nguyen TT, Choi S, Kim Y, Jeon NL. Engineering choroid plexus-on-a-chip with oscillatory flow for modeling brain metastasis. Mater Today Bio 2023; 22:100773. [PMID: 37664794 PMCID: PMC10474164 DOI: 10.1016/j.mtbio.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The human brain choroid plexus (ChP) is a highly organized secretory tissue with a complex vascular system and epithelial layers in the ventricles of the brain. The ChP is the body's principal source of cerebrospinal fluid (CSF); it also functions as a barrier to separate the blood from CSF, because the movement of CSF through the body is pulsatile in nature. Thus far, it has been challenging to recreate the specialized features and dynamics of the ChP in a physiologically relevant microenvironment. In this study, we recapitulated the ChP structure by developing a microfluidic chip in accordance with established design rules. Furthermore, we used image processing and analysis to mimic CSF flow dynamics within a rlcking system; we also used a hydrogel containing laminin to mimic brain extracellular matrix (ECM). Human ChP cells were cultured in the ChP-on-a-chip with in vivo-like CSF dynamic flow and an engineered ECM. The key ChP characteristics of capillaries, the epithelial layer, and secreted components were recreated in the adjusted microenvironment of our human ChP-on-a-chip. The drug screening capabilities of the device were observed through physiologically relevant drug responses from breast cancer cells that had spread in the ChP. ChP immune responses were also recapitulated in this device, as demonstrated by the motility and cytotoxic effects of macrophages, which are the most prevalent immune cells in the ChP. Our human ChP-on-a-chip will facilitate the elucidation of ChP pathophysiology and support the development of therapeutics to treat cancers that have metastasized into the ChP.
Collapse
Affiliation(s)
- Jungeun Lim
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
| | - Stephen Rhee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Hyeri Choi
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
| | - Jungseub Lee
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Shruthy Kuttappan
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| | - Tri Tho Yves Nguyen
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Sunbeen Choi
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
| | - YongTae Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Noo Li Jeon
- School of Mechanical Engineering, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, South Korea
- Institute of Advanced Machinery and Design, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
29
|
Potokar M, Zorec R, Jorgačevski J. Astrocytes Are a Key Target for Neurotropic Viral Infection. Cells 2023; 12:2307. [PMID: 37759529 PMCID: PMC10528686 DOI: 10.3390/cells12182307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Astrocytes are increasingly recognized as important viral host cells in the central nervous system. These cells can produce relatively high quantities of new virions. In part, this can be attributed to the characteristics of astrocyte metabolism and its abundant and dynamic cytoskeleton network. Astrocytes are anatomically localized adjacent to interfaces between blood capillaries and brain parenchyma and between blood capillaries and brain ventricles. Moreover, astrocytes exhibit a larger membrane interface with the extracellular space than neurons. These properties, together with the expression of various and numerous viral entry receptors, a relatively high rate of endocytosis, and morphological plasticity of intracellular organelles, render astrocytes important target cells in neurotropic infections. In this review, we describe factors that mediate the high susceptibility of astrocytes to viral infection and replication, including the anatomic localization of astrocytes, morphology, expression of viral entry receptors, and various forms of autophagy.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia
- Celica Biomedical, Tehnološki Park 24, 1000 Ljubljana, Slovenia
| |
Collapse
|
30
|
Williams MR, Macdonald CM, Turkheimer FE. Histological examination of choroid plexus epithelia changes in schizophrenia. Brain Behav Immun 2023; 111:292-297. [PMID: 37150267 DOI: 10.1016/j.bbi.2023.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
BACKGROUND The choroid plexus (CP) produces and secretes most of the cerebrospinal fluid (CSF) of the central nervous system. The CP is suggested to be regulated by descending neurons and by circulating factors and is involved in the interaction between central and peripheral inflammation. Quantitative imaging has demonstrated volumetric CP changes in psychosis, schizophrenia and depression. This study histologically examines CP epithelial cell morphology in these illnesses to identify the biological source of such volumetric changes. METHODS Formalin-fixed paraffin-embedded (FFPE) blocks were obtained bilaterally from the lateral ventricles of 13 cases of sex- and age-matched brains from each of schizophrenia (SZ) with psychosis, major depressive disorder (MDD) and matched controls (NPD). FFPE blocks were sectioned at 7 μm and routinely stained for H&E. Morphological analysis of 180 CP epithelia/case was conducted blindly on digital images collected at x600 magnification. Calcification was assessed in all CP regions manually. RESULTS Analysis with a General Linear Model demonstrated a significant effect of diagnosis on somal width (p = 0.006, R2 = 0.33 R2(adj) = 0.25) demonstrating increased somal width in SZ without psychotic medication versus controls (p = 0.032), but not in medicated SZ cases. No effects were observed in calcification. DISCUSSION The epithelial cells that were examined were attached to the CP fibrous surface, so width expansion describes the primary methods for these cells to expand with adherence to this surface in SZ. The interaction of antipsychotic medication and diagnosis demonstrates that this is an illness-specific change mediated through the DA-system with likely neuronal origin. CP alterations were not found in MDD where they are instead generally associated with heightened allostatic load that was unknown in this cohort.
Collapse
Affiliation(s)
- M R Williams
- Segmentum Analysis, St John's Innovation Park, Cambridge Science Park, UK
| | | | - F E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
31
|
Mrštná K, Kujovská Krčmová L, Švec F. Advances in kynurenine analysis. Clin Chim Acta 2023:117441. [PMID: 37321530 DOI: 10.1016/j.cca.2023.117441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Kynurenine, the first product of tryptophan degradation via the kynurenine pathway, has become one of the most frequently mentioned biomarkers in recent years. Its levels in the body indicate the state of the human physiology. Human serum and plasma are the main matrixes used to evaluate kynurenine levels and liquid chromatography is the dominant technique for its determination. However, their concentrations in blood do not always correspond to the levels in other matrixes obtained from the affected individuals. It is therefore important to decide when it is appropriate to analyse kynurenine in alternative matrices. However, liquid chromatography may not be the best option for the analysis. This review presents alternatives that can be used and summarizes the features that need to be considered prior to kynurenine determination. Possible approaches to kynurenine analysis in a variety of human matrixes, their challenges, and limitations are critically discussed.
Collapse
Affiliation(s)
- K Mrštná
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic
| | - L Kujovská Krčmová
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic; The Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Sokolská 581, 50005 Hradec Králové, Czech Republic.
| | - F Švec
- The Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
32
|
Cerasuolo M, Di Meo I, Auriemma MC, Trojsi F, Maiorino MI, Cirillo M, Esposito F, Polito R, Colangelo AM, Paolisso G, Papa M, Rizzo MR. Iron and Ferroptosis More than a Suspect: Beyond the Most Common Mechanisms of Neurodegeneration for New Therapeutic Approaches to Cognitive Decline and Dementia. Int J Mol Sci 2023; 24:9637. [PMID: 37298586 PMCID: PMC10253771 DOI: 10.3390/ijms24119637] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegeneration is a multifactorial process that involves multiple mechanisms. Examples of neurodegenerative diseases are Parkinson's disease, multiple sclerosis, Alzheimer's disease, prion diseases such as Creutzfeldt-Jakob's disease, and amyotrophic lateral sclerosis. These are progressive and irreversible pathologies, characterized by neuron vulnerability, loss of structure or function of neurons, and even neuron demise in the brain, leading to clinical, functional, and cognitive dysfunction and movement disorders. However, iron overload can cause neurodegeneration. Dysregulation of iron metabolism associated with cellular damage and oxidative stress is reported as a common event in several neurodegenerative diseases. Uncontrolled oxidation of membrane fatty acids triggers a programmed cell death involving iron, ROS, and ferroptosis, promoting cell death. In Alzheimer's disease, the iron content in the brain is significantly increased in vulnerable regions, resulting in a lack of antioxidant defenses and mitochondrial alterations. Iron interacts with glucose metabolism reciprocally. Overall, iron metabolism and accumulation and ferroptosis play a significant role, particularly in the context of diabetes-induced cognitive decline. Iron chelators improve cognitive performance, meaning that brain iron metabolism control reduces neuronal ferroptosis, promising a novel therapeutic approach to cognitive impairment.
Collapse
Affiliation(s)
- Michele Cerasuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Irene Di Meo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Maria Chiara Auriemma
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Anna Maria Colangelo
- Laboratory of Neuroscience “R. Levi-Montalcini”, Department of Biotechnology and Biosciences, NeuroMI Milan Center for Neuroscience, University of Milano-Bicocca, 20126 Milano, Italy;
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| | - Michele Papa
- Laboratory of Neuronal Networks Morphology and System Biology, Department of Mental and Physical Health and Preventive Medicine, University of Campania ‘‘Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.C.); (I.D.M.); (M.C.A.); (F.T.); (M.I.M.); (M.C.); (F.E.); (G.P.)
| |
Collapse
|
33
|
Czarniak N, Kamińska J, Matowicka-Karna J, Koper-Lenkiewicz OM. Cerebrospinal Fluid-Basic Concepts Review. Biomedicines 2023; 11:biomedicines11051461. [PMID: 37239132 DOI: 10.3390/biomedicines11051461] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cerebrospinal fluid plays a crucial role in protecting the central nervous system (CNS) by providing mechanical support, acting as a shock absorber, and transporting nutrients and waste products. It is produced in the ventricles of the brain and circulates through the brain and spinal cord in a continuous flow. In the current review, we presented basic concepts related to cerebrospinal fluid history, cerebrospinal fluid production, circulation, and its main components, the role of the blood-brain barrier and the blood-cerebrospinal fluid barrier in the maintenance of cerebrospinal fluid homeostasis, and the utility of Albumin Quotient (QAlb) evaluation in the diagnosis of CNS diseases. We also discussed the collection of cerebrospinal fluid (type, number of tubes, and volume), time of transport to the laboratory, and storage conditions. Finally, we briefly presented the role of cerebrospinal fluid examination in CNS disease diagnosis of various etiologies and highlighted that research on identifying cerebrospinal fluid biomarkers indicating disease presence or severity, evaluating treatment effectiveness, and enabling understanding of pathogenesis and disease mechanisms is of great importance. Thus, in our opinion, research on cerebrospinal fluid is still necessary for both the improvement of CNS disease management and the discovery of new treatment options.
Collapse
Affiliation(s)
- Natalia Czarniak
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | | |
Collapse
|
34
|
Senay O, Seethaler M, Makris N, Yeterian E, Rushmore J, Cho KIK, Rizzoni E, Heller C, Pasternak O, Szczepankiewicz F, Westin C, Losak J, Ustohal L, Tomandl J, Vojtisek L, Kudlicka P, Kikinis Z, Holt D, Lewandowski KE, Lizano P, Keshavan MS, Öngür D, Kasparek T, Breier A, Shenton ME, Seitz‐Holland J, Kubicki M. A preliminary choroid plexus volumetric study in individuals with psychosis. Hum Brain Mapp 2023; 44:2465-2478. [PMID: 36744628 PMCID: PMC10028672 DOI: 10.1002/hbm.26224] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.
Collapse
Affiliation(s)
- Olcay Senay
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Magdalena Seethaler
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry and Psychotherapy, Campus Charité MittePsychiatric University Hospital Charité at St. Hedwig Hospital, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Edward Yeterian
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kang Ik K. Cho
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Elizabeth Rizzoni
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carina Heller
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Clinical PsychologyFriedrich‐Schiller‐University JenaJenaGermany
| | - Ofer Pasternak
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Filip Szczepankiewicz
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carl‐Frederik Westin
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jan Losak
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Libor Ustohal
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Josef Tomandl
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Lubomir Vojtisek
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Peter Kudlicka
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Zora Kikinis
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daphne Holt
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Dost Öngür
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of MedicineMasaryk University and University Hospital BrnoBrnoCzech Republic
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martha E. Shenton
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Johanna Seitz‐Holland
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Marek Kubicki
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
35
|
Gigase FAJ, Smith E, Collins B, Moore K, Snijders GJLJ, Katz D, Bergink V, Perez-Rodriquez MM, De Witte LD. The association between inflammatory markers in blood and cerebrospinal fluid: a systematic review and meta-analysis. Mol Psychiatry 2023; 28:1502-1515. [PMID: 37055513 PMCID: PMC10266485 DOI: 10.1038/s41380-023-01976-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Neuroinflammatory processes have been hypothesized to play a role in the pathogenesis of psychiatric and neurological diseases. Studies on this topic often rely on analysis of inflammatory biomarkers in peripheral blood. Unfortunately, the extent to which these peripheral markers reflect inflammatory processes in the central nervous system (CNS) is unclear. METHODS We performed a systematic review and found 29 studies examining the association between inflammatory marker levels in blood and cerebrospinal (CSF) samples. We performed a random effects meta-analysis of 21 studies (pooled n = 1679 paired samples) that reported the correlation of inflammatory markers in paired blood-CSF samples. RESULTS A qualitative review revealed moderate to high quality of included studies with the majority of studies reporting no significant correlation of inflammatory markers between paired blood-CSF. Meta-analyses revealed a significant low pooled correlation between peripheral and CSF biomarkers (r = 0.21). Meta-analyses of individual cytokines revealed a significant pooled correlation for IL-6 (r = 0.26) and TNFα (r = 0.3) after excluding outlier studies, but not for other cytokines. Sensitivity analyses showed that correlations were highest among participants with a median age above 50 (r = 0.46) and among autoimmune disorder patients (r = 0.35). CONCLUSION This systematic review and meta-analysis revealed poor correlation between peripheral and central inflammatory markers in paired blood-CSF samples, with increased correlations in certain study populations. Based on the current findings, peripheral inflammatory markers are a poor reflection of the neuroinflammatory profile.
Collapse
Affiliation(s)
- Frederieke A J Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
- Department of Clinical and Medical Psychology, Tilburg University, Tilburg, The Netherlands.
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Emma Smith
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Brett Collins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Kendall Moore
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Gijsje J L J Snijders
- Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Daniel Katz
- Department of Anesthesiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Veerle Bergink
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | | | - Lotje D De Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
36
|
Reiter RJ, Sharma R, Cucielo MS, Tan DX, Rosales-Corral S, Gancitano G, de Almeida Chuffa LG. Brain washing and neural health: role of age, sleep, and the cerebrospinal fluid melatonin rhythm. Cell Mol Life Sci 2023; 80:88. [PMID: 36917314 PMCID: PMC11072793 DOI: 10.1007/s00018-023-04736-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
The brain lacks a classic lymphatic drainage system. How it is cleansed of damaged proteins, cellular debris, and molecular by-products has remained a mystery for decades. Recent discoveries have identified a hybrid system that includes cerebrospinal fluid (CSF)-filled perivascular spaces and classic lymph vessels in the dural covering of the brain and spinal cord that functionally cooperate to remove toxic and non-functional trash from the brain. These two components functioning together are referred to as the glymphatic system. We propose that the high levels of melatonin secreted by the pineal gland directly into the CSF play a role in flushing pathological molecules such as amyloid-β peptide (Aβ) from the brain via this network. Melatonin is a sleep-promoting agent, with waste clearance from the CNS being highest especially during slow wave sleep. Melatonin is also a potent and versatile antioxidant that prevents neural accumulation of oxidatively-damaged molecules which contribute to neurological decline. Due to its feedback actions on the suprachiasmatic nucleus, CSF melatonin rhythm functions to maintain optimal circadian rhythmicity, which is also critical for preserving neurocognitive health. Melatonin levels drop dramatically in the frail aged, potentially contributing to neurological failure and dementia. Melatonin supplementation in animal models of Alzheimer's disease (AD) defers Aβ accumulation, enhances its clearance from the CNS, and prolongs animal survival. In AD patients, preliminary data show that melatonin use reduces neurobehavioral signs such as sundowning. Finally, melatonin controls the mitotic activity of neural stem cells in the subventricular zone, suggesting its involvement in neuronal renewal.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX, 78229, USA.
| | - Maira Smaniotto Cucielo
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| | | | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Giuseppe Gancitano
- 1st "Tuscania" Paratrooper Regiment, Italian Ministry of Defense, 57127, Leghorn, Italy
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology-IBB/UNESP, Institute of Biosciences of Botucatu, Universidade Estadual Paulista, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
37
|
Philips R, Chase D, Thompson D, Hardcastle M, Kiupel M. An extradural cyst in a French Bulldog. N Z Vet J 2023; 71:145-151. [PMID: 36735932 DOI: 10.1080/00480169.2023.2176937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CASE HISTORY A 7-year-old, male neutered French Bulldog was referred to a specialist veterinary hospital for evaluation of progressive paraparesis of 6-months' duration. The owners reported both faecal and urinary incontinence at home. CLINICAL FINDINGS The dog presented with ambulatory paraparesis and pelvic limb ataxia that was more pronounced in the right pelvic limb. The pelvic limb withdrawal response and sciatic myotatic response were reduced bilaterally. Postural reaction responses were delayed in both pelvic limbs, and this was more obvious in the right pelvic limb. The anal tone and perineal sensation were normal at the time of examination.An L4-S3 myelopathy was suspected. CT of the spine revealed a compressive, bilobed, extramedullary, cyst-like structure within the vertebral canal, between L7 and S3. Surgical removal of the cyst via a L7-S1 dorsal laminectomy was performed. Histopathological examination and additional immunohistochemistry of the excised structure indicated a probable ependymal cyst with a ciliated lining. The dog recovered well post-operatively, and at follow-up 3 weeks later had some improvement of his neurological signs. The paraparesis and pelvic limb ataxia had improved; however, the remaining neurological examination was similar to the pre-surgical examination. DIAGNOSIS Extradural cyst. CLINICAL RELEVANCE Spinal cysts can contribute to clinical signs that resemble other common chronic spinal cord diseases, such as intervertebral disc disease. Therefore, this disease should be considered as a differential when dealing with cases of progressive paraparesis and pelvic limb ataxia. This case report may potentially provide opportunities in the future for further understanding of the pathogenesis, behaviour, outcomes and subclassification of spinal cysts in dogs.
Collapse
Affiliation(s)
- R Philips
- Veterinary Specialists Aotearoa, Auckland, New Zealand
| | - D Chase
- Veterinary Specialists Aotearoa, Auckland, New Zealand
| | - D Thompson
- Veterinary Specialists Aotearoa, Auckland, New Zealand
| | - M Hardcastle
- Gribbles Veterinary Pathology, Auckland, New Zealand
| | - M Kiupel
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Michigan State University, Lansing, MI, USA
| |
Collapse
|
38
|
Saunders NR, Dziegielewska KM, Fame RM, Lehtinen MK, Liddelow SA. The choroid plexus: a missing link in our understanding of brain development and function. Physiol Rev 2023; 103:919-956. [PMID: 36173801 PMCID: PMC9678431 DOI: 10.1152/physrev.00060.2021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/22/2022] Open
Abstract
Studies of the choroid plexus lag behind those of the more widely known blood-brain barrier, despite a much longer history. This review has two overall aims. The first is to outline long-standing areas of research where there are unanswered questions, such as control of cerebrospinal fluid (CSF) secretion and blood flow. The second aim is to review research over the past 10 years where the focus has shifted to the idea that there are choroid plexuses located in each of the brain's ventricles that make specific contributions to brain development and function through molecules they generate for delivery via the CSF. These factors appear to be particularly important for aspects of normal brain growth. Most research carried out during the twentieth century dealt with the choroid plexus, a brain barrier interface making critical contributions to the composition and stability of the brain's internal environment throughout life. More recent research in the twenty-first century has shown the importance of choroid plexus-generated CSF in neurogenesis, influence of sex and other hormones on choroid plexus function, and choroid plexus involvement in circadian rhythms and sleep. The advancement of technologies to facilitate delivery of brain-specific therapies via the CSF to treat neurological disorders is a rapidly growing area of research. Conversely, understanding the basic mechanisms and implications of how maternal drug exposure during pregnancy impacts the developing brain represents another key area of research.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Neuroscience, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | | | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
39
|
UHPLC-ESI-MS/MS assay for quantification of endocannabinoids in cerebrospinal fluid using surrogate calibrant and surrogate matrix approaches. J Pharm Biomed Anal 2023; 222:115090. [DOI: 10.1016/j.jpba.2022.115090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022]
|
40
|
Jin P, Munson JM. Fluids and flows in brain cancer and neurological disorders. WIREs Mech Dis 2023; 15:e1582. [PMID: 36000149 PMCID: PMC9869390 DOI: 10.1002/wsbm.1582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 01/31/2023]
Abstract
Interstitial fluid (IF) and cerebrospinal fluid (CSF) are an integral part of the brain, serving to cushion and protect the brain parenchymal cells against damage and aid in their function. The brain IF contains various ions, nutrients, waste products, peptides, hormones, and neurotransmitters. IF moves primarily by pressure-dependent bulk flow through brain parenchyma, draining into the ventricular CSF. The brain ventricles and subarachnoid spaces are filled with CSF which circulates through the perivascular spaces. It also flows into the IF space regulated, in part, by aquaporin channels, removing waste solutes through a process of IF-CSF mixing. During disease development, the composition, flow, and volume of these fluids changes and can lead to brain cell dysfunction. With the improvement of imaging technology and the help of genomic profiling, more information has been and can be obtained from brain fluids; however, the role of CSF and IF in brain cancer and neurobiological disease is still limited. Here we outline recent advances of our knowledge of brain fluid flow in cancer and neurodegenerative disease based on our understanding of its dynamics and composition. This article is categorized under: Cancer > Biomedical Engineering Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Peng Jin
- Fralin Biomedical Research Institute, Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Roanoke Virginia USA
| | - Jennifer M. Munson
- Fralin Biomedical Research Institute, Department of Biomedical Engineering and Mechanics Virginia Polytechnic Institute and State University Roanoke Virginia USA
| |
Collapse
|
41
|
Hariharan A, Robertson CD, Garcia DCG, Longden TA. Brain capillary pericytes are metabolic sentinels that control blood flow through a K ATP channel-dependent energy switch. Cell Rep 2022; 41:111872. [PMID: 36577387 PMCID: PMC10187957 DOI: 10.1016/j.celrep.2022.111872] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 12/28/2022] Open
Abstract
Despite the abundance of capillary thin-strand pericytes and their proximity to neurons and glia, little is known of the contributions of these cells to the control of brain hemodynamics. We demonstrate that the pharmacological activation of thin-strand pericyte KATP channels profoundly hyperpolarizes these cells, dilates upstream penetrating arterioles and arteriole-proximate capillaries, and increases capillary blood flow. Focal stimulation of pericytes with a KATP channel agonist is sufficient to evoke this response, mediated via KIR2.1 channel-dependent retrograde propagation of hyperpolarizing signals, whereas genetic inactivation of pericyte KATP channels eliminates these effects. Critically, we show that decreasing extracellular glucose to less than 1 mM or inhibiting glucose uptake by blocking GLUT1 transporters in vivo flips a mechanistic energy switch driving rapid KATP-mediated pericyte hyperpolarization to increase local blood flow. Together, our findings recast capillary pericytes as metabolic sentinels that respond to local energy deficits by increasing blood flow to neurons to prevent energetic shortfalls.
Collapse
Affiliation(s)
- Ashwini Hariharan
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA; Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Colin D Robertson
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Daniela C G Garcia
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA; Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Thomas A Longden
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, USA; Laboratory of Neurovascular Interactions, Center for Biomedical Engineering and Technology, School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
42
|
Liu G, Ladrón-de-Guevara A, Izhiman Y, Nedergaard M, Du T. Measurements of cerebrospinal fluid production: a review of the limitations and advantages of current methodologies. Fluids Barriers CNS 2022; 19:101. [PMID: 36522656 PMCID: PMC9753305 DOI: 10.1186/s12987-022-00382-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebrospinal fluid (CSF) is an essential and critical component of the central nervous system (CNS). According to the concept of the "third circulation" originally proposed by Cushing, CSF is mainly produced by the choroid plexus and subsequently leaves the cerebral ventricles via the foramen of Magendie and Luschka. CSF then fills the subarachnoid space from whence it disperses to all parts of the CNS, including the forebrain and spinal cord. CSF provides buoyancy to the submerged brain, thus protecting it against mechanical injury. CSF is also transported via the glymphatic pathway to reach deep interstitial brain regions along perivascular channels; this CSF clearance pathway promotes transport of energy metabolites and signaling molecules, and the clearance of metabolic waste. In particular, CSF is now intensively studied as a carrier for the removal of proteins implicated in neurodegeneration, such as amyloid-β and tau. Despite this key function of CSF, there is little information about its production rate, the factors controlling CSF production, and the impact of diseases on CSF flux. Therefore, we consider it to be a matter of paramount importance to quantify better the rate of CSF production, thereby obtaining a better understanding of CSF dynamics. To this end, we now review the existing methods developed to measure CSF production, including invasive, noninvasive, direct, and indirect methods, and MRI-based techniques. Depending on the methodology, estimates of CSF production rates in a given species can extend over a ten-fold range. Throughout this review, we interrogate the technical details of CSF measurement methods and discuss the consequences of minor experimental modifications on estimates of production rate. Our aim is to highlight the gaps in our knowledge and inspire the development of more accurate, reproducible, and less invasive techniques for quantitation of CSF production.
Collapse
Affiliation(s)
- Guojun Liu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
- School of Pharmacy, China Medical University, Shenyang, 110122, China
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Antonio Ladrón-de-Guevara
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yara Izhiman
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Ting Du
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
43
|
Onderwater GLJ, van Dongen RM, Harms AC, Zielman R, van Oosterhout WPJ, van Klinken JB, Goeman JJ, Terwindt GM, van den Maagdenberg AMJM, Hankemeier T, Ferrari MD. Cerebrospinal Fluid and Plasma Amine Profiles in Interictal Migraine. Ann Neurol 2022; 93:715-728. [PMID: 36511835 DOI: 10.1002/ana.26576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 11/18/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Impaired amine metabolism has been associated with the etiology of migraine, that is, why patients continue to get migraine attacks. However, evidence from cerebrospinal fluid (CSF) is lacking. Here, we evaluated individual amine levels, global amine profiles, and amine pathways in CSF and plasma of interictal migraine patients and healthy controls. METHODS CSF and plasma were sampled between 8:30 am and 1:00 pm, randomly and interchangeably over the time span to avoid any diurnal and seasonal influences, from healthy volunteers and interictal migraine patients, matched for age, sex, and sampling time. The study was approved by the local medical ethics committee. Individual amines (n = 31), global amine profiles, and specific amine pathways were analyzed using a validated ultraperformance liquid chromatography mass spectrometry platform. RESULTS We analyzed n = 99 participants with migraine with aura, n = 98 with migraine without aura, and n = 96 healthy volunteers. Univariate analysis with Bonferroni correction indicated that CSF L-arginine was reduced in migraine with aura (10.4%, p < 0.001) and without aura (5.0%, p = 0.03). False discovery rate-corrected CSF L-phenylalanine was also lower in migraine with aura (6.9%, p = 0.011) and without aura (8.1%, p = 0.001), p = 0.088 after Bonferroni correction. Multivariate analysis revealed that CSF global amine profiles were similar for both types of migraine (p = 0.64), but distinct from controls (p = 0.009). Global profile analyses were similar in plasma. The strongest associated pathways with migraine were related to L-arginine metabolism. INTERPRETATION L-Arginine was decreased in the CSF (but not in plasma) of interictal patients with migraine with or without aura, and associated pathways were altered. This suggests that dysfunction of nitric oxide signaling is involved in susceptibility to getting migraine attacks. ANN NEUROL 2023.
Collapse
Affiliation(s)
| | - Robin M van Dongen
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Ronald Zielman
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jan B van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jelle J Goeman
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden, the Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
44
|
Cho PG, Noh SH, Kim SH. A new surgical method for treating syringomyelia secondary to arachnoiditis following cervical spine surgery: the syringo-cisterna magna shunt. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3724-3730. [PMID: 35107619 DOI: 10.1007/s00586-022-07123-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/13/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE The 5-year postoperative failure rate of conventional shunt treatment for syringomyelia is 50%, with arachnoditis, shunt obstruction, and shunt malfunction being the most common causes. We report a new syringo-cisterna magna (SCM) shunt that allows syrinx cerebrospinal fluid (CSF) drainage normally into the cerebellomedullary cisterns through the subarachnoid space. METHODS Between November 2012 and February 2017, six patients (mean age: 57.25 years; sex: four male and two female) received the SCM shunt. They had spinal cord injury, abscess formation after a spine operation, and cerebral meningitis-related syringomyelia (syrinx between C0 and T9), and presented sensory changes and motor weakness. Preoperatively and at 1 year postoperatively, the syrinx length and diameter were assessed using magnetic resonance imaging (MRI). Clinical outcomes were evaluated using the visual analog scale (VAS) and Japanese Orthopedic Association (JOA) scores. RESULTS Motor weakness improved, pain subsided, and sensory disturbance resolved in all patients who returned to work within 6 weeks postoperatively. In all cases, the syrinx collapsed (length: 3.3 levels decreased; diameter: decreased from 7.90 to 4.64 mm, p = 0.046) on postoperative MRI. No patient experienced syrinx recurrence and shunt malfunction on MRI or showed spinal instability signs on plain radiography. The VAS (pre- vs post-shunt: 6.50 vs 3.83, p = 0.027) and JOA scores (pre- vs post-shunt: 10.00 vs 11.17, p = 0.167) were improved postoperatively. CONCLUSION We developed a new shunting system allowing syrinx CSF drainage to the posterior fossa, with symptomatic improvement, minimal complications, and syrinx decrease on follow-up MRI. The SCM shunt is effective for treating syringomyelia.
Collapse
Affiliation(s)
- Pyung Goo Cho
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Sung Hyun Noh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | - Sang Hyun Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea.
| |
Collapse
|
45
|
Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun 2022; 4:fcac288. [PMID: 36415662 PMCID: PMC9677497 DOI: 10.1093/braincomms/fcac288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 11/01/2022] [Indexed: 08/08/2023] Open
Abstract
Within the central nervous system, ependymal cells form critical components of the blood-cerebrospinal fluid barrier and the cerebrospinal fluid-brain barrier. These barriers provide biochemical, immunological and physical protection against the entry of molecules and foreign substances into the cerebrospinal fluid while also regulating cerebrospinal fluid dynamics, such as the composition, flow and removal of waste from the cerebrospinal fluid. Previous research has demonstrated that several neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis, display irregularities in ependymal cell function, morphology, gene expression and metabolism. Despite playing key roles in maintaining overall brain health, ependymal barriers are largely overlooked and understudied in the context of disease, thus limiting the development of novel diagnostic and treatment options. Therefore, this review explores the anatomical properties, functions and structures that define ependymal cells in the healthy brain, as well as the ways in which ependymal cell dysregulation manifests across several neurodegenerative diseases. Specifically, we will address potential mechanisms, causes and consequences of ependymal cell dysfunction and describe how compromising the integrity of ependymal barriers may initiate, contribute to, or drive widespread neurodegeneration in the brain.
Collapse
Affiliation(s)
- Diana G Nelles
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, 555 University Ave, Canada
| | - Lili-Naz Hazrati
- Correspondence to: Dr. Lili-Naz Hazrati 555 University Ave, Toronto ON M5G 1X8, Canada E-mail:
| |
Collapse
|
46
|
Mills WA, Coburn MA, Eyo UB. The emergence of the calvarial hematopoietic niche in health and disease. Immunol Rev 2022; 311:26-38. [PMID: 35880587 PMCID: PMC9489662 DOI: 10.1111/imr.13120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diploë region of skull has recently been discovered to act as a myeloid cell reservoir to the underlying meninges. The presence of ossified vascular channels traversing the inner skull of cortex provides a passageway for the cells to traffic from the niche, and CNS-derived antigens traveling through cerebrospinal fluid in a perivascular manner reaches the niche to signal myeloid cell egress. This review will highlight the recent findings establishing this burgeoning field along with the known role this niche plays in CNS aging and disease. It will further highlight the anatomical routes and physiological properties of the vascular structures these cells use for trafficking, spanning from skull to brain parenchyma.
Collapse
Affiliation(s)
- William A. Mills
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Morgan A Coburn
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Ukpong B. Eyo
- Brain, Immunology, and Glia CenterUniversity of VirginiaCharlottesvilleVirginiaUSA,Department of NeuroscienceUniversity of VirginiaCharlottesvilleVirginiaUSA,Robert M. Berne Cardiovascular Research CenterUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
47
|
Thompson D, Brissette CA, Watt JA. The choroid plexus and its role in the pathogenesis of neurological infections. Fluids Barriers CNS 2022; 19:75. [PMID: 36088417 PMCID: PMC9463972 DOI: 10.1186/s12987-022-00372-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
The choroid plexus is situated at an anatomically and functionally important interface within the ventricles of the brain, forming the blood-cerebrospinal fluid barrier that separates the periphery from the central nervous system. In contrast to the blood-brain barrier, the choroid plexus and its epithelial barrier have received considerably less attention. As the main producer of cerebrospinal fluid, the secretory functions of the epithelial cells aid in the maintenance of CNS homeostasis and are capable of relaying inflammatory signals to the brain. The choroid plexus acts as an immunological niche where several types of peripheral immune cells can be found within the stroma including dendritic cells, macrophages, and T cells. Including the epithelia cells, these cells perform immunosurveillance, detecting pathogens and changes in the cytokine milieu. As such, their activation leads to the release of homing molecules to induce chemotaxis of circulating immune cells, driving an immune response at the choroid plexus. Research into the barrier properties have shown how inflammation can alter the structural junctions and promote increased bidirectional transmigration of cells and pathogens. The goal of this review is to highlight our foundational knowledge of the choroid plexus and discuss how recent research has shifted our understanding towards viewing the choroid plexus as a highly dynamic and important contributor to the pathogenesis of neurological infections. With the emergence of several high-profile diseases, including ZIKA and SARS-CoV-2, this review provides a pertinent update on the cellular response of the choroid plexus to these diseases. Historically, pharmacological interventions of CNS disorders have proven difficult to develop, however, a greater focus on the role of the choroid plexus in driving these disorders would provide for novel targets and routes for therapeutics.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Catherine A Brissette
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - John A Watt
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA.
| |
Collapse
|
48
|
Gutiérrez-Montes C, Coenen W, Vidorreta M, Sincomb S, Martínez-Bazán C, Sánchez AL, Haughton V. Effect of Normal Breathing on the Movement of CSF in the Spinal Subarachnoid Space. AJNR Am J Neuroradiol 2022; 43:1369-1374. [PMID: 35981761 PMCID: PMC9451622 DOI: 10.3174/ajnr.a7603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND PURPOSE Forced respirations reportedly have an effect on CSF movement in the spinal canal. We studied respiratory-related CSF motion during normal respiration. MATERIALS AND METHODS Six healthy subjects breathed at their normal rate with a visual guide to ensure an unchanging rhythm. Respiratory-gated phase-contrast MR flow images were acquired at 5 selected axial planes along the spine. At each spinal level, we computed the flow rate voxelwise in the spinal canal, together with the associated stroke volume. From these data, we computed the periodic volume changes of spinal segments. A phantom was used to quantify the effect of respiration-related magnetic susceptibility changes on the velocity data measured. RESULTS At each level, CSF moved cephalad during inhalation and caudad during expiration. While the general pattern of fluid movement was the same in the 6 subjects, the flow rates, stroke volumes, and spine segment volume changes varied among subjects. Peak flow rates ranged from 0.60 to 1.59 mL/s in the cervical region, 0.46 to 3.17 mL/s in the thoracic region, and 0.75 to 3.64 mL/s in the lumbar region. The differences in flow rates along the canal yielded cyclic volume variations of spine segments that were largest in the lumbar spine, ranging from 0.76 to 3.07 mL among subjects. In the phantom study, flow velocities oscillated periodically during the respiratory cycle by up to 0.02 cm/s or 0.5%. CONCLUSIONS Respiratory-gated measurements of the CSF motion in the spinal canal showed cyclic oscillatory movements of spinal fluid correlated to the breathing pattern.
Collapse
Affiliation(s)
- C Gutiérrez-Montes
- From the Department of Mechanical and Mining Engineering (C.G.-M.), University of Jaén, Jaén, Andalucía, Spain
| | - W Coenen
- Grupo de Mecánica de Fluidos, Departamento de Ingeniería Térmica y de Fluidos (W.C.), Universidad Carlos III de Madrid, Madrid, Spain
| | | | - S Sincomb
- Department of Mechanical and Aerospace Engineering (S.S., A.L.S.), University of California San Diego, San Diego, California
| | - C Martínez-Bazán
- Department of Structural Mechanics and Hydraulic Engineering (C.M.-B.), University of Granada, Granada, Spain
| | - A L Sánchez
- Department of Mechanical and Aerospace Engineering (S.S., A.L.S.), University of California San Diego, San Diego, California
| | - V Haughton
- Department of Radiology (V.H.), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
49
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
50
|
Safi C, Solano AG, Liberelle B, Therriault H, Delattre L, Abdelkhalek M, Wang C, Bergeron-Fortier S, Moreau V, De Crescenzo G, Faucheux N, Lauzon MA, Paquette B, Virgilio N. Effect of Chitosan on Alginate-Based Macroporous Hydrogels for the Capture of Glioblastoma Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:4531-4540. [PMID: 35948423 DOI: 10.1021/acsabm.2c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme is a type of brain cancer associated with a very low survival rate since a large number of cancer cells remain infiltrated in the brain despite the treatments currently available. This work presents a macroporous hydrogel trap, destined to be implanted in the surgical cavity following tumor resection and designed to attract and retain cancer cells, in order to eliminate them afterward with a lethal dose of stereotactic radiotherapy. The biocompatible hydrogel formulation comprises sodium alginate (SA) and chitosan (CHI) bearing complementary electrostatic charges and stabilizing the gels in saline and cell culture media, as compared to pristine SA gels. The highly controlled and interconnected porosity, characterized by X-ray microCT, yields mechanical properties comparable to those of brain tissues and allows F98 glioblastoma cells to penetrate the gels within the entire volume, as confirmed by fluorescence microscopy. The addition of a grafted -RGD peptide on SA, combined with CHI, significantly enhances the adhesion and retention of F98 cells within the gels. Overall, the best compromise between low proliferation and a high level of accumulation and retention of F98 cells was obtained with the hydrogel formulated with 1% SA and 0.2% CHI, without the -RGD adhesion peptide.
Collapse
Affiliation(s)
- Caroline Safi
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Angela Giraldo Solano
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Hélène Therriault
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Lisa Delattre
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Melek Abdelkhalek
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Changsheng Wang
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Simon Bergeron-Fortier
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Vaiana Moreau
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| | - Nathalie Faucheux
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Marc-Antoine Lauzon
- Department of Chemical and Biotechnological Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, Québec J1K 0A5, Canada
| | - Benoit Paquette
- Center for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Nick Virgilio
- Research Center for High Performance Polymer and Composite Systems (CREPEC), Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec H3C 3A7, Canada
| |
Collapse
|