1
|
Tuomi SK, Deng F, Neuvonen M, Niemi M. Transport of statins by multidrug resistance-associated proteins 1 and 5. Eur J Pharm Sci 2025; 209:107070. [PMID: 40089121 DOI: 10.1016/j.ejps.2025.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/30/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Statins are widely used in the treatment of hypercholesterolemia but also associated with muscle-related adverse effects. Multidrug resistance-associated protein (MRP) 1 and 5 are expressed in the skeletal muscle, where they may regulate intramuscular levels of their substrates. Here, we investigated the transport of various statins by MRP1 and MRP5 with the vesicular transport assay. Statin concentrations in the vesicles were determined with liquid chromatography tandem mass spectrometry. At 6 µM statin concentration, MRP1 transported both 3R,5S-fluvastatin and 3S,5R-fluvastatin with uptake ratios of 2.6 and 2.0. MRP5 transported 3R,5S-fluvastatin, 3S,5R-fluvastatin, and 10 µM pitavastatin with uptake ratios of 2.9, 3.7, and 2.6, respectively. Atorvastatin was only a weak substrate of MRP5 with an uptake ratio of 1.6 and was therefore not investigated further. In concentration-dependent transport experiments, racemic fluvastatin was transported by MRP1 and MRP5 with apparent affinities (Km) of 225 µM and 23 µM. Pitavastatin was transported by MRP5 with a Km value of 433 µM. In vitro clearance (CLin vitro) of fluvastatin was 0.36 µl/min/mg for MRP1, while MRP5 exhibited a CLin vitro value of 1.2 µl/min/mg for fluvastatin and 0.21 µl/min/mg for pitavastatin. Pravastatin, rosuvastatin, and simvastatin acid were not transported by MRP1 or MRP5. Atorvastatin and pitavastatin were not transported by MRP1. These data indicate that MRP1 transports fluvastatin, while MRP5 transports both fluvastatin and pitavastatin. Because MRP1 and MRP5 are expressed in the skeletal muscle, they may reduce myocyte exposure to fluvastatin and pitavastatin and protect from muscle toxicity.
Collapse
Affiliation(s)
- Suvi-Kukka Tuomi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine, University of Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
2
|
Yang C, Zhao E, Zhang H, Duan L, Han X, Ding H, Cheng Y, Wang D, Lei X, Diwu Y. Xixin Decoction's novel mechanism for alleviating Alzheimer's disease cognitive dysfunction by modulating amyloid-β transport across the blood-brain barrier to reduce neuroinflammation. Front Pharmacol 2025; 15:1508726. [PMID: 39834810 PMCID: PMC11743276 DOI: 10.3389/fphar.2024.1508726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/05/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose Xixin Decoction (XXD) is a classical formula that has been used to effectively treat dementia for over 300 years. Modern clinical studies have demonstrated its significant therapeutic effects in treating Alzheimer's disease (AD) without notable adverse reactions. Nevertheless, the specific mechanisms underlying its efficacy remain to be elucidated. This investigation sought to elucidate XXD's impact on various aspects of AD pathology, including blood-brain barrier (BBB) impairment, neuroinflammatory processes, and amyloid-β (Aβ) deposition, as well as the molecular pathways involved in these effects. Methods In vitro experiments were conducted using hCMEC/D3 and HBVP cell coculture to establish an in vitro blood-brain barrier (BBB) model. BBB damage was induced in this model by 24-h exposure to 1 μg/mL lipopolysaccharide (LPS). After 24, 48, and 72 h of treatment with 10% XXD-medicated serum, the effects of XXD were assessed through Western blotting, RT-PCR, and immunofluorescence techniques. In vivo, SAMP8 mice were administered various doses of XXD via gavage for 8 weeks, including high-dose XXD group (H-XXD) at 5.07 g kg-1·d-1, medium-dose XXD group (M-XXD) at 2.535 g kg-1·d-1, and low-dose XXD group (L-XXD) at 1.2675 g kg-1·d-1. Cognitive function was subsequently evaluated using the Morris water maze test. BBB integrity was evaluated using Evans blue staining, and protein expression levels were analyzed via ELISA, Western blotting, and immunofluorescence. Results In vitro experiments revealed that XXD-containing serum, when cultured for 24, 48, and 72 h, could upregulate the expression of P-gp mRNA and protein, downregulate CB1 protein expression, and upregulate CB2 and Mfsd2a protein expression. In vivo studies demonstrated that XXD improved spatial learning and memory abilities in SAMP8 mice, reduced the amount of Evans blue extravasation in brain tissues, modulated the BBB-associated P-gp/ECS axis, RAGE/LRP1 receptor system, as well as MRP2 and Mfsd2a proteins, and decreased the accumulation of Aβ in the brains of SAMP8 mice. Additionally, XXD upregulated the expression of TREM2, downregulated IBA1, TLR1, TLR2, and CMPK2 expression, and reduced the levels of pro-inflammatory factors NLRP3, NF-κB p65, COX-2, TNF-α, and IL-1β in the hippocampal tissues. Conclusion XXD may exert its effects by regulating the P-gp/ECS axis, the RAGE/LRP1 receptor system, and the expression of MRP2 and Mfsd2a proteins, thereby modulating the transport function of the BBB to expedite the clearance of Aβ, reduce cerebral Aβ accumulation, and consequently inhibit the activation of microglia induced by Aβ aggregation. This process may suppress the activation of the CMPK2/NLRP3 and TLRs/NF-κB pathways, diminish the production of inflammatory cytokines and chemokines, alleviate neuroinflammation associated with microglia in the brain of AD, and ultimately improve AD pathology.
Collapse
Affiliation(s)
- Chaokai Yang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Enlong Zhao
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hu Zhang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Liqi Duan
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xinyue Han
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hongli Ding
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yan Cheng
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Dengkun Wang
- The First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, China
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaojing Lei
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yongchang Diwu
- Key Research Laboratory for Prevention and Treatment of Cerebrospinal diseases, Shaanxi Provincial Administration of Traditional Chinese Medicine, Xianyang, China
- Discipline Innovation Team for Neurodegenerative Diseases of Shaanxi University of Chinese Medicine, Xianyang, China
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Zhu Y, Xing X, Wang F, Chen L, Zhong C, Lu X, Yu Z, Yang Y, Yao Y, Song Q, Han S, Liu Z, Zhang P. The ATP-bound inward-open conformation of ABCC4 reveals asymmetric ATP binding for substrate transport. FEBS Lett 2024; 598:1967-1980. [PMID: 38886124 DOI: 10.1002/1873-3468.14955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The multidrug resistance-associated protein (MRP) ABCC4 facilitates substrate transport across the cytoplasmic membrane, crucial for normal physiology and mediating multidrug resistance in tumor cells. Despite intensive studies on MRPs, ABCC4's transport mechanism remains incompletely understood. In this study, we unveiled an inward-open conformation with an ATP bound to degenerate NBD1. Additionally, we captured the structure with both ATP and substrate co-bound in the inward-open state. Our findings uncover the asymmetric ATP binding in ABCC4 and provide insights into substrate binding and transport mechanisms. ATP binding to NBD1 is parallel to substrate binding to ABCC4, and is a prerequisite for ATP-bound NBD2-induced global conformational changes. Our findings shed new light on targeting ABCC4 in combination with anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Fuxing Wang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Luojun Chen
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Chunhui Zhong
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Xiting Lu
- School of Applied Biology, Shenzhen Institute of Technology, China
| | - Zhanwang Yu
- School of Applied Biology, Shenzhen Institute of Technology, China
| | - Yongbo Yang
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Suxia Han
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Zheng Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
4
|
Carstens G, Verbeek MM, Rohlwink UK, Figaji AA, te Brake L, van Laarhoven A. Metabolite transport across central nervous system barriers. J Cereb Blood Flow Metab 2024; 44:1063-1077. [PMID: 38546534 PMCID: PMC11179608 DOI: 10.1177/0271678x241241908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 06/13/2024]
Abstract
Metabolomic analysis of cerebrospinal fluid (CSF) is used to improve diagnostics and pathophysiological understanding of neurological diseases. Alterations in CSF metabolite levels can partly be attributed to changes in brain metabolism, but relevant transport processes influencing CSF metabolite concentrations should be considered. The entry of molecules including metabolites into the central nervous system (CNS), is tightly controlled by the blood-brain, blood-CSF, and blood-spinal cord barriers, where aquaporins and membrane-bound carrier proteins regulate influx and efflux via passive and active transport processes. This report therefore provides reference for future CSF metabolomic work, by providing a detailed summary of the current knowledge on the location and function of the involved transporters and routing of metabolites from blood to CSF and from CSF to blood.
Collapse
Affiliation(s)
- Gesa Carstens
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel M Verbeek
- Departments of Neurology and Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behavior, Nijmegen, Netherlands
| | - Ursula K Rohlwink
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anthony A Figaji
- Division of Neurosurgery, Department of Surgery, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Lindsey te Brake
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine and Radboud Center of Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
5
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
6
|
Sun M, Manson ML, Guo T, de Lange ECM. CNS Viral Infections-What to Consider for Improving Drug Treatment: A Plea for Using Mathematical Modeling Approaches. CNS Drugs 2024; 38:349-373. [PMID: 38580795 PMCID: PMC11026214 DOI: 10.1007/s40263-024-01082-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.
Collapse
Affiliation(s)
- Ming Sun
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tingjie Guo
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
7
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
8
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
9
|
Bloch M, Raj I, Pape T, Taylor NMI. Structural and mechanistic basis of substrate transport by the multidrug transporter MRP4. Structure 2023; 31:1407-1418.e6. [PMID: 37683641 DOI: 10.1016/j.str.2023.08.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Multidrug resistance-associated protein 4 (MRP4) is an ATP-binding cassette (ABC) transporter expressed at multiple tissue barriers where it actively extrudes a wide variety of drug compounds. Overexpression of MRP4 provides resistance to clinically used antineoplastic agents, making it a highly attractive therapeutic target for countering multidrug resistance. Here, we report cryo-EM structures of multiple physiologically relevant states of lipid bilayer-embedded human MRP4, including complexes between MRP4 and two widely used chemotherapeutic agents and a complex between MRP4 and its native substrate. The structures display clear similarities and distinct differences in the coordination of these chemically diverse substrates and, in combination with functional and mutational analysis, reveal molecular details of the transport mechanism. Our study provides key insights into the unusually broad substrate specificity of MRP4 and constitutes an important contribution toward a general understanding of multidrug transporters.
Collapse
Affiliation(s)
- Magnus Bloch
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isha Raj
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Tillmann Pape
- Structural Molecular Biology Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; Core Facility for Integrated Microscopy (CFIM), Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 20, 2200 Copenhagen, Denmark
| | - Nicholas M I Taylor
- Structural Biology of Molecular Machines Group, Protein Structure & Function Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
10
|
Mineiro R, Albuquerque T, Neves AR, Santos CRA, Costa D, Quintela T. The Role of Biological Rhythms in New Drug Formulations to Cross the Brain Barriers. Int J Mol Sci 2023; 24:12541. [PMID: 37628722 PMCID: PMC10454916 DOI: 10.3390/ijms241612541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
For brain protection, the blood-brain barrier and blood-cerebrospinal fluid barrier limit the traffic of molecules between blood and brain tissue and between blood and cerebrospinal fluid, respectively. Besides their protective function, brain barriers also limit the passage of therapeutic drugs to the brain, which constitutes a great challenge for the development of therapeutic strategies for brain disorders. This problem has led to the emergence of novel strategies to treat neurological disorders, like the development of nanoformulations to deliver therapeutic agents to the brain. Recently, functional molecular clocks have been identified in the blood-brain barrier and in the blood-cerebrospinal fluid barrier. In fact, circadian rhythms in physiological functions related to drug disposition were also described in brain barriers. This opens the possibility for chronobiological approaches that aim to use time to improve drug efficacy and safety. The conjugation of nanoformulations with chronobiology for neurological disorders is still unexplored. Facing this, here, we reviewed the circadian rhythms in brain barriers, the nanoformulations studied to deliver drugs to the brain, and the nanoformulations with the potential to be conjugated with a chronobiological approach to therapeutic strategies for the brain.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana Raquel Neves
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Cecília R. A. Santos
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
11
|
Abstract
2'3'-cGAMP is a key molecule in the cGAS-STING pathway. This cyclic dinucleotide is produced by the cytosolic DNA sensor cGAS in response to the presence of aberrant dsDNA in the cytoplasm which is associated with microbial invasion or cellular damage. 2'3'-cGAMP acts as a second messenger and activates STING, the central hub of DNA sensing, to induce type-I interferons and pro-inflammatory cytokines necessary for responses against infection, cancer or cellular stress. Classically, detection of pathogens or danger by pattern recognition receptors (PRR) was thought to signal and induce the production of interferon and pro-inflammatory cytokines in the cell where sensing occurred. These interferon and cytokines then signal in both an autocrine and paracrine manner to induce responses in neighboring cells. Deviating from this dogma, recent studies have identified multiple mechanisms by which 2'3'-cGAMP can travel to neighboring cells where it activates STING independent of DNA sensing by cGAS. This observation is of great importance, as the cGAS-STING pathway is involved in immune responses against microbial invaders and cancer while its dysregulation drives the pathology of a wide range of inflammatory diseases to which antagonists have been elusive. In this review, we describe the fast-paced discoveries of the mechanisms by which 2'3'-cGAMP can be transported. We further highlight the diseases where they are important and detail how this change in perspective can be applied to vaccine design, cancer immunotherapies and treatment of cGAS-STING associated disease.
Collapse
Affiliation(s)
- Henry T. W. Blest
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Lise Chauveau
- Institut de Recherche en Infectiologie de Montpellier (IRIM) - CNRS UMR 9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Wunsch FT, Metzler-Nolte N, Theiss C, Matschke V. Defects in Glutathione System in an Animal Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2023; 12:antiox12051014. [PMID: 37237880 DOI: 10.3390/antiox12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progredient neurodegenerative disease characterized by a degeneration of the first and second motor neurons. Elevated levels of reactive oxygen species (ROS) and decreased levels of glutathione, which are important defense mechanisms against ROS, have been reported in the central nervous system (CNS) of ALS patients and animal models. The aim of this study was to determine the cause of decreased glutathione levels in the CNS of the ALS model wobbler mouse. We analyzed changes in glutathione metabolism in the spinal cord, hippocampus, cerebellum, liver, and blood samples of the ALS model, wobbler mouse, using qPCR, Western Blot, HPLC, and fluorometric assays. Here, we show for the first time a decreased expression of enzymes involved in glutathione synthesis in the cervical spinal cord of wobbler mice. We provide evidence for a deficient glutathione metabolism, which is not restricted to the nervous system, but can be seen in various tissues of the wobbler mouse. This deficient system is most likely the reason for an inefficient antioxidative system and, thus, for elevated ROS levels.
Collapse
Affiliation(s)
- Franziska T Wunsch
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
13
|
Mineiro R, Santos C, Gonçalves I, Lemos M, Cavaco JEB, Quintela T. Regulation of ABC transporters by sex steroids may explain differences in drug resistance between sexes. J Physiol Biochem 2023:10.1007/s13105-023-00957-1. [PMID: 36995571 DOI: 10.1007/s13105-023-00957-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Drug efficacy is dependent on the pharmacokinetics and pharmacodynamics of therapeutic agents. Tight junctions, detoxification enzymes, and drug transporters, due to their localization on epithelial barriers, modulate the absorption, distribution, and the elimination of a drug. The epithelial barriers which control the pharmacokinetic processes are sex steroid hormone targets, and in this way, sex hormones may also control the drug transport across these barriers. Thus, sex steroids contribute to sex differences in drug resistance and have a relevant impact on the sex-related efficacy of many therapeutic drugs. As a consequence, for the further development and optimization of therapeutic strategies, the sex of the individuals must be taken into consideration. Here, we gather and discuss the evidence about the regulation of ATP-binding cassette transporters by sex steroids, and we also describe the signaling pathways by which sex steroids modulate ATP-binding cassette transporters expression, with a focus in the most important ATP-binding cassette transporters involved in multidrug resistance.
Collapse
Affiliation(s)
- Rafael Mineiro
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Cecília Santos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Manuel Lemos
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - José Eduardo B Cavaco
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique. 6200-506, Covilhã, Portugal.
- UDI-IPG-Unidade de Investigação Para o Desenvolvimento Do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
14
|
de Oliveira MG, Passos GR, de Gomes EDT, Leonardi GR, Zapparoli A, Antunes E, Mónica FZ. Inhibition of multidrug resistance proteins by MK571 restored the erectile function in obese mice through cGMP accumulation. Andrology 2023; 11:611-620. [PMID: 36375168 DOI: 10.1111/andr.13340] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/09/2022] [Accepted: 11/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Intracellular levels of cyclic nucleotides can also be controlled by the action of multidrug resistance protein types 4 (MRP4) and 5 (MRP5). To date, no studies evaluated the role of their inhibition in an animal model of erectile dysfunction (ED). OBJECTIVES To evaluate the effect of a 2-week treatment with MK571, an inhibitor of the efflux of cyclic nucleotides in the ED of obese mice. MATERIALS AND METHODS Mice were divided in three groups: (i) lean, (ii) obese, and (iii) obese + MK571. The corpus cavernosum (CC) were isolated, and concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), and tadalafil in addition to electrical field stimulation (EFS) were carried out in phenylephrine pre-contracted tissues. Expression of ABCC4 and ABCC5, intracellular levels of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), the protein levels for pVASPSer157 and pVASPSer239 , and the intracavernous pressure (ICP) were also determined. The intracellular and extracellular (supernatant) ratios in CC from obese and lean stimulated with a cGMP-increasing substance (BAY 58-2667) in the absence and presence of MK571 (20 μM, 30 min) were also assessed. RESULTS The treatment with MK571 completely reversed the lower relaxing responses induced by EFS, ACh, SNP, and tadalafil observed in obese mice CC in comparison with untreated obese mice. Cyclic GMP and p-VASPSer239 expression were significantly reduced in CC from obese groups. MK571 promoted a sixfold increase in cGMP without interfering in the protein expression of p-VASPSer239 . Neither the cAMP levels nor p-VASPSer157 were altered in MK571-treated animals. The ICP was ∼50% lower in obese than in the lean mice; however, the treatment with MK571 fully reversed this response. Expressions of ABCC4 and ABCC5 were not different between groups. The intra/extracellular ratio of cGMP was similar in CC from obese and lean mice stimulated with BAY 58-2667. CONCLUSIONS The MRPs inhibition by MK571 favored the accumulation of cGMP in the smooth muscle cells, thus improving the smooth muscle relaxation and the erectile function in obese mice.
Collapse
Affiliation(s)
- Mariana Gonçalves de Oliveira
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela Reolon Passos
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erick de Toledo de Gomes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Guilherme Ruiz Leonardi
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Adriana Zapparoli
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Edson Antunes
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fabiola Zakia Mónica
- Department of Translation Medicine (Pharmacology area), Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
15
|
Torres-Vergara P, Rivera R, Escudero C, Penny J. Maternal and Fetal Expression of ATP-Binding Cassette and Solute Carrier Transporters Involved in the Brain Disposition of Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:149-177. [PMID: 37466773 DOI: 10.1007/978-3-031-32554-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Evidence from preclinical and clinical studies demonstrate that pregnancy is a physiological state capable of modifying drug disposition. Factors including increased hepatic metabolism and renal excretion are responsible for impacting disposition, and the role of membrane transporters expressed in biological barriers, including the placental- and blood-brain barriers, has received considerable attention. In this regard, the brain disposition of drugs in the mother and fetus has been the subject of studies attempting to characterize the mechanisms by which pregnancy could alter the expression of ATP-binding cassette (ABC) and solute carrier (SLC) transporters. This chapter will summarize findings of the influence of pregnancy on the maternal and fetal expression of ABC and SLC transporters in the brain and the consequences of such changes on the disposition of therapeutic drugs.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile.
| | - Robin Rivera
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Grupo de Investigación Vascular (GRIVAS), Universidad del Bio-Bio, Chillán, Chile
- Laboratorio de Fisiología Vascular, Facultad de Ciencias Básicas, Universidad del Bio Bio, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
16
|
Bouzbib C, El Mourabit H, Wendum D, Lasnier E, Mouri S, Housset C, Thabut D, Weiss N, Rudler M. ATP-binding cassette transporters expression in rats with cirrhosis and hepatic encephalopathy. Clin Res Hepatol Gastroenterol 2022; 46:101784. [PMID: 34384925 DOI: 10.1016/j.clinre.2021.101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pathophysiology of acute encephalopathy in cirrhotic patients is not completely understood. Factors implicated include ammonia, inflammation, various metabolic disorders and drug toxicity. Recent studies have evidenced an increased permeability of the blood-brain barrier (BBB) in models of chronic liver disease and encephalopathy, either to solutes, or to leukocytes. A modification of the expression of BBB ATP-Binding Cassette (ABC) transporters, actively transporting endogenous and exogenous components through the BBB, has been described in models of acute liver failure. We hypothesized that a modification of ABC transporters expression may contribute to drug-induced acute encephalopathy in cirrhosis. MATERIEL AND METHODS A rat model of cirrhosis induced by Bile Duct Ligation (BDL) was studied, and compared to a SHAM rat model. Rats were sacrificed and brains studied after decapitation. Genic expression of ABC transporters, including P-gp, BCRP, MRP1, MRP2, MRP4 and MRP5 was evaluated by RT-qPCR on isolated brain microvessels. Encephalopathy was assessed 6 weeks after surgery by a trail suspension test and an Open Field Test. RESULTS BDL rats developed a histologically proven cirrhosis and displayed a higher ammonemia than SHAM rats (183 µmol/L vs 53 µmol/L, p = 0.0003). BDL rats presented with encephalopathy shown by neurobehavioral tests. MRP2 was not detected neither in BDL nor in SHAM rats. There was a decrease in the genic expression of MRP5 6 weeks after surgery. Expressions of P-gp, BCRP, MRP1 and MRP4 were not different between the 2 groups. CONCLUSION We suggest that acute encephalopathy in cirrhotic BDL rats may be associated to a modification of ABC transporter MRP5 on the BBB, that could be responsible for a decrease clearance of neurotoxic agents.
Collapse
Affiliation(s)
- Charlotte Bouzbib
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France
| | - Haquima El Mourabit
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Dominique Wendum
- AP-HP.Sorbonne Université, Department of Pathology, Saint-Antoine Hospital, 184 rue du Faubourg-Saint-Antoine, 75012 Paris, France
| | - Elisabeth Lasnier
- AP-HP.Sorbonne Université, Department of Biochemistry, Saint-Antoine Hospital, 184 rue du Faubourg-Saint-Antoine, 75012 Paris, France
| | - Sarah Mouri
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France
| | - Chantal Housset
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Dominique Thabut
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France.
| | - Nicolas Weiss
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Neurological Intensive Care Unit, Neurology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France.
| | - Marika Rudler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; Brain Liver Pitié-Salpêtrière Study Group, Sorbonne Université, INSERM UMR_S 938, Centre de recherche Saint-Antoine & Institute of Cardiometabolism and Nutrition (ICAN), Paris, France; AP-HP.Sorbonne Université, Liver Intensive Care Unit, Hepatogastroenterology department, Pitié-Salpêtrière Hospital, 47-83 boulevard de l'Hôpital 75013 Paris, France
| |
Collapse
|
17
|
Ronaldson PT, Davis TP. Transport Mechanisms at the Blood-Brain Barrier and in Cellular Compartments of the Neurovascular Unit: Focus on CNS Delivery of Small Molecule Drugs. Pharmaceutics 2022; 14:1501. [PMID: 35890396 PMCID: PMC9324459 DOI: 10.3390/pharmaceutics14071501] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic stroke is a primary origin of morbidity and mortality in the United States and around the world. Indeed, several research projects have attempted to discover new drugs or repurpose existing therapeutics to advance stroke pharmacotherapy. Many of these preclinical stroke studies have reported positive results for neuroprotective agents; however, only one compound (3K3A-activated protein C (3K3A-APC)) has advanced to Phase III clinical trial evaluation. One reason for these many failures is the lack of consideration of transport mechanisms at the blood-brain barrier (BBB) and neurovascular unit (NVU). These endogenous transport processes function as a "gateway" that is a primary determinant of efficacious brain concentrations for centrally acting drugs. Despite the knowledge that some neuroprotective agents (i.e., statins and memantine) are substrates for these endogenous BBB transporters, preclinical stroke studies have largely ignored the role of transporters in CNS drug disposition. Here, we review the current knowledge on specific BBB transporters that either limit drug uptake into the brain (i.e., ATP-binding cassette (ABC) transporters) or can be targeted for optimized drug delivery (i.e., solute carrier (SLC) transporters). Additionally, we highlight the current knowledge on transporter expression in astrocytes, microglia, pericytes, and neurons with an emphasis on transport mechanisms in these cell types that can influence drug distribution within the brain.
Collapse
Affiliation(s)
- Patrick T. Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724-5050, USA;
| | | |
Collapse
|
18
|
Eng ME, Imperio GE, Bloise E, Matthews SG. ATP-binding cassette (ABC) drug transporters in the developing blood-brain barrier: role in fetal brain protection. Cell Mol Life Sci 2022; 79:415. [PMID: 35821142 PMCID: PMC11071850 DOI: 10.1007/s00018-022-04432-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) provides essential neuroprotection from environmental toxins and xenobiotics, through high expression of drug efflux transporters in endothelial cells of the cerebral capillaries. However, xenobiotic exposure, stress, and inflammatory stimuli have the potential to disrupt BBB permeability in fetal and post-natal life. Understanding the role and ability of the BBB in protecting the developing brain, particularly with respect to drug/toxin transport, is key to promoting long-term brain health. Drug transporters, particularly P-gp and BCRP are expressed in early gestation at the developing BBB and have a crucial role in developmental homeostasis and fetal brain protection. We have highlighted several factors that modulate drug transporters at the developing BBB, including synthetic glucocorticoid (sGC), cytokines, maternal infection, and growth factors. Some factors have the potential to increase expression and function of drug transporters and increase brain protection (e.g., sGC, transforming growth factor [TGF]-β). However, others inhibit drug transporters expression and function at the BBB, increasing brain exposure to xenobiotics (e.g., tumor necrosis factor [TNF], interleukin [IL]-6), negatively impacting brain development. This has implications for pregnant women and neonates, who represent a vulnerable population and may be exposed to drugs and environmental toxins, many of which are P-gp and BCRP substrates. Thus, alterations in regulated transport across the developing BBB may induce long-term changes in brain health and compromise pregnancy outcome. Furthermore, a large portion of neonatal adverse drug reactions are attributed to agents that target or access the nervous system, such as stimulants (e.g., caffeine), anesthetics (e.g., midazolam), analgesics (e.g., morphine) and antiretrovirals (e.g., Zidovudine); thus, understanding brain protection is key for the development of strategies to protect the fetal and neonatal brain.
Collapse
Affiliation(s)
- Margaret E Eng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | | | - Enrrico Bloise
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Stephen G Matthews
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Medical Sciences Bldg. Rm. 3207. 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Canada.
- Department of Obstetrics and Gynecology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
20
|
Boccellato C, Rehm M. Glioblastoma, from disease understanding towards optimal cell-based in vitro models. Cell Oncol (Dordr) 2022; 45:527-541. [PMID: 35763242 PMCID: PMC9424171 DOI: 10.1007/s13402-022-00684-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract
Background
Glioblastoma (GBM) patients are notoriously difficult to treat and ultimately all succumb to disease. This unfortunate scenario motivates research into better characterizing and understanding this disease, and into developing novel research tools by which potential novel therapeutics and treatment options initially can be evaluated pre-clinically. Here, we provide a concise overview of glioblastoma epidemiology, disease classification, the challenges faced in the treatment of glioblastoma and current novel treatment strategies. From this, we lead into a description and assessment of advanced cell-based models that aim to narrow the gap between pre-clinical and clinical studies. Such invitro models are required to deliver reliable and meaningful data for the development and pre-validation of novel therapeutics and treatments.
Conclusions
The toolbox for GBM cell-based models has expanded substantially, with the possibility of 3D printing tumour tissues and thereby replicating invivo tissue architectures now looming on the horizon. A comparison of experimental cell-based model systems and techniques highlights advantages and drawbacks of the various tools available, based on which cell-based models and experimental approaches best suited to address a diversity of research questions in the glioblastoma research field can be selected.
Collapse
Affiliation(s)
- Chiara Boccellato
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, 70569, Stuttgart, Germany.
| |
Collapse
|
21
|
RNA editing enzyme ADAR1 controls miR-381-3p-mediated expression of multidrug resistance protein MRP4 via regulation of circRNA in human renal cells. J Biol Chem 2022; 298:102184. [PMID: 35753353 PMCID: PMC9293778 DOI: 10.1016/j.jbc.2022.102184] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance–associated protein 4 (MRP4), a member of the C subfamily of ATP-binding cassette transporters, is highly expressed in the kidneys of mammals and is responsible for renal elimination of numerous drugs. Adenosine deaminase acting on RNA 1 (ADAR1) has been reported to regulate gene expression by catalyzing adenosine-to-inosine RNA editing reactions; however, potential roles of ADAR1 in the regulation of MRP4 expression have not been investigated. In this study, we found that downregulation of ADAR1 increased the expression of MRP4 in human renal cells at the posttranscriptional level. Luciferase reporter assays and microarray analysis revealed that downregulation of ADAR1 reduced the levels of microRNA miR-381-3p, which led to the corresponding upregulation of MPR4 expression. Circular RNAs (circRNAs) are a type of closed-loop endogenous noncoding RNAs that play an essential role in gene expression by acting as miRNA sponges. We demonstrate that ADAR1 repressed the biogenesis of circRNA circHIPK3 through its adenosine-to-inosine RNA editing activity, which altered the secondary structure of the precursor of circHIPK3. Furthermore, in silico analysis suggested that circHIPK3 acts as a sponge of miR-381-3p. Indeed, we found overexpression of circHIPK3 induced the expression of MRP4 through its interference with miR-381-3p. Taken together, our study provides novel insights into regulation of the expression of xenobiotic transporters through circRNA expression by the RNA editing enzyme ADAR1.
Collapse
|
22
|
Nwabufo CK. Relevance of ABC Transporters in Drug Development. Curr Drug Metab 2022; 23:434-446. [PMID: 35726814 DOI: 10.2174/1389200223666220621113524] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
ATP-binding cassette (ABC) transporters play a critical role in protecting vital organs such as the brain and placenta against xenobiotics, as well as in modulating the pharmacological and toxicological profile of several drug candidates by restricting their penetration through cellular and tissue barriers. This review paper provides a description of the structure and function of ABC transporters as well as the role of P-glycoprotein, multidrug resistance-associated protein 2 and breast cancer resistance protein in the disposition of drugs. Furthermore, a review of the in vitro and in vivo techniques for evaluating the interaction between drugs and ABC transporters are provided.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Canada.,Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Choublier N, Taghi M, Menet MC, Le Gall M, Bruce J, Chafey P, Guillonneau F, Moreau A, Denizot C, Parmentier Y, Nakib S, Borderie D, Bouzinba-Segard H, Couraud PO, Bourdoulous S, Declèves X. Exposure of human cerebral microvascular endothelial cells hCMEC/D3 to laminar shear stress induces vascular protective responses. Fluids Barriers CNS 2022; 19:41. [PMID: 35658915 PMCID: PMC9164338 DOI: 10.1186/s12987-022-00344-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/23/2022] [Indexed: 01/01/2023] Open
Abstract
Endothelial cells (ECs) are constantly submitted in vivo to hemodynamical forces derived from the blood circulation, including shear stress (SS). ECs are able to detect SS and consequently adapt their phenotype, thus affecting many endothelial functions. If a plethora of shear stress-regulated molecular networks have been described in peripheral ECs, less is known about the molecular responses of microvascular brain ECs which constitute the blood-brain barrier (BBB). In this work, we investigated the response of human cerebral microvascular ECs to laminar physiological shear stress using the well characterized hCMEC/D3 cell line. Interestingly, we showed that hCMEC/D3 cells responded to shear stress by aligning perpendicularly to the flow direction, contrary to peripheral endothelial cells which aligned in the flow direction. Whole proteomic profiles were compared between hCMEC/D3 cells cultured either in static condition or under 5 or 10 dyn.cm-2 SS for 3 days. 3592 proteins were identified and expression levels were significantly affected for 3% of them upon both SS conditions. Pathway analyses were performed which revealed that most proteins overexpressed by SS refer to the antioxidant defense, probably mediated by activation of the NRF2 transcriptional factor. Regarding down-regulated proteins, most of them participate to the pro-inflammatory response, cell motility and proliferation. These findings confirm the induction of EC quiescence by laminar physiological SS and reveal a strong protective effect of SS on hCMEC/D3 cells, suggesting a similar effect on the BBB. Our results also showed that SS did not significantly increase expression levels nor did it affect the localization of junctional proteins and did not afect either the functional activity of several ABC transporters (P-glycoprotein and MRPs). This work provides new insights on the response of microvascular brain ECs to SS and on the importance of SS for optimizing in vitro BBB models.
Collapse
Affiliation(s)
- Nina Choublier
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France.
| | - Meryam Taghi
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France
| | - Marie-Claude Menet
- Institut de Chimie Physique, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Morgane Le Gall
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - Johanna Bruce
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - Philippe Chafey
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | - François Guillonneau
- 3P5 Proteom'IC Facility, Institut Cochin, INSERM, CNRS, Université de Paris, F-75014, Paris, France
| | | | | | | | - Samir Nakib
- Service de Biochimie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Didier Borderie
- Service de Biochimie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014, Paris, France
| | - Haniaa Bouzinba-Segard
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Pierre-Olivier Couraud
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Sandrine Bourdoulous
- CNRS, INSERM, Institut Cochin, Inserm, CNRS, Université Paris Cité, 75014, Paris, France
| | - Xavier Declèves
- INSERM, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, 75006, Paris, France.
- Biologie du Médicament Et Toxicologie, AP-HP, Hôpital Cochin, 75014, Paris, France.
| |
Collapse
|
24
|
Noh K, Chow ECY, Quach HP, Groothuis GMM, Tirona RG, Pang KS. Significance of the Vitamin D Receptor on Crosstalk with Nuclear Receptors and Regulation of Enzymes and Transporters. AAPS J 2022; 24:71. [PMID: 35650371 DOI: 10.1208/s12248-022-00719-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
The vitamin D receptor (VDR), in addition to other nuclear receptors, the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), is involved in the regulation of enzymes, transporters and receptors, and therefore intimately affects drug disposition, tissue health, and the handling of endogenous and exogenous compounds. This review examines the role of 1α,25-dihydroxyvitamin D3 or calcitriol, the natural VDR ligand, on activation of the VDR and its crosstalk with other nuclear receptors towards the regulation of enzymes and transporters, notably many of the cytochrome P450s including CYP3A4 and sulfotransferase 2A1 (SULT2A1) as well as cholesterol 7α-hydroxylase (CYP7A1). Moreover, the VDR upregulates the intestinal channel, TRPV6, for calcium absorption, LDL receptor-related protein 1 (LRP1) and receptor for advanced glycation end products (RAGE) in brain for β-amyloid peptide efflux and influx, the sodium phosphate transporters (NaPi), the apical sodium-dependent bile acid transporter (ASBT) and organic solute transporters (OSTα-OSTβ) for bile acid absorption and efflux, respectively, the renal organic anion transporter 3 (OAT3) and several of the ATP-binding cassette protein transporters-the multidrug resistance protein 1 (MDR1) and the multidrug resistance-associated proteins (MRPs). Hence, the role of the VDR is increasingly being recognized for its therapeutic potential and pharmacologic activity, giving rise to drug-drug interactions (DDI). Therapeutically, ligand-activated VDR shows anti-inflammatory effects towards the suppression of inflammatory mediators, improves cognition by upregulating amyloid-beta (Aβ) peptide clearance in brain, and maintains phosphate, calcium, and parathyroid hormone (PTH) balance and kidney function and bone health, demonstrating the crucial roles of the VDR in disease progression and treatment of diseases.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.,Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts, 02142, USA
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.,Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Geny M M Groothuis
- Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
25
|
Inhibition of Xenobiotics Transporters’ Efflux Ability after Nanoplastics Exposure in Larval Japanese Medaka. WATER 2022. [DOI: 10.3390/w14060863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nanoplastics can enter into the aquatic environment as primary nano-sized or fragmented from larger-sized plastic particles, and their ecological effects and environmental fate have aroused increasing public concerns. Here, we identified the disruption of ATP-binding cassette (ABC) efflux after polystyrene (PS) nanoplastics (76 ± 7 nm) exposure in larval Japanese medaka (Oryzias latipes). Nanoplastics (0.001–10 μg/mL) caused 3–6-fold higher lipid peroxidation in fish larvae than the control, with concomitant downregulated expression of efflux transporter-related genes (abcb6a, abcc2, abcg2). Two probes of rhodamine (indicative of p-glycoprotein function for parent compounds’ efflux, P-gp) and fluorescein (indicative of multidrug resistance-associated protein function for metabolites’ efflux, MRP) were further used to verify the inhibited ABC efflux ability, via rhodamine and fluorescein bioaccumulation results. Three-fold higher accumulation of rhodamine was observed following treatment with 10 μg/mL of nanoplastics. Excessive accumulation also occurred for fluorescein, with 1.7–1.8-fold higher concentrations than controls in larvae treated with 0.01–0.1 μg/mL of nanoplastics. Although the inhibition of ABC transporters diminished after two hours of depuration, the co-existence of nanoplastics and other contaminants still raises concerns. Collectively, this study suggests that nanoplastics can negatively impact ABC transporters’ efflux ability and could cause unanticipated accumulation of co-existing organic pollutants in aquatic organisms.
Collapse
|
26
|
Blood-Brain Barrier Transporters: Opportunities for Therapeutic Development in Ischemic Stroke. Int J Mol Sci 2022; 23:ijms23031898. [PMID: 35163820 PMCID: PMC8836701 DOI: 10.3390/ijms23031898] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Globally, stroke is a leading cause of death and long-term disability. Over the past decades, several efforts have attempted to discover new drugs or repurpose existing therapeutics to promote post-stroke neurological recovery. Preclinical stroke studies have reported successes in identifying novel neuroprotective agents; however, none of these compounds have advanced beyond a phase III clinical trial. One reason for these failures is the lack of consideration of blood-brain barrier (BBB) transport mechanisms that can enable these drugs to achieve efficacious concentrations in ischemic brain tissue. Despite the knowledge that drugs with neuroprotective properties (i.e., statins, memantine, metformin) are substrates for endogenous BBB transporters, preclinical stroke research has not extensively studied the role of transporters in central nervous system (CNS) drug delivery. Here, we review current knowledge on specific BBB uptake transporters (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents); organic cation transporters (OCTs in humans; Octs in rodents) that can be targeted for improved neuroprotective drug delivery. Additionally, we provide state-of-the-art perspectives on how transporter pharmacology can be integrated into preclinical stroke research. Specifically, we discuss the utility of in vivo stroke models to transporter studies and considerations (i.e., species selection, co-morbid conditions) that will optimize the translational success of stroke pharmacotherapeutic experiments.
Collapse
|
27
|
Taoro-González L, Cabrera-Pastor A, Sancho-Alonso M, Felipo V. Intracellular and extracelluar cyclic GMP in the brain and the hippocampus. VITAMINS AND HORMONES 2022; 118:247-288. [PMID: 35180929 DOI: 10.1016/bs.vh.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic Guanosine-Monophosphate (cGMP) is implicated as second messenger in a plethora of pathways and its effects are executed mainly by cGMP-dependent protein kinases (PKG). It is involved in both peripheral (cardiovascular regulation, intestinal secretion, phototransduction, etc.) and brain (hippocampal synaptic plasticity, neuroinflammation, cognitive function, etc.) processes. Stimulation of hippocampal cGMP signaling have been proved to be beneficial in animal models of aging, Alzheimer's disease or hepatic encephalopathy, restoring different cognitive functions such as passive avoidance, object recognition or spatial memory. However, even when some inhibitors of cGMP-degrading enzymes (PDEs) are already used against peripheral pathologies, their utility as neurological treatments is still under clinical investigation. Additionally, it has been demonstrated a list of cGMP roles as not second but first messenger. The role of extracellular cGMP has been specially studied in hippocampal function and cognitive impairment in animal models and it has emerged as an important modulator of neuroinflammation-mediated cognitive alterations and hippocampal synaptic plasticity malfunction. Specifically, it has been demonstrated that extracellular cGMP decreases hippocampal IL-1β levels restoring membrane expression of glutamate receptors in the hippocampus and cognitive function in hyperammonemic rats. The mechanisms implicated are still unclear and might involve complex interactions between hippocampal neurons, astrocytes and microglia. Membrane targets for extracellular cGMP are still poorly understood and must be addressed in future studies.
Collapse
Affiliation(s)
- Lucas Taoro-González
- Department of Clinical Psychology, Psychobiology and Methodology, Area of Psycobiology, University of La Laguna, Tenerife, Spain
| | - Andrea Cabrera-Pastor
- Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria (INCLIVA), Valencia, Spain; Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - María Sancho-Alonso
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
28
|
Koehn LM, Huang Y, Habgood MD, Nie S, Chiou SY, Banati RB, Dziegielewska KM, Saunders NR. Efflux transporters in rat placenta and developing brain: transcriptomic and functional response to paracetamol. Sci Rep 2021; 11:19878. [PMID: 34615937 PMCID: PMC8494792 DOI: 10.1038/s41598-021-99139-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Adenosine triphosphate binding cassette (ABC) transporters transfer lipid-soluble molecules across cellular interfaces either directly or after enzymatic metabolism. RNAseq analysis identified transcripts for ABC transporters and enzymes in rat E19, P5 and adult brain and choroid plexus and E19 placenta. Their functional capacity to efflux small molecules was studied by quantitative analysis of paracetamol (acetaminophen) and its metabolites using liquid scintillation counting, autoradiography and ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS). Animals were treated acutely (30 min) and chronically (5 days, twice daily) with paracetamol (15 mg/kg) to investigate ability of brain and placenta barriers to regulate ABC transport functionality during extended treatment. Results indicated that transcripts of many efflux-associated ABC transporters were higher in adult brain and choroid plexus than at earlier ages. Chronic treatment upregulated certain transcripts only in adult brain and altered concentrations of paracetamol metabolites in circulation of pregnant dams. Combination of changes to metabolites and transport system transcripts may explain observed changes in paracetamol entry into adult and fetal brains. Analysis of lower paracetamol dosing (3.75 mg/kg) indicated dose-dependent changes in paracetamol metabolism. Transcripts of ABC transporters and enzymes at key barriers responsible for molecular transport into the developing brain showed alterations in paracetamol pharmacokinetics in pregnancy following different treatment regimens.
Collapse
Affiliation(s)
- L M Koehn
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Y Huang
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - M D Habgood
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - S Nie
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Y Chiou
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - R B Banati
- ANSTO - Australia's Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW, 2234, Australia.,University of Sydney, Camperdown, Sydney, Australia
| | - K M Dziegielewska
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia
| | - N R Saunders
- Department of Biochemistry & Pharmacology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Neuroscience, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
29
|
Hermann R, Krajcsi P, Fluck M, Seithel-Keuth A, Bytyqi A, Galazka A, Munafo A. Review of Transporter Substrate, Inhibitor, and Inducer Characteristics of Cladribine. Clin Pharmacokinet 2021; 60:1509-1535. [PMID: 34435310 PMCID: PMC8613159 DOI: 10.1007/s40262-021-01065-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/23/2022]
Abstract
Cladribine is a nucleoside analog that is phosphorylated in its target cells (B- and T-lymphocytes) to its active adenosine triphosphate form (2-chlorodeoxyadenosine triphosphate). Cladribine tablets 10 mg (Mavenclad®) administered for up to 10 days per year in 2 consecutive years (3.5-mg/kg cumulative dose over 2 years) are used to treat patients with relapsing multiple sclerosis. The ATP-binding cassette, solute carrier, and nucleoside transporter substrate, inhibitor, and inducer characteristics of cladribine are reviewed in this article. Available evidence suggests that the distribution of cladribine across biological membranes is facilitated by a number of uptake and efflux transporters. Among the key ATP-binding cassette efflux transporters, only breast cancer resistance protein has been shown to be an efficient transporter of cladribine, while P-glycoprotein does not transport cladribine well. Intestinal absorption, distribution throughout the body, and intracellular uptake of cladribine appear to be exclusively mediated by equilibrative and concentrative nucleoside transporters, specifically by ENT1, ENT2, ENT4, CNT2 (low affinity), and CNT3. Renal excretion of cladribine appears to be most likely driven by breast cancer resistance protein, ENT1, and P-glycoprotein. The latter may play a role despite its poor cladribine transport efficiency in view of the renal abundance of P-glycoprotein. There is no evidence that solute carrier uptake transporters such as organic anion transporting polypeptides, organic anion transporters, and organic cation transporters are involved in the transport of cladribine. Available in vitro studies examining the inhibitor characteristics of cladribine for a total of 13 major ATP-binding cassette, solute carrier, and CNT transporters indicate that in vivo inhibition of any of these transporters by cladribine is unlikely.
Collapse
Affiliation(s)
- Robert Hermann
- Clinical Research Appliance (cr.appliance), Heinrich-Vingerhut-Weg 3, 63571, Gelnhausen, Germany.
| | | | | | | | | | | | - Alain Munafo
- Institute of Pharmacometrics, an Affiliate of Merck KGaA, Lausanne, Switzerland
| |
Collapse
|
30
|
In focus in HCB. Histochem Cell Biol 2021; 154:247-253. [PMID: 32935148 DOI: 10.1007/s00418-020-01911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Arisawa T, Miyazaki T, Ota W, Sano A, Suyama K, Takada Y, Takahashi T. [ 11C]K-2 image with positron emission tomography represents cell surface AMPA receptors. Neurosci Res 2021; 173:106-113. [PMID: 34033829 DOI: 10.1016/j.neures.2021.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/29/2021] [Accepted: 05/20/2021] [Indexed: 11/27/2022]
Abstract
The glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) is an important molecule in neurotransmission. We have recently developed the first positron emission tomography (PET) tracer [11C]K-2 to visualize and quantify AMPARs in the living human brain. After injection, [11C]K-2 is hydrolyzed at the terminal amide (and is thus metabolized to a major metabolite, [11C]K-2OH) within 10 min, representing the PET image in rodents and humans. Here, we found that K-2OH did not penetrate the cell membrane but slowly passed through the blood brain barrier (BBB) with paracellular transport. Furthermore, major efflux transporters in the BBB did not carry K-2OH. Logan graphical analysis exhibited reversible binding kinetics of this radiotracer in healthy individuals; these results demonstrated that the PET image of this tracer represents cell surface AMPARs with passive penetration of [11C]K-2OH through the BBB, resulting in reversible binding kinetics. Thus, PET images with this tracer depict the physiologically crucial fraction of AMPARs.
Collapse
Affiliation(s)
- Tetsu Arisawa
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan
| | - Tomoyuki Miyazaki
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan
| | - Wataru Ota
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan
| | - Akane Sano
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan
| | - Kumiko Suyama
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan
| | - Yuuki Takada
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan
| | - Takuya Takahashi
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, 236-0004, Japan.
| |
Collapse
|
32
|
Sun A, Wang J. Choroid Plexus and Drug Removal Mechanisms. AAPS JOURNAL 2021; 23:61. [PMID: 33942198 DOI: 10.1208/s12248-021-00587-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023]
Abstract
Timely and efficient removal of xenobiotics and metabolites from the brain is crucial in maintaining the homeostasis and normal function of the brain. The choroid plexus (CP) forms the blood-cerebrospinal fluid barrier and vitally removes drugs and wastes from the brain through several co-existing clearance mechanisms. The CP epithelial (CPE) cells synthesize and secrete the cerebrospinal fluid (CSF). As the CSF passes through the ventricular and subarachnoid spaces and eventually drains into the general circulation, it collects and removes drugs, toxins, and metabolic wastes from the brain. This bulk flow of the CSF serves as a default and non-selective pathway for the removal of solutes and macromolecules from the brain interstitium. Besides clearance by CSF bulk flow, the CPE cells express several multispecific membrane transporters to actively transport substrates from the CSF side into the blood side. In addition, several phase I and II drug-metabolizing enzymes are expressed in the CPE cells, which enzymatically inactivate a broad spectrum of reactive or toxic substances. This review summarizes our current knowledge of the functional characteristics and key contributors to the various clearance pathways in the CP-CSF system, overviewing recent developments in our understanding of CSF flow dynamics and the functional roles of CP uptake and efflux transporters in influencing CSF drug concentrations.
Collapse
Affiliation(s)
- Austin Sun
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington, Health Science Building Room H-272J, Box 357610, Seattle, Washington, 98195-7610, USA.
| |
Collapse
|
33
|
Asif M, Usman M, Ayub S, Farhat S, Huma Z, Ahmed J, Kamal MA, Hussein D, Javed A, Khan I. Role of ATP-Binding Cassette Transporter Proteins in CNS Tumors: Resistance- Based Perspectives and Clinical Updates. Curr Pharm Des 2021; 26:4747-4763. [PMID: 32091329 DOI: 10.2174/1381612826666200224112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Despite gigantic advances in medical research and development, chemotherapeutic resistance remains a major challenge in complete remission of CNS tumors. The failure of complete eradication of CNS tumors has been correlated with the existence of several factors including overexpression of transporter proteins. To date, 49 ABC-transporter proteins (ABC-TPs) have been reported in humans, and the evidence of their strong association with chemotherapeutics' influx, dissemination, and efflux in CNS tumors, is growing. Research studies on CNS tumors are implicating ABC-TPs as diagnostic, prognostic and therapeutic biomarkers that may be utilised in preclinical and clinical studies. With the current advancements in cell biology, molecular analysis of genomic and transcriptomic interplay, and protein homology-based drug-transporters interaction, our research approaches are streamlining the roles of ABC-TPs in cancer and multidrug resistance. Potential inhibitors of ABC-TP for better clinical outcomes in CNS tumors have emerged. Elacridar has shown to enhance the chemo-sensitivity of Dasatanib and Imatinib in various glioma models. Tariquidar has improved the effectiveness of Temozolomide's in CNS tumors. Although these inhibitors have been effective in preclinical settings, their clinical outcomes have not been as significant in clinical trials. Thus, to have a better understanding of the molecular evaluations of ABC-TPs, as well as drug-interactions, further research is being pursued in research labs. Our lab aims to better comprehend the biological mechanisms involved in drug resistance and to explore novel strategies to increase the clinical effectiveness of anticancer chemotherapeutics, which will ultimately improve clinical outcomes.
Collapse
Affiliation(s)
- M Asif
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - M Usman
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ayub
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan,Department of Neurosurgery, Hayatabad Medical Complex, KPK Medical Teaching Institute, Peshawar, Pakistan
| | - Sahar Farhat
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Zilli Huma
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Jawad Ahmed
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia,4Enzymoics; Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW 2770, Australia
| | - Deema Hussein
- Neurooncology Translational Group, Medical Technology, College of Applied Medical Sciences, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology,
Islamabad 44000, Pakistan,Department of Infectious diseases, Brigham and Women Hospital, Harvard Medical School, Cambridge, Boston, MA 02139, USA
| | - Ishaq Khan
- Cancer Cell Culture & Precision Oncomedicine Lab, Neurooncology Research Group, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
34
|
Paris J, Angeli E, Bousquet G. The Pharmacology of Xenobiotics after Intracerebro Spinal Fluid Administration: Implications for the Treatment of Brain Tumors. Int J Mol Sci 2021; 22:1281. [PMID: 33525427 PMCID: PMC7865853 DOI: 10.3390/ijms22031281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/16/2023] Open
Abstract
The incidence of brain metastasis has been increasing for 10 years, with poor prognosis, unlike the improvement in survival for extracranial tumor localizations. Since recent advances in molecular biology and the development of specific molecular targets, knowledge of the brain distribution of drugs has become a pharmaceutical challenge. Most anticancer drugs fail to cross the blood-brain barrier. In order to get around this problem and penetrate the brain parenchyma, the use of intrathecal administration has been developed, but the mechanisms governing drug distribution from the cerebrospinal fluid to the brain parenchyma are poorly understood. Thus, in this review we discuss the pharmacokinetics of drugs after intrathecal administration, their penetration of the brain parenchyma and the different systems causing their efflux from the brain to the blood.
Collapse
Affiliation(s)
- Justine Paris
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
| | - Eurydice Angeli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
- Assistance Publique Hôpitaux de Paris, Avicenne Hospital, Department of Medical Oncology, 93000 Bobigny, France
- Sorbonne Paris Nord University, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
| | - Guilhem Bousquet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U942, 9 Rue de Chablis, 93000 Bobigny, France; (J.P.); (E.A.)
- Assistance Publique Hôpitaux de Paris, Avicenne Hospital, Department of Medical Oncology, 93000 Bobigny, France
- Sorbonne Paris Nord University, 99 Avenue Jean Baptiste Clément, 93430 Villetaneuse, France
| |
Collapse
|
35
|
Patel W, Rimmer L, Smith M, Moss L, Smith MA, Snodgrass HR, Pirmohamed M, Alfirevic A, Dickens D. Probenecid Increases the Concentration of 7-Chlorokynurenic Acid Derived from the Prodrug 4-Chlorokynurenine within the Prefrontal Cortex. Mol Pharm 2021; 18:113-123. [PMID: 33307708 DOI: 10.1021/acs.molpharmaceut.0c00727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances in the understanding of depression have led to increasing interest in ketamine and the role that N-methyl-d-aspartate (NMDA) receptor inhibition plays in depression. l-4-Chlorokynurenine (4-Cl-KYN, AV-101), a prodrug, has shown promise as an antidepressant in preclinical studies, but this promise has not been realized in recent clinical trials. We sought to determine if transporters in the CNS could be playing a role in this clinical response. We used radiolabeled uptake assays and microdialysis studies to determine how 4-Cl-KYN and its active metabolite, 7-chlorokynurenic acid (7-Cl-KYNA), cross the blood-brain barrier (BBB) to access the brain and its extracellular fluid compartment. Our data indicates that 4-Cl-KYN crosses the blood-brain barrier via the amino acid transporter LAT1 (SLC7A5) after which the 7-Cl-KYNA metabolite leaves the brain extracellular fluid via probenecid-sensitive organic anion transporters OAT1/3 (SLC22A6 and SLC22A8) and MRP4 (ABCC4). Microdialysis studies further validated our in vitro data, indicating that probenecid may be used to boost the bioavailability of 7-Cl-KYNA. Indeed, we found that coadministration of 4-Cl-KYN with probenecid caused a dose-dependent increase by as much as an 885-fold increase in 7-Cl-KYNA concentration in the prefrontal cortex. In summary, our data show that 4-Cl-KYN crosses the BBB using LAT1, while its active metabolite, 7-Cl-KYNA, is rapidly transported out of the brain via OAT1/3 and MRP4. We also identify a hitherto unreported mechanism by which the brain extracellular concentration of 7-Cl-KYNA may be increased to produce significant boosting of the drug concentration at its site of action that could potentially lead to an increased therapeutic effect.
Collapse
Affiliation(s)
- Waseema Patel
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Lara Rimmer
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Martin Smith
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Lucie Moss
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Mark A Smith
- VistaGen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
- Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, United States
| | - H Ralph Snodgrass
- VistaGen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - David Dickens
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| |
Collapse
|
36
|
Verschuere S, Van Gils M, Nollet L, Vanakker OM. From membrane to mineralization: the curious case of the ABCC6 transporter. FEBS Lett 2020; 594:4109-4133. [PMID: 33131056 DOI: 10.1002/1873-3468.13981] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette subfamily C member 6 gene/protein (ABCC6) is an ATP-dependent transmembrane transporter predominantly expressed in the liver and the kidney. ABCC6 first came to attention in human medicine when it was discovered in 2000 that mutations in its encoding gene, ABCC6, caused the autosomal recessive multisystemic mineralization disease pseudoxanthoma elasticum (PXE). Since then, the physiological and pathological roles of ABCC6 have been the subject of intense research. In the last 20 years, significant findings have clarified ABCC6 structure as well as its physiological role in mineralization homeostasis in humans and animal models. Yet, several facets of ABCC6 biology remain currently incompletely understood, ranging from the precise nature of its substrate(s) to the increasingly complex molecular genetics. Nonetheless, advances in our understanding of pathophysiological mechanisms causing mineralization lead to several treatment options being suggested or already tested in pilot clinical trials for ABCC6 deficiency. This review highlights current knowledge of ABCC6 and the challenges ahead, particularly the attempts to translate basic science into clinical practice.
Collapse
Affiliation(s)
- Shana Verschuere
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Matthias Van Gils
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Lukas Nollet
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| | - Olivier M Vanakker
- Center for Medical Genetics, Ghent University Hospital, Belgium.,Department of Biomolecular Medicine, Ghent University, Belgium.,Ectopic Mineralization Research Group Ghent, Ghent, Belgium
| |
Collapse
|
37
|
The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2020; 58:1564-1582. [PMID: 33215389 DOI: 10.1007/s12035-020-02211-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The occurrence of Alzheimer's disease (AD) worldwide has been progressively accelerating at an alarming rate, without any successful therapeutic strategy for the disease mitigation. The complexity of AD pathogenesis needs to be targeted with an alternative approach, as provided by the superfamily of ATP-binding cassette (ABC) transporters, which constitutes an extensive range of proteins, capable of transporting molecular entities across biological membranes. These protein moieties have been implicated in AD, based upon their potential in lipid transportation, resulting in maintenance of cholesterol homeostasis. These transporters have been reported to target the primary hallmark of AD pathogenesis, namely, beta-amyloid hypothesis, which is associated with accumulation of beta-amyloid (Aβ) plaques in AD patients. The ABC transporters have been observed to be localized to the capillary endothelial cells of the blood-brain barrier and neural parenchymal cells, where they exhibit different roles, consequently influencing the neuronal expression of Aβ peptides. The review highlights different families of ABC transporters, ABCB1 (P-glycoprotein), ABCA (ABCA1, ABCA2, and ABCA7), ABCG2 (BCRP; breast cancer resistance protein), ABCG1 and ABCG4, as well as ABCC1 (MRP; multidrug resistance protein) in the CNS, and their interplay in regulating cholesterol metabolism and Aβ peptide load in the brain, simultaneously exerting protective effects against neurotoxic substrates and xenobiotics. The authors aim to establish the significance of this alternative approach as a novel therapeutic target in AD, to provide the researchers an opportunity to evaluate the potential aspects of ABC transporters in AD treatment.
Collapse
|
38
|
Rosa B. Equine Drug Transporters: A Mini-Review and Veterinary Perspective. Pharmaceutics 2020; 12:pharmaceutics12111064. [PMID: 33171593 PMCID: PMC7695171 DOI: 10.3390/pharmaceutics12111064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Xenobiotic transport proteins play an important role in determining drug disposition and pharmacokinetics. Our understanding of the role of these important proteins in humans and pre-clinical animal species has increased substantially over the past few decades, and has had an important impact on human medicine; however, veterinary medicine has not benefitted from the same quantity of research into drug transporters in species of veterinary interest. Differences in transporter expression cause difficulties in extrapolation of drug pharmacokinetic parameters between species, and lack of knowledge of species-specific transporter distribution and function can lead to drug–drug interactions and adverse effects. Horses are one species in which little is known about drug transport and transporter protein expression. The purpose of this mini-review is to stimulate interest in equine drug transport proteins and comparative transporter physiology.
Collapse
Affiliation(s)
- Brielle Rosa
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, TRW 2D01, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
39
|
Non-Human Primate Blood-Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model. Pharmaceutics 2020; 12:pharmaceutics12100967. [PMID: 33066641 PMCID: PMC7602447 DOI: 10.3390/pharmaceutics12100967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The non-human primate (NHP)-brain endothelium constitutes an essential alternative to human in the prediction of molecule trafficking across the blood–brain barrier (BBB). This study presents a comparison between the NHP transcriptome of freshly isolated brain microcapillaries and in vitro-selected brain endothelial cells (BECs), focusing on important BBB features, namely tight junctions, receptors mediating transcytosis (RMT), ABC and SLC transporters, given its relevance as an alternative model for the molecule trafficking prediction across the BBB and identification of new brain-specific transport mechanisms. In vitro BECs conserved most of the BBB key elements for barrier integrity and control of molecular trafficking. The function of RMT via the transferrin receptor (TFRC) was characterized in this NHP-BBB model, where both human transferrin and anti-hTFRC antibody showed increased apical-to-basolateral passage in comparison to control molecules. In parallel, eventual BBB-related regional differences were Investig.igated in seven-day in vitro-selected BECs from five brain structures: brainstem, cerebellum, cortex, hippocampus, and striatum. Our analysis retrieved few differences in the brain endothelium across brain regions, suggesting a rather homogeneous BBB function across the brain parenchyma. The presently established NHP-derived BBB model closely mimics the physiological BBB, thus representing a ready-to-use tool for assessment of the penetration of biotherapeutics into the human CNS.
Collapse
|
40
|
Whyte-Allman SK, Bendayan R. HIV-1 Sanctuary Sites-the Role of Membrane-Associated Drug Transporters and Drug Metabolic Enzymes. AAPS JOURNAL 2020; 22:118. [PMID: 32875457 DOI: 10.1208/s12248-020-00498-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Despite significant advances in the treatment of human immunodeficiency virus-1 (HIV) infection with highly active antiretroviral drug therapy, the persistence of the virus in cellular and anatomic reservoirs is a major obstacle preventing total HIV eradication. Viral persistence could result from a variety of contributing factors including, but not limited to, non-adherence to treatment and adverse drug reactions, latently infected cells carrying replication-competent virus, drug-drug interactions, and inadequate antiretroviral drug (ARV) concentrations reached in several anatomic sites such as the brain, testis, and gut-associated lymphoid tissues. The distribution of ARVs at specific sites of infection is primarily dependent on drug physicochemical properties and drug plasma protein binding, as well as drug efflux, influx, and metabolic processes. A thorough understanding of the functional roles of drug transporters and metabolic enzymes in the disposition of ARVs in immune cell types and tissues that are characterized as HIV reservoirs and sanctuaries is critical to overcome the challenge of suboptimal drug distribution at sites of persistent HIV infection. This review summarizes the current knowledge related to the expression and function of drug transporters and metabolic enzymes in HIV cellular and anatomic reservoirs, and their potential contribution to drug-drug interactions and insufficient drug concentration at these sites.
Collapse
Affiliation(s)
- Sana-Kay Whyte-Allman
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, M5S 3M2, Canada.
| |
Collapse
|
41
|
Qiu F, Habgood M, Schneider-Futschik EK. The Balance between the Safety of Mother, Fetus, and Newborn Undergoing Cystic Fibrosis Transmembrane Conductance Regulator Treatments during Pregnancy. ACS Pharmacol Transl Sci 2020; 3:835-843. [PMID: 33073185 DOI: 10.1021/acsptsci.0c00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 12/18/2022]
Abstract
The recent development of modulators of cystic fibrosis transmembrane conductance regulator (CFTR) has allowed the life expectancy of cystic fibrosis patients to increase substantially resulting in more women with cystic fibrosis reaching child-bearing age. This however raises the issue of whether long-term use of CFTR modulators during pregnancy and breastfeeding is safe for the fetus and newborn, especially for their developing brain. A very limited number of case reports available so far has shown that the fetus or breastfed newborn is likely to be exposed to maternally administered CFTR modulators. Potential impacts of drug exposure on the developing brain are of particular importance as the consequences might not be immediately noticeable upon birth but may manifest later in life as permanent neurobehavioral problems. In order for drugs in maternal circulation to enter the fetal brain, they must overcome the placental barrier followed by a series of brain barriers, each consisting of cellular components and physiological mechanisms such as efflux transporters. The extent of protection they offer during development will provide valuable insights into the potential entry and the effects of CFTR modulators in the developing brain. This review aims to explore the current understanding of the safety of CFTR modulators, especially ivacaftor, during pregnancy and breastfeeding, characterize the pharmacokinetics and pharmacodynamics of ivacaftor, both under normal conditions and during pregnancy, to provide context for its potential impact on the developing brain. Finally, we discuss the determinants that need to be taken into consideration when investigating the entry of drugs into the fetus and newborn.
Collapse
Affiliation(s)
- Fiona Qiu
- Department of Pharmacology & Therapeutics, Lung Health Research Centre, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mark Habgood
- Department of Pharmacology & Therapeutics, Lung Health Research Centre, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elena K Schneider-Futschik
- Department of Pharmacology & Therapeutics, Lung Health Research Centre, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
42
|
Verscheijden LFM, van Hattem AC, Pertijs JCLM, de Jongh CA, Verdijk RM, Smeets B, Koenderink JB, Russel FGM, de Wildt SN. Developmental patterns in human blood-brain barrier and blood-cerebrospinal fluid barrier ABC drug transporter expression. Histochem Cell Biol 2020; 154:265-273. [PMID: 32448916 PMCID: PMC7502061 DOI: 10.1007/s00418-020-01884-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
When drugs exert their effects in the brain, linear extrapolation of doses from adults could be harmful for children as the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) function is still immature. More specifically, age-related variation in membrane transporters may impact brain disposition. As human data on brain transporter expression is scarce, age dependent [gestational age (GA), postnatal age (PNA), and postmenstrual age (PMA)] variation in immunohistochemical localization and staining intensity of the ABC transporters P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins 1, 2, 4, and 5 (MRP1/2/4/5) was investigated. Post mortem brain cortical and ventricular tissue was derived from 23 fetuses (GA range 12.9-39 weeks), 17 neonates (GA range 24.6-41.3 weeks, PNA range 0.004-3.5 weeks), 8 children (PNA range 0.1-3 years), and 4 adults who died from a wide variety of underlying conditions. In brain cortical BBB, immunostaining increased with age for Pgp and BCRP, while in contrast, MRP1 and MRP2 staining intensity appeared higher in fetuses, neonates, and children, as compared to adults. BCSFB was positively stained for Pgp, MRP1, and MRP2 and appeared stable across age, while BCRP was not detected. MRP4 and MRP5 were not detected in BBB or BCSFB. In conclusion, human BBB and BCSFB ABC membrane transporters show brain location and transporter-specific maturation.
Collapse
Affiliation(s)
- L F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - A C van Hattem
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - J C L M Pertijs
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - C A de Jongh
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - R M Verdijk
- Section Neuropathology and Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - B Smeets
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - F G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - S N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands.
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Huang L, Wells MC, Zhao Z. A Practical Perspective on the Evaluation of Small Molecule CNS Penetration in Drug Discovery. Drug Metab Lett 2020; 13:78-94. [PMID: 30854983 DOI: 10.2174/1872312813666190311125652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 01/16/2023]
Abstract
The separation of the brain from blood by the blood-brain barrier and the bloodcerebrospinal fluid (CSF) barrier poses unique challenges for the discovery and development of drugs targeting the central nervous system (CNS). This review will describe the role of transporters in CNS penetration and examine the relationship between unbound brain (Cu-brain) and unbound plasma (Cu-plasma) or CSF (CCSF) concentration. Published data demonstrate that the relationship between Cu-brain and Cu-plasma or CCSF can be affected by transporter status and passive permeability of a drug and CCSF may not be a reliable surrogate for CNS penetration. Indeed, CCSF usually over-estimates Cu-brain for efflux substrates and it provides no additional value over Cu-plasma as the surrogate of Cu-brain for highly permeable non-efflux substrates. A strategy described here for the evaluation of CNS penetration is to use in vitro permeability, P-glycoprotein (Pgp) and breast cancer resistance protein efflux assays and Cu-brain/Cu-plasma in preclinical species. Cu-plasma should be used as the surrogate of Cu-brain for highly permeable non-efflux substrates with no evidence of impaired distribution into the brain. When drug penetration into the brain is impaired, we recommend using (total brain concentration * unbound fraction in the brain) as Cu-brain in preclinical species or Cu-plasma/in vitro Pgp efflux ratio if Pgp is the major limiting mechanism for brain penetration.
Collapse
Affiliation(s)
- Liyue Huang
- Epizyme Inc, 400 Technology Square, Cambridge, MA-02139, United States
| | - Mary C Wells
- Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA-02210, United States
| | - Zhiyang Zhao
- Alliance Pharma, Inc. 17 Lee Blvd. Malvern, PA-19355, United States
| |
Collapse
|
44
|
Saunders NR, Dziegielewska KM. Medications for pregnant women: A balancing act between the interests of the mother and of the fetus. Prenat Diagn 2020; 40:1156-1167. [PMID: 32335932 DOI: 10.1002/pd.5720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 03/03/2020] [Accepted: 04/13/2020] [Indexed: 12/24/2022]
Abstract
Drug entry into the adult brain is controlled by efflux mechanisms situated in various brain barrier interfaces. The effectiveness of these protective mechanisms in the embryo, fetus and newborn brain is less clear. The longstanding belief that "the" blood-brain barrier is absent or immature in the fetus and newborn has led to many misleading statements with potential clinical implications. Here we review the properties of brain barrier mechanisms in the context of drug entry into the developing brain and discuss the limited number of studies published on the subject. We noticed that most of available literature suffers from some experimental limitations, notably that drug levels in fetal blood and cerebrospinal fluid have not been measured. This means that the relative contribution to the overall brain protection provided by individual barriers such as the placenta (which contains similar efflux mechanisms) and the brain barriers cannot be separately ascertained. Finally, we propose that systematic studies in appropriate animal models of drug entry into the brain at different stages of development would provide a rational basis for use of medications in pregnancy and in newborns, especially prematurely born, where protection usually provided by the placenta is no longer present.
Collapse
Affiliation(s)
- Norman R Saunders
- Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
45
|
Zoufal V, Mairinger S, Krohn M, Wanek T, Filip T, Sauberer M, Stanek J, Kuntner C, Pahnke J, Langer O. Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. J Cereb Blood Flow Metab 2020; 40:954-965. [PMID: 31195936 PMCID: PMC7181082 DOI: 10.1177/0271678x19854541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Previous data suggest a possible link between multidrug resistance-associated protein 1 (ABCC1) and brain clearance of beta-amyloid (Aβ). We used PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) to measure cerebral ABCC1 transport activity in a beta-amyloidosis mouse model (APP/PS1-21) and in wild-type mice aged 50 and 170 days, without and with pretreatment with the ABCC1 inhibitor MK571. One hundred seventy days-old-animals additionally underwent [11C]PiB PET scans to measure Aβ load. While baseline [11C]BMP PET scans detected no differences in the elimination slope of radioactivity washout from the brain (kelim) between APP/PS1-21 and wild-type mice of both age groups, PET scans after MK571 pretreatment revealed significantly higher kelim values in APP/PS1-21 mice than in wild-type mice aged 170 days, suggesting increased ABCC1 activity. The observed increase in kelim occurred across all investigated brain regions and was independent of the presence of Aβ plaques measured with [11C]PiB. Western blot analysis revealed a trend towards increased whole brain ABCC1 levels in 170 days-old-APP/PS1-21 mice versus wild-type mice and a significant positive correlation between ABCC1 levels and kelim. Our data point to an upregulation of ABCC1 in APP/PS1-21 mice, which may be related to an induction of ABCC1 in astrocytes as a protective mechanism against oxidative stress.
Collapse
Affiliation(s)
- Viktoria Zoufal
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Krohn
- Department of Neuro/Pathology,
University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck Institute for
Experimental und Clinical Pharmacology and Toxicology Center of Brain, Behavior and
Metabolism (CBBM), Lübeck, Germany
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Claudia Kuntner
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro/Pathology,
University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck,
Germany
- Leibniz-Institute of Plant Biochemistry,
Halle, Germany
- Medical Faculty, Department of
Pharmacology, University of Latvia, Rīga, Latvia
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology,
Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging und
Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna,
Vienna, Austria
| |
Collapse
|
46
|
Gil-Martins E, Barbosa DJ, Silva V, Remião F, Silva R. Dysfunction of ABC transporters at the blood-brain barrier: Role in neurological disorders. Pharmacol Ther 2020; 213:107554. [PMID: 32320731 DOI: 10.1016/j.pharmthera.2020.107554] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
ABC (ATP-binding cassette) transporters represent one of the largest and most diverse superfamily of proteins in living species, playing an important role in many biological processes such as cell homeostasis, cell signaling, drug metabolism and nutrient uptake. Moreover, using the energy generated from ATP hydrolysis, they mediate the efflux of endogenous and exogenous substrates from inside the cells, thereby reducing their intracellular accumulation. At present, 48 ABC transporters have been identified in humans, which were classified into 7 different subfamilies (A to G) according to their phylogenetic analysis. Nevertheless, the most studied members with importance in drug therapeutic efficacy and toxicity include P-glycoprotein (P-gp), a member of the ABCB subfamily, the multidrug-associated proteins (MPRs), members of the ABCC subfamily, and breast cancer resistance protein (BCRP), a member of the ABCG subfamily. They exhibit ubiquitous expression throughout the human body, with a special relevance in barrier tissues like the blood-brain barrier (BBB). At this level, they play a physiological function in tissue protection by reducing or limiting the brain accumulation of neurotoxins. Furthermore, dysfunction of ABC transporters, at expression and/or activity level, has been associated with many neurological diseases, including epilepsy, multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis. Additionally, these transporters are strikingly associated with the pharmacoresistance to central nervous system (CNS) acting drugs, because they contribute to the decrease in drug bioavailability. This article reviews the signaling pathways that regulate the expression and activity of P-gp, BCRP and MRPs subfamilies of transporters, with particular attention at the BBB level, and their mis-regulation in neurological disorders.
Collapse
Affiliation(s)
- Eva Gil-Martins
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| | - Vera Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Renata Silva
- UCIBIO-REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
47
|
Argyrousi EK, Heckman PRA, Prickaerts J. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot. Neurosci Biobehav Rev 2020; 113:12-38. [PMID: 32044374 DOI: 10.1016/j.neubiorev.2020.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/23/2020] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
A plethora of studies indicate the important role of cAMP and cGMP cascades in neuronal plasticity and memory function. As a result, altered cyclic nucleotide signaling has been implicated in the pathophysiology of mnemonic dysfunction encountered in several diseases. In the present review we provide a wide overview of studies regarding the involvement of cyclic nucleotides, as well as their upstream and downstream molecules, in physiological and pathological mnemonic processes. Next, we discuss the regulation of the intracellular concentration of cyclic nucleotides via phosphodiesterases, the enzymes that degrade cAMP and/or cGMP, and via A-kinase-anchoring proteins that refine signal compartmentalization of cAMP signaling. We also provide an overview of the available data pointing to the existence of specific time windows in cyclic nucleotide signaling during neuroplasticity and memory formation and the significance to target these specific time phases for improving memory formation. Finally, we highlight the importance of emerging imaging tools like Förster resonance energy transfer imaging and optogenetics in detecting, measuring and manipulating the action of cyclic nucleotide signaling cascades.
Collapse
Affiliation(s)
- Elentina K Argyrousi
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Pim R A Heckman
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, 6200 MD, the Netherlands.
| |
Collapse
|
48
|
Helms HCC, Kristensen M, Saaby L, Fricker G, Brodin B. Drug Delivery Strategies to Overcome the Blood-Brain Barrier (BBB). Handb Exp Pharmacol 2020; 273:151-183. [PMID: 33367937 DOI: 10.1007/164_2020_403] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The brain capillary endothelium serves both as an exchange site for gases and solutes between blood and brain and as a protective fence against neurotoxic compounds from the blood. While this "blood-brain barrier" (BBB) function protects the fragile environment in the brain, it also poses a tremendous challenge for the delivery of drug compounds to the brain parenchyma. Paracellular brain uptake of drug compounds is limited by the physical tightness of the endothelium, which is tightly sealed with junction complexes. Transcellular uptake of lipophilic drug compounds is limited by the activity of active efflux pumps in the luminal membrane. As a result, the majority of registered CNS drug compounds are small lipophilic compounds which are not efflux transporter substrates. Small molecule CNS drug development therefore focuses on identifying compounds with CNS target affinity and modifies these in order to optimize lipophilicity and decrease efflux pump interactions. Since efflux pump activity is limiting drug uptake, it has been investigated whether coadministration of drug compounds with efflux pump inhibitors could increase drug uptake. While the concept works to some extent, a lot of challenges have been encountered in terms of obtaining efficient inhibition while avoiding adverse effects.Some CNS drug compounds enter the brain via nutrient transport proteins, an example is the levodopa, a prodrug of Dopamine, which crosses the BBB via the large neutral amino acid transporter LAT1. While carrier-mediated transport of drug compounds may seem attractive, the development of drugs targeting transporters is very challenging, since the compounds should have a good fit to the binding site, while still maintaining their CNS target affinity.Receptor-mediated transport of drug compounds, especially biotherapeutics, conjugated to a receptor-binding ligand has shown some promise, although the amounts transported are rather low. This also holds true for drug-conjugation to cell-penetrating peptides. Due to the low uptake of biotherapeutics, barrier-breaching approaches such as mannitol injections and focused ultrasound have been employed with some success to patient groups with no other treatment options.
Collapse
Affiliation(s)
| | - Mie Kristensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Bioneer-Farma, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, Heidelberg, Germany
| | - Birger Brodin
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
49
|
Koehn LM. ABC efflux transporters at blood-central nervous system barriers and their implications for treating spinal cord disorders. Neural Regen Res 2020; 15:1235-1242. [PMID: 31960802 PMCID: PMC7047801 DOI: 10.4103/1673-5374.272568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The barriers present in the interfaces between the blood and the central nervous system form a major hurdle for the pharmacological treatment of central nervous system injuries and diseases. The family of ATP-binding cassette (ABC) transporters has been widely studied regarding efflux of medications at blood-central nervous system barriers. These efflux transporters include P-glycoprotein (abcb1), 'breast cancer resistance protein' (abcg2) and the various 'multidrug resistance-associated proteins' (abccs). Understanding which efflux transporters are present at the blood-spinal cord, blood-cerebrospinal fluid and cerebrospinal fluid-spinal cord barriers is necessary to determine their involvement in limiting drug transfer from blood to the spinal cord tissue. Recent developments in the blood-brain barrier field have shown that barrier systems are dynamic and the profile of barrier defenses can alter due to conditions such as age, disease and environmental challenge. This means that a true understanding of ABC efflux transporter expression and localization should not be one static value but instead a range that represents the complex patient subpopulations that exist. In the present review, the blood-central nervous system barrier literature is discussed with a focus on the impact of ABC efflux transporters on: (i) protecting the spinal cord from adverse effects of systemically directed drugs, and (ii) limiting centrally directed drugs from accessing their active sites within the spinal cord.
Collapse
Affiliation(s)
- Liam M Koehn
- Department of Pharmacology and Therapeutics, the University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
50
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|