1
|
Korecki AJ, Cueva-Vargas JL, Fornes O, Agostinone J, Farkas RA, Hickmott JW, Lam SL, Mathelier A, Zhou M, Wasserman WW, Di Polo A, Simpson EM. Human MiniPromoters for ocular-rAAV expression in ON bipolar, cone, corneal, endothelial, Müller glial, and PAX6 cells. Gene Ther 2021; 28:351-372. [PMID: 33531684 PMCID: PMC8222000 DOI: 10.1038/s41434-021-00227-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
Small and cell-type restricted promoters are important tools for basic and preclinical research, and clinical delivery of gene therapies. In clinical gene therapy, ophthalmic trials have been leading the field, with over 50% of ocular clinical trials using promoters that restrict expression based on cell type. Here, 19 human DNA MiniPromoters were bioinformatically designed for rAAV, tested by neonatal intravenous delivery in mouse, and successful MiniPromoters went on to be tested by intravitreal, subretinal, intrastromal, and/or intravenous delivery in adult mouse. We present promoter development as an overview for each cell type, but only show results in detail for the recommended MiniPromoters: Ple265 and Ple341 (PCP2) ON bipolar, Ple349 (PDE6H) cone, Ple253 (PITX3) corneal stroma, Ple32 (CLDN5) endothelial cells of the blood-retina barrier, Ple316 (NR2E1) Müller glia, and Ple331 (PAX6) PAX6 positive. Overall, we present a resource of new, redesigned, and improved MiniPromoters for ocular gene therapy that range in size from 784 to 2484 bp, and from weaker, equal, or stronger in strength relative to the ubiquitous control promoter smCBA. All MiniPromoters will be useful for therapies involving small regulatory RNA and DNA, and proteins ranging from 517 to 1084 amino acids, representing 62.9-90.2% of human proteins.
Collapse
Affiliation(s)
- Andrea J. Korecki
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jorge L. Cueva-Vargas
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Oriol Fornes
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Jessica Agostinone
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Rachelle A. Farkas
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Jack W. Hickmott
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Siu Ling Lam
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Anthony Mathelier
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Michelle Zhou
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada
| | - Wyeth W. Wasserman
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| | - Adriana Di Polo
- grid.14848.310000 0001 2292 3357Department of Neuroscience, University of Montreal Hospital Research Centre, University of Montreal, Montreal, QC Canada
| | - Elizabeth M. Simpson
- grid.17091.3e0000 0001 2288 9830Centre for Molecular Medicine and Therapeutics at BC Children’s Hospital, University of British Columbia, Vancouver, BC Canada ,grid.17091.3e0000 0001 2288 9830Department of Medical Genetics, University of British Columbia, Vancouver, BC Canada
| |
Collapse
|
2
|
Kumari E, Velloso FJ, Nasuhidehnavi A, Somasundaram A, Savanur VH, Buono KD, Levison SW. Developmental IL-6 Exposure Favors Production of PDGF-Responsive Multipotential Progenitors at the Expense of Neural Stem Cells and Other Progenitors. Stem Cell Reports 2020; 14:861-875. [PMID: 32302560 PMCID: PMC7220986 DOI: 10.1016/j.stemcr.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Interleukin-6 (IL-6) is increased in maternal serum and amniotic fluid of children subsequently diagnosed with autism spectrum disorders. However, it is not clear how increased IL-6 alters brain development. Here, we show that IL-6 increases the prevalence of a specific platelet-derived growth factor (PDGF)-responsive multipotent progenitor, with opposite effects on neural stem cells and on subsets of bipotential glial progenitors. Acutely, increasing circulating IL-6 levels 2-fold above baseline in neonatal mice specifically stimulated the proliferation of a PDGF-responsive multipotential progenitor accompanied by increased phosphorylated STAT3, increased Fbxo15 expression, and decreased Dnmt1 and Tlx expression. Fate mapping studies using a Nestin-CreERT2 driver revealed decreased astrogliogenesis in the frontal cortex. IL-6-treated mice were hyposmic; however, olfactory bulb neuronogenesis was unaffected. Altogether, these studies provide important insights into how inflammation alters neural stem cells and progenitors and provide new insights into the molecular and cellular underpinnings of neurodevelopmental disorders associated with maternal infections.
Collapse
Affiliation(s)
- Ekta Kumari
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Fernando J Velloso
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Azadeh Nasuhidehnavi
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Aditya Somasundaram
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | - Vibha H Savanur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA
| | | | - Steven W Levison
- Department of Pharmacology, Physiology and Neuroscience, Rutgers Biomedical Health Sciences of Rutgers University, 205 South Orange Ave. Newark, NJ 07103, USA.
| |
Collapse
|
3
|
A role for the orphan nuclear receptor TLX in the interaction between neural precursor cells and microglia. Neuronal Signal 2020; 3:NS20180177. [PMID: 32269832 PMCID: PMC7104222 DOI: 10.1042/ns20180177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
Abstract
Microglia are an essential component of the neurogenic niche in the adult hippocampus and are involved in the control of neural precursor cell (NPC) proliferation, differentiation and the survival and integration of newborn neurons in hippocampal circuitry. Microglial and neuronal cross-talk is mediated in part by the chemokine fractalkine/chemokine (C-X3-C motif) ligand 1 (CX3CL1) released from neurons, and its receptor CX3C chemokine receptor 1 (CX3CR1) which is expressed on microglia. A disruption in this pathway has been associated with impaired neurogenesis yet the specific molecular mechanisms by which this interaction occurs remain unclear. The orphan nuclear receptor TLX (Nr2e1; homologue of the Drosophila tailless gene) is a key regulator of hippocampal neurogenesis, and we have shown that in its absence microglia exhibit a pro-inflammatory activation phenotype. However, it is unclear whether a disturbance in CX3CL1/CX3CR1 communication mediates an impairment in TLX-related pathways which may have subsequent effects on neurogenesis. To this end, we assessed miRNA expression of up- and down-stream signalling molecules of TLX in the hippocampus of mice lacking CX3CR1. Our results demonstrate that a lack of CX3CR1 is associated with altered expression of TLX and its downstream targets in the hippocampus without significantly affecting upstream regulators of TLX. Thus, TLX may be a potential participant in neural stem cell (NSC)-microglial cross-talk and may be an important target in understanding inflammatory-associated impairments in neurogenesis.
Collapse
|
4
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|
5
|
Corti A, Sota R, Dugo M, Calogero RA, Terragni B, Mantegazza M, Franceschetti S, Restelli M, Gasparini P, Lecis D, Chrzanowska KH, Delia D. DNA damage and transcriptional regulation in iPSC-derived neurons from Ataxia Telangiectasia patients. Sci Rep 2019; 9:651. [PMID: 30679601 PMCID: PMC6346060 DOI: 10.1038/s41598-018-36912-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/23/2018] [Indexed: 11/22/2022] Open
Abstract
Ataxia Telangiectasia (A-T) is neurodegenerative syndrome caused by inherited mutations inactivating the ATM kinase, a master regulator of the DNA damage response (DDR). What makes neurons vulnerable to ATM loss remains unclear. In this study we assessed on human iPSC-derived neurons whether the abnormal accumulation of DNA-Topoisomerase 1 adducts (Top1ccs) found in A-T impairs transcription elongation, thus favoring neurodegeneration. Furthermore, whether neuronal activity-induced immediate early genes (IEGs), a process involving the formation of DNA breaks, is affected by ATM deficiency. We found that Top1cc trapping by CPT induces an ATM-dependent DDR as well as an ATM-independent induction of IEGs and repression especially of long genes. As revealed by nascent RNA sequencing, transcriptional elongation and recovery were found to proceed with the same rate, irrespective of gene length and ATM status. Neuronal activity induced by glutamate receptors stimulation, or membrane depolarization with KCl, triggered a DDR and expression of IEGs, the latter independent of ATM. In unperturbed A-T neurons a set of genes (FN1, DCN, RASGRF1, FZD1, EOMES, SHH, NR2E1) implicated in the development, maintenance and physiology of central nervous system was specifically downregulated, underscoring their potential involvement in the neurodegenerative process in A-T patients.
Collapse
Affiliation(s)
- Alessandro Corti
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Raina Sota
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Matteo Dugo
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milano, Italy
| | - Raffaele A Calogero
- Universita' degli Studi di Torino, Bioinformatics and Genomics Unit, Molecular Biotechnology Centre, Via Nizza 52, 10126, Torino, Italy
| | - Benedetta Terragni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurophysiopathology and Diagnostic Epileptology, Via Celoria 11, 20133, Milano, Italy
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC) LabEx ICST, CNRS UMR7275, Route des Lucioles, 06560, Valbonne, Sophia Antipolis, France.,University Côte d'Azur, 660 Route des Lucioles, 06560, Valbonne, Sophia Antipolis, France
| | - Silvana Franceschetti
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Department of Neurophysiopathology and Diagnostic Epileptology, Via Celoria 11, 20133, Milano, Italy
| | - Michela Restelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133, Milano, Italy
| | - Patrizia Gasparini
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via G Venezian 1, 20133, Milano, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy
| | - Krystyna H Chrzanowska
- Department of Medical Genetics, The Children's Memorial Health Institute, Al. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Domenico Delia
- Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Via Amadeo 42, 20133, Milano, Italy. .,IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milano, Italy.
| |
Collapse
|
6
|
Dixit AB, Sharma D, Tripathi M, Srivastava A, Paul D, Prakash D, Sarkar C, Kumar K, Banerjee J, Chandra PS. Genome-wide DNA Methylation and RNAseq Analyses Identify Aberrant Signalling Pathways in Focal Cortical Dysplasia (FCD) Type II. Sci Rep 2018; 8:17976. [PMID: 30568293 PMCID: PMC6299275 DOI: 10.1038/s41598-018-35892-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/01/2018] [Indexed: 01/26/2023] Open
Abstract
Focal cortical dysplasia (FCD) is one of the most common pathologies associated with drug-resistant epilepsy (DRE). The pharmacological targets remain obscured, as the molecular mechanisms underlying FCD are unclear. Implications of epigenetically modulated aberrant gene expression in disease progression are reported in various DRE pathologies except FCD. Here we performed genome-wide CpG-DNA methylation profiling by methylated DNA immunoprecipitation (MeDIP) microarray and RNA sequencing (RNAseq) on cortical tissues resected from FCD type II patients. A total of 19088 sites showed altered DNA methylation in all the CpG islands. Of these, 5725 sites were present in the promoter regions, of which 176 genes showed an inverse correlation between methylation and gene expression. Many of these 176 genes were found to belong to a cohesive network of physically interacting proteins linked to several cellular functions. Pathway analysis revealed significant enrichment of receptor tyrosine kinases (RTK), EGFR, PDGFRA, NTRK3, and mTOR signalling pathways. This is the first study that investigates the epigenetic signature associated with FCD type II pathology. The candidate genes and pathways identified in this study may play a crucial role in the regulation of the pathogenic mechanisms of epileptogenesis associated with FCD type II pathologies.
Collapse
Affiliation(s)
- Aparna Banerjee Dixit
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India. .,Dr. B R Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India.
| | - Devina Sharma
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurosurgery, AIIMS, New Delhi, India
| | - Manjari Tripathi
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurology, AIIMS, New Delhi, India
| | | | - Debasmita Paul
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurosurgery, AIIMS, New Delhi, India
| | - Deepak Prakash
- Department of Forensic Medicine and Toxicology, AIIMS, New Delhi, India
| | | | - Krishan Kumar
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Neurosurgery, AIIMS, New Delhi, India
| | - Jyotirmoy Banerjee
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India.,Department of Biophysics, AIIMS, New Delhi, India
| | - P Sarat Chandra
- Center of Excellence for Epilepsy, A joint NBRC-AIIMS collaboration, NBRC, Manesar, India. .,Department of Neurosurgery, AIIMS, New Delhi, India.
| |
Collapse
|
7
|
Kozareva DA, Foley T, Moloney GM, Cryan JF, Nolan YM. TLX knockdown in the dorsal dentate gyrus of juvenile rats differentially affects adolescent and adult behaviour. Behav Brain Res 2018; 360:36-50. [PMID: 30481511 DOI: 10.1016/j.bbr.2018.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/27/2022]
Abstract
The orphan nuclear receptor TLX is predominantly expressed in the central nervous system and is an important factor regulating the maintenance and self-renewal of neural stem cells from embryonic development through adulthood. In adolescence and adulthood, TLX expression is restricted to the neurogenic niches of the brain: the dentate gyrus of the hippocampus and the subventricular zone. The adolescent period is critical for maturation of the hippocampus with heightened levels of neurogenesis observed in rodents. Therefore, we investigated whether lentiviral silencing of TLX expression (TLX knockdown) in the dorsal dentate gyrus of juvenile rats incurred differential impairments in behaviour during late adolescence and adulthood. Our results showed that knockdown of TLX in the dorsal dentate gyrus led to a decrease in cell proliferation in the dorsal but not ventral dentate gyrus. At a behavioural level we observed differential effects in adolescence and adulthood across a number of parameters. A hyperactive phenotype was present in adolescent but not adult TLX knockdown rats, and an increase in immobility during adolescence and in swimming frequency during adulthood was observed in the forced swim test. There was an increased defecation frequency in the open field during adulthood but not adolescence. There were no changes in cognitive performance on hippocampus-dependent tasks or in anxiety-related behaviours. In conclusion, silencing of TLX in the dorsal dentate gyrus led to impairments in hippocampal-independent behaviours which either did not persist or were reversed during adulthood. The current data highlight the temporal importance and function of the nuclear receptor TLX during development.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
8
|
Ó'Léime CS, Hoban AE, Hueston CM, Stilling R, Moloney G, Cryan JF, Nolan YM. The orphan nuclear receptor TLX regulates hippocampal transcriptome changes induced by IL-1β. Brain Behav Immun 2018. [PMID: 29518529 DOI: 10.1016/j.bbi.2018.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
TLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1β suppresses NPC proliferation as well as TLX expression in the hippocampus. However, it is unknown whether TLX itself is involved in regulating the inflammatory response in the hippocampus. To explore the role of TLX in inflammation, we assessed changes in the transcriptional landscape of the hippocampus of TLX knockout mice (TLX-/-) compared to wildtype (WT) littermate controls with and without intrahippocampal injection of IL-1β using a whole transcriptome RNA sequencing approach. We demonstrated that there is an increase in the transcription of genes involved in the promotion of inflammation and regulation of cell chemotaxis (Tnf, Il1b, Cxcr1, Cxcr2, Tlr4) and a decrease in the expression of genes relating to synaptic signalling (Lypd1, Syt4, Cplx2) in cannulated TLX-/- mice compared to WT controls. We demonstrate that mice lacking in TLX share a similar increase in 176 genes involved in regulating inflammation (e.g. Cxcl1, Tnf, Il1b) as WT mice injected with IL-1β into the hippocampus. Moreover, TLX-/- mice injected with IL-1β displayed a blunted transcriptional profile compared to WT mice injected with IL-1β. Thus, TLX-/- mice, which already have an exaggerated inflammatory profile after cannulation surgery, are primed to respond differently to an inflammatory stimulus such as IL-1β. Together, these results demonstrate that TLX regulates hippocampal inflammatory transcriptome response to brain injury (in this case cannulation surgery) and cytokine stimulation.
Collapse
Affiliation(s)
- Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Roman Stilling
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Gerard Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Kozareva DA, O'Leary OF, Cryan JF, Nolan YM. Deletion of TLX and social isolation impairs exercise-induced neurogenesis in the adolescent hippocampus. Hippocampus 2017; 28:3-11. [DOI: 10.1002/hipo.22805] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 09/07/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Danka A. Kozareva
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - Olivia F. O'Leary
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - John F. Cryan
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| | - Yvonne M. Nolan
- Department of Anatomy and Neuroscience; University College Cork; Ireland
- APC Microbiome Institute; University College Cork; Ireland
| |
Collapse
|
10
|
Maheu ME, Ressler KJ. Developmental pathway genes and neural plasticity underlying emotional learning and stress-related disorders. Learn Mem 2017; 24:492-501. [PMID: 28814475 PMCID: PMC5580529 DOI: 10.1101/lm.044271.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/18/2017] [Indexed: 11/24/2022]
Abstract
The manipulation of neural plasticity as a means of intervening in the onset and progression of stress-related disorders retains its appeal for many researchers, despite our limited success in translating such interventions from the laboratory to the clinic. Given the challenges of identifying individual genetic variants that confer increased risk for illnesses like depression and post-traumatic stress disorder, some have turned their attention instead to focusing on so-called "master regulators" of plasticity that may provide a means of controlling these potentially impaired processes in psychiatric illnesses. The mammalian homolog of Tailless (TLX), Wnt, and the homeoprotein Otx2 have all been proposed to constitute master regulators of different forms of plasticity which have, in turn, each been implicated in learning and stress-related disorders. In the present review, we provide an overview of the changing distribution of these genes and their roles both during development and in the adult brain. We further discuss how their distinct expression profiles provide clues as to their function, and may inform their suitability as candidate drug targets in the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Marissa E Maheu
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478, USA
| |
Collapse
|
11
|
Kozareva DA, Hueston CM, Ó'Léime CS, Crotty S, Dockery P, Cryan JF, Nolan YM. Absence of the neurogenesis-dependent nuclear receptor TLX induces inflammation in the hippocampus. J Neuroimmunol 2017; 331:87-96. [PMID: 28844503 DOI: 10.1016/j.jneuroim.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
The orphan nuclear receptor TLX (Nr2e1) is a key regulator of hippocampal neurogenesis. Impaired adult hippocampal neurogenesis has been reported in neurodegenerative and psychiatric conditions including dementia and stress-related depression. Neuroinflammation is also implicated in the neuropathology of these disorders, and has been shown to negatively affect hippocampal neurogenesis. To investigate a role for TLX in hippocampal neuroinflammation, we assessed microglial activation in the hippocampus of mice with a spontaneous deletion of TLX. Results from our study suggest that a lack of TLX is implicated in deregulation of microglial phenotype and that consequently, the survival and function of newborn cells in the hippocampus is impaired. TLX may be an important target in understanding inflammatory-associated impairments in neurogenesis.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Ciarán S Ó'Léime
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Suzanne Crotty
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Peter Dockery
- Department of Anatomy, National University of Ireland, Galway, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
12
|
Horodyska J, Hamill RM, Varley PF, Reyer H, Wimmers K. Genome-wide association analysis and functional annotation of positional candidate genes for feed conversion efficiency and growth rate in pigs. PLoS One 2017; 12:e0173482. [PMID: 28604785 PMCID: PMC5467825 DOI: 10.1371/journal.pone.0173482] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/24/2017] [Indexed: 01/03/2023] Open
Abstract
Feed conversion efficiency is a measure of how well an animal converts feed into live weight and it is typically expressed as feed conversion ratio (FCR). FCR and related traits like growth rate (e.g. days to 110 kg—D110) are of high interest for animal breeders, farmers and society due to implications on animal performance, feeding costs and environmental sustainability. The objective of this study was to identify genomic regions associated with FCR and D110 in pigs. A total of 952 terminal line boars, showing an individual variation in FCR, were genotyped using 60K SNP-Chips. Markers were tested for associations with estimated breeding values (EBV) for FCR and D110. For FCR, the largest number of associated SNPs was located on chromosomes 4 (30 SNPs), 1 (25 SNPs), X (15 SNPs) and 6 (12 SNPs). The most prominent genomic regions for D110 were identified on chromosomes 15 (10 SNPs), 1 and 4 (both 9 SNPs). The most significantly associated SNPs for FCR and D110 mapped 129.8 Kb from METTL11B (chromosome 4) and 32Kb from MBD5 (chromosome 15), respectively. A list of positional genes, closest to significantly associated SNPs, was used to identify enriched pathways and biological functions related to the QTL for both traits. A number of candidate genes were significantly overrepresented in pathways of immune cell trafficking, lymphoid tissue structure, organ morphology, endocrine system function, lipid metabolism, and energy production. After resequencing the coding region of selected positional and functional candidate genes, six SNPs were genotyped in a subset of boars. SNPs in PRKDC, SELL, NR2E1 and AKRIC3 showed significant associations with EBVs for FCR/D110. The study revealed a number of chromosomal regions and candidate genes affecting FCR/D110 and pointed to corresponding biological pathways related to lipid metabolism, olfactory reception, and also immunological status.
Collapse
Affiliation(s)
- Justyna Horodyska
- Teagasc, Food Research Centre, Ashtown, Dublin, Ireland
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
| | | | | | - Henry Reyer
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
- * E-mail:
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| |
Collapse
|
13
|
O'Leary JD, O'Leary OF, Cryan JF, Nolan YM. Regulation of behaviour by the nuclear receptor TLX. GENES BRAIN AND BEHAVIOR 2016; 17:e12357. [PMID: 27790850 DOI: 10.1111/gbb.12357] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 01/10/2023]
Abstract
The orphan nuclear receptor Tlx (Nr2e1) is a key regulator of both embryonic and adult hippocampal neurogenesis. Several different mouse models have been developed which target Tlx in vivo including spontaneous deletion models (from birth) and targeted and conditional knockouts. Although some conflicting findings have been reported, for the most part studies have demonstrated that Tlx is important in regulating processes that underlie neurogenesis, spatial learning, anxiety-like behaviour and interestingly, aggression. More recent data have demonstrated that disrupting Tlx during early life induces hyperactivity and that Tlx plays a role in emotional regulation. Moreover, there are sex- and age-related differences in some behaviours in Tlx knockout mice during adolescence and adulthood. Here, we discuss the role of Tlx in motor-, cognitive-, aggressive- and anxiety-related behaviours during adolescence and adulthood. We examine current evidence which provides insight into Tlx during neurodevelopment, and offer our thoughts on the function of Tlx in brain and behaviour. We further hypothesize that Tlx is a key target in understanding the emergence of neurobiological disorders during adolescence and early adulthood.
Collapse
Affiliation(s)
- J D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - O F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
14
|
Chen L, Chu C, Zhang YH, Zhu C, Kong X, Huang T, Cai YD. Analysis of Gene Expression Profiles in the Human Brain Stem, Cerebellum and Cerebral Cortex. PLoS One 2016; 11:e0159395. [PMID: 27434030 PMCID: PMC4951119 DOI: 10.1371/journal.pone.0159395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 07/01/2016] [Indexed: 11/19/2022] Open
Abstract
The human brain is one of the most mysterious tissues in the body. Our knowledge of the human brain is limited due to the complexity of its structure and the microscopic nature of connections between brain regions and other tissues in the body. In this study, we analyzed the gene expression profiles of three brain regions-the brain stem, cerebellum and cerebral cortex-to identify genes that are differentially expressed among these different brain regions in humans and to obtain a list of robust, region-specific, differentially expressed genes by comparing the expression signatures from different individuals. Feature selection methods, specifically minimum redundancy maximum relevance and incremental feature selection, were employed to analyze the gene expression profiles. Sequential minimal optimization, a machine-learning algorithm, was employed to examine the utility of selected genes. We also performed a literature search, and we discuss the experimental evidence for the important physiological functions of several highly ranked genes, including NR2E1, DAO, and LRRC7, and we give our analyses on a gene (TFAP2B) that have not been investigated or experimentally validated. As a whole, the results of our study will improve our ability to predict and understand genes related to brain regionalization and function.
Collapse
Affiliation(s)
- Lei Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Chen Chu
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu-Hang Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Changming Zhu
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, China
| | - Xiangyin Kong
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- * E-mail: (YDC); (TH)
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
- * E-mail: (YDC); (TH)
| |
Collapse
|
15
|
Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation. Brain Behav Immun 2013; 33:7-13. [PMID: 23510989 DOI: 10.1016/j.bbi.2013.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 11/23/2022] Open
Abstract
Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features.
Collapse
|
16
|
Abstract
Glycogen synthase kinase-3β (GSK-3β) and the orphan nuclear receptor tailless homolog (TLX) are key regulators of hippocampal neurogenesis, which has been reported to be dysregulated in both neurodegenerative and psychiatric disorders. Inflammation is also implicated in the neuropathology of these disorders because of increased levels of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the brain. At elevated levels, IL-1β signaling through the IL-1 receptor type 1 has been shown to be detrimental to hippocampal neurogenesis. TLX is required to maintain neural stem/progenitor cells (NSPCs) in an undifferentiated state and is involved in NSPC fate determination, while GSK-3β negatively regulates Wnt signaling, a vital pathway promoting neurogenesis. This study shows that GSK-3β inhibition using a small-molecule inhibitor and the mood stabilizer lithium restores the IL-1β-induced decrease in NSPC proliferation and neuronal differentiation of embryonic rat hippocampal NSPCs to control levels. The IL-1β-induced effect on NSPCs is paralleled by a decrease in TLX expression that can be prevented by GSK-3β inhibition. The present results suggest that GSK-3β ameliorates the anti-proliferative and pro-gliogenic effects of IL-1β, and that TLX is vulnerable to inflammatory insult. Strategies to reduce GSK-3β activity or to increase TLX expression may facilitate the restoration of hippocampal neurogenesis in neuroinflammatory conditions where neurogenesis is impaired.
Collapse
|
17
|
Wong BK, Hossain SM, Trinh E, Ottmann GA, Budaghzadeh S, Zheng QY, Simpson EM. Hyperactivity, startle reactivity and cell-proliferation deficits are resistant to chronic lithium treatment in adult Nr2e1(frc/frc) mice. GENES, BRAIN, AND BEHAVIOR 2010; 9:681-94. [PMID: 20497236 PMCID: PMC3292041 DOI: 10.1111/j.1601-183x.2010.00602.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The NR2E1 region on Chromosome 6q21-22 has been repeatedly linked to bipolar disorder (BP) and NR2E1 has been associated with BP, and more specifically bipolar I disorder (BPI). In addition, patient sequencing has shown an enrichment of rare candidate-regulatory variants. Interestingly, mice carrying either spontaneous (Nr2e1(frc) ) or targeted (Tlx(-) ) deletions of Nr2e1 (here collectively known as Nr2e1-null) show similar neurological and behavioral anomalies, including hypoplasia of the cerebrum, reduced neural stem cell proliferation, extreme aggression and deficits in fear conditioning; these are the traits that have been observed in some patients with BP. Thus, NR2E1 is a positional and functional candidate for a role in BP. However, no Nr2e1-null mice have been fully evaluated for behaviors used to model BP in rodents or pharmacological responses to drugs effective in treating BP symptoms. In this study we examine Nr2e1(frc/frc) mice, homozygous for the spontaneous deletion, for abnormalities in activity, learning and information processing, and cell proliferation; these are the phenotypes that are either affected in patients with BP or commonly assessed in rodent models of BP. The effect of lithium, a drug used to treat BP, was also evaluated for its ability to attenuate Nr2e1(frc/frc) behavioral and neural stem cell-proliferation phenotypes. We show for the first time that Nr2e1-null mice exhibit extreme hyperactivity in the open field as early as postnatal day 18 and in the home cage, deficits in open-field habituation and passive avoidance, and surprisingly, an absence of acoustic startle. We observed a reduction in neural stem/progenitor cell proliferation in Nr2e1(frc/frc) mice, similar to that seen in other Nr2e1-null strains. These behavioral and cell-proliferation phenotypes were resistant to chronic-adult-lithium treatment. Thus, Nr2e1(frc/frc) mice exhibit behavioral traits used to model BP in rodents, but our results do not support Nr2e1(frc/frc) mice as pharmacological models for BP.
Collapse
Affiliation(s)
- Bibiana K.Y. Wong
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Sazzad M. Hossain
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Eric Trinh
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Glen A. Ottmann
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | - Saeed Budaghzadeh
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| | | | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, and Department of Medical Genetics, University of British Columbia, 950 West 28 Avenue, Vancouver, British Columbia, V5Z 4H4, Canada
| |
Collapse
|
18
|
Dahlhaus R, Hines RM, Eadie BD, Kannangara TS, Hines DJ, Brown CE, Christie BR, El-Husseini A. Overexpression of the cell adhesion protein neuroligin-1 induces learning deficits and impairs synaptic plasticity by altering the ratio of excitation to inhibition in the hippocampus. Hippocampus 2010; 20:305-22. [PMID: 19437420 DOI: 10.1002/hipo.20630] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trans-synaptic cell-adhesion molecules have been implicated in regulating CNS synaptogenesis. Among these, the Neuroligin (NL) family (NLs 1-4) of postsynaptic adhesion proteins has been shown to promote the development and specification of excitatory versus inhibitory synapses. NLs form a heterophilic complex with the presynaptic transmembrane protein Neurexin (NRX). A differential association of NLs with postsynaptic scaffolding proteins and NRX isoforms has been suggested to regulate the ratio of excitatory to inhibitory synapses (E/I ratio). Using transgenic mice, we have tested this hypothesis by overexpressing NL1 in vivo to determine whether the relative levels of these cell adhesion molecules may influence synapse maturation, long-term potentiation (LTP), and/or learning. We found that NL1-overexpressing mice show significant deficits in memory acquisition, but not in memory retrieval. Golgi and electron microscopy analysis revealed changes in synapse morphology indicative of increased maturation of excitatory synapses. In parallel, electrophysiological examination indicated a shift in the synaptic activity toward increased excitation as well as impairment in LTP induction. Our results demonstrate that altered balance in the expression of molecules necessary for synapse specification and development (such as NL1) can lead to defects in memory formation and synaptic plasticity and outline the importance of rigidly controlled synaptic maturation processes.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Department of Psychiatry, University of British Columbia, Vancouver, BC
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neural stem cells exist in the mammalian developing and adult nervous system. Recently, tremendous interest in the potential of neural stem cells for the treatment of neurodegenerative diseases and brain injuries has substantially promoted research on neural stem cell self-renewal and differentiation. Multiple cell-intrinsic regulators coordinate with the microenvironment through various signaling pathways to regulate neural stem cell maintenance, self-renewal, and fate determination. This review focuses on essential intracellular regulators that control neural stem cell maintenance and self-renewal in both embryonic brains and adult nervous system. These factors include the orphan nuclear receptor TLX, the high-mobility-group DNA binding protein Sox2, the basic helix-loop-helix transcription factor Hes, the tumor suppressor gene Pten, the membrane-associated protein Numb, and its cytoplasmic homolog Numblike. The aim of this review is to summarize our current understanding of neural stem cell regulation through these important stem cell regulators.
Collapse
Affiliation(s)
- Qiuhao Qu
- Department of Neurosciences, Center for Gene Expression and Drug Discovery, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | |
Collapse
|
20
|
Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S, Kohli MA, Hennings JM, Horstmann S, Kloiber S, Menke A, Bondy B, Rupprecht R, Domschke K, Baune BT, Arolt V, Rush AJ, Holsboer F, Müller-Myhsok B. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. ACTA ACUST UNITED AC 2009; 66:966-975. [PMID: 19736353 DOI: 10.1001/archgenpsychiatry.2009.95] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT The efficacy of antidepressant drug treatment in depression is unsatisfactory; 1 in 3 patients does not fully recover even after several treatment trials. Genetic factors and clinical characteristics contribute to the failure of a favorable treatment outcome. OBJECTIVE To identify genetic and clinical determinants of antidepressant drug treatment outcome in depression. DESIGN Genomewide pharmacogenetic association study with 2 independent replication samples. SETTING We performed a genomewide association study in patients from the Munich Antidepressant Response Signature (MARS) project and in pooled DNA from an independent German replication sample. A set of 328 single-nucleotide polymorphisms highly related to outcome in both genomewide association studies was genotyped in a sample of the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. PARTICIPANTS A total of 339 inpatients with a depressive episode (MARS sample), a further 361 inpatients with depression (German replication sample), and 832 outpatients with major depression (STAR*D sample). MAIN OUTCOME MEASURES We generated a multilocus genetic variable that described the individual number of alleles of the selected single nucleotide polymorphisms associated with beneficial treatment outcome in the MARS sample ("response" alleles) to evaluate additive genetic effects on antidepressant drug treatment outcome. RESULTS Multilocus analysis revealed a significant contribution of a binary variable that categorized patients as carriers of a high vs low number of response alleles in the prediction of antidepressant drug treatment outcome in both samples (MARS and STAR*D). In addition, we observed that patients with a comorbid anxiety disorder combined with a low number of response alleles showed the least favorable outcome. CONCLUSION These results demonstrate the importance of multiple genetic factors combined with clinical features in the prediction of antidepressant drug treatment outcome, which underscores the multifactorial nature of this trait.
Collapse
Affiliation(s)
- Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Susanne Lucae
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Elisabeth B Binder
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Thomas Bettecken
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Manfred Uhr
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Stephan Ripke
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Martin A Kohli
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Johannes M Hennings
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Sonja Horstmann
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Stefan Kloiber
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Andreas Menke
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Brigitta Bondy
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Rainer Rupprecht
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Katharina Domschke
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Bernhard T Baune
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Volker Arolt
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - A John Rush
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Florian Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany (Drs Ising, Lucae, Binder, Bettecken, Uhr, Ripke, Kohli, Hennings, Horstmann, Kloiber, Menke, Holsboer, and Müller-Myhsok), Department of Psychiatry, Ludwig Maximilians University, Munich, Germany (Drs Bondy and Rupprecht), Department of Psychiatry, Westfalian Wilhelms University Muenster, Muenster, Germany (Drs Domschke, Baune, and Arolt), Department of Psychiatry, James Cook University, Townsville, Australia (Dr Baune), Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA, and Department of Clinical Sciences, Duke-NUS, Singapore (Dr Rush)
| |
Collapse
|
21
|
Eadie BD, Zhang WN, Boehme F, Gil-Mohapel J, Kainer L, Simpson JM, Christie BR. Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus. Neurobiol Dis 2009; 36:361-73. [PMID: 19666116 DOI: 10.1016/j.nbd.2009.08.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 07/31/2009] [Accepted: 08/03/2009] [Indexed: 01/11/2023] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the selective loss of the expression of the Fmr1 gene. Key symptoms in FXS include intellectual impairment and abnormal anxiety-related behaviors. Fmr1 knockout (KO) mice exhibited reduced anxiety on two behavioral tests as well as a blunted corticosterone response to acute stress. Spatial learning and memory was not impaired when tested with both the classic Morris water and Plus-shaped mazes. Adult hippocampal neurogenesis has been associated with spatial learning and memory and emotions such as anxiety and depression. The process of neurogenesis appears abnormal in young adult Fmr1 KO mice, with significantly fewer bromodeoxyuridine-positive cells surviving for at least 4 weeks in the ventral subregion of the dentate gyrus (DG), a hippocampal subregion more closely associated with emotion than the dorsal DG. Within this smaller pool of surviving cells, we observed a concomitant increase in the proportion of surviving cells that acquire a neuronal phenotype. We did not observe a clear difference in cell proliferation using both endogenous and exogenous markers. This work indicates that loss of Fmr1 expression can alter anxiety-related behaviors in mice as well as produce region-specific alterations in hippocampal adult neurogenesis.
Collapse
Affiliation(s)
- B D Eadie
- MD/PhD Program, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Kumar RA, McGhee KA, Leach S, Bonaguro R, Maclean A, Aguirre-Hernandez R, Abrahams BS, Coccaro EF, Hodgins S, Turecki G, Condon A, Muir WJ, Brooks-Wilson AR, Blackwood DH, Simpson EM. Initial association of NR2E1 with bipolar disorder and identification of candidate mutations in bipolar disorder, schizophrenia, and aggression through resequencing. Am J Med Genet B Neuropsychiatr Genet 2008; 147B:880-9. [PMID: 18205168 DOI: 10.1002/ajmg.b.30696] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear receptor 2E1 gene (NR2E1) resides within a 6q21-22 locus for bipolar disorder and schizophrenia. Mice deleted for Nr2e1 show altered neurogenesis, cortical and limbic abnormalities, aggression, hyperexcitability, and cognitive impairment. NR2E1 is therefore a positional and functional candidate for involvement in mental illness. We performed association analyses in 394 patients with bipolar disorder, 396 with schizophrenia, and 479 controls using six common markers and haplotypes. We also performed a comprehensive mutation screen of NR2E1, resequencing its entire coding region, complete 5' and 3' untranslated regions, consensus splice-sites, and evolutionarily conserved regions in 126 humans with bipolar disorder, schizophrenia, or aggressive disorders. NR2E1 was associated with bipolar disorder I and II [odds ratio (OR = 0.77, P = 0.013), bipolar disorder I (OR = 0.77, P = 0.015), bipolar disorder in females (OR = 0.72, P = 0.009), and with age at onset < or = 25 years (OR = 0.67, P = 0.006)], all of which remained significant after correcting for multiple comparisons. We identified eight novel candidate mutations that were absent in 325 controls; four of these were predicted to alter known neural transcription factor binding sites. Analyses of NR2E1 mRNA in human brain revealed forebrain-specific transcription. The data presented support the hypothesis that genetic variation at NR2E1 may be associated with susceptibility to brain-behavior disorders.
Collapse
Affiliation(s)
- Ravinesh A Kumar
- Centre for Molecular Medicine & Therapeutics and Child & Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vuksic M, Del Turco D, Bas Orth C, Burbach GJ, Feng G, Müller CM, Schwarzacher SW, Deller T. 3D-reconstruction and functional properties of GFP-positive and GFP-negative granule cells in the fascia dentata of the Thy1-GFP mouse. Hippocampus 2008; 18:364-75. [PMID: 18189310 DOI: 10.1002/hipo.20398] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Granule cells of the mouse fascia dentata are widely used in studies on neuronal development and plasticity. In contrast to the rat, however, high-resolution morphometric data on these cells are scarce. Thus, we have analyzed granule cells in the fascia dentata of the adult Thy1-GFP mouse (C57BL/6 background). In this mouse line, single neurons in the granule cell layer are GFP-labeled, making them amenable to high-resolution 3D-reconstruction. First, calbindin or parvalbumin-immunofluorescence was used to identify GFP-positive cells as granule cells. Second, the dorsal-ventral distribution of GFP-positive granule cells was studied: In the dorsal part of the fascia dentata 11% and in the ventral part 15% of all granule cells were GFP-positive. Third, GFP-positive and GFP-negative granule cells were compared using intracellular dye-filling (fixed slice technique) and patch-clamp recordings; no differences were observed between the cells. Finally, GFP-positive granule cells (dorsal and ventral fascia dentata) were imaged at high resolution with a confocal microscope, 3D-reconstructed in their entirety and analyzed for soma size, total dendritic length, number of segments, total number of spines and spine density. Sholl analysis revealed that dendritic complexity of granule cells is maximal 150-200 mum from the soma. Granule cells located in the ventral part of the hippocampus revealed a greater degree of dendritic complexity compared to cells in the dorsal part. Taken together, this study provides morphometric data on granule cells of mice bred on a C57BL/6 background and establishes the Thy1-GFP mouse as a tool to study granule cell neurobiology.
Collapse
Affiliation(s)
- Mario Vuksic
- Institute of Clinical Neuroanatomy, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun G, Yu RT, Evans RM, Shi Y. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 2007; 104:15282-7. [PMID: 17873065 PMCID: PMC2000559 DOI: 10.1073/pnas.0704089104] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Indexed: 11/18/2022] Open
Abstract
TLX is a transcription factor that is essential for neural stem cell proliferation and self-renewal. However, the molecular mechanism of TLX-mediated neural stem cell proliferation and self-renewal is largely unknown. We show here that TLX recruits histone deacetylases (HDACs) to its downstream target genes to repress their transcription, which in turn regulates neural stem cell proliferation. TLX interacts with HDAC3 and HDAC5 in neural stem cells. The HDAC5-interaction domain was mapped to TLX residues 359-385, which contains a conserved nuclear receptor-coregulator interaction motif IXXLL. Both HDAC3 and HDAC5 have been shown to be recruited to the promoters of TLX target genes along with TLX in neural stem cells. Recruitment of HDACs led to transcriptional repression of TLX target genes, the cyclin-dependent kinase inhibitor, p21(CIP1/WAF1)(p21), and the tumor suppressor gene, pten. Either inhibition of HDAC activity or knockdown of HDAC expression led to marked induction of p21 and pten gene expression and dramatically reduced neural stem cell proliferation, suggesting that the TLX-interacting HDACs play an important role in neural stem cell proliferation. Moreover, expression of a TLX peptide containing the minimal HDAC5 interaction domain disrupted the TLX-HDAC5 interaction. Disruption of this interaction led to significant induction of p21 and pten gene expression and to dramatic inhibition of neural stem cell proliferation. Taken together, these findings demonstrate a mechanism for neural stem cell proliferation through transcriptional repression of p21 and pten gene expression by TLX-HDAC interactions.
Collapse
Affiliation(s)
- GuoQiang Sun
- *Neuroscience Division, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010; and
| | - Ruth T. Yu
- Gene Expression Laboratory,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ronald M. Evans
- Gene Expression Laboratory,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Yanhong Shi
- *Neuroscience Division, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010; and
| |
Collapse
|
25
|
Kumar RA, Leach S, Bonaguro R, Chen J, Yokom DW, Abrahams BS, Seaver L, Schwartz CE, Dobyns W, Brooks-Wilson A, Simpson EM. Mutation and evolutionary analyses identify NR2E1-candidate-regulatory mutations in humans with severe cortical malformations. GENES BRAIN AND BEHAVIOR 2006; 6:503-16. [PMID: 17054721 PMCID: PMC2040186 DOI: 10.1111/j.1601-183x.2006.00277.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear receptor 2E1 (NR2E1) is expressed in human fetal and adult brains; however, its role in human brain–behavior development is unknown. Previously, we have corrected the cortical hypoplasia and behavioral abnormalities in Nr2e1−/− mice using a genomic clone spanning human NR2E1, which bolsters the hypothesis that NR2E1 may similarly play a role in human cortical and behavioral development. To test the hypothesis that humans with abnormal brain–behavior development may have null or hypomorphic NR2E1 mutations, we undertook the first candidate mutation screen of NR2E1 by sequencing its entire coding region, untranslated, splice site, proximal promoter and evolutionarily conserved non-coding regions in 56 unrelated patients with cortical disorders, namely microcephaly. We then genotyped the candidate mutations in 325 unrelated control subjects and 15 relatives. We did not detect any coding region changes in NR2E1; however, we identified seven novel candidate regulatory mutations that were absent from control subjects. We used in silico tools to predict the effects of these candidate mutations on neural transcription factor binding sites (TFBS). Four candidate mutations were predicted to alter TFBS. To facilitate the present and future studies of NR2E1, we also elucidated its molecular evolution, genetic diversity, haplotype structure and linkage disequilibrium by sequencing an additional 94 unaffected humans representing Africa, the Americas, Asia, Europe, the Middle East and Oceania, as well as great apes and monkeys. We detected strong purifying selection, low genetic diversity, 21 novel polymorphisms and five common haplotypes at NR2E1. We conclude that protein-coding changes in NR2E1 do not contribute to cortical and behavioral abnormalities in the patients examined here, but that regulatory mutations may play a role.
Collapse
Affiliation(s)
- R A Kumar
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
| | - S Leach
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer AgencyVancouver, Canada
| | - R Bonaguro
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - J Chen
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - D W Yokom
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - B S Abrahams
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
| | - L Seaver
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic CenterGreenwood, SC, USA
| | - C E Schwartz
- Center for Molecular Studies, J.C. Self Research Institute, Greenwood Genetic CenterGreenwood, SC, USA
| | - W Dobyns
- University of ChicagoChicago, IL, USA
| | - A Brooks-Wilson
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer AgencyVancouver, Canada
| | - E M Simpson
- Centre for Molecular Medicine and Therapeutics and Child & Family Research InstituteVancouver, Canada
- Department of Medical Genetics, University of British ColumbiaVancouver, Canada
- Corresponding author: Elizabeth M. Simpson, 3020 980 West 28 Ave, Vancouver, BC, Canada V5Z 4H4. E-mail:
| |
Collapse
|