1
|
Favoretto CA, Bertagna NB, Miguel TT, Quadros IMH. The CRF/Urocortin systems as therapeutic targets for alcohol use disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:97-152. [PMID: 39523064 DOI: 10.1016/bs.irn.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Development and maintenance of alcohol use disorders have been proposed to recruit critical mechanisms involving Corticotropin Releasing Factor and Urocortins (CRF/Ucns). The CRF/Ucns system is comprised of a family of peptides (CRF, Ucn 1, Ucn 2, Ucn 3) which act upon two receptor subtypes, CRFR1 and CRFR2, each with different affinity profiles to the endogenous peptides and differential brain distribution. Activity of CRF/Ucn system is further modulated by CRF binding protein (CRF-BP), which regulates availability of CRF and Ucns to exert their actions. Extensive evidence in preclinical models support the involvement of CRF/Ucn targets in escalated alcohol drinking, as well as point to changes in CRF/Ucn brain function as a result of chronic alcohol exposure and/or withdrawal. It highlights the role of CRF and CRFR1-mediated signaling in conditions of excessive alcohol taking and seeking, including during various stages of withdrawal and relapse to alcohol. Besides its role in the hypothalamic-pituitary-adrenal (HPA) axis, the importance of extra-hypothalamic CRF pathways, especially in the extended amygdala, in the neurobiology of alcohol abuse and dependence is emphasized. Emerging roles for other targets of the CRF/Ucn system, such as CRF2 receptors, CRF-BP and Ucns in escalated alcohol drinking is also discussed. Finally, the limited translational value of CRF/Ucn interventions in stress-related and alcohol use disorders is discussed. So far, CRFR1 antagonists have shown little or no efficacy in human clinical trials, although a range of unexplored conditions and possibilities remain to be explored.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil
| | | | - Isabel M H Quadros
- Psychobiology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (Unifesp), SP, Brazil.
| |
Collapse
|
2
|
Richardson J, Dezfuli G, Mangel AW, Gillis RA, Vicini S, Sahibzada N. CNS sites controlling the gastric pyloric sphincter: Neuroanatomical and functional study in the rat. J Comp Neurol 2023; 531:1562-1581. [PMID: 37507853 PMCID: PMC10430764 DOI: 10.1002/cne.25530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/25/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
The pyloric sphincter receives parasympathetic vagal innervation from the dorsal motor nucleus of the vagus (DMV). However, little is known about its higher-order neurons and the nuclei that engage the DMV neurons controlling the pylorus. The purpose of the present study was twofold. First, to identify neuroanatomical connections between higher-order neurons and the DMV. This was carried out by using the transneuronal pseudorabies virus PRV-152 injected into rat pylorus torus and examining the brains of these animals for PRV labeling. Second, to identify the specific sites within the DMV that functionally control the motility and tone of the pyloric sphincter. For these studies, experiments were performed to assess the effect of DMV stimulation on pylorus activity in urethane-anesthetized male rats. A strain gauge force transducer was sutured onto the pyloric tonus to monitor tone and motility. L-glutamate (500 pmol/30 nL) was microinjected unilaterally into the rostral and caudal areas of the DMV. Data from the first study indicated that neurons labeled with PRV occurred in the DMV, hindbrain raphe nuclei, midbrain Edinger-Westphal nucleus, ventral tegmental area, lateral habenula, and arcuate nucleus. Data from the second study indicated that microinjected L-glutamate into the rostral DMV results in contraction of the pylorus blocked by intravenously administered atropine and ipsilateral vagotomy. L-glutamate injected into the caudal DMV relaxed the pylorus. This response was abolished by ipsilateral vagotomy but not by intravenously administered atropine or L-NG-nitroarginine methyl ester (L-NAME). These findings identify the anatomical and functional brain neurocircuitry involved in controlling the pyloric sphincter. Our results also show that site-specific stimulation of the DMV can differentially influence the activity of the pyloric sphincter by separate vagal nerve pathways.
Collapse
Affiliation(s)
- Janell Richardson
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | | | - Richard A. Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
3
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
4
|
Abstract
Since most gaze shifts are to targets that lie at a different distance from the viewer than the current target, gaze changes commonly require a change in the angle between the eyes. As part of this response, lens curvature must also be adjusted with respect to target distance by the ciliary muscle. It has been suggested that projections by the cerebellar fastigial and posterior interposed nuclei to the supraoculomotor area (SOA), which lies immediately dorsal to the oculomotor nucleus and contains near response neurons, support this behavior. However, the SOA also contains motoneurons that supply multiply innervated muscle fibers (MIFs) and the dendrites of levator palpebrae superioris motoneurons. To better determine the targets of the fastigial nucleus in the SOA, we placed an anterograde tracer into this cerebellar nucleus in Macaca fascicularis monkeys and a retrograde tracer into their contralateral medial rectus, superior rectus, and levator palpebrae muscles. We only observed close associations between anterogradely labeled boutons and the dendrites of medial rectus MIF and levator palpebrae motoneurons. However, relatively few of these associations were present, suggesting these are not the main cerebellar targets. In contrast, labeled boutons in SOA, and in the adjacent central mesencephalic reticular formation (cMRF), densely innervated a subpopulation of neurons. Based on their location, these cells may represent premotor near response neurons that supply medial rectus and preganglionic Edinger-Westphal motoneurons. We also identified lens accommodation-related cerebellar afferent neurons via retrograde trans-synaptic transport of the N2c rabies virus from the ciliary muscle. They were found bilaterally in the fastigial and posterior interposed nuclei, in a distribution which mirrored that of neurons retrogradely labeled from the SOA and cMRF. Our results suggest these cerebellar neurons coordinate elements of the near response during symmetric vergence and disjunctive saccades by targeting cMRF and SOA premotor neurons.
Collapse
|
5
|
Dedic N, Chen A, Deussing JM. The CRF Family of Neuropeptides and their Receptors - Mediators of the Central Stress Response. Curr Mol Pharmacol 2018; 11:4-31. [PMID: 28260504 PMCID: PMC5930453 DOI: 10.2174/1874467210666170302104053] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/26/2015] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Background: Dysregulated stress neurocircuits, caused by genetic and/or environmental changes, underlie the development of many neuropsychiatric disorders. Corticotropin-releasing factor (CRF) is the major physiological activator of the hypothalamic-pituitary-adrenal (HPA) axis and conse-quently a primary regulator of the mammalian stress response. Together with its three family members, urocortins (UCNs) 1, 2, and 3, CRF integrates the neuroendocrine, autonomic, metabolic and behavioral responses to stress by activating its cognate receptors CRFR1 and CRFR2. Objective: Here we review the past and current state of the CRF/CRFR field, ranging from pharmacologi-cal studies to genetic mouse models and virus-mediated manipulations. Results: Although it is well established that CRF/CRFR1 signaling mediates aversive responses, includ-ing anxiety and depression-like behaviors, a number of recent studies have challenged this viewpoint by revealing anxiolytic and appetitive properties of specific CRF/CRFR1 circuits. In contrast, the UCN/CRFR2 system is less well understood and may possibly also exert divergent functions on physiol-ogy and behavior depending on the brain region, underlying circuit, and/or experienced stress conditions. Conclusion: A plethora of available genetic tools, including conventional and conditional mouse mutants targeting CRF system components, has greatly advanced our understanding about the endogenous mecha-nisms underlying HPA system regulation and CRF/UCN-related neuronal circuits involved in stress-related behaviors. Yet, the detailed pathways and molecular mechanisms by which the CRF/UCN-system translates negative or positive stimuli into the final, integrated biological response are not completely un-derstood. The utilization of future complementary methodologies, such as cell-type specific Cre-driver lines, viral and optogenetic tools will help to further dissect the function of genetically defined CRF/UCN neurocircuits in the context of adaptive and maladaptive stress responses.
Collapse
Affiliation(s)
- Nina Dedic
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| | - Jan M Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Kraepelinstr, 2-10, 80804 Munich. Germany
| |
Collapse
|
6
|
Giardino WJ, Rodriguez ED, Smith ML, Ford MM, Galili D, Mitchell SH, Chen A, Ryabinin AE. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl Psychiatry 2017; 7:e1021. [PMID: 28140406 PMCID: PMC5299395 DOI: 10.1038/tp.2016.293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake.
Collapse
Affiliation(s)
- W J Giardino
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D Galili
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - S H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. E-mail:
| |
Collapse
|
7
|
van der Doelen RHA, Robroch B, Arnoldussen IA, Schulpen M, Homberg JR, Kozicz T. Serotonin and urocortin 1 in the dorsal raphe and Edinger-Westphal nuclei after early life stress in serotonin transporter knockout rats. Neuroscience 2016; 340:345-358. [PMID: 27826101 DOI: 10.1016/j.neuroscience.2016.10.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/29/2016] [Accepted: 10/31/2016] [Indexed: 02/04/2023]
Abstract
The interaction of early life stress (ELS) and the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR) has been associated with increased risk to develop depression in later life. We have used the maternal separation paradigm as a model for ELS exposure in homozygous and heterozygous 5-HTT knockout rats and measured urocortin 1 (Ucn1) mRNA and/or protein levels, Ucn1 DNA methylation, as well as 5-HT innervation in the centrally projecting Edinger-Westphal (EWcp) and dorsal raphe (DR) nuclei, both implicated in the regulation of stress response. We found that ELS and 5-HTT genotype increased the number of 5-HT neurons in specific DR subdivisions, and that 5-HTT knockout rats showed decreased 5-HT innervation of EWcp-Ucn1 neurons. Furthermore, ELS was associated with increased DNA methylation of the promoter region of the Ucn1 gene and increased expression of 5-HT receptor 1A in the EWcp. In contrast, 5-HTT deficiency was associated with site-specific alterations in DNA methylation of the Ucn1 promoter, and heterozygous 5-HTT knockout rats showed decreased expression of CRF receptor 1 in the EWcp. Together, our findings extend the existing literature on the relationship between EWcp-Ucn1 and DR-5-HT neurons. These observations will further our understanding on their potential contribution to mediate affect as a function of ELS interacting with 5-HTTLPR.
Collapse
Affiliation(s)
- Rick H A van der Doelen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Berit Robroch
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ilse A Arnoldussen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maya Schulpen
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tamás Kozicz
- Department of Anatomy, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Pediatrics, Hayward Genetics Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
8
|
Quadros IMH, Macedo GC, Domingues LP, Favoretto CA. An Update on CRF Mechanisms Underlying Alcohol Use Disorders and Dependence. Front Endocrinol (Lausanne) 2016; 7:134. [PMID: 27818644 PMCID: PMC5073134 DOI: 10.3389/fendo.2016.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/09/2016] [Indexed: 12/31/2022] Open
Abstract
Alcohol is the most commonly used and abused substance worldwide. The emergence of alcohol use disorders, and alcohol dependence in particular, is accompanied by functional changes in brain reward and stress systems, which contribute to escalated alcohol drinking and seeking. Corticotropin-releasing factor (CRF) systems have been critically implied in the transition toward problematic alcohol drinking and alcohol dependence. This review will discuss how dysregulation of CRF function contributes to the vulnerability for escalated alcohol drinking and other consequences of alcohol consumption, based on preclinical evidence. CRF signaling, mostly via CRF1 receptors, seems to be particularly important in conditions of excessive alcohol taking and seeking, including during early and protracted withdrawal, relapse, as well as during withdrawal-induced anxiety and escalated aggression promoted by alcohol. Modulation of CRF1 function seems to exert a less prominent role over low to moderate alcohol intake, or to species-typical behaviors. While CRF mechanisms in the hypothalamic-pituitary-adrenal axis have some contribution to the neurobiology of alcohol abuse and dependence, a pivotal role for extra-hypothalamic CRF pathways, particularly in the extended amygdala, is well characterized. More recent studies further suggest a direct modulation of brain reward function by CRF signaling in the ventral tegmental area, nucleus accumbens, and the prefrontal cortex, among other structures. This review will further discuss a putative role for other components of the CRF system that contribute for the overall balance of CRF function in reward and stress pathways, including CRF2 receptors, CRF-binding protein, and urocortins, a family of CRF-related peptides.
Collapse
Affiliation(s)
- Isabel Marian Hartmann Quadros
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Giovana Camila Macedo
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Liz Paola Domingues
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Cristiane Aparecida Favoretto
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
May PJ, Warren S, Bohlen MO, Barnerssoi M, Horn AKE. A central mesencephalic reticular formation projection to the Edinger-Westphal nuclei. Brain Struct Funct 2015; 221:4073-4089. [PMID: 26615603 DOI: 10.1007/s00429-015-1147-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/12/2015] [Indexed: 11/30/2022]
Abstract
The central mesencephalic reticular formation, a region associated with horizontal gaze control, has recently been shown to project to the supraoculomotor area in primates. The Edinger-Westphal nucleus is found within the supraoculomotor area. It has two functionally and anatomically distinct divisions: (1) the preganglionic division, which contains motoneurons that control both the actions of the ciliary muscle, which focuses the lens, and the sphincter pupillae muscle, which constricts the iris, and (2) the centrally projecting division, which contains peptidergic neurons that play a role in food and fluid intake, and in stress responses. In this study, we used neuroanatomical tracers in conjunction with immunohistochemistry in Macaca fascicularis monkeys to examine whether either of these Edinger-Westphal divisions receives synaptic input from the central mesencephalic reticular formation. Anterogradely labeled reticular axons were observed making numerous boutonal associations with the cholinergic, preganglionic motoneurons of the Edinger-Westphal nucleus. These associations were confirmed to be synaptic contacts through the use of confocal and electron microscopic analysis. The latter indicated that these terminals generally contained pleomorphic vesicles and displayed symmetric, synaptic densities. Examination of urocortin-1-positive cells in the same cases revealed fewer examples of unambiguous synaptic relationships, suggesting the centrally projecting Edinger-Westphal nucleus is not the primary target of the projection from the central mesencephalic reticular formation. We conclude from these data that the central mesencephalic reticular formation must play a here-to-for unexpected role in control of the near triad (vergence, lens accommodation and pupillary constriction), which is used to examine objects in near space.
Collapse
Affiliation(s)
- Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Martin O Bohlen
- Department of Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Miriam Barnerssoi
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians University, Pettenkoferstrasse 11, 80336, Munich, Germany
| | - Anja K E Horn
- Institute of Anatomy and Cell Biology I, Ludwig-Maximilians University, Pettenkoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
10
|
Bohlen MO, Warren S, May PJ. A central mesencephalic reticular formation projection to the supraoculomotor area in macaque monkeys. Brain Struct Funct 2015; 221:2209-29. [PMID: 25859632 DOI: 10.1007/s00429-015-1039-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/02/2015] [Indexed: 11/26/2022]
Abstract
The central mesencephalic reticular formation is physiologically implicated in oculomotor function and anatomically interwoven with many parts of the oculomotor system's premotor circuitry. This study in Macaca fascicularis monkeys investigates the pattern of central mesencephalic reticular formation projections to the area in and around the extraocular motor nuclei, with special emphasis on the supraoculomotor area. It also examines the location of the cells responsible for this projection. Injections of biotinylated dextran amine were stereotaxically placed within the central mesencephalic reticular formation to anterogradely label axons and terminals. These revealed bilateral terminal fields in the supraoculomotor area. In addition, dense terminations were found in both the preganglionic Edinger-Westphal nuclei. The dense terminations just dorsal to the oculomotor nucleus overlap with the location of the C-group medial rectus motoneurons projecting to multiply innervated muscle fibers suggesting they may be targeted. Minor terminal fields were observed bilaterally within the borders of the oculomotor and abducens nuclei. Injections including the supraoculomotor area and oculomotor nucleus retrogradely labeled a tight band of neurons crossing the central third of the central mesencephalic reticular formation at all rostrocaudal levels, indicating a subregion of the nucleus provides this projection. Thus, these experiments reveal that a subregion of the central mesencephalic reticular formation may directly project to motoneurons in the oculomotor and abducens nuclei, as well as to preganglionic neurons controlling the tone of intraocular muscles. This pattern of projections suggests an as yet undetermined role in regulating the near triad.
Collapse
Affiliation(s)
- Martin O Bohlen
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Susan Warren
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Paul J May
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
- Department of Ophthalmology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
11
|
Phillips TJ, Reed C, Pastor R. Preclinical evidence implicating corticotropin-releasing factor signaling in ethanol consumption and neuroadaptation. GENES, BRAIN, AND BEHAVIOR 2015; 14:98-135. [PMID: 25565358 PMCID: PMC4851463 DOI: 10.1111/gbb.12189] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022]
Abstract
The results of many studies support the influence of the corticotropin-releasing factor (CRF) system on ethanol (EtOH) consumption and EtOH-induced neuroadaptations that are critical in the addiction process. This review summarizes the preclinical data in this area after first providing an overview of the components of the CRF system. This complex system involves hypothalamic and extra-hypothalamic mechanisms that play a role in the central and peripheral consequences of stressors, including EtOH and other drugs of abuse. In addition, several endogenous ligands and targets make up this system and show differences in their involvement in EtOH drinking and in the effects of chronic or repeated EtOH treatment. In general, genetic and pharmacological approaches paint a consistent picture of the importance of CRF signaling via type 1 CRF receptors (CRF(1)) in EtOH-induced neuroadaptations that result in higher levels of intake, encourage alcohol seeking during abstinence and alter EtOH sensitivity. Furthermore, genetic findings in rodents, non-human primates and humans have provided some evidence of associations of genetic polymorphisms in CRF-related genes with EtOH drinking, although additional data are needed. These results suggest that CRF(1) antagonists have potential as pharmacotherapeutics for alcohol use disorders. However, given the broad and important role of these receptors in adaptation to environmental and other challenges, full antagonist effects may be too profound and consideration should be given to treatments with modulatory effects.
Collapse
Affiliation(s)
- T. J. Phillips
- VA Portland Health Care System, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - C. Reed
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - R. Pastor
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
- Area de Psicobiología, Universitat Jaume I, 12071 Castellón, Spain
- Department of Psychology, Reed College, Portland, OR, USA
| |
Collapse
|
12
|
Yakabi K, Harada Y, Takayama K, Ro S, Ochiai M, Iizuka S, Hattori T, Wang L, Taché Y. Peripheral α2-β1 adrenergic interactions mediate the ghrelin response to brain urocortin 1 in rats. Psychoneuroendocrinology 2014; 50:300-10. [PMID: 25265283 PMCID: PMC5942202 DOI: 10.1016/j.psyneuen.2014.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 12/24/2022]
Abstract
The autonomic nervous system (ANS) conveys neuronal input from the brain to the stomach. We investigated mechanisms through which urocortin 1 (UCN1) injected intracerebroventricularly (ICV, 300 pmol/rat) inhibits circulating ghrelin in rats. This was achieved by assessing (1) the induction of c-fos gene expression as a marker of neuronal activation in specific hypothalamic and caudal brainstem regulating ANS; (2) the influence of vagotomy and pharmacological blockade of central and peripheral α- and β-adrenergic receptor (AR) on ICV UCN1-induced reduction of plasma ghrelin levels (determined by ELISA); and (3) the relevance of this pathway in the feeding response to a fast in rats. UCN1 increased c-fos mRNA expression in key brain sites influencing sympathetic activity namely the hypothalamic paraventricular and ventromedial nuclei, locus coeruleus, nucleus of the solitary tract, and rostral ventrolateral medulla, by 16-, 29-, 6-, 37-, and 13-fold, respectively. In contrast, the dorsal motor nucleus of the vagus had little c-fos mRNA expression and ICV UCN1 induced a similar reduction in acylated ghrelin in the sham-operated (31%) and vagotomized (41%) rats. An intraperitoneal (IP) injection of either a non-selective α- or selective α2-AR antagonist reduced, while a selective α2-AR agonist enhanced ICV UCN1-induced suppression of plasma acylated ghrelin levels. In addition, IP injection of a non-selective β- or selective β1-AR agonist blocked, and selective β1-AR antagonist augmented, the ghrelin response to ICV UCN1. The IP injections of a selective α1- or non-selective β or β2-AR antagonists, or any of the pretreatments given ICV had no effect. ICV UCN1 reduced the 2-h food intake in response to a fast by 80%, and this effect was partially prevented by a selective α2-AR antagonist. These data suggest that ICV UCN1 reduces plasma ghrelin mainly through the brain sympathetic component of the ANS and peripheral AR specifically α2-AR activation and inactivation of β1-AR. The α2-AR pathway contributes to the associated reduction in food intake.
Collapse
Affiliation(s)
- Koji Yakabi
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan
| | - Yumi Harada
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan.
| | - Kiyoshige Takayama
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Department of Laboratory Sciences, Gunma University School of Health Sciences, Gunma 3718511, Japan
| | - Shoki Ro
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan; Central Research Laboratories, Teikyo University Chiba Medical Center, Chiba 2990111, Japan
| | - Mitsuko Ochiai
- Department of Gastroenterology and Hepatology, Saitama Medical Center, Saitama Medical University, Saitama 3508550, Japan
| | - Seiichi Iizuka
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan
| | - Tomohisa Hattori
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 3001192, Japan
| | - Lixin Wang
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90078, USA
| | - Yvette Taché
- CURE/Digestive Diseases Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, University of California at Los Angeles, and VA Greater Los Angeles Health Care System, Los Angeles, CA 90078, USA
| |
Collapse
|
13
|
Xu L. Leptin action in the midbrain: From reward to stress. J Chem Neuroanat 2014; 61-62:256-65. [DOI: 10.1016/j.jchemneu.2014.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/25/2014] [Indexed: 12/11/2022]
|
14
|
Stengel A, Taché Y. CRF and urocortin peptides as modulators of energy balance and feeding behavior during stress. Front Neurosci 2014; 8:52. [PMID: 24672423 PMCID: PMC3957495 DOI: 10.3389/fnins.2014.00052] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/26/2014] [Indexed: 12/19/2022] Open
Abstract
Early on, corticotropin-releasing factor (CRF), a hallmark brain peptide mediating many components of the stress response, was shown to affect food intake inducing a robust anorexigenic response when injected into the rodent brain. Subsequently, other members of the CRF signaling family have been identified, namely urocortin (Ucn) 1, Ucn 2, and Ucn 3 which were also shown to decrease food intake upon central or peripheral injection. However, the kinetics of feeding suppression was different with an early decrease following intracerebroventricular injection of CRF and a delayed action of Ucns contrasting with the early onset after systemic injection. CRF and Ucns bind to two distinct G-protein coupled membrane receptors, the CRF1 and CRF2. New pharmacological tools such as highly selective peptide CRF1 or CRF2 agonists or antagonists along with genetic knock-in or knock-out models have allowed delineating the primary role of CRF2 involved in the anorexic response to exogenous administration of CRF and Ucns. Several stressors trigger behavioral changes including suppression of feeding behavior which are mediated by brain CRF receptor activation. The present review will highlight the state-of-knowledge on the effects and mechanisms of action of CRF/Ucns-CRF1/2 signaling under basal conditions and the role in the alterations of food intake in response to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- Division of General Internal and Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Yvette Taché
- CURE: Digestive Diseases Research Center, Center for Neurobiology of Stress and Women's Health, Department of Medicine, Digestive Diseases Division at the University of California Los Angeles, and VA Greater Los Angeles Health Care SystemLos Angeles, CA, USA
| |
Collapse
|
15
|
Tong CK, Chen J, Cebrián-Silla A, Mirzadeh Z, Obernier K, Guinto CD, Tecott LH, García-Verdugo JM, Kriegstein A, Alvarez-Buylla A. Axonal control of the adult neural stem cell niche. Cell Stem Cell 2014; 14:500-11. [PMID: 24561083 DOI: 10.1016/j.stem.2014.01.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 12/05/2013] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
The ventricular-subventricular zone (V-SVZ) is an extensive germinal niche containing neural stem cells (NSCs) in the walls of the lateral ventricles of the adult brain. How the adult brain's neural activity influences the behavior of adult NSCs remains largely unknown. We show that serotonergic (5HT) axons originating from a small group of neurons in the raphe form an extensive plexus on most of the ventricular walls. Electron microscopy revealed intimate contacts between 5HT axons and NSCs (B1) or ependymal cells (E1) and these cells were labeled by a transsynaptic viral tracer injected into the raphe. B1 cells express the 5HT receptors 2C and 5A. Electrophysiology showed that activation of these receptors in B1 cells induced small inward currents. Intraventricular infusion of 5HT2C agonist or antagonist increased or decreased V-SVZ proliferation, respectively. These results indicate that supraependymal 5HT axons directly interact with NSCs to regulate neurogenesis via 5HT2C.
Collapse
Affiliation(s)
- Cheuk Ka Tong
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiadong Chen
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arantxa Cebrián-Silla
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia 46980, Spain
| | - Zaman Mirzadeh
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Kirsten Obernier
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cristina D Guinto
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Laurence H Tecott
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jose Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles, Universidad de Valencia, CIBERNED, Valencia 46980, Spain; Unidad Mixta de Esclerosis Múltiple y Neurorregeneración, IIS Hospital La Fe, Valencia 46013, Spain
| | - Arnold Kriegstein
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
16
|
Ryabinin AE, Cocking DL, Kaur S. Inhibition of VTA neurons activates the centrally projecting Edinger-Westphal nucleus: evidence of a stress-reward link? J Chem Neuroanat 2013; 54:57-61. [PMID: 23792226 DOI: 10.1016/j.jchemneu.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
The primary site of urocortin 1 (Ucn1) expression in the brain is the centrally projecting Edinger-Westphal nucleus. The EWcp is innervated by dopaminergic neurons of the ventral tegmental area (VTA). To investigate whether activity of EWcp is regulated by the VTA, we investigated the effects of local pharmacological inhibition of VTA activity on the induction of Fos immunoreactivity in the EWcp of male C57BL/6J mice. A unilateral intracranial administration of the GABA agonist muscimol aimed at the VTA resulted in increased number of Fos-positive cells in the EWcp. This induction was lower than that produced by an intraperitoneal injection of 2.5 g/kg of ethanol. To investigate whether inhibition of dopaminergic neurons was responsible for induction of Fos, a second experiment was performed where the dopamine agonist quinpirole was unilaterally injected targeting the VTA. Injections of quinpirole also significantly induced Fos in the EWcp neurons. The induction occurred only on the side of the EWcp ipsilateral to the VTA injection. These results indicate that activity of EWcp is inhibited by tonic activity of dopaminergic VTA neurons, and that unilateral projections of VTA onto Ucn1-containing EWcp neurons provide a link between systems regulating approach and avoidance behaviors.
Collapse
Affiliation(s)
- Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
17
|
Alcohol in excess: CRF₁ receptors in the rat and mouse VTA and DRN. Psychopharmacology (Berl) 2013; 225:313-27. [PMID: 22885872 PMCID: PMC3518642 DOI: 10.1007/s00213-012-2820-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/16/2012] [Indexed: 12/29/2022]
Abstract
RATIONALE Manipulation of the stress neuropeptide corticotropin-releasing factor (CRF), specifically central antagonism of the type 1 receptors (CRF-R1), effectively reduces alcoholic-like ethanol drinking in rodents. Escalated consumption is largely controlled by neurocircuitry that is important for reward and affect, such as the ventral tegmental area (VTA) and the dorsal raphé nucleus (DRN). OBJECTIVE The current studies investigated the role of CRF-R1 within the VTA and DRN and their relation to escalated ethanol drinking in two species. An additional goal was to explore whether high alcohol-drinking individuals would be more affected by CRF-R1 antagonism than low alcohol-drinking individuals. METHODS With a two-bottle choice drinking procedure, adult male C57BL/6J mice and Long-Evans rats were given 24-h access to 20 % ethanol and water on an intermittent schedule. Rats and mice were implanted with cannulae targeting the VTA or DRN. Doses of the CRF-R1 antagonist CP-154,526 (butyl-[2,4,6-trimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]ethylamine)) were microinfused to modulate drinking of ethanol and water over the course of 24 h. RESULTS In both mice and rats, intra-VTA CP-154,526 selectively decreased ethanol intake, while identical doses (0.3 and 0.6 μg) infused intra-DRN reduced both ethanol and water drinking. Long-Evans rats displayed a range of individual differences for ethanol preference, and CP-154,526 suppressed ethanol drinking in the high-preferring animals regardless of brain site manipulation. CONCLUSIONS The current findings confirm previous studies that blockade of CRF-R1 efficaciously reduces escalated drinking while also suggesting that the effects of intermittent access on alcohol consumption may require CRF interaction with dopamine in the VTA.
Collapse
|
18
|
Fatima A, Andrabi S, Wolf G, Engelmann M, Spina MG. Urocortin 1 administered into the hypothalamic supraoptic nucleus inhibits food intake in freely fed and food-deprived rats. Amino Acids 2012; 44:879-85. [PMID: 23076252 DOI: 10.1007/s00726-012-1415-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
Peptides of the corticotropin-releasing hormone/Urocortin (CRH/Ucn) family are known to suppress appetite primarily via CRH(2) receptors. In the rat hypothalamic supraoptic nucleus (SON), synthesis of both Ucn1 and CRH(2) receptors has been reported, yet little is known about the effects of Ucn1 in the SON on feeding behaviour. We first established the dose-related effects of Ucn1 injected into the SON on the feeding response in both freely fed and 24-h food-deprived rats. A conditioned taste avoidance paradigm was performed to investigate possible generalised effects of local Ucn1 treatment. Administration of Ucn1 into the SON at doses equal to or higher than 0.5 μg significantly decreased food intake in both freely fed and food-deprived rats. The Ucn1-mediated suppression of food intake was delayed in freely fed as compared to food-deprived animals. Conditioning for taste aversion to saccharine appeared at 0.5 and 1 μg of Ucn1. Both the early and the delayed onset of anorexia observed after intra-SON injection of Ucn1 under fasting and fed conditions, respectively, suggest the possible involvement of different CRH receptor subtypes in the two conditions, while the conditioned taste aversion seems to be responsible for the initial latency to eat the first meal in these animals.
Collapse
Affiliation(s)
- A Fatima
- Institute of Biochemistry and Cell Biology, Otto von Guericke University, Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
19
|
Erichsen JT, May PJ. A perioculomotor nitridergic population in the macaque and cat. Invest Ophthalmol Vis Sci 2012; 53:5751-61. [PMID: 22836763 DOI: 10.1167/iovs.12-10287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PURPOSE We determined the distribution of cells containing synthetic enzymes for the unconventional neurotransmitter, nitric oxide, with respect to the known populations within the oculomotor complex. METHODS The oculomotor complex was investigated in monkeys and cats by use of histochemistry to demonstrate nicotinamide adenine dinucleotide phosphate diaphorase positive (NADPHd(+)) cells and antibodies to localize neuronal nitric oxide synthase positive (NOS(+)) cells. In some cases, wheat germ agglutinin conjugated horseradish peroxidase (WGA-HRP) was injected into extraocular muscles to allow comparison of retrogradely labeled and NADPHd(+) cell distributions. RESULTS The distribution of the NADPHd(+) and NOS(+) neurons did not coincide with that of preganglionic and extraocular motoneurons in the oculomotor complex. However, labeled perioculomotor neurons were observed. Specifically, in monkeys, they lay in an arc that extended from between the oculomotor nuclei into the supraoculomotor area (SOA). Comparison of WGA-HRP-labeled medial and superior rectus motoneurons with NADPHd staining confirmed that the distributions overlapped, but showed that the C- and S-group cells were not NADPHd(+). This suggested that NADPHd(+) cells are part of the centrally projecting Edinger-Westphal population (EWcp). Examination of the NADPHd(+) cell distribution in the cat showed that these cells were indeed found primarily within its well-defined EWcp. CONCLUSIONS Based on their similar distributions, it appears that the peptidergic EWcp neurons, which project widely in the brain, also may be nitridergic. While the preganglionic and C- and S-group motoneuron populations do not use this nonsynaptic neurotransmitter, nitric oxide produced by surrounding NADPHd(+) cells may modulate the activity of these motoneurons.
Collapse
Affiliation(s)
- Jonathan T Erichsen
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | | |
Collapse
|
20
|
Xu L, Scheenen WJJM, Roubos EW, Kozicz T. Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen Comp Endocrinol 2012; 177:296-304. [PMID: 22166814 DOI: 10.1016/j.ygcen.2011.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 11/18/2022]
Abstract
The continuously changing environment demands for adequate stress responses to maintain the internal dynamic equilibrium of body and mind. A successful stress response requires energy, in an amount matching the severity of the stressor and the type of response ('fight, flight or freeze'). The stress response is generated by the central nervous system, which needs to be informed about both the threatening stressor and the availability of energy. In this review, evidence is considered for a role of the midbrain Edinger-Westphal centrally projecting neuron population (EWcp; synonym: non-preganglionic Edinger-Westphal nucleus) in the energy-dependent stress adaptation response. It deals with studies on the neurochemical organization of the EWcp with particular reference to the neuropeptides urocortin-1 and cocaine- and amphetamine-regulated transcript peptide, on the EWcp responses to different types of stressor (e.g., acute and chronic) and a changed energy state (e.g., fasting and leptin change), and on the sex-specificity of these responses. Finally, a model is presented for the way the EWcp might contribute to the coordination of the energy-dependent stress adaptation response.
Collapse
Affiliation(s)
- Lu Xu
- Department of Cellular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
21
|
Kozicz T, Bittencourt JC, May PJ, Reiner A, Gamlin PDR, Palkovits M, Horn AKE, Toledo CAB, Ryabinin AE. The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol 2011; 519:1413-34. [PMID: 21452224 DOI: 10.1002/cne.22580] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The eponymous term nucleus of Edinger-Westphal (EW) has come to be used to describe two juxtaposed and somewhat intermingled cell groups of the midbrain that differ dramatically in their connectivity and neurochemistry. On one hand, the classically defined EW is the part of the oculomotor complex that is the source of the parasympathetic preganglionic motoneuron input to the ciliary ganglion (CG), through which it controls pupil constriction and lens accommodation. On the other hand, EW is applied to a population of centrally projecting neurons involved in sympathetic, consumptive, and stress-related functions. This terminology problem arose because the name EW has historically been applied to the most prominent cell collection above or between the somatic oculomotor nuclei (III), an assumption based on the known location of the preganglionic motoneurons in monkeys. However, in many mammals, the nucleus designated as EW is not made up of cholinergic, preganglionic motoneurons supplying the CG and instead contains neurons using peptides, such as urocortin 1, with diverse central projections. As a result, the literature has become increasingly confusing. To resolve this problem, we suggest that the term EW be supplemented with terminology based on connectivity. Specifically, we recommend that 1) the cholinergic, preganglionic neurons supplying the CG be termed the Edinger-Westphal preganglionic (EWpg) population and 2) the centrally projecting, peptidergic neurons be termed the Edinger-Westphal centrally projecting (EWcp) population. The history of this nomenclature problem and the rationale for our solutions are discussed in this review.
Collapse
Affiliation(s)
- Tamás Kozicz
- Department of Cellular Animal Physiology, Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lukkes JL, Staub DR, Dietrich A, Truitt W, Neufeld-Cohen A, Chen A, Johnson PL, Shekhar A, Lowry CA. Topographical distribution of corticotropin-releasing factor type 2 receptor-like immunoreactivity in the rat dorsal raphe nucleus: co-localization with tryptophan hydroxylase. Neuroscience 2011; 183:47-63. [PMID: 21453754 PMCID: PMC3092641 DOI: 10.1016/j.neuroscience.2011.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/04/2011] [Accepted: 03/22/2011] [Indexed: 01/07/2023]
Abstract
Corticotropin-releasing factor (CRF) and CRF-related neuropeptides are involved in the regulation of stress-related physiology and behavior. Members of the CRF family of neuropeptides bind to two known receptors, the CRF type 1 (CRF₁) receptor, and the CRF type 2 (CRF₂) receptor. Although the distribution of CRF₂ receptor mRNA expression has been extensively studied, the distribution of CRF₂ receptor protein has not been characterized. An area of the brain known to contain high levels of CRF₂ receptor mRNA expression and CRF₂ receptor binding is the dorsal raphe nucleus (DR). In the present study we investigated in detail the distribution of CRF₂ receptor immunoreactivity throughout the rostrocaudal extent of the DR. CRF₂ receptor-immunoreactive perikarya were observed throughout the DR, with the highest number and density in the mid-rostrocaudal DR. Dual immunofluorescence revealed that CRF₂ receptor immunoreactivity was frequently co-localized with tryptophan hydroxylase, a marker of serotonergic neurons. This study provides evidence that CRF₂ receptor protein is expressed in the DR, and that CRF₂ receptors are expressed in topographically organized subpopulations of cells in the DR, including serotonergic neurons. Furthermore, these data are consistent with the hypothesis that CRF₂ receptors play an important role in the regulation of stress-related physiology and behavior through actions on serotonergic and non-serotonergic neurons within the DR.
Collapse
Affiliation(s)
- J L Lukkes
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Van Wijk DCWA, Xu L, Spiegelberg L, Struik RF, Meijer KH, Gaszner B, Kozicz T, Roubos EW. Ultrastructural and immunocytochemical characterization of the rat non-preganglionic Edinger-Westphal nucleus. Gen Comp Endocrinol 2009; 164:32-9. [PMID: 19362554 DOI: 10.1016/j.ygcen.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/27/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
Abstract
The rodent non-preganglionic Edinger-Westphal nucleus (npEW) is involved in the stress adaptation response. Here we describe the ultrastructural organization of this nucleus in the unchallenged rat, using different tissue fixation and embedding methods, and postembedding immunogold labeling. In this way we have (1) identified Ucn1-immunopositive neurons, (2) described the ultrastructure of these neurons with focus on cell organelles involved in secretion (rough endoplasmic reticulum, Golgi apparatus, secretory granules), (3) demonstrated the subcellular coexistence of Ucn1 with cocaine- and amphetamine-related transcript peptide, and (4) classified various morphological types and configurations of synaptic contact present in the npEW and, specifically, on the npEW-Ucn1 neurons. The data obtained provide the morphological basis for future studies on the plastic effects of acute and chronic stressors as well as feeding conditions specifically affecting the secretory activity of npEW-Ucn1 neurons.
Collapse
Affiliation(s)
- Diane C W A Van Wijk
- Department of Cellular Animal Physiology, Faculty of Science, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, EURON, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Xu L, Bloem B, Gaszner B, Roubos EW, Kozicz T. Sex-specific effects of fasting on urocortin 1, cocaine- and amphetamine-regulated transcript peptide and nesfatin-1 expression in the rat Edinger–Westphal nucleus. Neuroscience 2009; 162:1141-9. [PMID: 19426783 DOI: 10.1016/j.neuroscience.2009.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/23/2009] [Accepted: 05/02/2009] [Indexed: 11/15/2022]
Affiliation(s)
- L Xu
- Department of Cellular Animal Physiology, Faculty of Science, EURON, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Sharpe AL, Phillips TJ. Central urocortin 3 administration decreases limited-access ethanol intake in nondependent mice. Behav Pharmacol 2009; 20:346-51. [PMID: 19581799 PMCID: PMC2908376 DOI: 10.1097/fbp.0b013e32832f01ba] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Stress and alcohol abuse are co-related. Acute alcohol is anxiolytic and stress is cited as a factor in relapse to alcohol use. A primary mediator of the stress response is the neuropeptide corticotropin-releasing factor (CRF). The CRF family of endogenous ligands includes urocortin 3 (Ucn 3), which binds selectively to the CRF type 2 receptor and has been implicated in ethanol consumption in dependent and withdrawing rats. The objective of this study was to examine the effect of Ucn 3, delivered centrally to nondependent mice, on limited-access ethanol consumption. Adult C57BL/6J mice were trained to self-administer 10% ethanol during daily, 2-h limited-access sessions, using lickometers to assess drinking patterns for both ethanol and water. Sterile saline or 0.3, 1, or 3 nmol of Ucn 3 was microinjected into the lateral ventricle immediately before the limited-access session in a within-subjects design. There was a significant decrease in ethanol (both ml and g/kg), but not water, intake following Ucn 3 treatment, explained by a change in size of the largest lick run. Food intake at both 2 h and 24 h after injection was statistically unaffected by Ucn 3 administration. These results establish a role for CRF type 2 receptors in a nondependent mouse model of ethanol self-administration.
Collapse
Affiliation(s)
- Amanda L Sharpe
- Department of Behavioral Neuroscience, The Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| | | |
Collapse
|
26
|
Miragaya JR, Harris RBS. Antagonism of corticotrophin-releasing factor receptors in the fourth ventricle modifies responses to mild but not restraint stress. Am J Physiol Regul Integr Comp Physiol 2008; 295:R404-16. [PMID: 18550868 DOI: 10.1152/ajpregu.00565.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Repeated restraint stress (RRS; 3 h of restraint on 3 consecutive days) in rodents produces temporary hypophagia, but a long-term downregulation of body weight. The mild stress (MS) of an intraperitoneal injection of saline and housing in a novel room for 2 h also inhibits food intake and weight gain, but the effects are smaller than for RRS. Previous exposure to RRS exaggerates hypophagia, glucocorticoid release, and anxiety-type behavior caused by MS. Here we tested the involvement of brain stem corticotrophin-releasing factor receptors (CRFR) in mediating energetic and glucocorticoid responses to RRS or MS and in promoting stress hyperresponsiveness in RRS rats. Administration of 1.3 nmol alphahCRF(9-41), a nonspecific CRFR antagonist, exaggerated hypophagia and weight loss in both RRS and MS rats, whereas 0.26 nmol had no effect in RRS or MS rats. In contrast, 2 nmol of the nonspecific antagonist astressin had no effect on weight loss or hypersensitivity to subsequent MS in RRS rats, but blocked weight loss and inhibition of food intake caused by MS alone. MS rats infused with 3 nmol antisauvagine-30, a CRFR2 antagonist, did not lose weight in the 48 h after MS, but 0.3 nmol did not prevent weight loss in MS rats. These data suggest that inhibition of food intake and weight loss induced by RRS or by MS involve different pathways, with hindbrain CRFR mediating the effect of MS on body weight and food intake. Hindbrain CRFR do not appear to influence stress-induced corticosterone release in RRS rats.
Collapse
Affiliation(s)
- Joanna R Miragaya
- Department of Foods and Nutrition, Dawson Hall, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
27
|
May PJ, Reiner AJ, Ryabinin AE. Comparison of the distributions of urocortin-containing and cholinergic neurons in the perioculomotor midbrain of the cat and macaque. J Comp Neurol 2008; 507:1300-16. [PMID: 18186029 PMCID: PMC2863095 DOI: 10.1002/cne.21514] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urocortin is a novel neurotransmitter that appears to play a role in eating and drinking behavior. Most urocortin-positive (urocortin(+)) neurons in rodents are found in the cytoarchitecturally defined Edinger-Westphal nucleus (EW). However, the EW is traditionally described as the source of the preganglionic parasympathetic outflow to the ciliary ganglion. We examined the distribution of urocortin(+) cells and motoneurons by use of immunohistochemical staining for this peptide and for choline acetyltransferase (ChAT) in macaque monkeys, in which most preganglionic motoneurons inhabit the EW, and in cats, in which most do not. In both species, lack of overt double labeling indicated that the ChAT(+) and urocortin(+) cells are separate populations. In the monkey, most nonoculomotor ChAT(+) neurons were found within the EW. In contrast, urocortin(+) cells were distributed mainly between the oculomotor nuclei and in the supraoculomotor area. In the cat, most nonoculomotor ChAT(+) cells were located in the supraoculomotor area and anteromedian nucleus. Few were present in the cat EW. Instead, this nucleus was filled with urocortin(+) cells. These results highlight the fact the term EW has come to indicate different nuclei in different species. Consequently, we have adopted the identifiers preganglionic (EW(PG)) and urocortin-containing (EW(U)) to designate the cytoarchitecturally defined EW nuclei in monkeys and cats, respectively. Furthermore, we propose a new open-ended nomenclature for the perioculomotor (pIII) cells groups that have distinctive projections and neurochemical signatures. This will allow more effective scientific discourse on the connections and function of groups such as the periculomotor urocortin (pIII(U)) and preganglionic (pIII(PG)) populations.
Collapse
Affiliation(s)
- Paul J May
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39202, USA.
| | | | | |
Collapse
|
28
|
Ryabinin AE, Yoneyama N, Tanchuck MA, Mark GP, Finn DA. Urocortin 1 microinjection into the mouse lateral septum regulates the acquisition and expression of alcohol consumption. Neuroscience 2008; 151:780-90. [PMID: 18164138 PMCID: PMC2262916 DOI: 10.1016/j.neuroscience.2007.11.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/09/2007] [Accepted: 12/12/2007] [Indexed: 01/09/2023]
Abstract
Previous studies using genetic and lesion approaches have shown that the neuropeptide urocortin 1 (Ucn1) is involved in regulating alcohol consumption. Ucn1 is a corticotropin releasing factor (CRF) -like peptide that binds CRF1 and CRF2 receptors. Perioculomotor urocortin-containing neurons (pIIIu), also known as the non-preganglionic Edinger-Westphal nucleus, are the major source of Ucn1 in the brain and are known to innervate the lateral septum. Thus, the present study tested whether Ucn1 could regulate alcohol consumption through the lateral septum. In a series of experiments Ucn1 or CRF was bilaterally injected at various doses into the lateral septum of male C57BL/6J mice. Consumption of 20% volume/volume ethanol or water was tested immediately after the injections using a modification of a 2-h limited access sweetener-free "drinking-in-the-dark" procedure. Ucn1 significantly suppressed ethanol consumption when administered prior to the third ethanol drinking session (the expression phase of ethanol drinking) at doses as low as 6 pmol. Ethanol intake was differentially sensitive to Ucn1, as equivalent doses of this peptide did not suppress water consumption. In contrast, CRF suppressed both ethanol and water intake at 40 and 60 pmol, but not at lower doses. Repeated administration of Ucn1 during the acquisition of alcohol consumption showed that 40 pmol (but not 2 or 0.1 pmol) significantly attenuated ethanol intake. Repeated administration of Ucn1 also resulted in a decrease of ethanol intake in sham-injected animals, a finding suggesting that the suppressive effect of Ucn1 on ethanol intake can be conditioned. Taken together, these studies confirm the importance of lateral septum innervation by Ucn1 in the regulation of alcohol consumption.
Collapse
Affiliation(s)
- A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | |
Collapse
|
29
|
Abstract
Urocortin is a member of the corticotropin-releasing hormone (CRH) family of peptides. In the brain, its potent suppression of food intake is mediated by CRH receptors (CRHR). Urocortin also participates in the regulation of anxiety, learning, memory, and body temperature, and it shows neuroprotection. This review will summarize the location of urocortin-producing neurons and their projections, the pharmacological evidence of its actions in the CNS, and information acquired from knockout mice. Urocortin interacts with leptin, neuropeptide Y, orexin, and corticotropin in the brain. Also produced by the GI tract, heart, and immune cells, urocortin has blood concentrations ranging from 13 to 152 pg/ml. Blood-borne urocortin stimulates the cerebral endothelial cells composing the blood-brain barrier and crosses the blood-brain barrier by a unique transport system. Overall, urocortin acts on a broad neuronal substrate as a neuromodulator important for basic survival.
Collapse
Affiliation(s)
- Weihong Pan
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, United States.
| | | |
Collapse
|
30
|
Bakshi VP, Newman SM, Smith-Roe S, Jochman KA, Kalin NH. Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to CRF1 receptors in basolateral amygdala. J Neurosci 2007; 27:10568-77. [PMID: 17898228 PMCID: PMC6673168 DOI: 10.1523/jneurosci.3044-06.2007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 08/03/2007] [Accepted: 08/04/2007] [Indexed: 11/21/2022] Open
Abstract
The corticotropin-releasing factor (CRF) system is the primary central mediator of stress-like states, coordinating behavioral, endocrine, and autonomic responses to stress. Although induction of anorexia is a well documented effect of CRF receptor agonist administration, the central sites and behavioral processes underlying this phenomenon are poorly understood. The present studies addressed this question by examining the neuroanatomical, behavioral, and pharmacological mechanisms mediating decreases in feeding produced by the CRF1/CRF2 receptor agonist urocortin. Separate groups of food-restricted male Sprague Dawley rats were given infusions of urocortin (0, 50, 125, 250 ng/0.5 microl) into the lateral septum (LS) and immediately afterward were rated on a wide array of behaviors (locomotion, rearing, grooming, stereotypies) including a microstructural analysis of ingestive behavior. Intra-LS urocortin infusion dose-dependently reduced feeding and drinking while concomitantly increasing grooming, stereotypies, and ethological plus traditional measures of anxiety-like responses in the elevated plus-maze. Urocortin infusion into neighboring sites (lateral ventricle, medial caudate) had no effects. Coinfusion into the LS of the mixed CRF1/CRF2 receptor antagonist D-Phe-CRF(12-41) (0, 100, 1000 ng/0.5 microl) or the novel selective CRF2 receptor antagonist Astressin2B (0, 500, 1000 ng/0.5 microl) blocked urocortin-induced effects, but the CRF1-selective antagonist NBI27914 (0, 500, 1000 ng/0.5 microl) had no effect, although it completely reversed the behavioral sequelae of CRF when infused into the basolateral amygdala. These results indicate that one of the modes through which the CRF system promotes anorexia is the recruitment of stress-like states after stimulation of CRF2 receptors within the LS.
Collapse
Affiliation(s)
- Vaishali P Bakshi
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719, USA.
| | | | | | | | | |
Collapse
|
31
|
Cunha RP, Reiner A, Toledo CAB. Involvement of urocortinergic neurons below the midbrain central gray in the physiological response to restraint stress in pigeons. Brain Res 2007; 1147:175-83. [PMID: 17320052 DOI: 10.1016/j.brainres.2007.01.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 10/23/2022]
Abstract
The present study was carried out to identify the diencephalic and midbrain neurons in pigeons that respond to stress (using restraint as the stressor) and determine if the urocortinergic neurons (expressing urocortin 1, Ucn1) below the midbrain central gray are among those activated. Immunolabeling for the immediate early gene Egr-1 was used to identity stress-responsive neurons, following 1-3 h of restraint. A large increase in nuclear Egr-1 immunolabeling was observed in several dorsomedial thalamic nuclei, and in a stream of neurons extending from below the mesencephalic central gray (overlapping the nucleus of Darkschewitsch at these levels) to just anterior to the nucleus of Edinger-Westphal. A more modest increase in neuronal nuclear Egr-1 was observed in the medial posterior hypothalamic area, the mesencephalic periventricular area, the ventral tegmental area, the inferior colliculus, the nucleus paramedianus of the midbrain, and the intercollicular nucleus. The distribution and abundance of urocortin-immunolabeled neurons coincided with that of the stress-responsive neurons below the mesencephalic periaqueductal gray, and about 50% of these urocortin neurons were activated by stress. These results suggest that, as in some mammals, the urocortinergic neurons of the paramedian subgriseal mesencephalon respond to stress. In those mammals, in which the boundaries of the nucleus of Edinger-Westphal are indistinct, the caudal part of the homologous field of urocortinergic neurons has been referred to as the nucleus of Edinger-Westphal. In pigeons, in which the nucleus of Edinger-Westphal is cytoarchitectonically well-defined, the caudal part of this urocortinergic field clearly does not include the nucleus of Edinger-Westphal.
Collapse
Affiliation(s)
- Roberta P Cunha
- Laboratório de Neurociências, Universidade Cidade de São Paulo, UNICID, Rua Cesário Galeno, 448, 03071-000, São Paulo, S. P., Brazil
| | | | | |
Collapse
|
32
|
Ryabinin AE, Weitemier AZ. The urocortin 1 neurocircuit: Ethanol-sensitivity and potential involvement in alcohol consumption. ACTA ACUST UNITED AC 2006; 52:368-80. [PMID: 16766036 DOI: 10.1016/j.brainresrev.2006.04.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 04/26/2006] [Accepted: 04/29/2006] [Indexed: 11/27/2022]
Abstract
One of the hallmarks of alcoholism is continued excessive consumption of alcohol-containing beverages despite the negative consequences of such behavior. The neurocircuitry regulating alcohol consumption is not well understood. Recent studies have shown that the neuropeptide urocortin 1 (Ucn1), a member of the corticotropin-releasing factor (CRF) family of peptides, could be an important player in the regulation of alcohol consumption. This evidence is accumulated along three directions of research: (1) Ucn 1-containing neurons are extremely sensitive to alcohol; (2) the Ucn1 neurocircuit may contribute to the genetic predisposition to high alcohol intake in mice and rats; (3) manipulation of the Ucn1 system alters alcohol consumption and sensitivity. This paper reviews the current knowledge of the Ucn1 neurocircuit and the evidence for its involvement in alcohol-related behaviors, and proposes a mechanism for its involvement in the regulation of alcohol consumption.
Collapse
Affiliation(s)
- Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, L470, 3181 SW Sam Jackson Park Road, Portland, 97239, USA.
| | | |
Collapse
|
33
|
Lim MM, Tsivkovskaia NO, Bai Y, Young LJ, Ryabinin AE. Distribution of corticotropin-releasing factor and urocortin 1 in the vole brain. BRAIN, BEHAVIOR AND EVOLUTION 2006; 68:229-40. [PMID: 16816534 PMCID: PMC1828133 DOI: 10.1159/000094360] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 03/03/2006] [Indexed: 11/19/2022]
Abstract
Brain receptor patterns for the corticotropin-releasing factor (CRF) receptors, CRF1 and CRF2, are dramatically different between monogamous and promiscuous vole species, and CRF physiologically regulates pair bonding behavior in the monogamous prairie vole. However, it is uncertain whether species differences also exist in the neuroanatomical distribution of the endogenous ligands for the CRF1 and CRF2 receptors, such as CRF and urocortin-1 (Ucn1). We compared the expression of CRF and Ucn1 in four vole species, monogamous prairie and pine voles, and promiscuous meadow and montane voles, using in situ hybridization of CRF and Ucn1 mRNA. Our results reveal that CRF mRNA expression patterns in all four vole species appear highly conserved throughout the brain, including the olfactory bulb, nucleus accumbens, bed nucleus of the stria terminalis, medial preoptic area, central amygdala, hippocampus, posterior thalamus, and cerebellum. Similarly, Ucn1 mRNA primarily localized to the Edinger-Westphal nucleus in all four vole species. Immunocytochemistry in prairie and meadow voles confirmed localization of CRF and Ucn1 protein to these previously identified brain regions. These data demonstrate a striking dichotomy between the extraordinary species diversity of brain receptor patterns when compared to the highly conserved brain distributions of their respective ligands. Our findings generate novel hypotheses regarding the evolutionary mechanisms underlying the neural circuitry of species-typical social behaviors.
Collapse
Affiliation(s)
- Miranda M Lim
- Center for Behavioral Neuroscience, Emory University School of Medicine, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|