1
|
Huo A, Wang J, Li Q, Li M, Qi Y, Yin Q, Luo W, Shi J, Cong Q. Molecular mechanisms underlying microglial sensing and phagocytosis in synaptic pruning. Neural Regen Res 2024; 19:1284-1290. [PMID: 37905877 PMCID: PMC11467947 DOI: 10.4103/1673-5374.385854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/08/2023] [Accepted: 08/03/2023] [Indexed: 11/02/2023] Open
Abstract
Microglia are the main non-neuronal cells in the central nervous system that have important roles in brain development and functional connectivity of neural circuits. In brain physiology, highly dynamic microglial processes are facilitated to sense the surrounding environment and stimuli. Once the brain switches its functional states, microglia are recruited to specific sites to exert their immune functions, including the release of cytokines and phagocytosis of cellular debris. The crosstalk of microglia between neurons, neural stem cells, endothelial cells, oligodendrocytes, and astrocytes contributes to their functions in synapse pruning, neurogenesis, vascularization, myelination, and blood-brain barrier permeability. In this review, we highlight the neuron-derived "find-me," "eat-me," and "don't eat-me" molecular signals that drive microglia in response to changes in neuronal activity for synapse refinement during brain development. This review reveals the molecular mechanism of neuron-microglia interaction in synaptic pruning and presents novel ideas for the synaptic pruning of microglia in disease, thereby providing important clues for discovery of target drugs and development of nervous system disease treatment methods targeting synaptic dysfunction.
Collapse
Affiliation(s)
- Anran Huo
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiali Wang
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengqi Li
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuwan Qi
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiao Yin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weifeng Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jijun Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifei Cong
- Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University; Institute of Neuroscience and Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Ghaffari K, Dousti Kataj P, Torkaman-Boutorabi A, Vousooghi N. Pre-mating administration of theophylline could prevent the transgenerational effects of maternal morphine dependence on offspring anxiety behavior: The role of dopamine receptors. Pharmacol Biochem Behav 2023; 233:173660. [PMID: 37852327 DOI: 10.1016/j.pbb.2023.173660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Opioid addiction causes some molecular alterations in the brain reward pathway, such as changes in gene expression that may be transferred to the next generation via epigenetic mechanisms such as histone acetylation. This study aimed to evaluate the effect of theophylline as an HDAC (Histone deacetylases) activator on D1 and D2 dopamine receptor expression in the nucleus accumbens (NAc) and anxiety behavior in the offspring of morphine-dependent female rats. Female rats were exposed to escalating doses of morphine for six days and were then treated with theophylline (20 mg/kg) or saline for 10 days before mating with normal male rats. Male and female offspring were tested for anxiety behavior using an elevated plus maze apparatus. Besides, the expression of D1 and D2 dopamine receptors in the NAc was evaluated by real-time PCR (polymerase chain reaction). Results showed that offspring of morphine-dependent female rats had increased expression of both D1 and D2 receptors in the NAc, as well as decreased anxiety behavior, compared to control offspring. However, the mentioned effects were returned to normal levels in the offspring whose morphine-dependent mothers had received theophylline for 10 days before mating. It is concluded that theophylline may be therapeutically effective in minimizing the adverse consequences of maternal morphine dependence on offspring behavior by restoring normal dopamine receptor expression levels and modulating anxiety. To completely comprehend the underlying mechanisms of this phenomenon, more research is required.
Collapse
Affiliation(s)
- Kamran Ghaffari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parviz Dousti Kataj
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran; Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Tokano M, Kawano M, Takagi R, Matsushita S. Istradefylline, an adenosine A2a receptor antagonist, inhibits the CD4 + T-cell hypersecretion of IL-17A and IL-8 in humans. Immunol Med 2022; 45:244-250. [PMID: 35790489 DOI: 10.1080/25785826.2022.2094593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Extracellular adenosine produced from ATP plays a role in energy processes, neurotransmission, and inflammatory responses. Istradefylline is a selective adenosine A2a receptor (A2aR) antagonist used for the treatment of Parkinson's disease. We previously showed using mouse models that adenosine primes hypersecretion of interleukin (IL)-17A via A2aR, which plays a role in neutrophilic inflammation models in mice. This finding suggests that adenosine is an endogenous modulator of neutrophilic inflammation. We, therefore, investigated the in vitro effect of istradefylline in humans. In the present study, using human peripheral blood mononuclear cells (PBMCs), we tested the effect of adenosine, adenosine receptor agonists and istradefylline on cytokine responses using mixed lymphocyte reaction (MLR), PBMCs, CD4+ T cells, and Candida albicans antigen (Ag)-stimulated PBMCs. We showed that adenosine and an A2aR agonist (PSB0777) promoted IL-17A and IL-8 production from human PBMCs, and istradefylline suppressed this response. In addition, istradefylline inhibited not only the IL-17A and IL-8 production induced by adenosine but also that from C. albicans Ag-stimulated PBMCs. These results indicate that adenosine-mediated IL-17A and IL-8 production plays a role in neutrophilic inflammation, against which istradefylline should be effective.
Collapse
Affiliation(s)
- Mieko Tokano
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan.,Department of Infectious Disease and Infection Control, Saitama Medical University, Moroyama, Japan
| | - Masaaki Kawano
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Rie Takagi
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan
| | - Sho Matsushita
- Departments of Allergy and Immunology, Faculty of Medicine, Saitama Medical University, Moroyama, Japan.,Allergy Center, Saitama Medical University, Moroyama, Japan
| |
Collapse
|
4
|
Casadó-Anguera V, Casadó V. Unmasking allosteric binding sites: Novel targets for GPCR drug discovery. Expert Opin Drug Discov 2022; 17:897-923. [PMID: 35649692 DOI: 10.1080/17460441.2022.2085684] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Unexpected non-apparent and hidden allosteric binding sites are non-classical and non-apparent allosteric centers in 3-D X-ray protein structures until orthosteric or allosteric ligands bind to them. The orthosteric center of one protomer that modulates binding centers of the other protomers within an oligomer is also an unexpected allosteric site. Furthermore, another partner protein can also produce these effects, acting as an unexpected allosteric modulator. AREAS COVERED This review summarizes both classical and non-classical allosterism. The authors focus on G protein-coupled receptor (GPCR) oligomers as a paradigm of allosteric molecules. Moreover, they show several examples of unexpected allosteric sites such as hidden allosteric sites in a protomer that appear after the interaction with other molecules and the allosterism exerted between orthosteric sites within GPCR oligomer, emphasizing on the allosteric modulations that can occur between binding sites. EXPERT OPINION The study of these new non-classical allosteric sites will expand the diversity of allosteric control on the function of orthosteric sites within proteins, whether GPCRs or other receptors, enzymes or transporters. Moreover, the design of new drugs targeting these hidden allosteric sites or already known orthosteric sites acting as allosteric sites in protein homo- or hetero-oligomers will increase the therapeutic potential of allosterism.
Collapse
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain.,Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vicent Casadó
- Laboratory of Molecular Neuropharmacology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, and Institute of Biomedicine of the Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Jung SM, Peyton L, Essa H, Choi DS. Adenosine receptors: Emerging non-opioids targets for pain medications. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100087. [PMID: 35372716 PMCID: PMC8971635 DOI: 10.1016/j.ynpai.2022.100087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Physical and emotional pain deteriorates the quality of well-being. Also, numerous non-invasive and invasive treatments for diagnosed diseases such as cancer medications and surgical procedures cause various types of pain. Despite the multidisciplinary approaches available to manage pain, the unmet needs for medication with minimal side effects are substantial. Especially with the surge of opioid crisis during the last decades, non-opioid analgesics may reduce life-threatening overdosing and addictive liability. Although many clinical trials supported the potential potency of cannabis and cannabidiol (CBD) in pain management or treatment, the long-term benefits of cannabis or CBD are still not evident. At the same time, growing evidence shows the risk of overusing cannabis and CBD. Therefore, it is urgent to develop novel analgesic medications that minimize side effects. All four well-identified adenosine receptors, A1, A2A, A2B, and A3, are implicated in pain. Recently, a report demonstrated that an adenosine A1R-specific positive allosteric modulator (PAM) is a potent analgesic without noticeable side effects. Also, several A3R agonists are being considered as promising analgesic agent. However, the importance of adenosine in pain is relatively underestimated. To help readers understand, first, we will summarize the historical perspective of the adenosine system in preclinical and clinical studies. Then, we will discuss possible interactions of adenosine and opioids or the cannabis system focusing on pain. Overall, this review will provide the potential role of adenosine and adenosine receptors in pain treatment.
Collapse
Affiliation(s)
- Soo-Min Jung
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Lee Peyton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Hesham Essa
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
6
|
Rendón-Ochoa EA, Padilla-Orozco M, Calderon VM, Avilés-Rosas VH, Hernández-González O, Hernández-Flores T, Perez-Ramirez MB, Palomero-Rivero M, Galarraga E, Bargas J. Dopamine D 2 and Adenosine A 2A Receptors Interaction on Ca 2+ Current Modulation in a Rodent Model of Parkinsonism. ASN Neuro 2022; 14:17590914221102075. [PMID: 36050845 PMCID: PMC9178983 DOI: 10.1177/17590914221102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Adenosine A1 and A2A receptors are expressed in striatal projection neurons (SPNs). A1 receptors are located in direct (dSPN) and indirect SPNs (iSNP). A2A receptors are only present in iSPNs. Dopamine D2 receptors are also expressed in iSPNs and interactions between D2 and A2A receptors have received attention. iSPNs activity increases during parkinsonism (PD) and A2A receptors may be responsible by enhancing Ca2+ currents (iCa2+). Therefore, A2A receptors blockade is a therapeutic approach. We asked whether A2A receptors need the interaction with D2 receptors (D2R) to exert their actions. By using isolated and identified iSPNs to avoid indirect influences, we show that D2R action habilitates A2A receptors (A2AR) modulation. iCa2+ through voltage gated Ca2+ channels (CaV) was used as a signal to observe this interaction. Voltage-clamp recordings in acutely dissociated iSPNs, current-clamp recordings in slices and calcium imaging in transgenic A2A-Cre mice, showed that D2R reduction in iCa2+ endows A2AR to restore iCa2+ on iSPNs showing an antagonistic interaction between D2 and A2A receptors. A2A receptors were blocked by the antagonist istradefylline, however, this blockade differed in control and dopamine-depleted iSPNs: istradefylline reduced D2R modulation in parkinsonian animals as compared to controls. Calcium imaging recordings show that istradefylline occludes D2R actions in the parkinsonian circuitry and this effect depends on the order of drugs application. Thus, while D2 activation enables A2A receptors action, blockade of A2AR induces a reduction in the action of D2 agonists, confirming a complex interaction. Summary Statement A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.
Collapse
Affiliation(s)
- Ernesto Alberto Rendón-Ochoa
- Laboratorio de Psicofarmacología, Unidad de Investigación Interdisciplinaria y de Ciencias de la Salud y Educación, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Vladimir Melesio Calderon
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Victor Hugo Avilés-Rosas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Omar Hernández-González
- Facultad de Medicina, Departamento dé Fisiología, Universidad Nacional Autónoma de México, Circuito Exterior s/n Ciudad Universitaria, Ciudad de Mexico, Mexico
| | - Teresa Hernández-Flores
- Brain Mechanism for behavior Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - María Belén Perez-Ramirez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Marcela Palomero-Rivero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, Mexico
| |
Collapse
|
7
|
Mao LM, Wang JQ. Roles of adenosine A 1 receptors in the regulation of SFK activity in the rat forebrain. Brain Behav 2021; 11:e2254. [PMID: 34156168 PMCID: PMC8413746 DOI: 10.1002/brb3.2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine A1 receptors are widely expressed in the mammalian brain. Through interacting with Gαi/o -coupled A1 receptors, the neuromodulator adenosine modulates a variety of cellular and synaptic activities. To determine the linkage from A1 receptors to a key intracellular signaling pathway, we investigated the impact of blocking A1 receptors on a subfamily of nonreceptor tyrosine kinases, that is, the Src family kinase (SFK), in different rat brain regions in vivo. We found that pharmacological blockade of A1 receptors by a single systemic injection of the A1 selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) induced an increase in autophosphorylation of SFKs at a consensus activation site, tyrosine 416 (Y416), in the two subdivisions of the striatum, the caudate putamen and nucleus accumbens. DPCPX also increased SFK Y416 phosphorylation in the medial prefrontal cortex (mPFC) but not the hippocampus. The DPCPX-induced Y416 phosphorylation was time dependent and reversible. In immunopurified Fyn and Src proteins from the striatum, DPCPX elevated SFK Y416 phosphorylation and tyrosine kinase activity in Fyn but not in Src proteins. In the mPFC, DPCPX enhanced Y416 phosphorylation and tyrosine kinase activity in both Fyn and Src immunoprecipitates. DPCPX had no effect on expression of total Fyn and Src proteins in the striatum, mPFC, and hippocampus. These results demonstrate a tonic inhibitory linkage from A1 receptors to SFKs in the striatum and mPFC. Blocking this inhibitory tone could significantly enhance constitutive SFK Y416 phosphorylation in the rat brain in a region- and time-dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Input-selective adenosine A 1 receptor-mediated synaptic depression of excitatory transmission in dorsal striatum. Sci Rep 2021; 11:6345. [PMID: 33737568 PMCID: PMC7973535 DOI: 10.1038/s41598-021-85513-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/02/2021] [Indexed: 01/31/2023] Open
Abstract
The medial (DMS) and lateral (DLS) dorsal striatum differentially drive goal-directed and habitual/compulsive behaviors, respectively, and are implicated in a variety of neuropsychiatric disorders. These subregions receive distinct inputs from cortical and thalamic regions which uniquely determine dorsal striatal activity and function. Adenosine A1 receptors (A1Rs) are prolific within striatum and regulate excitatory glutamate transmission. Thus, A1Rs may have regionally-specific effects on neuroadaptive processes which may ultimately influence striatally-mediated behaviors. The occurrence of A1R-driven plasticity at specific excitatory inputs to dorsal striatum is currently unknown. To better understand how A1Rs may influence these behaviors, we first sought to understand how A1Rs modulate these distinct inputs. We evaluated A1R-mediated inhibition of cortico- and thalamostriatal transmission using in vitro whole-cell, patch clamp slice electrophysiology recordings in medium spiny neurons from both the DLS and DMS of C57BL/6J mice in conjunction with optogenetic approaches. In addition, conditional A1R KO mice lacking A1Rs at specific striatal inputs to DMS and DLS were generated to directly determine the role of these presynaptic A1Rs on the measured electrophysiological responses. Activation of presynaptic A1Rs produced significant and prolonged synaptic depression (A1R-SD) of excitatory transmission in the both the DLS and DMS of male and female animals. Our findings indicate that A1R-SD at corticostriatal and thalamostriatal inputs to DLS can be additive and that A1R-SD in DMS occurs primarily at thalamostriatal inputs. These findings advance the field's understanding of the functional roles of A1Rs in striatum and implicate their potential contribution to neuropsychiatric diseases.
Collapse
|
9
|
Negative feedback control of neuronal activity by microglia. Nature 2020; 586:417-423. [PMID: 32999463 PMCID: PMC7577179 DOI: 10.1038/s41586-020-2777-8] [Citation(s) in RCA: 596] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 08/28/2020] [Indexed: 01/02/2023]
Abstract
Microglia, the brain’s resident macrophages, help to regulate brain function by removing dying neurons, pruning non-functional synapses, and producing ligands that support neuronal survival1. Here we show that microglia are also critical modulators of neuronal activity and associated behavioural responses in mice. Microglia respond to neuronal activation by suppressing neuronal activity, and ablation of microglia amplifies and synchronizes the activity of neurons, leading to seizures. Suppression of neuronal activation by microglia occurs in a highly region-specific fashion and depends on the ability of microglia to sense and catabolize extracellular ATP, which is released upon neuronal activation by neurons and astrocytes. ATP triggers the recruitment of microglial protrusions and is converted by the microglial ATP/ADP hydrolysing ectoenzyme CD39 into AMP; AMP is then converted into adenosine by CD73, which is expressed on microglia as well as other brain cells. Microglial sensing of ATP, the ensuing microglia-dependent production of adenosine, and the adenosine-mediated suppression of neuronal responses via the adenosine receptor A1R are essential for the regulation of neuronal activity and animal behaviour. Our findings suggest that this microglia-driven negative feedback mechanism operates similarly to inhibitory neurons and is essential for protecting the brain from excessive activation in health and disease.
Collapse
|
10
|
Nasrollahi-Shirazi S, Szöllösi D, Yang Q, Muratspahic E, El-Kasaby A, Sucic S, Stockner T, Nanoff C, Freissmuth M. Functional Impact of the G279S Substitution in the Adenosine A 1-Receptor (A 1R-G279S 7.44), a Mutation Associated with Parkinson's Disease. Mol Pharmacol 2020; 98:250-266. [PMID: 32817461 PMCID: PMC7116137 DOI: 10.1124/molpharm.120.000003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
In medium-size, spiny striatal neurons of the direct pathway, dopamine D1- and adenosine A1-receptors are coexpressed and are mutually antagonistic. Recently, a mutation in the gene encoding the A1-receptor (A1R), A1R-G279S7.44, was identified in an Iranian family: two affected offspring suffered from early-onset l-DOPA-responsive Parkinson's disease. The link between the mutation and the phenotype is unclear. Here, we explored the functional consequence of the G279S substitution on the activity of the A1-receptor after heterologous expression in HEK293 cells. The mutation did not affect surface expression and ligand binding but changed the susceptibility to heat denaturation: the thermodynamic stability of A1R-G279S7.44 was enhanced by about 2 and 8 K when compared with wild-type A1-receptor and A1R-Y288A7.53 (a folding-deficient variant used as a reference), respectively. In contrast, the kinetic stability was reduced, indicating a lower energy barrier for conformational transitions in A1R-G279S7.44 (73 ± 23 kJ/mol) than in wild-type A1R (135 ± 4 kJ/mol) or in A1R-Y288A7.53 (184 ± 24 kJ/mol). Consistent with this lower energy barrier, A1R-G279S7.44 was more effective in promoting guanine nucleotide exchange than wild-type A1R. We detected similar levels of complexes formed between D1-receptors and wild-type A1R or A1R-G279S7.44 by coimmunoprecipitation and bioluminescence resonance energy transfer. However, lower concentrations of agonist were required for half-maximum inhibition of dopamine-induced cAMP accumulation in cells coexpressing D1-receptor and A1R-G279S7.44 than in those coexpressing wild-type A1R. These observations predict enhanced inhibition of dopaminergic signaling by A1R-G279S7.44 in vivo, consistent with a pathogenic role in Parkinson's disease. SIGNIFICANCE STATEMENT: Parkinson's disease is caused by a loss of dopaminergic input from the substantia nigra to the caudate nucleus and the putamen. Activation of the adenosine A1-receptor antagonizes responses elicited by dopamine D1-receptor. We show that this activity is more pronounced in a mutant version of the A1-receptor (A1R-G279S7.44), which was identified in individuals suffering from early-onset Parkinson's disease.
Collapse
Affiliation(s)
- Shahrooz Nasrollahi-Shirazi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Daniel Szöllösi
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Qiong Yang
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Edin Muratspahic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Ali El-Kasaby
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sucic
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Christian Nanoff
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Michael Freissmuth
- Institute of Pharmacology and the Gaston H. Glock Research Laboratories for Exploratory Drug Development, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Adenosine A1 receptor agonist induces visceral antinociception via 5-HT1A, 5-HT2A, dopamine D1 or cannabinoid CB1 receptors, and the opioid system in the central nervous system. Physiol Behav 2020; 220:112881. [DOI: 10.1016/j.physbeh.2020.112881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023]
|
12
|
Mao LM, Wang JQ. Upregulation of AMPA receptor GluA1 phosphorylation by blocking adenosine A 1 receptors in the male rat forebrain. Brain Behav 2020; 10:e01543. [PMID: 31994358 PMCID: PMC7066349 DOI: 10.1002/brb3.1543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/04/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The adenosine A1 receptor is a Gαi/o protein-coupled receptor and inhibits upon activation cAMP formation and protein kinase A (PKA) activity. As a widely expressed receptor in the mammalian brain, A1 receptors are implicated in the modulation of a variety of neuronal and synaptic activities. In this study, we investigated the role of A1 receptors in the regulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult rat brain in vivo. METHODS Adult male Wistar rats were used in this study. After a systemic injection of the A1 antagonist DPCPX, rats were sacrificed and several forebrain regions were collected for assessing changes in phosphorylation of AMPA receptors using Western blots. RESULTS A systemic injection of the A1 antagonist DPCPX induced an increase in phosphorylation of AMPA receptor GluA1 subunits at a PKA-dependent site, serine 845 (S845), in the two subdivisions of the striatum, the caudate putamen, and nucleus accumbens. DPCPX also increased S845 phosphorylation in the medial prefrontal cortex (mPFC) and hippocampus. The DPCPX-stimulated S845 phosphorylation was a transient and reversible event. Blockade of Gαs/olf -coupled dopamine D1 receptors with a D1 antagonist SCH23390 abolished the responses of S845 phosphorylation to DPCPX in the striatum, mPFC, and hippocampus. DPCPX had no significant impact on phosphorylation of GluA1 at serine 831 and on expression of total GluA1 proteins in all forebrain regions surveyed. CONCLUSION These data demonstrate that adenosine A1 receptors maintain an inhibitory tone on GluA1 S845 phosphorylation under normal conditions. Blocking this inhibitory tone leads to the upregulation of GluA1 S845 phosphorylation in the striatum, mPFC, and hippocampus via a D1 -dependent manner.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA.,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
13
|
Casadó-Anguera V, Cortés A, Casadó V, Moreno E. Targeting the receptor-based interactome of the dopamine D1 receptor: looking for heteromer-selective drugs. Expert Opin Drug Discov 2019; 14:1297-1312. [DOI: 10.1080/17460441.2019.1664469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Verònica Casadó-Anguera
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antoni Cortés
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Vicent Casadó
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Estefanía Moreno
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, (IBUB), Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
14
|
Mao LM, Wang JQ. Changes in ERK1/2 phosphorylation in the rat striatum and medial prefrontal cortex following administration of the adenosine A 1 receptor agonist and antagonist. Neurosci Lett 2019; 699:47-53. [PMID: 30703410 DOI: 10.1016/j.neulet.2019.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022]
Abstract
The extracellular signal-regulated kinase (ERK) is enriched in the central nervous system, including the dopamine responsive regions such as the striatum and medial prefrontal cortex (mPFC). The kinase is sensitive to changing cellular and synaptic input and is implicated in the regulation of synaptic transmission and plasticity. In this study, the role of a Gαi/o protein-coupled adenosine A1 receptor in the regulation of ERK1/2 was investigated in the rat brain in vivo. We found that an A1 agonist CPA after an intraperitoneal injection reduced ERK1/2 phosphorylation in the nucleus accumbens (NAc) and mPFC. In contrast, a single dose of an A1 antagonist DPCPX induced a rapid and transient increase in ERK1/2 phosphorylation in the caudate putamen (CPu), NAc, and mPFC. Pretreatment with a dopamine D1 receptor antagonist SCH23390 abolished the DPCPX-induced ERK1/2 phosphorylation in the striatum and mPFC. Coadministration of DPCPX and a D1 agonist SKF81297 at a low dose induced a greater elevation of ERK1/2 phosphorylation. Activation or blockade of A1 receptors had no effect on total ERK1/2 expression in the striatum and mPFC. These results reveal an existence of an inhibitory linkage from adenosine A1 receptors to ERK1/2 in striatal and mPFC neurons. This inhibitory linkage seems to form a dynamic balance with positive dopamine D1 receptor signaling to control the ERK1/2 pathway.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA; Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
15
|
Balance between dopamine and adenosine signals regulates the PKA/Rap1 pathway in striatal medium spiny neurons. Neurochem Int 2019; 122:8-18. [DOI: 10.1016/j.neuint.2018.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]
|
16
|
Johnson JA, Montgomery AP, Starr ER, Ludwig J, Trevitt J. Dose-dependent effects of adenosine antagonists on tacrine-induced tremulous jaw movements. Eur J Pharmacol 2018; 833:364-369. [PMID: 29883670 DOI: 10.1016/j.ejphar.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 06/04/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
The present study examines the effect of three adenosine receptor antagonists on tremulous jaw movements (TJMs), an animal model of tremor. Forty-five rats were pre-treated with one adenosine antagonist: caffeine (0.0, 5.0, or 10.0 mg/kg; non-selective adenosine receptor antagonist), 8-cyclopentyltheophylline (CPT; 0.0, 5.0, or 10.0 mg/kg; selective adenosine A1 receptor antagonist), or SCH 58261 (0.0 or 8.0 mg/kg; selective adenosine A2A receptor antagonist) followed by TJM induction with tacrine (0.0, 0.75, or 2.5 mg/kg; acetylcholinesterase inhibitor). CPT and SCH 58261 both significantly reduced TJMs while caffeine did not. Unexpectedly, both SCH 58261 and CPT reduced TJMs even in the absence of tacrine. Also, CPT showed a robust reduction of TJMs, achieved at both (5.0 mg/kg) and (10.0 mg/kg) doses and regardless of tacrine dose. In conclusion, this study shows adenosine receptor antagonism to generally suppress low-dose tacrine-induced TJMs. In concert with two prior studies, these results are suggestive of behavioral evidence for a biphasic effect of adenosine A2A receptor antagonists (caffeine and SCH 58261) that is modulated by tacrine, and a model of this effect is proposed.
Collapse
Affiliation(s)
- Joel A Johnson
- California State University, Fullerton Department of Psychology, 800 N. State College Blvd., Fullerton, CA 92831, United States.
| | - Aaron P Montgomery
- California State University, Fullerton Department of Psychology, 800 N. State College Blvd., Fullerton, CA 92831, United States.
| | - Eric R Starr
- California State University, Fullerton Department of Psychology, 800 N. State College Blvd., Fullerton, CA 92831, United States.
| | - Justin Ludwig
- California State University, Fullerton Department of Psychology, 800 N. State College Blvd., Fullerton, CA 92831, United States.
| | - Jennifer Trevitt
- California State University, Fullerton Department of Psychology, 800 N. State College Blvd., Fullerton, CA 92831, United States.
| |
Collapse
|
17
|
Rivera-Oliver M, Moreno E, Álvarez-Bagnarol Y, Ayala-Santiago C, Cruz-Reyes N, Molina-Castro GC, Clemens S, Canela EI, Ferré S, Casadó V, Díaz-Ríos M. Adenosine A 1-Dopamine D 1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron. Mol Neurobiol 2018; 56:797-811. [PMID: 29797183 DOI: 10.1007/s12035-018-1120-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A1-dopamine D1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D1 receptor-mediated signaling. A1-D1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.
Collapse
Affiliation(s)
- Marla Rivera-Oliver
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Yocasta Álvarez-Bagnarol
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Christian Ayala-Santiago
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Nicole Cruz-Reyes
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Gian Carlo Molina-Castro
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Enric I Canela
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED) and Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, 08028, Barcelona, Spain
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences, Rio Piedras and Cayey Campuses, San Juan, 00936, Puerto Rico
| |
Collapse
|
18
|
Gigante AF, Asabella AN, Iliceto G, Martino T, Ferrari C, Defazio G, Rubini G. Chronic coffee consumption and striatal DAT-SPECT findings in Parkinson's disease. Neurol Sci 2018; 39:551-555. [PMID: 29362953 DOI: 10.1007/s10072-018-3253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/13/2018] [Indexed: 11/25/2022]
Abstract
Coffee may interfere with the dopaminergic transmission, and this action would possibly enhance motor activity and exert an antidyskinetic effect in Parkinson's disease (PD). This study aimed to see whether coffee habit could be associated with change in striatal dopamine active transporter (DAT)-single photon emission computed tomography (SPECT) imaging in PD. A total of 83 PD patients (71 current coffee drinkers and 12 never drinkers) underwent a DAT-SPECT study, using [123I]FP-CIT as radionuclide. Socio-demographic and clinical information as well as smoking habit was collected at the time of imaging acquisition. The Unified Parkinson's Disease Rating Scale part III was used to evaluate disease severity. On multivariable analysis, chronic coffee consumption was not associated with any significant change in striatal uptake of the radionuclide. However, the number of years patients drunk coffee was correlated with a significant increase in age at PD onset (p < 0.001). Confirming a previous report, current cigarette smoking was associated with a reduction of radionuclide uptake in putamen and caudate (p < 0.001).
Collapse
Affiliation(s)
- Angelo Fabio Gigante
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
| | | | - Giovanni Iliceto
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
| | - Tommaso Martino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy.
| | - Cristina Ferrari
- Nuclear Medicine Unit - D.I.M, "Aldo Moro" University of Bari, Bari, Italy
| | - Giovanni Defazio
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppe Rubini
- Nuclear Medicine Unit - D.I.M, "Aldo Moro" University of Bari, Bari, Italy
| |
Collapse
|
19
|
Mishina M, Kimura Y, Sakata M, Ishii K, Oda K, Toyohara J, Kimura K, Ishiwata K. Age-Related Decrease in Male Extra-Striatal Adenosine A 1 Receptors Measured Using11C-MPDX PET. Front Pharmacol 2017; 8:903. [PMID: 29326588 PMCID: PMC5741655 DOI: 10.3389/fphar.2017.00903] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 11/15/2022] Open
Abstract
Adenosine A1 receptors (A1Rs) are widely distributed throughout the entire human brain, while adenosine A2A receptors (A2ARs) are present in dopamine-rich areas of the brain, such as the basal ganglia. A past study using autoradiography reported a reduced binding ability of A1R in the striatum of old rats. We developed positron emission tomography (PET) ligands for mapping the adenosine receptors and we successfully visualized the A1Rs using 8-dicyclopropylmethyl-1-11C-methyl-3-propylxanthine (11C-MPDX). We previously reported that the density of A1Rs decreased with age in the human striatum, although we could not observe an age-related change in A2ARs. The aim of this study was to investigate the age-related change of the density of A1Rs in the thalamus and cerebral cortices of healthy participants using 11C-MPDX PET. We recruited eight young (22.0 ± 1.7 years) and nine elderly healthy male volunteers (65.7 ± 8.0 years). A dynamic series of decay-corrected PET scans was performed for 60 min starting with the injection of 11C-MPDX. We placed the circular regions of interest of 10 mm in diameter in 11C-MPDX PET images. The values for the binding potential (BPND) of 11C-MPDX in the thalamus, and frontal, temporal, occipital, and parietal cortices were calculated using a graphical analysis, wherein the reference region was the cerebellum. BPND of 11C-MPDX was significantly lower in elderly participants than young participants in the thalamus, and frontal, temporal, occipital, and parietal cortices. In the human brain, we could observe the age-related decrease in the distribution of A1Rs.
Collapse
Affiliation(s)
- Masahiro Mishina
- Department of Neuro-pathophysiological Imaging, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuichi Kimura
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Keiichi Oda
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Radiological Technology, Faculty of Health Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience, Koriyama, Japan.,Department of Biofunctional Imaging, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
20
|
Mishina M, Ishii K, Kimura Y, Suzuki M, Kitamura S, Ishibashi K, Sakata M, Oda K, Kobayashi S, Kimura K, Ishiwata K. Adenosine A1receptors measured with11C-MPDX PET in early Parkinson's disease. Synapse 2017; 71. [DOI: 10.1002/syn.21979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Masahiro Mishina
- Department of Neuro-pathophysiological Imaging, Graduate School of Medicine; Nippon Medical School; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Neurology; Nippon Medical School, Musashi Kosugi Hospital; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
| | - Kenji Ishii
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Yuichi Kimura
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology; Kinki University; 930 Nishimitani Kinokawa Wakayama 649-6493 Japan
| | - Masahiko Suzuki
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Neurology; Katsushika Medical Center, The Jikei University School of Medicine; 6-41-2 Aoto Katsushika Tokyo 125-850 Japan
| | - Shin Kitamura
- Department of Neurology; Nippon Medical School, Musashi Kosugi Hospital; 1-396 Kosugi, Nakahara Kawasaki Kanagawa 211-8533 Japan
| | - Kenji Ishibashi
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Muneyuki Sakata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
| | - Keiichi Oda
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Department of Radiological Technology, Faculty of Health Sciences; Hokkaido University of Science; 7-Jo 15-4-1 Maeda, Teine Sapporo Hokkaido 006-8585 Japan
| | - Shiro Kobayashi
- Department of Neurosurgery; Nippon Medical School, Chiba Hokusoh Hospital; 1715 Kamagari Inzai Chiba 270-1694 Japan
| | - Kazumi Kimura
- Department of Neurological Science, Graduate School of Medicine; Nippon Medical School; 1-1-5 Sendagi Bunkyo Tokyo 113-8602 Japan
| | - Kiichi Ishiwata
- Research Team for Neuroimaging; Tokyo Metropolitan Institute of Gerontology; 35-2 Sakae-cho Itabashi Tokyo 173-0015 Japan
- Institute of Cyclotron and Drug Discovery Research, Southern TOHOKU Research Institute for Neuroscience; 7-1 15 Yatsuyamada Koriyama Fukushima 963-8563 Japan
- Department of Biofunctional Imaging; Fukushima Medical University; 1 Hikariga-oka Fukushima Fukushima 960-1295 Japan
| |
Collapse
|
21
|
Dopamine D2 Receptor-Mediated Regulation of Pancreatic β Cell Mass. Stem Cell Reports 2016; 7:95-109. [PMID: 27373926 PMCID: PMC4944721 DOI: 10.1016/j.stemcr.2016.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms that regulate β cell mass and proliferation is important for the treatment of diabetes. Here, we identified domperidone (DPD), a dopamine D2 receptor (DRD2) antagonist that enhances β cell mass. Over time, islet β cell loss occurs in dissociation cultures, and this was inhibited by DPD. DPD increased proliferation and decreased apoptosis of β cells through increasing intracellular cAMP. DPD prevented β cell dedifferentiation, which together highly contributed to the increased β cell mass. DRD2 knockdown phenocopied the effects of domperidone and increased the number of β cells. Drd2 overexpression sensitized the dopamine responsiveness of β cells and increased apoptosis. Further analysis revealed that the adenosine agonist 5′-N-ethylcarboxamidoadenosine, a previously identified promoter of β cell proliferation, acted with DPD to increase the number of β cells. In humans, dopamine also modulates β cell mass through DRD2 and exerts an inhibitory effect on adenosine signaling. Dopamine inhibits dedifferentiation and proliferation, and promotes apoptosis of β cells Dopamine confers its action through binding to DRD2 and decreasing cAMP Dopamine-DRD2 signal also functions through interaction with adenosine-ADORA2A signal Dopamine-DRD2-cAMP signal is a potential target for β cell regeneration
Collapse
|
22
|
Soliman AM, Fathalla AM, Moustafa AA. Dose-dependent neuroprotective effect of caffeine on a rotenone-induced rat model of parkinsonism: A histological study. Neurosci Lett 2016; 623:63-70. [DOI: 10.1016/j.neulet.2016.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/24/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
|
23
|
Acevedo J, Santana-Almansa A, Matos-Vergara N, Marrero-Cordero LR, Cabezas-Bou E, Díaz-Ríos M. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms. Neuropharmacology 2015; 101:490-505. [PMID: 26493631 DOI: 10.1016/j.neuropharm.2015.10.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/16/2015] [Accepted: 10/15/2015] [Indexed: 01/31/2023]
Abstract
Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.
Collapse
Affiliation(s)
- JeanMarie Acevedo
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Alexandra Santana-Almansa
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Nikol Matos-Vergara
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Luis René Marrero-Cordero
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Ernesto Cabezas-Bou
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA
| | - Manuel Díaz-Ríos
- Department of Anatomy and Neurobiology and Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
| |
Collapse
|
24
|
Tovo-Rodrigues L, Roux A, Hutz MH, Rohde LA, Woods AS. Functional characterization of G-protein-coupled receptors: a bioinformatics approach. Neuroscience 2014; 277:764-79. [PMID: 24997265 DOI: 10.1016/j.neuroscience.2014.06.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/22/2014] [Accepted: 06/18/2014] [Indexed: 12/18/2022]
Abstract
Complex molecular and cellular mechanisms regulate G protein-coupled receptors (GPCRs). It is suggested that proteins intrinsically disordered regions (IDRs) are to play a role in GPCR's intra and extracellular regions plasticity, due to their potential for post-translational modification and interaction with other proteins. These regions are defined as lacking a stable three-dimensional (3D) structure. They are rich in hydrophilic and charged, amino acids and are capable to assume different conformations which allow them to interact with multiple partners. In this study we analyzed 75 GPCR involved in synaptic transmission using computational tools for sequence-based prediction of IDRs within a protein. We also evaluated putative ligand-binding motifs using receptor sequences. The disorder analysis indicated that neurotransmitter GPCRs have a significant amount of disorder in their N-terminus, third intracellular loop (3IL) and C-terminus. About 31%, 39% and 53% of human GPCR involved in synaptic transmission are disordered in these regions. Thirty-three percent of receptors show at least one predicted PEST motif, this being statistically greater than the estimate for the rest of human GPCRs. About 90% of the receptors had at least one putative site for dimerization in their 3IL or C-terminus. ELM instances sampled in these domains were 14-3-3, SH3, SH2 and PDZ motifs. In conclusion, the increased flexibility observed in GPCRs, added to the enrichment of linear motifs, PEST and heteromerization sites, may be critical for the nervous system's functional plasticity.
Collapse
Affiliation(s)
- L Tovo-Rodrigues
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - A Roux
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States
| | - M H Hutz
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - L A Rohde
- Child and Adolescent Psychiatric Division, Department of Psychiatry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A S Woods
- Structural Biology Unit, Integrative Neuroscience Branch, NIDA IRP, NIH, MD, United States.
| |
Collapse
|
25
|
Mishina M, Ishiwata K. Adenosine Receptor PET Imaging in Human Brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:51-69. [DOI: 10.1016/b978-0-12-801022-8.00002-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Hernández-González O, Hernández-Flores T, Prieto GA, Pérez-Burgos A, Arias-García MA, Galarraga E, Bargas J. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons. Purinergic Signal 2013; 10:269-81. [PMID: 24014158 PMCID: PMC4040173 DOI: 10.1007/s11302-013-9386-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022] Open
Abstract
D(1)- and D(2)-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A(1)-type receptors are located in both neuron classes, and adenosine A(2A)-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca(2+)-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D(1)-type receptors increase, while D(2)-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca(2+)-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A(1)- and A(2A)-receptors have not been compared observing their actions on Ca(2+)-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca(2+)-currents by A(1)-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A(1)- and A2A-receptors. We demonstrate that A(1)-type receptors reduced Ca(2+)-currents in all SPNs tested. However, A(2A)-type receptors enhanced Ca(2+)-currents only in half tested neurons. Intriguingly, to observe the actions of A(2A)-type receptors, occupation of A(1)-type receptors had to occur first. However, A(1)-receptors decreased Ca(V)2 Ca(2+)-currents, while A(2A)-type receptors enhanced current through Ca(V)1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.
Collapse
Affiliation(s)
- O. Hernández-González
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| | - T. Hernández-Flores
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| | - G. A. Prieto
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| | - A. Pérez-Burgos
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| | - M. A. Arias-García
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| | - E. Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| | - J. Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México [UNAM], P.O. Box: 70-253, Mexico City, México 04510
| |
Collapse
|
27
|
Hobson BD, O'Neill CE, Levis SC, Monteggia LM, Neve RL, Self DW, Bachtell RK. Adenosine A1 and dopamine d1 receptor regulation of AMPA receptor phosphorylation and cocaine-seeking behavior. Neuropsychopharmacology 2013; 38:1974-83. [PMID: 23598433 PMCID: PMC3746705 DOI: 10.1038/npp.2013.96] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 04/12/2013] [Accepted: 04/13/2013] [Indexed: 11/09/2022]
Abstract
AMPAR (α-amino-3-hydroxy-5-methylisoxazole-4-propionate glutamate receptor) stimulation in the nucleus accumbens (NAc) is critical in cocaine seeking. Here, we investigate the functional interaction between D1 dopamine receptors (D1DR) and AMPARs in the NAc, and explore how A1 adenosine receptor (A1AR) stimulation may reduce dopamine-induced facilitation of AMPARs and cocaine seeking. All animals were trained to self-administer cocaine and were tested for reinstatement of cocaine seeking following extinction procedures. The role of AMPARs in both AMPA- and D1DR-induced cocaine seeking was assessed using viral-mediated gene transfer to bi-directionally modulate AMPAR activity in the NAc core. The ability of pharmacological AMPAR blockade to modulate D1DR-induced cocaine seeking also was tested. Immunoblotting was used to determine whether stimulating D1DR altered synaptic AMPA GluA1 phosphorylation (pGluA1). Finally, the ability of an A1AR agonist to modulate D1DR-induced cocaine seeking and synaptic GluA1 receptor subunit phosphorylation was explored. Decreasing AMPAR function inhibited both AMPA- and D1DR-induced cocaine seeking. D1DR stimulation increased AMPA pGluA1(S845). Administration of the A1AR agonist alone decreased synaptic GluA1 expression, whereas coadministration of the A1AR agonist inhibited both cocaine- and D1DR-induced cocaine seeking and reversed D1DR-induced AMPA pGluA1(S845). These findings suggest that D1DR stimulation facilitates AMPAR function to initiate cocaine seeking in D1DR-containing direct pathway NAc neurons. A1AR stimulation inhibits both the facilitation of AMPAR function and subsequent cocaine seeking, suggesting that reducing AMPA glutamate neurotransmission in direct pathway neurons may restore inhibitory control and reduce cocaine relapse.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Lisa M Monteggia
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rachael L Neve
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David W Self
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA,Institute of Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA,Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, UCB 345, Boulder, CO 80309-0345, USA, Tel: +1 303 735 1012, Fax: +1 303 492 2967, E-mail:
| |
Collapse
|
28
|
Mishina M, Kimura Y, Naganawa M, Ishii K, Oda K, Sakata M, Toyohara J, Kobayashi S, Katayama Y, Ishiwata K. Differential effects of age on human striatal adenosine A₁ and A(2A) receptors. Synapse 2012; 66:832-9. [PMID: 22623181 DOI: 10.1002/syn.21573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/19/2023]
Abstract
The aim of this study was to investigate the effect of age on the distribution of adenosine A₁ receptors (A₁Rs) and adenosine A(2A) receptors (A(2A)Rs) in the striatum of healthy subjects using PET imaging with 8-dicyclopropylmethyl-1-[¹¹C]methyl-3-propylxanthine ([¹¹C]MPDX) and [7-methyl-¹¹C]-(E)-8-(3,4,5-trimethoxystyryl)-1,3,7-trimethylxanthine ([¹¹C]TMSX), respectively. We recruited 8 young (22.0 ± 1.7 years) and 10 elderly (65.4 ± 7.6 years) volunteers to undergo [¹¹C]MPDX PET scanning, and 11 young (22.7 ± 2.7 years) and six elderly (60.7 ± 8.5 years) volunteers to undergo [¹¹C]TMSX PET scanning. A dynamic series of decay-corrected PET scans was performed for 60 min following injection of [¹¹C]MPDX or [¹¹C]TMSX. We calculated the binding potential (BP(ND) ) of [¹¹C]MPDX and distribution volume ratio (DVR) of [¹¹C]TMSX in the striatum. The BP(ND) of [¹¹C]MPDX was significantly lower in elderly than in young subjects, both in the putamen and head of the caudate nucleus. The BP(ND) was negatively correlated with age in both the putamen and the head of the caudate nucleus. However, no difference was found between the DVR of [¹¹C]TMSX in the striata of young and elderly subjects, nor was there a correlation between age and the DVR of [¹¹C]TMSX. The effect of age on the distribution of A₁Rs in the human striatum described herein is similar to previous reports of age-related decreases in dopamine D₁ and D₂ receptors. Unlike A₁Rs, however, this study suggests that the distribution of A(2A) Rs does not change with age.
Collapse
Affiliation(s)
- Masahiro Mishina
- The Second Department of Internal Medicine, Nippon Medical School, Bunkyo-Ku, Tokyo, Japan; Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Itabashi-Ku, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine d(1) receptor signaling in striatal neurons. Front Neuroanat 2011; 5:43. [PMID: 21811441 PMCID: PMC3140648 DOI: 10.3389/fnana.2011.00043] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 07/07/2011] [Indexed: 01/11/2023] Open
Abstract
In the striatum, dopamine D(1) receptors are preferentially expressed in striatonigral neurons, and increase the neuronal excitability, leading to the increase in GABAergic inhibitory output to substantia nigra pars reticulata. Such roles of D(1) receptors are important for the control of motor functions. In addition, the roles of D(1) receptors are implicated in reward, cognition, and drug addiction. Therefore, elucidation of mechanisms for the regulation of dopamine D(1) receptor signaling is required to identify therapeutic targets for Parkinson's disease and drug addiction. D(1) receptors are coupled to G(s/olf)/adenylyl cyclase/PKA signaling, leading to the phosphorylation of PKA substrates including DARPP-32. Phosphorylated form of DARPP-32 at Thr34 has been shown to inhibit protein phosphatase-1, and thereby controls the phosphorylation states and activity of many downstream physiological effectors. Roles of DARPP-32 and its phosphorylation at Thr34 and other sites in D(1) receptor signaling are extensively studied. In addition, functional roles of the non-canonical D(1) receptor signaling cascades that coupled to G(q)/phospholipase C or Src family kinase become evident. We have recently shown that phosphodiesterases (PDEs), especially PDE10A, play a pivotal role in regulating the tone of D(1) receptor signaling relatively to that of D(2) receptor signaling. We review the current understanding of molecular mechanisms for the modulation of D(1) receptor signaling in the striatum.
Collapse
Affiliation(s)
- Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine Kurume, Fukuoka, Japan
| | | | | |
Collapse
|
30
|
Albizu L, Moreno JL, González-Maeso J, Sealfon SC. Heteromerization of G protein-coupled receptors: relevance to neurological disorders and neurotherapeutics. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2011; 9:636-50. [PMID: 20632964 DOI: 10.2174/187152710793361586] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/30/2010] [Indexed: 11/22/2022]
Abstract
Because G protein-coupled receptors (GPCRs) are numerous, widely expressed and involved in major physiological responses, they represent a relevant therapeutic target for drug discovery, particularly regarding pharmacological treatments of neurological disorders. Among the biological phenomena regulating receptor function, GPCR heteromerization is an important emerging area of interest and investigation. There is increasing evidence showing that heteromerization contributes to the pharmacological heterogeneity of GPCRs by modulating receptor ontogeny, activation and recycling. Although in many cases the physiological relevance of receptor heteromerization has not been fully established, the unique pharmacological and functional properties of heteromers are likely to lead to new strategies in clinical medicine. This review describes the main GPCR heteromers and their implications for major neurological disorders such as Parkinson's disease, schizophrenia and addiction. A better understanding of molecular mechanisms underlying drug interactions related to the targeting of receptor heteromers could provide more specific and efficient therapeutic agents for the treatment of brain diseases.
Collapse
Affiliation(s)
- Laura Albizu
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
31
|
Oses JP, Batassini C, Pochmann D, Böhmer AE, Vuaden FC, Silvestrin RB, Oliveira A, Bonan CD, Bogo MR, Souza DO, Portela LVC, Sarkis JJDF, Mello e Souza T. The hydrolysis of striatal adenine- and guanine-based purines in a 6-hydroxydopamine rat model of Parkinson's disease. Neurochem Res 2010; 36:215-22. [PMID: 21046237 DOI: 10.1007/s11064-010-0305-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2010] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is characterized by a progressive neurodegeneration in the substantia nigra and a striatal dopamine decrease. Striatal extracellular adenosine and ATP modulate the dopaminergic neurotransmission whereas guanosine has a protective role in the brain. Therefore, the regulation of their levels by enzymatic activity may be relevant to the clinical feature of PD. Here it was evaluated the extracellular nucleotide hydrolysis from striatal slices 4 weeks after a unilateral infusion with 6-OHDA into the medial forebrain bundle. This infusion increased ADP, AMP, and GTP hydrolysis by 15, 25, and 41%, respectively, and decreased GDP hydrolysis by 60%. There was no change in NTPDases1, 2, 3, 5, 6, and 5'-nucleotidase transcription. Dopamine depletion changes nucleotide hydrolysis and, therefore, alters the regulation of striatal nucleotide levels. These changes observed in 6-OHDA-lesioned animals may contribute to the symptoms observed in the model and provide evidence to indicate that extracellular purine hydrolysis is a key factor in understanding PD, giving hints for new therapies.
Collapse
Affiliation(s)
- Jean Pierre Oses
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cui D, Trier K, Zeng J, Wu K, Yu M, Ge J. Adenosine receptor protein changes in guinea pigs with form deprivation myopia. Acta Ophthalmol 2010; 88:759-65. [PMID: 19604158 DOI: 10.1111/j.1755-3768.2009.01559.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Recent results have shown that treatment with the non-selective adenosine antagonist 7-methylxanthine (7-MX) reduces the development of form deprivation myopia (FDM) in guinea pigs. The aims of this study were to identify the presence of adenosine receptors (AdoRs) in the eye wall of the guinea pig and to determine their possible changes during form deprivation. METHODS Three-week-old guinea pigs were monocularly treated with a translucent lens to induce FDM. After 21 days, samples were taken from the posterior eye wall and examined with immunofluorescence confocal microscopy for the presence of AdoRA1, AdoRA2A, AdoRA2B and AdoRA3 proteins. Western blot analysis was used to quantitate AdoRs in samples from the retina, choroids and sclera. RESULTS All four subtypes of AdoR were expressed in the posterior wall of the guinea pig eye, although AdoRA3 only weakly. Twenty-one days after the induction of myopia, we observed a significant decrease in protein expression for AdoRA1 (- 25.5%) and an increase in protein expression for AdoRA2B (+ 66.7%) in the retina of FDM eyes. CONCLUSIONS AdoRs of all subtypes are expressed in the retina, choroids and sclera in guinea pigs and may play a role in the regulation of eye growth. The changed pattern of AdoR expression during form deprivation confirms that pharmaceutical intervention targeting AdoRs may reduce myopia progression.
Collapse
Affiliation(s)
- Dongmei Cui
- Zhongshan Ophthalmic Centre, SunYat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
33
|
Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 2010; 211:245-57. [PMID: 20532872 PMCID: PMC4242593 DOI: 10.1007/s00213-010-1900-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
Abstract
RATIONALE Caffeine is widely consumed in foods and beverages and is also used for a variety of medical purposes. Despite its widespread use, relatively little is understood regarding how genetics affects consumption, acute response, or the long-term effects of caffeine. OBJECTIVE This paper reviews the literature on the genetics of caffeine from the following: (1) twin studies comparing heritability of consumption and of caffeine-related traits, including withdrawal symptoms, caffeine-induced insomnia, and anxiety, (2) association studies linking genetic polymorphisms of metabolic enzymes and target receptors to variations in caffeine response, and (3) case-control and prospective studies examining relationship between polymorphisms associated with variations in caffeine response to risks of Parkinson's and cardiovascular diseases in habitual caffeine consumers. RESULTS Twin studies find the heritability of caffeine-related traits to range between 0.36 and 0.58. Analysis of polysubstance use shows that predisposition to caffeine use is highly specific to caffeine itself and shares little common disposition to use of other substances. Genome association studies link variations in adenosine and dopamine receptors to caffeine-induced anxiety and sleep disturbances. Polymorphism in the metabolic enzyme cytochrome P-450 is associated with risk of myocardial infarction in caffeine users. CONCLUSION Modeling based on twin studies reveals that genetics plays a role in individual variability in caffeine consumption and in the direct effects of caffeine. Both pharmacodynamic and pharmacokinetic polymorphisms have been linked to variation in response to caffeine. These studies may help guide future research in the role of genetics in modulating the acute and chronic effects of caffeine.
Collapse
Affiliation(s)
- Amy Yang
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA
| | - Abraham A. Palmer
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA. Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Harriet de Wit
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S. Maryland Ave, MC 3077, Chicago, IL 60637, USA
| |
Collapse
|
34
|
Tanimura Y, Vaziri S, Lewis MH. Indirect basal ganglia pathway mediation of repetitive behavior: attenuation by adenosine receptor agonists. Behav Brain Res 2010; 210:116-22. [PMID: 20178817 DOI: 10.1016/j.bbr.2010.02.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/18/2022]
Abstract
Repetitive behaviors are diagnostic for autism and common in related neurodevelopmental disorders. Despite their clinical importance, underlying mechanisms associated with the expression of these behaviors remain poorly understood. Our lab has previously shown that the rates of spontaneous stereotypy in deer mice (Peromyscus maniculatus) were negatively correlated with enkephalin content, a marker of striatopallidal but not striatonigral neurons. To investigate further the role of the indirect basal ganglia pathway, we examined neuronal activation of the subthalamic nucleus (STN) using cytochrome oxidase (CO) histochemistry in high- and low-stereotypy mice. CO activity in STN was significantly lower in high-stereotypy mice and negatively correlated with the frequency of stereotypy. In addition, exposure to environmental enrichment, which attenuated stereotypy, normalized the activity of STN. Co-administration of the adenosine A(2A) receptor agonist CGS21680 and the A(1) receptor agonist CPA attenuated stereotypy dose-dependently. The significant reduction associated with the lowest dose of the drug combination tested was due to its effects on mice with lower baseline levels of stereotypy. Higher doses of the drug combination were required to show robust behavioral effects, and presumably requisite activation of the indirect pathway, in high-stereotypy mice. These findings support that decreased indirect pathway activity is linked to the expression of high levels of stereotypy in deer mice and that striatal A(1) and A(2A) receptors may provide promising therapeutic targets for the treatment of repetitive behaviors in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yoko Tanimura
- Departments of Psychiatry and Psychology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | | | | |
Collapse
|
35
|
Boeck CR, Marques VB, Valvassori SS, Constantino LC, Rosa DV, Lima FF, Romano-Silva MA, Quevedo J. Early long-term exposure with caffeine induces cross-sensitization to methylphenidate with involvement of DARPP-32 in adulthood of rats. Neurochem Int 2009; 55:318-22. [DOI: 10.1016/j.neuint.2009.03.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/18/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
|
36
|
Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci 2008; 28:10460-71. [PMID: 18923023 DOI: 10.1523/jneurosci.2518-08.2008] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Phosphodiesterase (PDE) is a critical regulator of cAMP/protein kinase A (PKA) signaling in cells. Multiple PDEs with different substrate specificities and subcellular localization are expressed in neurons. Dopamine plays a central role in the regulation of motor and cognitive functions. The effect of dopamine is largely mediated through the cAMP/PKA signaling cascade, and therefore controlled by PDE activity. We used in vitro and in vivo biochemical techniques to dissect the roles of PDE4 and PDE10A in dopaminergic neurotransmission in mouse striatum by monitoring the ability of selective PDE inhibitors to regulate phosphorylation of presynaptic [e.g., tyrosine hydroxylase (TH)] and postsynaptic [e.g., dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32)] PKA substrates. The PDE4 inhibitor, rolipram, induced a large increase in TH Ser40 phosphorylation at dopaminergic terminals that was associated with a commensurate increase in dopamine synthesis and turnover in striatum in vivo. Rolipram induced a small increase in DARPP-32 Thr34 phosphorylation preferentially in striatopallidal neurons by activating adenosine A(2A) receptor signaling in striatum. In contrast, the PDE10A inhibitor, papaverine, had no effect on TH phosphorylation or dopamine turnover, but instead robustly increased DARPP-32 Thr34 and GluR1 Ser845 phosphorylation in striatal neurons. Inhibition of PDE10A by papaverine activated cAMP/PKA signaling in both striatonigral and striatopallidal neurons, resulting in potentiation of dopamine D(1) receptor signaling and inhibition of dopamine D(2) receptor signaling. These biochemical results are supported by immunohistochemical data demonstrating differential localization of PDE10A and PDE4 in striatum. These data underscore the importance of individual brain-enriched cyclic-nucleotide PDE isoforms as therapeutic targets for neuropsychiatric and neurodegenerative disorders affecting dopamine neurotransmission.
Collapse
|
37
|
A Role for Adenosine A1 Receptors in GABA and NMDA-Receptor Mediated Modulation of Dopamine Release: Studies Using Fast Cyclic Voltammetry. SENSORS 2008; 8:5516-5534. [PMID: 27873828 PMCID: PMC3705518 DOI: 10.3390/s8095516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022]
Abstract
In the striatum many neurotransmitters including GABA, glutamate, acetylcholine, dopamine, nitric oxide and adenosine interact to regulate synaptic transmission. Dopamine release in the striatum is regulated by a number of pre- and post-synaptic receptors including adenosine. We have recently shown using isolated rat striatal slices, and the technique of fast cyclic voltammetry, that adenosine A1 receptor-mediated inhibition of dopamine release is modulated by dopamine D1 receptors. In the present study we have investigated the influence of NMDA and GABA receptor activation on the modulation of electrically stimulated dopamine release by adenosine. Application of the adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA), concentration-dependently inhibited dopamine release to a maxiumum of 50%. Perfusion of the glutamate receptor agonist, NMDA, in low magnesium, caused a rapid and concentration-dependent inhibition of dopamine release. Prior perfusion with the adenosine A1 receptor antagonist, DPCPX, significantly reduced the effect of 5 μM and 10 μM NMDA on dopamine release. The GABAA receptor agonist, isoguvacine, had a significant concentration-dependent inhibitory effect on dopamine release which was reversed by prior application of the GABAA receptor antagonist, picrotoxin, but not DPCPX. Finally inhibition of dopamine release by CPA (1μM) was significantly enhanced by prior perfusion with picrotoxin. These data demonstrate an important role for GABA, NMDA and adenosine in the modulation of dopamine release.
Collapse
|
38
|
Adams CL, Cowen MS, Short JL, Lawrence AJ. Combined antagonism of glutamate mGlu5 and adenosine A2A receptors interact to regulate alcohol-seeking in rats. Int J Neuropsychopharmacol 2008; 11:229-41. [PMID: 17517168 DOI: 10.1017/s1461145707007845] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Adenosine and glutamate have been implicated as mediators involved in the self-administration of alcohol. In the present study we sought to determine whether adenosine receptors could interact with metabotropic glutamate receptors to regulate operant responding for alcohol and also the integration of the salience of alcohol-paired cues. Alcohol-preferring (iP) rats were trained to self-administer alcohol under operant conditions. The availability of alcohol was paired with an olfactory cue plus a stimulus light. Rats were examined under fixed ratio responding and also following extinction under a cue-induced reinstatement paradigm. Administration of the selective adenosine A2A receptor antagonist, SCH 58261, reduced fixed ratio responding for alcohol in iP rats in a dose-related manner. Furthermore, the combination of a subthreshold dose of SCH 58261 with a subthreshold dose of the mGlu5 receptor antagonist MTEP also reduced alcohol self-administration and increased the latency to the first reinforced response, suggesting a pre-ingestive effect. Moreover, this combination of SCH 58261 and MTEP also prevented the conditioned reinstatement of alcohol-seeking elicited by the re-presentation of cues previously paired with alcohol availability. In contrast, combinations of the selective adenosine A1 receptor antagonist, DPCPX, with either SCH 58261 or MTEP had no effect on alcohol responding. Collectively, these data suggest a functional interaction between adenosine A2A and mGlu5 receptors in relation to alcohol-seeking and the integration of the drug-related cues.
Collapse
MESH Headings
- Adenosine/metabolism
- Adenosine A1 Receptor Antagonists
- Adenosine A2 Receptor Antagonists
- Alcohol Drinking/metabolism
- Alcohol Drinking/prevention & control
- Animals
- Behavior, Animal/drug effects
- Central Nervous System Depressants/administration & dosage
- Conditioning, Operant/drug effects
- Cues
- Dose-Response Relationship, Drug
- Ethanol/administration & dosage
- Extinction, Psychological/drug effects
- Glutamic Acid/metabolism
- Models, Animal
- Motor Activity/drug effects
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Rats
- Rats, Inbred Strains
- Reaction Time/drug effects
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/metabolism
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Self Administration
- Thiazoles/pharmacology
- Time Factors
- Triazoles/pharmacology
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Cameron L Adams
- Department of Pharmaceutical Biology, Victorian College of Pharmacy, Monash University, Australia
| | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Masahiro Mishina
- Department of Neurological, Nephrological and Rheumatological Science, Graduate School of Medicine, Nippon Medical School
- Neurological Institute, Nippon Medical School Chiba Hokusoh Hospital
| |
Collapse
|
40
|
O'Neill C, Nolan BJ, Macari A, O'Boyle KM, O'Connor JJ. Adenosine A1 receptor-mediated inhibition of dopamine release from rat striatal slices is modulated by D1 dopamine receptors. Eur J Neurosci 2007; 26:3421-8. [DOI: 10.1111/j.1460-9568.2007.05953.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Internalization and desensitization of adenosine receptors. Purinergic Signal 2007; 4:21-37. [PMID: 18368531 PMCID: PMC2245999 DOI: 10.1007/s11302-007-9086-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 10/02/2007] [Indexed: 01/28/2023] Open
Abstract
Until now, more than 800 distinct G protein-coupled receptors (GPCRs) have been identified in the human genome. The four subtypes of the adenosine receptor (A1, A2A, A2B and A3 receptor) belong to this large family of GPCRs that represent the most widely targeted pharmacological protein class. Since adenosine receptors are widespread throughout the body and involved in a variety of physiological processes and diseases, there is great interest in understanding how the different subtypes are regulated, as a basis for designing therapeutic drugs that either avoid or make use of this regulation. The major GPCR regulatory pathway involves phosphorylation of activated receptors by G protein-coupled receptor kinases (GRKs), a process that is followed by binding of arrestin proteins. This prevents receptors from activating downstream heterotrimeric G protein pathways, but at the same time allows activation of arrestin-dependent signalling pathways. Upon agonist treatment, adenosine receptor subtypes are differently regulated. For instance, the A1Rs are not (readily) phosphorylated and internalize slowly, showing a typical half-life of several hours, whereas the A2AR and A2BR undergo much faster downregulation, usually shorter than 1 h. The A3R is subject to even faster downregulation, often a matter of minutes. The fast desensitization of the A3R after agonist exposure may be therapeutically equivalent to antagonist occupancy of the receptor. This review describes the process of desensitization and internalization of the different adenosine subtypes in cell systems, tissues and in vivo studies. In addition, molecular mechanisms involved in adenosine receptor desensitization are discussed.
Collapse
|
42
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
43
|
Sahin B, Galdi S, Hendrick J, Greene RW, Snyder GL, Bibb JA. Evaluation of neuronal phosphoproteins as effectors of caffeine and mediators of striatal adenosine A2A receptor signaling. Brain Res 2007; 1129:1-14. [PMID: 17157277 PMCID: PMC1847645 DOI: 10.1016/j.brainres.2006.10.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 10/02/2006] [Accepted: 10/26/2006] [Indexed: 11/26/2022]
Abstract
Adenosine A(2A) receptors are predominantly expressed in the dendrites of enkephalin-positive gamma-aminobutyric acidergic medium spiny neurons in the striatum. Evidence indicates that these receptors modulate striatal dopaminergic neurotransmission and regulate motor control, vigilance, alertness, and arousal. Although the physiological and behavioral correlates of adenosine A(2A) receptor signaling have been extensively studied using a combination of pharmacological and genetic tools, relatively little is known about the signal transduction pathways that mediate the diverse biological functions attributed to this adenosine receptor subtype. Using a candidate approach based on the coupling of these receptors to adenylate cyclase-activating G proteins, a number of membranal, cytosolic, and nuclear phosphoproteins regulated by PKA were evaluated as potential mediators of adenosine A(2A) receptor signaling in the striatum. Specifically, the adenosine A(2A) receptor agonist, CGS 21680, was used to determine whether the phosphorylation state of each of the following PKA targets is responsive to adenosine A(2A) receptor stimulation in this tissue: Ser40 of tyrosine hydroxylase, Ser9 of synapsin, Ser897 of the NR1 subunit of the N-methyl-d-aspartate-type glutamate receptor, Ser845 of the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptor, Ser94 of spinophilin, Thr34 of the dopamine- and cAMP-regulated phosphoprotein, M(r) 32,000, Ser133 of the cAMP-response element-binding protein, Thr286 of Ca(2+)/calmodulin-dependent protein kinase II, and Thr202/Tyr204 and Thr183/Tyr185 of the p44 and p42 isoforms, respectively, of mitogen-activated protein kinase. Although the substrates studied differed considerably in their responsiveness to selective adenosine A(2A) receptor activation, the phosphorylation state of all postsynaptic PKA targets was up-regulated in a time- and dose-dependent manner by treatment with CGS 21680, whereas presynaptic PKA substrates were unresponsive to this agent, consistent with the postsynaptic localization of adenosine A(2A) receptors. Finally, the phosphorylation state of these proteins was further assessed in vivo by systemic administration of caffeine.
Collapse
Affiliation(s)
- Bogachan Sahin
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|