1
|
Essam RM, Mohamed YS, El-Sayed SS, Kamel NM. Linking KATP channel activation to p-AKT/mTORC1/eEF2/BDNF axis unravels Nicorandil's promise in countering acetaminophen-induced hepatic encephalopathy in mice. Life Sci 2025; 366-367:123477. [PMID: 39983823 DOI: 10.1016/j.lfs.2025.123477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Nicorandil (NIC), an antianginal agent that acts both as an opener of adenosine triphosphate-sensitive potassium (KATP) channels and a nitric oxide donor, has demonstrated protective and curative effects in various diseases. The predominance of these mechanisms varies based on the dose of NIC and the specific organ affected. This study scrutinized the possible beneficial effects of NIC in acetaminophen (APAP)-induced hepatic encephalopathy (HE) model through highlighting the role of KATP channels in mediating these effects. Forty-eight mice were randomly subdivided into four groups: control (saline), APAP model (1 g/kg, i.p.), NIC treatment (15 mg/kg/day p.o. for 14 days), and glibenclamide (GLIB "KATP blocker", 5 mg/kg/day, p.o. 1 h before NIC for 14 days). NIC significantly mitigated APAP-induced liver injury, hyperammonemia, and cognitive deficits, as evidenced by reduced serum alanine aminotransferase, aspartate aminotransferase, ammonia levels, and improved performance in Y-maze and Morris Water Maze tests. Mechanistically, NIC suppressed hippocampal glutamate, activated phosphoserine 473 protein kinase B (p-AKT(Ser473))/mammalian target of rapamycin complex 1 (mTORC1) pathway, lessened the inactive phosphorylation of eukaryotic elongation factor 2 (eEF2), upsurged brain-derived neurotrophic factor (BDNF), leading to reduced neuroinflammation proved by nuclear factor-kappa B and tumor necrosis factor-alpha suppression. Histopathological analyses revealed improved liver and hippocampal morphology, while immunohistochemistry showed reduced astrocyte activation with NIC treatment. These effects were abolished by GLIB pre-treatment, indicating the crucial role of KATP channel. Accordingly, NIC could alleviate APAP-induced liver injury and HE mainly dependent on KATP channel opening, with resultant inhibition of glutamate signaling, activation of p-AKT/mTORC1/eEF2/BDNF trajectory, and abating hippocampal inflammation.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Biology Department, School of Pharmacy, Newgiza University, Giza 12577, Egypt.
| | - Yasmin S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Sarah S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| | - Nada M Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt.
| |
Collapse
|
2
|
Robertson KV, Rodriguez AS, Cartailler JP, Shrestha S, Schleh MW, Schroeder KR, Valenti AM, Kramer AT, Harrison FE, Hasty AH. Knockdown of microglial iron import gene, Slc11a2, worsens cognitive function and alters microglial transcriptional landscape in a sex-specific manner in the APP/PS1 model of Alzheimer's disease. J Neuroinflammation 2024; 21:238. [PMID: 39334471 PMCID: PMC11438269 DOI: 10.1186/s12974-024-03238-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Microglial cell iron load and inflammatory activation are significant hallmarks of late-stage Alzheimer's disease (AD). In vitro, microglia preferentially upregulate the iron importer, divalent metal transporter 1 (DMT1, gene name Slc11a2) in response to inflammatory stimuli, and excess iron can augment cellular inflammation, suggesting a feed-forward loop between iron import mechanisms and inflammatory signaling. However, it is not understood whether microglial iron import mechanisms directly contribute to inflammatory signaling and chronic disease in vivo. These studies determined the effects of microglial-specific knockdown of Slc11a2 on AD-related cognitive decline and microglial transcriptional phenotype. METHODS In vitro experiments and RT-qPCR were used to assess a role for DMT1 in amyloid-β-associated inflammation. To determine the effects of microglial Slc11a2 knockdown on AD-related phenotypes in vivo, triple-transgenic Cx3cr1Cre-ERT2;Slc11a2flfl;APP/PS1+or - mice were generated and administered corn oil or tamoxifen to induce knockdown at 5-6 months of age. Both sexes underwent behavioral analyses to assess cognition and memory (12-15 months of age). Hippocampal CD11b+ microglia were magnetically isolated from female mice (15-17 months) and bulk RNA-sequencing analysis was conducted. RESULTS DMT1 inhibition in vitro robustly decreased Aβ-induced inflammatory gene expression and cellular iron levels in conditions of excess iron. In vivo, Slc11a2KD APP/PS1 female, but not male, mice displayed a significant worsening of memory function in Morris water maze and a fear conditioning assay, along with significant hyperactivity compared to control WT and APP/PS1 mice. Hippocampal microglia from Slc11a2KD APP/PS1 females displayed significant increases in Enpp2, Ttr, and the iron-export gene, Slc40a1, compared to control APP/PS1 cells. Slc11a2KD cells from APP/PS1 females also exhibited decreased expression of markers associated with subsets of disease-associated microglia (DAMs), such as Apoe, Ctsb, Ly9, Csf1, and Hif1α. CONCLUSIONS This work suggests a sex-specific role for microglial iron import gene Slc11a2 in propagating behavioral and cognitive phenotypes in the APP/PS1 model of AD. These data also highlight an association between loss of a DAM-like phenotype in microglia and cognitive deficits in Slc11a2KD APP/PS1 female mice. Overall, this work illuminates an iron-related pathway in microglia that may serve a protective role during disease and offers insight into mechanisms behind disease-related sex differences.
Collapse
Affiliation(s)
- Katrina Volk Robertson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec S Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | | | - Shristi Shrestha
- Creative Data Solutions, Vanderbilt Center for Stem Cell Biology, Nashville, TN, USA
| | - Michael W Schleh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Kyle R Schroeder
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Arianna M Valenti
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA
| | - Alec T Kramer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, 7465 Medical Research Building IV, 2213 Garland Avenue, Nashville, TN, 37232, USA.
| | - Alyssa H Hasty
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, TN, USA.
- VA Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
3
|
Choi JW, Jo SW, Kim DE, Paik IY, Balakrishnan R. Aerobic exercise attenuates LPS-induced cognitive dysfunction by reducing oxidative stress, glial activation, and neuroinflammation. Redox Biol 2024; 71:103101. [PMID: 38408409 PMCID: PMC10904279 DOI: 10.1016/j.redox.2024.103101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
Physical activity has been considered an important non-medication intervention in preserving mnemonic processes during aging. However, how aerobic exercise promotes such benefits for human health remains unclear. In this study, we aimed to explore the neuroprotective and anti-inflammatory effects of aerobic exercise against lipopolysaccharide (LPS)-induced amnesic C57BL/6J mice and BV-2 microglial cell models. In the in vivo experiment, the aerobic exercise training groups were allowed to run on a motorized treadmill 5 days/week for 4 weeks at a speed of 10 rpm/min, with LPS (0.1 mg/kg) intraperitoneally injected once a week for 4 weeks. We found that aerobic exercise ameliorated memory impairment and cognitive deficits among the amnesic mice. Correspondingly, aerobic exercise significantly increased the protein expressions of FNDC5, which activates target neuroprotective markers BDNF and CREB, and antioxidant markers Nrf2/HO-1, leading to inhibiting microglial-mediated neuroinflammation and reduced the expression of BACE-1 in the hippocampus and cerebral cortex of amnesic mice. We estimated that aerobic exercise inhibited neuroinflammation in part through the action of FNDC5/irisin on microglial cells. Therefore, we explored the anti-inflammatory effects of irisin on LPS-stimulated BV-2 microglial cells. In the in vitro experiment, irisin treatment blocked NF-κB/MAPK/IRF3 signaling activation concomitantly with the significantly lowered levels of the LPS-induced iNOS and COX-2 elevations and promotes the Nrf2/HO-1 expression in the LPS-stimulated BV-2 microglial cells. Together, our findings suggest that aerobic exercise can improve the spatial learning ability and cognitive functions of LPS-treated mice by inhibiting microglia-mediated neuroinflammation through its effect on the expression of BDNF/FNDC5/irisin.
Collapse
Affiliation(s)
- Jae-Won Choi
- Department of Physical Education, Yonsei University, Seoul, 03722, South Korea
| | - Sang-Woo Jo
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea
| | - Dae-Eun Kim
- Department of Physical Education, Yonsei University, Seoul, 03722, South Korea
| | - Il-Young Paik
- Department of Physical Education, Yonsei University, Seoul, 03722, South Korea
| | - Rengasamy Balakrishnan
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, 27478, South Korea.
| |
Collapse
|
4
|
Kastberger B, Winter S, Brandstätter H, Biller J, Wagner W, Plesnila N. Treatment with Cerebrolysin Prolongs Lifespan in a Mouse Model of Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy. Adv Biol (Weinh) 2024; 8:e2300439. [PMID: 38062874 DOI: 10.1002/adbi.202300439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 02/15/2024]
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a rare familial neurological disorder caused by mutations in the NOTCH3 gene and characterized by migraine attacks, depressive episodes, lacunar strokes, dementia, and premature death. Since there is no therapy for CADASIL the authors investigate whether the multi-modal neuropeptide drug Cerebrolysin may improve outcome in a murine CADASIL model. Twelve-month-old NOTCH3R169C mutant mice (n=176) are treated for nine weeks with Cerebrolysin or Vehicle and histopathological and functional outcomes are evaluated within the subsequent ten months. Cerebrolysin treatment improves spatial memory and overall health, reduces epigenetic aging, and prolongs lifespan, however, CADASIL-specific white matter vacuolization is not affected. On the molecular level Cerebrolysin treatment increases expression of Calcitonin Gene-Related Peptide (CGRP) and Silent Information Regulator Two (Sir2)-like protein 6 (SIRT6), decreases expression of Insulin-like Growth Factor 1 (IGF-1), and normalizes the expression of neurovascular laminin. In summary, Cerebrolysin fosters longevity and healthy aging without specifically affecting CADASIL pathology. Hence, Cerebrolysin may serve a therapeutic option for CADASIL and other disorders characterized by accelerated aging.
Collapse
Affiliation(s)
| | - Stefan Winter
- Ever Pharma, Oberburgau 3, Unterach am Attersee, 4866, Austria
| | | | - Janina Biller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| | - Wolfgang Wagner
- Institute for Stem Cell Biology, RWTH Aachen University Medical School, 52074, Aachen, Germany
- Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
- Cygenia GmbH, 52078, Aachen, Germany
| | - Nikolaus Plesnila
- Cluster of Systems Neurology (Synergy), 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
| |
Collapse
|
5
|
Yang Y, Wang J, Ni H, Ding H, Wei L, Ke ZJ. Genetic model of selective COX2 inhibition improve learning and memory ability and brain pathological changes in 5xFAD mouse. Brain Res 2023; 1821:148566. [PMID: 37683778 DOI: 10.1016/j.brainres.2023.148566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease that leads to dementia. Its pathogenesis is very complex, and inflammation is one of the main pathophysiological mechanisms of AD. Non-steroidal anti-inflammatory drugs (NSAIDs), which mainly target cyclooxygenase (COX) activity, are used to reduce the risk of AD, but several side effects limit their application. Here we assess the effect of Cyclooxygenase-2 (COX2) catalytic activity on learning ability and AD pathology using 5x Familial Alzheimer's Disease (FAD) mice with COX2 inhibition (5xFAD/COX2 KO), 5xFAD mice with cyclooxygenase inactivation of COX2 (5xFAD/COX2 Y385F), and 5xFAD mice with peroxidase (POX) inactivation of COX2 (5xFAD/COX2) H374Y), respectively. Our results indicate that learning ability of COX2 KO and mutants is improved compared to 5xFAD mice, further investigations show that Aβ depositions are reduced, microglia and astrocytes homeostasis are changed in COX2 KO and mutants. Especially, there is more responsive microglia in the brain of 5xFAD/COX2 Y385F mice, and Aβ depositions are more effectively cleaned at old age. Taken together, these results identify a role of COX2 Y385F in regulating microglia function and may have important implications for future treatment of AD.
Collapse
Affiliation(s)
- Yang Yang
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Wang
- Endocrinology Department of Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, PR China
| | - Hong Ni
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Hanqing Ding
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Luyao Wei
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Zun-Ji Ke
- The Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
6
|
El-Maraghy SA, Reda A, Essam RM, Kortam MA. The citrus flavonoid "Nobiletin" impedes STZ-induced Alzheimer's disease in a mouse model through regulating autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 2023; 31:2701-2717. [PMID: 37598127 PMCID: PMC10518278 DOI: 10.1007/s10787-023-01292-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/06/2023] [Indexed: 08/21/2023]
Abstract
The prominence of autophagy in the modulation of neurodegenerative disorders has sparked interest to investigate its stimulation in Alzheimer's disease (AD). Nobiletin possesses several bioactivities such as anti-inflammation, antioxidation, and neuroprotection. Consequently, the study's aim was to inspect the possible neurotherapeutic impact of Nobiletin in damping AD through autophagy regulation. Mice were randomly assigned into: Group I which received DMSO, Groups II, III, and IV obtained STZ (3 mg/kg) intracerebroventricularly once with Nobiletin (50 mg/kg/day; i.p.) in Group III and Nobiletin with EX-527 (2 mg/kg, i.p.) in Group IV. Interestingly, Nobiletin ameliorated STZ-induced AD through enhancing the motor performance and repressing memory defects. Moreover, Nobiletin de-escalated hippocampal acetylcholinesterase (AChE) activity and enhanced acetylcholine level while halting BACE1 and amyloid-β levels. Meanwhile, Nobiletin stimulated the autophagy process through activating the SIRT1/FoxO3a, LC3B-II, and ATG7 pathway. Additionally, Nobiletin inhibited Akt pathway and controlled the level of NF-κB and TNF-α. Nobiletin amended the oxidative stress through enhancing GSH and cutting down MDA levels. However, EX527, SIRT1 inhibitor, counteracted the neurotherapeutic effects of Nobiletin. Therefore, the present study provides a strong verification for the therapeutic influence of Nobiletin in AD. This outcome may be assigned to autophagy stimulation through SIRT1/FoxO3a, inhibiting AChE activity, reducing neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
- Shohda A El-Maraghy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aya Reda
- Expanded Programme of Immunization (EPI), Ministry of Health, Cairo, Egypt
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Biology Department, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mona A Kortam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
7
|
Yan P, Liu J, Ma H, Feng Y, Cui J, Bai Y, Huang X, Zhu Y, Wei S, Lai J. Effects of glycogen synthase kinase-3β activity inhibition on cognitive, behavioral, and hippocampal ultrastructural deficits in adulthood associated with adolescent methamphetamine exposure. Front Mol Neurosci 2023; 16:1129553. [PMID: 36949769 PMCID: PMC10025487 DOI: 10.3389/fnmol.2023.1129553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Objective Glycogen synthase kinase-3β (GSK3β) has been implicated in the maintenance of synaptic plasticity, memory process, and psychostimulant-induced behavioral effects. Hyperactive GSK3β in the Cornu Ammonis 1 (CA1) subregion of the dorsal hippocampus (DHP) was associated with adolescent methamphetamine (METH) exposure-induced behavioral and cognitive deficits in adulthood. This study aimed to evaluate the possible therapeutic effects of GSK3β inhibition in adulthood on adolescent METH exposure-induced long-term neurobiological deficits. Methods Adolescent male mice were treated with METH from postnatal day (PND) 45-51. In adulthood, three intervention protocols (acute lithium chloride systemic administration, chronic lithium chloride systemic administration, and chronic SB216763 administration within CA1) were used for GSK3β activity inhibition. The effect of GSK3β intervention on cognition, behavior, and GSK3β activity and synaptic ultrastructure in the DHP CA1 subregion were detected in adulthood. Results In adulthood, all three interventions reduced adolescent METH exposure-induced hyperactivity (PND97), while only chronic systemic and chronic within CA1 administration ameliorated the induced impairments in spatial (PND99), social (PND101) and object (PND103) recognition memory. In addition, although three interventions reversed the aberrant GSK3β activity in the DHP CA1 subregion (PND104), only chronic systemic and chronic within CA1 administration rescued adolescent METH exposure-induced synaptic ultrastructure changes in the DHP CA1 subregion (PND104) in adulthood. Conclusion Rescuing synaptic ultrastructural abnormalities in the dHIP CA1 subregion by chronic administration of a GSK3β inhibitor may be a suitable therapeutic strategy for the treatment of behavioral and cognitive deficits in adulthood associated with adolescent METH abuse.
Collapse
Affiliation(s)
- Peng Yan
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jincen Liu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Haotian Ma
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yue Feng
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Cui
- Forensic Identification Institute, The Fourth People’s Hospital of Yancheng, Yancheng, China
| | - Yuying Bai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xin Huang
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Yongsheng Zhu
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Shuguang Wei
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Shuguang Wei,
| | - Jianghua Lai
- NHC Key Laboratory of Forensic Science, School of Forensic Sciences, Xi’an Jiaotong University, Xi’an, China
- Jianghua Lai,
| |
Collapse
|
8
|
Kim H, Jeon S, Kim J, Seol D, Jo J, Cho S, Kim H. Investigation of memory-enhancing effects of Streptococcus thermophilus EG007 in mice and elucidating molecular and metagenomic characteristics using nanopore sequencing. Sci Rep 2022; 12:13274. [PMID: 35918353 PMCID: PMC9346115 DOI: 10.1038/s41598-022-14837-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, accumulating evidences have highlighted the gut microbiota as a key player in the brain functioning via microbiota–gut–brain axis, and accordingly, the beneficial role of several probiotic strains in cognitive ability also have been actively investigated. However, the majority of the research have demonstrated the effects against age-related cognitive decline or neurological disease. To this end, we aimed to investigate lactic acid bacteria strains having beneficial effects on the cognitive function of healthy young mice and elucidate underlying characteristics by carrying out nanopore sequencing-based genomics and metagenomics analysis. 8-week consumption of Streptococcus thermophilus EG007 demonstrated marked enhancements in behavior tests assessing short-term spatial and non-spatial learning and memory. It was revealed that EG007 possessed genes encoding various metabolites beneficial for a health condition in many aspects, including gamma-aminobutyric acid producing system, a neurotransmitter associated with mood and stress response. Also, by utilizing 16S–23S rRNA operon as a taxonomic marker, we identified more accurate species-level compositional changes in gut microbiota, which was increase of certain species, previously reported to have associations with mental health or down-regulation of inflammation or infection-related species. Moreover, correlation analysis revealed that the EG007-mediated altered microbiota had a significant correlation with the memory traits.
Collapse
Affiliation(s)
- Hyaekang Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soomin Jeon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jina Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghyeok Seol
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,eGnome, Inc, Seoul, Republic of Korea
| | - JinChul Jo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seoae Cho
- eGnome, Inc, Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,eGnome, Inc, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Tsui KC, Roy J, Chau SC, Wong KH, Shi L, Poon CH, Wang Y, Strekalova T, Aquili L, Chang RCC, Fung ML, Song YQ, Lim LW. Distribution and inter-regional relationship of amyloid-beta plaque deposition in a 5xFAD mouse model of Alzheimer’s disease. Front Aging Neurosci 2022; 14:964336. [PMID: 35966777 PMCID: PMC9371463 DOI: 10.3389/fnagi.2022.964336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. Although previous studies have selectively investigated the localization of amyloid-beta (Aβ) deposition in certain brain regions, a comprehensive characterization of the rostro-caudal distribution of Aβ plaques in the brain and their inter-regional correlation remain unexplored. Our results demonstrated remarkable working and spatial memory deficits in 9-month-old 5xFAD mice compared to wildtype mice. High Aβ plaque load was detected in the somatosensory cortex, piriform cortex, thalamus, and dorsal/ventral hippocampus; moderate levels of Aβ plaques were observed in the motor cortex, orbital cortex, visual cortex, and retrosplenial dysgranular cortex; and low levels of Aβ plaques were located in the amygdala, and the cerebellum; but no Aβ plaques were found in the hypothalamus, raphe nuclei, vestibular nucleus, and cuneate nucleus. Interestingly, the deposition of Aβ plaques was positively associated with brain inter-regions including the prefrontal cortex, somatosensory cortex, medial amygdala, thalamus, and the hippocampus. In conclusion, this study provides a comprehensive morphological profile of Aβ deposition in the brain and its inter-regional correlation. This suggests an association between Aβ plaque deposition and specific brain regions in AD pathogenesis.
Collapse
Affiliation(s)
- Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kah Hui Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lei Shi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yingyi Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Normal Physiology and Laboratory of Psychiatric Neurobiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Luca Aquili
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Discipline of Psychology, College of Science, Health, Engineering, and Education, Murdoch University, Perth, WA, Australia
| | - Raymond Chuen-Chung Chang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- *Correspondence: Man-Lung Fung,
| | - You-qiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- You-qiang Song,
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Lee Wei Lim,
| |
Collapse
|
10
|
Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Popiołek Ł, Herbet M, Dudka J. The novel adamantane derivatives as potential mediators of inflammation and neural plasticity in diabetes mice with cognitive impairment. Sci Rep 2022; 12:6708. [PMID: 35468904 PMCID: PMC9035983 DOI: 10.1038/s41598-022-10187-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/14/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a chronic disease leading to memory difficulties and deterioration of learning abilities. The previous studies showed that modulation of inflammatory pathways in the diabetic brain may reduce dysfunction or cell death in brain areas which are important for control of cognitive function. In the present study, we investigated the neuroprotective actions of newly synthesized adamantane derivatives on diabetes-induced cognitive impairment in mice. Our study relied on the fact that both vildagliptin and saxagliptin belong to DPP4 inhibitors and, contain adamantanyl group. Efficacy of tested compounds at reversing diabetes-induced different types of memory impairment was evaluated with the use of selected behavioural tests. The following neuroinflammatory indicators were also analyzed: neuroinflammatory indicators and the expression of genes involved in the inflammatory response of brain (Cav1, Bdnf). Our study demonstrated that new adamantane derivatives, similarly to DPP4 inhibitors, can restrict diabetes-induced cognitive deficits. We demonstrated that the overexpression of GLP-1-glucagon-like peptide as well as Bdnf, Cav1 genes translate into central blockade of pro-inflammatory synthesis of cytokines and significantly improvement on memory performance in diabetes mice. Newly synthesized adamantane derivatives might have important roles in prevention and treatment of cognitive impairment by inflammatory events in patients with diabetes or related diseases.
Collapse
Affiliation(s)
- Iwona Piątkowska-Chmiel
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland.
| | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Łukasz Popiołek
- Chair and Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093, Lublin, Poland
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| | - Jarosław Dudka
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090, Lublin, Poland
| |
Collapse
|
11
|
Lin R, Learman LN, Bangash MA, Melnikova T, Leyder E, Reddy SC, Naidoo N, Park JM, Savonenko A, Worley PF. Homer1a regulates Shank3 expression and underlies behavioral vulnerability to stress in a model of Phelan-McDermid syndrome. Cell Rep 2021; 37:110014. [PMID: 34788607 DOI: 10.1016/j.celrep.2021.110014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations of SHANK3 cause Phelan-McDermid syndrome (PMS), and these individuals can exhibit sensitivity to stress, resulting in behavioral deterioration. Here, we examine the interaction of stress with genotype using a mouse model with face validity to PMS. In Shank3ΔC/+ mice, swim stress produces an altered transcriptomic response in pyramidal neurons that impacts genes and pathways involved in synaptic function, signaling, and protein turnover. Homer1a, which is part of the Shank3-mGluR-N-methyl-D-aspartate (NMDA) receptor complex, is super-induced and is implicated in the stress response because stress-induced social deficits in Shank3ΔC/+ mice are mitigated in Shank3ΔC/+;Homer1a-/- mice. Several lines of evidence demonstrate that Shank3 expression is regulated by Homer1a in competition with crosslinking forms of Homer, and consistent with this model, Shank3 expression and function that are reduced in Shank3ΔC/+ mice are rescued in Shank3ΔC/+;Homer1a-/- mice. Studies highlight the interaction between stress and genetics and focus attention on activity-dependent changes that may contribute to pathogenesis.
Collapse
Affiliation(s)
- Raozhou Lin
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lisa N Learman
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - M Ali Bangash
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, UK
| | - Tatiana Melnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Erica Leyder
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sai C Reddy
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nirinjini Naidoo
- Division of Sleep Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Paul F Worley
- Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Tsay HJ, Liu HK, Kuo YH, Chiu CS, Liang CC, Chung CW, Chen CC, Chen YP, Shiao YJ. EK100 and Antrodin C Improve Brain Amyloid Pathology in APP/PS1 Transgenic Mice by Promoting Microglial and Perivascular Clearance Pathways. Int J Mol Sci 2021; 22:10413. [PMID: 34638752 PMCID: PMC8508921 DOI: 10.3390/ijms221910413] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of β-amyloid peptide (Aβ). There are currently no drugs that can successfully treat this disease. This study first explored the anti-inflammatory activity of seven components isolated from Antrodia cinnamonmea in BV2 cells and selected EK100 and antrodin C for in vivo research. APPswe/PS1dE9 mice were treated with EK100 and antrodin C for one month to evaluate the effect of these reagents on AD-like pathology by nesting behavior, immunohistochemistry, and immunoblotting. Ergosterol and ibuprofen were used as control. EK100 and antrodin C improved the nesting behavior of mice, reduced the number and burden of amyloid plaques, reduced the activation of glial cells, and promoted the perivascular deposition of Aβ in the brain of mice. EK100 and antrodin C are significantly different in activating astrocytes, regulating microglia morphology, and promoting plaque-associated microglia to express oxidative enzymes. In contrast, the effects of ibuprofen and ergosterol are relatively small. In addition, EK100 significantly improved hippocampal neurogenesis in APPswe/PS1dE9 mice. Our data indicate that EK100 and antrodin C reduce the pathology of AD by reducing amyloid deposits and promoting nesting behavior in APPswe/PS1dE9 mice through microglia and perivascular clearance, indicating that EK100 and antrodin C have the potential to be used in AD treatment.
Collapse
Affiliation(s)
- Huey-Jen Tsay
- Institute of Neuroscience, School of Life Science, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hui-Kang Liu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
- Program in Clinical Drug Development of Chinese Medicine, Taipei Medical University, Taipei 112, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan;
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| | - Chuan-Sheng Chiu
- Institute of Biopharmaceutical Science, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chih-Chiang Liang
- Institute of Anatomy and Cell Biology, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chen-Wei Chung
- Institute of Traditional Medicine, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 320, Taiwan; (C.-C.C.); (Y.-P.C.)
| | - Yen-Po Chen
- Biotech Research Institute, Grape King Bio Ltd., Taoyuan City 320, Taiwan; (C.-C.C.); (Y.-P.C.)
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan;
- Program in Clinical Drug Development of Chinese Medicine, Taipei Medical University, Taipei 112, Taiwan
- Institute of Biopharmaceutical Science, National Yang-Ming Chiao Tung University, Taipei 112, Taiwan;
| |
Collapse
|
13
|
Mathis SP, Bodduluri SR, Haribabu B. Interrelationship between the 5-lipoxygenase pathway and microbial dysbiosis in the progression of Alzheimer's disease. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158982. [PMID: 34062254 PMCID: PMC11522975 DOI: 10.1016/j.bbalip.2021.158982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder involving neurofibrillary tangles and amyloid plaques. The tau phosphorylation responsible for neurofibrillary tangles and amyloid deposition which causes plaques are both accelerated through the activity of 5-lipoxygenase (5-LO). In addition to these pathological pathways, 5-LO has also been linked to the neuro-inflammation associated with disease progression as well as to dysbiosis in the gut. Interestingly, gut dysbiosis itself has been correlated to AD development. Not only do gut metabolites have direct effects on the brain, but pro-inflammatory mediators such as LPS, BMAA and bacterial amyloids produced in the gut due to dysbiosis reach the brain causing increased neuro-inflammation. While microbial dysbiosis and 5-LO exert detrimental effects in the brain, the cause/effect relationship between these factors remain unknown. These issues may be addressed using mouse models of AD in the context of different knockout mice in the 5-LO pathway in specific pathogen-free, germ-free as well as gnotobiotic conditions.
Collapse
Affiliation(s)
- Steven P Mathis
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, Louisville, KY 40202, United States of America; University of Louisville Health Sciences Center, Louisville, KY 40202, United States of America
| | - Sobha R Bodduluri
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, Louisville, KY 40202, United States of America; University of Louisville Health Sciences Center, Louisville, KY 40202, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, James Graham Brown Cancer Center and Center for Microbiomics, Inflammation and Pathogenicity, Louisville, KY 40202, United States of America; University of Louisville Health Sciences Center, Louisville, KY 40202, United States of America.
| |
Collapse
|
14
|
Chiodi V, Domenici MR, Biagini T, De Simone R, Tartaglione AM, Di Rosa M, Lo Re O, Mazza T, Micale V, Vinciguerra M. Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB J 2021; 35:e21793. [PMID: 34320234 DOI: 10.1096/fj.202100569r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022]
Abstract
Gene expression and epigenetic processes in several brain regions regulate physiological processes such as cognitive functions and social behavior. MacroH2A1.1 is a ubiquitous variant of histone H2A that regulates cell stemness and differentiation in various organs. Whether macroH2A1.1 has a modulatory role in emotional behavior is unknown. Here, we employed macroH2A1.1 knock-out (-/- ) mice to perform a comprehensive battery of behavioral tests, and an assessment of hippocampal synaptic plasticity (long-term potentiation) accompanied by whole hippocampus RNA sequencing. MacroH2A1.1-/- mice exhibit a stunningly enhancement both of sociability and of active stress-coping behavior, reflected by the increased social behavior in social activity tests and higher mobility time in the forced swim test, respectively. They also display an increased hippocampal synaptic plasticity, accompanied by significant neurotransmission transcriptional networks changes. These results suggest that systemic depletion of histone macroH2A1.1 supports an epigenetic control necessary for hippocampal function and social behavior.
Collapse
Affiliation(s)
- Valentina Chiodi
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Rosaria Domenici
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Roberta De Simone
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Maria Tartaglione
- Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Oriana Lo Re
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Bioinformatics Unit, San Giovanni Rotondo, Italy
| | - Vincenzo Micale
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.,Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic.,ERA Chair in Translational Stem Cell Biology, Medical University-Varna, Varna, Bulgaria.,Division of Medicine, University College London (UCL), London, UK
| |
Collapse
|
15
|
Rather MA, Khan A, Alshahrani S, Rashid H, Qadri M, Rashid S, Alsaffar RM, Kamal MA, Rehman MU. Inflammation and Alzheimer's Disease: Mechanisms and Therapeutic Implications by Natural Products. Mediators Inflamm 2021; 2021:9982954. [PMID: 34381308 PMCID: PMC8352708 DOI: 10.1155/2021/9982954] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/24/2021] [Accepted: 07/10/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with no clear causative event making the disease difficult to diagnose and treat. The pathological hallmarks of AD include amyloid plaques, neurofibrillary tangles, and widespread neuronal loss. Amyloid-beta has been extensively studied and targeted to develop an effective disease-modifying therapy, but the success rate in clinical practice is minimal. Recently, neuroinflammation has been focused on as the event in AD progression to be targeted for therapies. Various mechanistic pathways including cytokines and chemokines, complement system, oxidative stress, and cyclooxygenase pathways are linked to neuroinflammation in the AD brain. Many cells including microglia, astrocytes, and oligodendrocytes work together to protect the brain from injury. This review is focused to better understand the AD inflammatory and immunoregulatory processes to develop novel anti-inflammatory drugs to slow down the progression of AD.
Collapse
Affiliation(s)
- Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu 608002, India
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hina Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Marwa Qadri
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia
- West China School of Nursing/Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770; Novel Global Community Educational Foundation, Australia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Ansarey SH. Inflammation and JNK's Role in Niacin-GPR109A Diminished Flushed Effect in Microglial and Neuronal Cells With Relevance to Schizophrenia. Front Psychiatry 2021; 12:771144. [PMID: 34916973 PMCID: PMC8668869 DOI: 10.3389/fpsyt.2021.771144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/02/2021] [Indexed: 12/28/2022] Open
Abstract
Schizophrenia is a neuropsychiatric illness with no single definitive aetiology, making its treatment difficult. Antipsychotics are not fully effective because they treat psychosis rather than the cognitive or negative symptoms. Antipsychotics fail to alleviate symptoms when patients enter the chronic stage of illness. Topical application of niacin showed diminished skin flush in the majority of patients with schizophrenia compared to the general population who showed flushing. The niacin skin flush test is useful for identifying patients with schizophrenia at their ultra-high-risk stage, and understanding this pathology may introduce an effective treatment. This review aims to understand the pathology behind the diminished skin flush response, while linking it back to neurons and microglia. First, it suggests that there are altered proteins in the GPR109A-COX-prostaglandin pathway, inflammatory imbalance, and kinase signalling pathway, c-Jun N-terminal kinase (JNK), which are associated with diminished flush. Second, genes from the GPR109A-COX-prostaglandin pathway were matched against the 128-loci genome wide association study (GWAS) for schizophrenia using GeneCards, suggesting that G-coupled receptor-109A (GPR109A) may have a genetic mutation, resulting in diminished flush. This review also suggests that there may be increased pro-inflammatory mediators in the GPR109A-COX-prostaglandin pathway, which contributes to the diminished flush pathology. Increased levels of pro-inflammatory markers may induce microglial-activated neuronal death. Lastly, this review explores the role of JNK on pro-inflammatory mediators, proteins in the GPR109A-COX-prostaglandin pathway, microglial activation, and neuronal death. Inhibiting JNK may reverse the changes observed in the diminished flush response, which might make it a good therapeutic target.
Collapse
Affiliation(s)
- Sabrina H Ansarey
- Department of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Schroeder P, Rivalan M, Zaqout S, Krüger C, Schüler J, Long M, Meisel A, Winter Y, Kaindl AM, Lehnardt S. Abnormal brain structure and behavior in MyD88-deficient mice. Brain Behav Immun 2021; 91:181-193. [PMID: 33002631 DOI: 10.1016/j.bbi.2020.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/08/2020] [Accepted: 09/23/2020] [Indexed: 12/27/2022] Open
Abstract
While the original protein Toll in Drosophila melanogaster regulates both host defense and morphogenesis, the role of its ortholog Toll-like receptors (TLRs), the interleukin 1 receptor (IL-1R) family, and the associated signaling pathways in mammalian brain development and structure is poorly understood. Because the adaptor protein myeloid differentiation primary response protein 88 (MyD88) is essential for downstream signaling of most TLRs and IL-1R, we systematically investigated the effect of MyD88 deficiency on murine brain structure during development and on behavior. In neonatal Myd88-/- mice, neocortical thickness was reduced, while density of cortical neurons was increased. In contrast, microglia, astrocyte, oligodendrocyte, and proliferating cell numbers were unchanged in these mice compared to wild-type mice. In adult Myd88-/- mice, neocortical thickness was unaltered, but neuronal density in neocortex and hippocampus was increased. Neuron arborization was less pronounced in adult Myd88-/- mice compared to wild-type animals. In addition, numbers of microglia and proliferating cells were increased in the neocortex and subventricular zone, respectively, with unaltered astrocyte and oligodendrocyte numbers, and myelinization was enhanced in the adult Myd88-/- neocortex. These morphologic changes in the brain of adult Myd88-/- mice were accompanied by specific behavioral traits, such as decreased locomotor activity, increased anxiety-like behavior, but normal day/light activity, satisfactory learning, short- and long-term spatial memory, potential cognitive inflexibility, and increased hanging and locomotor behavior within their home cage. Taken together, MyD88 deficiency results in morphologic and cellular changes in the mouse brain, as well as in altered natural and specific behaviors. Our data indicate a pathophysiological significance of MyD88 for mammalian CNS development, structure, and function.
Collapse
Affiliation(s)
- Patricia Schroeder
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marion Rivalan
- Institute of Biology, Humboldt-Universität, Berlin, Germany; Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sami Zaqout
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Christina Krüger
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jutta Schüler
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Melissa Long
- Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Andreas Meisel
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - York Winter
- Institute of Biology, Humboldt-Universität, Berlin, Germany; Animal Outcome Core Facility of the Cluster of Excellence, NeuroCure, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt-Universität, Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Seija Lehnardt
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
18
|
Kumar A, Behl T, Jamwal S, Kaur I, Sood A, Kumar P. Exploring the molecular approach of COX and LOX in Alzheimer's and Parkinson's disorder. Mol Biol Rep 2020; 47:9895-9912. [PMID: 33263931 DOI: 10.1007/s11033-020-06033-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
Neuroinflammation is well established biomarker for the major neurodegenerative like Alzheimer's disease (AD) and Parkinson's disease (PD). Cytokines/chemokines excite phospholipase A2 and cyclooxygenases (COX), facilitating the release of arachidonic acid (AA) and docosahexaenoic acid (DHA) from membrane glycerophospholipids, in which the former is oxidized to produce pro-inflammatory eicosanoids (prostaglandins, leukotrienes and thromboxane's), which intensify the neuroinflammatory events in the brain. Similarly, resolvins and neuroprotectins are the metabolized products of docosahexaenoic acid, which exert an inhibitory effect on the production of eicosanoids. Furthermore, an oxidized product of arachidonic acid, lipoxin, is generated via 5-lipoxygenase (5-LOX) pathway, and contributes to the resolution of inflammation, along with anti-inflammatory actions. Moreover, DHA and its lipid mediators inhibit neuroinflammatory responses by blocking NF-κB, inhibiting eicosanoid production, preventing cytokine secretion and regulating leukocyte trafficking. Various epidemiological studies reported, elevated levels of COX-2 enzyme in patients with AD and PD, indicating its role in progression of the disease. Similarly, enhanced levels of 5-LOX and 12/15-LOX in PD models represent their role brain disorders, where the former is expressed in AD patients and the latter exhibits it involvement in PD. The present review elaborates the role of AA, DHA, eicosanoids and docosanoids, along with COX and LOX pathway which provides an opportunity to the researchers to understand the role of these lipid mediators in neurological disorders (AD and PD). The information gathered from the review will aid in facilitating the development of appropriate therapeutic options targeting COX and LOX pathway.
Collapse
Affiliation(s)
- Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sumit Jamwal
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Archit Sood
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organisation (ARO), Rishon LeTsiyon, Israel
| | - Puneet Kumar
- Department of Pharmacology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151001, India
| |
Collapse
|
19
|
Cao LL, Guan PP, Liang YY, Huang XS, Wang P. Cyclooxygenase-2 is Essential for Mediating the Effects of Calcium Ions on Stimulating Phosphorylation of Tau at the Sites of Ser 396 and Ser 404. J Alzheimers Dis 2020; 68:1095-1111. [PMID: 30883354 DOI: 10.3233/jad-181066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is reported to be associated with the accumulation of calcium ions (Ca2+), which is responsible for the phosphorylation of tau. Although a series of evidence have demonstrated this phenomenon, the inherent mechanisms remain unknown. Using tauP301S and cyclooxygenase-2 (COX-2) transgenic mice and neuroblastoma (n)2a cells as in vivo and in vitro experimental models, we found that Ca2+ stimulates the phosphorylation of tau by activating COX-2 in a prostaglandin (PG) E2-dependent EP receptor-activating manner. Specifically, Ca2+ incubation stimulated COX-2 and PGE2 synthase activity, microsomal PGE synthase 1 and the synthesis of PGE2 by activating the transcriptional activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in n2a cells. Elevated levels of PGE2 were responsible for phosphorylating tau in an EP-1, -2, and -3 but not EP4-dependent glycogen synthase kinase 3-activating manner. These observations were corroborated by results that showed tau was phosphorylated when it colocalized with activated COX-2 in tauP301S and COX-2 transgenic mice or n2a cells. To further validate these observations, treatment of mice with the COX-2 inhibitor rofecoxib decreased the phosphorylation of tau via EP1-3 but not EP4. Collectively, our observations fill the gaps between Ca2+ and the phosphorylation of tau in a COX-2-dependent mechanism, which potentially provides therapeutic targets for combating AD.
Collapse
Affiliation(s)
- Long-Long Cao
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
20
|
Santoso D, Yolanda S, Redjeki S, Andraini T, Ivanali K. Continuous environmental enrichment and aerobic exercise improves spatial memory: focus on rat hippocampal BDNF and NGF. COMPARATIVE EXERCISE PHYSIOLOGY 2020. [DOI: 10.3920/cep190036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Memory is an important cognitive function in humans. Exercise and environmental enrichment (EE) exposure have positive effects on memory function via improved neurogenesis through expression of growth factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Exercise and environmental enrichment have independently been shown to increase BDNF and NGF, but the effect of the combination of these treatments has not been widely studied. This experimental study aims to analyse the effect of aerobic exercise, EE exposure, and combination of aerobic exercise and EE exposure on memory function. This study used twenty 7-month old male Wistar rats that were given treatment for 8 weeks. Memory function was tested using forced alternation Y-maze. Hippocampal expression of BDNF and NGF were also assessed. The results showed the combination group has highest performance in memory function test and also the highest level of hippocampal BDNF and NGF (P<0.05). It can be concluded that the combination of aerobic exercise and continuous EE exposure produces the best results for memory function through higher levels of hippocampal BDNF and NGF in adult rats.
Collapse
Affiliation(s)
- D.I.I. Santoso
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - S. Yolanda
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - S. Redjeki
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - T. Andraini
- Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| | - K. Ivanali
- Biomedical Sciences, Department of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jalan Salemba Raya no. 6, 10430 Jakarta, Indonesia
| |
Collapse
|
21
|
Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci 2020; 21:ijms21031144. [PMID: 32050445 PMCID: PMC7037950 DOI: 10.3390/ijms21031144] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-β plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.
Collapse
|
22
|
Moosavi Sohroforouzani A, Shakerian S, Ghanbarzadeh M, Alaei H. Treadmill exercise improves LPS-induced memory impairments via endocannabinoid receptors and cyclooxygenase enzymes. Behav Brain Res 2020; 380:112440. [DOI: 10.1016/j.bbr.2019.112440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/14/2019] [Accepted: 12/15/2019] [Indexed: 12/27/2022]
|
23
|
Oligosaccharides from Morinda officinalis Slow the Progress of Aging Mice by Regulating the Key Microbiota-Metabolite Pairs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9306834. [PMID: 31929824 PMCID: PMC6942866 DOI: 10.1155/2019/9306834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
The gut microbiota is considered an important factor in the progression of Alzheimer's disease (AD). Active research on the association between the metabolome and the gut microbiome is ongoing and can provide a large amount of beneficial information about the interactions between the microbiome and the metabolome. Previous studies have shown that the oligosaccharides from Morinda officinalis (OMO) can delay the progress of AD in model animals by regulating the diversity of the gut microbiome and metabolic components, and the correlation between the gut microbiome and metabolic components still needs to be further verified. This study applied a new two-level strategy to investigate and ensure the accuracy and consistency of the results. This strategy can be used to determine the association between the gut microbiome and serum metabolome in APP/PS1 transgenic mice and C57BL/6J male mice. The “4C0d-2 spp.-Cholesterol,” “CW040 spp.-L-valine,” “CW040 spp.-L-acetylcarnitine,” “RF39 spp.-L-valine,” “TM7-3 spp.-L-valine,” and “TM7-3 spp.-L-acetylcarnitine” associations among specific “microbiota-metabolite” pairs were further identified based on univariate and multivariate correlation analyses and functional analyses. The key relevant pairs were verified by an independent oligosaccharide intervention study, and the gut microbiome and serum metabolome of the OMO intervention group were similar to those of the normal group. The results indicate that OMO can significantly suppress Alzheimer's disease by regulating the key microbiota-metabolite pairs. Therefore, this two-level strategy is effective in identifying the principal correlations in large datasets obtained from combinations of multiomic studies and further enhancing our understanding of the correlation between the brain and gut in patients with AD.
Collapse
|
24
|
Guan PP, Liang YY, Cao LL, Yu X, Wang P. Cyclooxygenase-2 Induced the β-Amyloid Protein Deposition and Neuronal Apoptosis Via Upregulating the Synthesis of Prostaglandin E 2 and 15-Deoxy-Δ 12,14-prostaglandin J 2. Neurotherapeutics 2019; 16:1255-1268. [PMID: 31392591 PMCID: PMC6985346 DOI: 10.1007/s13311-019-00770-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) have been shown to be involved in the pathogenesis of Alzheimer's disease. Analysis of the underlying mechanisms elucidated a function of sequential PGE2 and PGD2 synthesis in regulating β-amyloid protein (Aβ) deposition by modulating tumor necrosis factor α (TNF-α)-dependent presenilin (PS)1/2 activity in COX-2 and APP/PS1 crossed mice. Specifically, COX-2 overexpression accelerates the expression of microsomal PGE synthase-1 (mPGES-1) and lipocalin-type prostaglandin D synthase (L-PGDS), leading to the synthesis of PGE2 and 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in 6-month-old APP/PS1 mice. Consequently, PGE2 has the ability to increase Aβ production by enhancing the expression of PS1/2 in a TNF-α-dependent manner, which accelerates the cognitive decline of COX-2/APP/PS1 mice. More interestingly, low concentrations of 15d-PGJ2 treatment facilitate the effects of PGE2 on the deposition of Aβ via TNF-α-dependent PS1/2 mechanisms. In contrast, high concentrations of 15d-PGJ2 treatment inhibit the deposition of Aβ via suppressing the expression of TNF-α-dependent PS1/2. In this regard, a high concentration of 15d-PGJ2 appears to be a therapeutic agent against Alzheimer's disease. However, the high 15d-PGJ2 concentration treatment induces neuronal apoptosis via increasing the protein levels of Bax, cleaved caspase-3, and DFF45, which further impairs the learning ability of APP/PS1 mice.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Yun-Yue Liang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Long-Long Cao
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, China.
| |
Collapse
|
25
|
Bergin DH, Jing Y, Williams G, Mockett BG, Zhang H, Abraham WC, Liu P. Safety and neurochemical profiles of acute and sub-chronic oral treatment with agmatine sulfate. Sci Rep 2019; 9:12669. [PMID: 31481723 PMCID: PMC6722093 DOI: 10.1038/s41598-019-49078-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/19/2019] [Indexed: 01/25/2023] Open
Abstract
Agmatine (decarboxylated arginine) exerts numerous central nervous system (CNS) dependent pharmacological effects and may potentially modulate altered neurochemistry seen in neurological disorders. In preclinical studies, injection has been the predominant route of systemic administration. However, a significant translational step would be the use of oral agmatine treatment at therapeutic doses and better understanding of L-arginine metabolic profiles in the CNS post-treatment. The present study systematically investigated the tolerability, safety and brain-plasma neurochemistry following daily oral agmatine sulfate treatment (via gavage) to wild-type (WT) mice up to 900 mg/kg for one week (Experiment 1) or WT and APPswe/PS1ΔE9 transgenic (Tg) mice at 300 mg/kg for fifteen weeks (Experiment 2). Agmatine treatment in both experiments was well tolerated with no marked behavioural impairments, and gross necropsy and organ histology revealed no pathological alterations after 15-week dosing. Moreover, oral treatment increased agmatine levels in the hippocampus and plasma of WT mice (Experiment 1), and in 6 brain regions examined (but not plasma) of WT and Tg mice (Experiment 2), at 30 minutes or 24 hours post-treatment respectively. This study provides fundamental pre-clinical evidence that daily oral delivery of agmatine sulfate to both WT and Tg mice is safe and well tolerated. Exogenous agmatine passes through the blood brain barrier and accumulates in the brain to a greater extent in Tg mice. Furthermore exogenous agmatine has differential actions in the brain and periphery, and its effect on brain putrescine appears to be dependent on the time post-treatment.
Collapse
Affiliation(s)
- David H Bergin
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,School of Pharmacy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Gail Williams
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Bruce G Mockett
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- School of Pharmacy, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - Ping Liu
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research New Zealand, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
26
|
Sharma SK, Bansal MP, Sandhir R. Altered dietary selenium influences brain iron content and behavioural outcomes. Behav Brain Res 2019; 372:112011. [PMID: 31212061 DOI: 10.1016/j.bbr.2019.112011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is an essential micronutrient that provides antioxidant defence through selenoproteins, but at high concentrations, deleterious effects have been reported. The present study examines the antioxidant response in brain regions and behavioural functions in mice under various dietary Se paradigms; Se-deficient, Se-adequate and Se-excess. Se levels were found to be reduced in the cortex and hippocampus of Se-deficient animals, whereas no change was observed in animals on Se-excess diet. In the hippocampus, iron (Fe) levels increased in animals on Se-deficient and Se-excess diets. Moreover, in Se-deficient animals, Fe levels increased in cortex also. Interestingly, Se content in the hair positively correlated with the dietary Se intake. Total and Se-dependent glutathione peroxidase activity decreased in the cortex, hippocampus and cerebellum of animals on Se-deficient diet. On the other hand, the activity of these enzymes decreased in the cortex of animals on Se-excess diet. Further, lipid peroxidation increased in the cortex of animals on Se-deficient diet and in the hippocampus of animals on Se-excess diet. Cognitive functions assessed by Morris water maze and Y-maze tests revealed deficits in Se-deficient state. However, in Se-excess state cognitive deficits were observed only in Y-maze test. These findings suggest that long-term dietary variation in Se influences oxidative stress that impacts cognitive functions. Therefore, it is suggested that maintenance of Se status during postnatal development may be crucial for mental health.
Collapse
Affiliation(s)
- Sunil Kumar Sharma
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Mohinder Pal Bansal
- Department of Biophysics, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Sciences Block-II, Panjab University, Sector-25, Chandigarh 160014, India.
| |
Collapse
|
27
|
Wong-Guerra M, Jiménez-Martin J, Fonseca-Fonseca LA, Ramírez-Sánchez J, Montano-Peguero Y, Rocha JB, D Avila F, de Assis AM, Souza DO, Pardo-Andreu GL, Del Valle RMS, Lopez GA, Martínez OV, García NM, Mondelo-Rodríguez A, Padrón-Yaquis AS, Nuñez-Figueredo Y. JM-20 protects memory acquisition and consolidation on scopolamine model of cognitive impairment. Neurol Res 2019; 41:385-398. [PMID: 30821663 DOI: 10.1080/01616412.2019.1573285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE JM-20, a novel hybrid synthetic molecule, has been reported to have antioxidant, mitoprotective, anti-excitotoxic, anti-apoptotic and anti-inflammatory properties. However, the neuroprotective effect of JM-20 against memory impairment in preclinical AD-like models has not been analyzed. The aim of this study was to evaluate the potential neuroprotection of JM-20 that preserves essential memory process from cholinergic dysfunction and other molecular damages. METHODS The effects of JM-20 on scopolamine (1 mg/kg)-induced cognitive disorders were studied. Male Wistar rats (220-230 g) were treated with JM-20 and/or scopolamine, and behavioral tasks were performed. The AChE activity, superoxide dismutase activity, catalase activity, MDA and T-SH level on brain tissue were determined by spectrophotometric methods. Mitochondrial functionality parameters were measured after behavioral tests. Histological analyses on hippocampus and prefrontal cortex were processed with hematoxylin and eosin, and neuronal and axonal damage were determined. RESULTS The behavioral, biochemical and histopathological studies revealed that oral pre-treatment with JM-20 (8 mg/kg) significantly attenuated the scopolamine-induced memory deficits, mitochondrial malfunction, oxidative stress, and prevented AChE hyperactivity probably due to specific inhibition of AChE enzyme. It was also observed marked histological protection on hippocampal and prefrontal-cortex regions. CONCLUSIONS The multimodal action of this molecule could mediate the memory protection here observed and suggest that it may modulate different pathological aspects of memory deficits associated with AD in humans.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Javier Jiménez-Martin
- b Department of Physiology, Otago School of Medical Sciences , University of Otago , Dunedin , New Zealand
| | - Luis Arturo Fonseca-Fonseca
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Jeney Ramírez-Sánchez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Yanay Montano-Peguero
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Joao Batista Rocha
- c Departamento de Bioquímica e Biologia Molecular, Centro de Ciencias Naturales y Exactas , Universidad Federal de Santa Maria , Santa Maria , Brasil
| | - Fernanda D Avila
- c Departamento de Bioquímica e Biologia Molecular, Centro de Ciencias Naturales y Exactas , Universidad Federal de Santa Maria , Santa Maria , Brasil
| | - Adriano M de Assis
- d Departamento de Bioquímica, PPG em Ciencias Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brasil
| | - Diogo Onofre Souza
- d Departamento de Bioquímica, PPG em Ciencias Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brasil
| | - Gilberto L Pardo-Andreu
- e Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos , Universidad de La Habana , La Habana , Cuba
| | | | - Guillermo Aparicio Lopez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Odalys Valdés Martínez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Nelson Merino García
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Abel Mondelo-Rodríguez
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Alejandro Saúl Padrón-Yaquis
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Yanier Nuñez-Figueredo
- a Laboratorio de Neurofarmacología Molecular , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| |
Collapse
|
28
|
Yan P, Xu D, Ji Y, Yin F, Cui J, Su R, Wang Y, Zhu Y, Wei S, Lai J. LiCl Pretreatment Ameliorates Adolescent Methamphetamine Exposure-Induced Long-Term Alterations in Behavior and Hippocampal Ultrastructure in Adulthood in Mice. Int J Neuropsychopharmacol 2019; 22:303-316. [PMID: 30649326 PMCID: PMC6441133 DOI: 10.1093/ijnp/pyz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 12/30/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Adolescent methamphetamine exposure causes a broad range of neurobiological deficits in adulthood. Glycogen synthase kinase-3β is involved in various cognitive and behavioral processes associated with methamphetamine exposure. This study aims to investigate the protective effects of the glycogen synthase kinase-3β inhibitor lithium chloride on adolescent methamphetamine exposure-induced long-term alterations in emotion, cognition, behavior, and molecule and hippocampal ultrastructure in adulthood. METHODS A behavioral test battery was used to investigate the protective effects of lithium chloride on adolescent methamphetamine exposure-induced long-term emotional, cognitive, and behavioral impairments in mice. Western blotting and immunohistochemistry were used to detect glycogen synthase kinase-3β activity levels in the medial prefrontal cortex and dorsal hippocampus. Electron microscopy was used to analyze changes in synaptic ultrastructure in the dorsal hippocampus. Locomotor sensitization with a methamphetamine (1 mg/kg) challenge was examined 80 days after adolescent methamphetamine exposure. RESULTS Adolescent methamphetamine exposure induced long-term alterations in locomotor activity, novel spatial exploration, and social recognition memory; increases in glycogen synthase kinase-3β activity in dorsal hippocampus; and decreases in excitatory synapse density and postsynaptic density thickness in CA1. These changes were ameliorated by lithium chloride pretreatment. Adolescent methamphetamine exposure-induced working memory deficits in Y-maze spontaneous alternation test and anxiety-like behavior in elevated-plus maze test spontaneously recovered after long-term methamphetamine abstinence. No significant locomotor sensitization was observed after long-term methamphetamine abstinence. CONCLUSIONS Hyperactive glycogen synthase kinase-3β contributes to adolescent chronic methamphetamine exposure-induced behavioral and hippocampal impairments in adulthood. Our results suggest glycogen synthase kinase-3β may be a potential target for the treatment of deficits in adulthood associated with adolescent methamphetamine abuse.
Collapse
Affiliation(s)
- Peng Yan
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Xu
- Traditional Chinese Medicine Department, Shenyang Pharmaceutical University, Shenyang, Liaoning, People’s Republic of China
| | - Yuanyuan Ji
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jingjing Cui
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Rui Su
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yunpeng Wang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yongsheng Zhu
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Key Laboratory of Forensic Science, National Health and Family Planning Commission, Xi’an, Shaanxi, People’s Republic of China,Correspondence: Shuguang Wei, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China (); and Jianghua Lai, PhD, College of Forensic Science, Xi’an Jiaotong University, 76 Yanta West Road, Xi’an 710061, People’s Republic of China ()
| |
Collapse
|
29
|
Oveisgharan S, Arvanitakis Z, Yu L, Farfel J, Schneider JA, Bennett DA. Sex differences in Alzheimer's disease and common neuropathologies of aging. Acta Neuropathol 2018; 136:887-900. [PMID: 30334074 DOI: 10.1007/s00401-018-1920-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022]
Abstract
Alzheimer's dementia is significantly more common in women than in men. However, few pathological studies have addressed sex difference in Alzheimer's disease (AD) and other brain pathologies. We leveraged postmortem data from 1453 persons who participated in one of two longitudinal community-based studies of older adults, the Religious Orders Study and the Rush Memory and Aging Project. Postmortem examination identified AD pathologies, neocortical Lewy bodies, DNA-binding protein 43 (TDP-43), hippocampal sclerosis, gross and micro infarcts, atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy. Linear and logistic regressions examined the association of sex with each of the pathologic measures. Two-thirds of subjects were women (n = 971; 67%), with a mean age at death of 89.8 (SD = 6.6) years in women and 87.3 (SD = 6.6) in men. Adjusted for age and education, women had higher levels on a global measure of AD pathology (estimate = 0.102, SE = 0.022, p < 0.001), and tau tangle density in particular (estimate = 0.334, SE = 0.074, p < 0.001), and there was a borderline difference between women and men in amyloid-β load (estimate = 0.124, SE = 0.065, p = 0.056). In addition, compared to men, women were more likely to have more severe arteriolosclerosis (OR = 1.28, 95% CI:1.04-1.58, p = 0.018), and less likely to have gross infarcts (OR = 0.78, 95% CI:0.61-0.98, p = 0.037), although the association with gross infarct was attenuated after controlling for vascular risk factors. These data help elucidate the neuropathologic footprint of sex difference in AD and other common brain pathologies of aging.
Collapse
Affiliation(s)
- Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Zoe Arvanitakis
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jose Farfel
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
- Department of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison, Suite 1000, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
30
|
Abstract
Elevated levels of cyclooxygenase-2 (COX-2) and prostaglandins (PGs) are involved in the pathogenesis of Alzheimer's disease (AD), which is characterized by the accumulation of β-amyloid protein (Aβ) and tau hyperphosphorylation. However, the gaps in our knowledge of the roles of COX-2 and PGs in AD have not been filled. Here, we summarized the literature showing that COX-2 dysregulation obviously influences abnormal cleavage of β-amyloid precursor protein, aggregation and deposition of Aβ in β-amyloid plaques and the inclusion of phosphorylated tau in neurofibrillary tangles. Neuroinflammation, oxidative stress, synaptic plasticity, neurotoxicity, autophagy, and apoptosis have been assessed to elucidate the mechanisms of COX-2 regulation of AD. Notably, an imbalance of these factors ultimately produces cognitive decline. The current review substantiates our understanding of the mechanisms of COX-2-induced AD and establishes foundations for the design of feasible therapeutic strategies to treat AD.-Guan, P.-P., Wang, P. Integrated communications between cyclooxygenase-2 and Alzheimer's disease.
Collapse
Affiliation(s)
- Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
31
|
Kumar A, Rani A, Scheinert RB, Ormerod BK, Foster TC. Nonsteroidal anti-inflammatory drug, indomethacin improves spatial memory and NMDA receptor function in aged animals. Neurobiol Aging 2018; 70:184-193. [PMID: 30031231 DOI: 10.1016/j.neurobiolaging.2018.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022]
Abstract
A redox-mediated decrease in N-methyl-D-aspartate (NMDA) receptor function contributes to psychiatric diseases and impaired cognition during aging. Inflammation provides a potential source of reactive oxygen species for inducing NMDA receptor hypofunction. The present study tested the hypothesis that the nonsteroidal anti-inflammatory drug indomethacin, which improves spatial episodic memory in aging rats, would enhance NMDA receptor function through a shift in the redox state. Male F344 young and aged rats were prescreened using a 1-day version of the water maze task. Animals were then treated with the indomethacin or vehicle, delivered in a frozen milk treat (orally, twice per day, 18 days), and retested on the water maze. Indomethacin treatment enhanced water maze performance. Hippocampal slices were prepared for examination of CA3-CA1 synaptic responses, long-term potentiation, and NMDA receptor-mediated synaptic responses. No effect of treatment was observed for the total synaptic response. Long-term potentiation magnitude and NMDA receptor input-output curves were enhanced for aged indomethacin-treated animals. To examine redox regulation of NMDA receptors, a second group of aged animals was treated with indomethacin or vehicle, and the effect of the reducing agent, dithiothreitol ([DTT], 0.5 mM) on NMDA receptor-mediated synaptic responses was evaluated. As expected, DTT increased the NMDA receptor response and the effect of DTT was reduced by indomethacin treatment. The results indicate that indomethacin acted to diminish the age-related and redox-mediated NMDA receptor hypofunction and suggest that inflammation contributes to cognitive impairment through an increase in redox stress.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rachel B Scheinert
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, J. Crayton Pruitt Family, University of Florida, Gainesville, FL, USA
| | - Brandi K Ormerod
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, J. Crayton Pruitt Family, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
32
|
Xin Y, Diling C, Jian Y, Ting L, Guoyan H, Hualun L, Xiaocui T, Guoxiao L, Ou S, Chaoqun Z, Jun Z, Yizhen X. Effects of Oligosaccharides From Morinda officinalis on Gut Microbiota and Metabolome of APP/PS1 Transgenic Mice. Front Neurol 2018; 9:412. [PMID: 29962999 PMCID: PMC6013575 DOI: 10.3389/fneur.2018.00412] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/18/2018] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, lacks preclinical diagnostic biomarkers and therapeutic drugs. Thus, earlier intervention in AD is a top priority. Studies have shown that the gut microbiota influences central nervous system disorders and that prebiotics can improve the cognition of hosts with AD, but these effects are not well understood. Preliminary research has shown that oligosaccharides from Morinda officinalis (OMO) are a useful prebiotic and cause substantial memory improvements in animal models of AD; however, the mechanism is still unclear. Therefore, this study was conducted to investigate whether OMO are clinically effective in alleviating AD by improving gut microbiota. OMO were administered to APP/PS1 transgenic mice, and potential clinical biomarkers of AD were identified with metabolomics and bioinformatics. Behavioral experiments demonstrated that OMO significantly ameliorated the memory of the AD animal model. Histological changes indicated that OMO ameliorated brain tissue swelling and neuronal apoptosis and downregulated the expression of the intracellular AD marker Aβ1−42. 16S rRNA sequencing analyses indicated that OMO maintained the diversity and stability of the microbial community. The data also indicated that OMO are an efficacious prebiotic in an animal model of AD, regulating the composition and metabolism of the gut microbiota. A serum metabolomics assay was performed using UHPLC-LTQ Orbitrap mass spectrometry to delineate the metabolic changes and potential early biomarkers in APP/PS1 transgenic mice. Multivariate statistical analysis showed that 14 metabolites were significantly upregulated, and 8 metabolites were downregulated in the model animals compared to the normal controls. Thus, key metabolites represent early indicators of the development of AD. Overall, we report a drug and signaling pathway with therapeutic potential, including proteins associated with cognitive deficits in normal mice or gene mutations that cause AD.
Collapse
Affiliation(s)
- Yang Xin
- Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Chen Diling
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Yang Jian
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Liu Ting
- The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Hu Guoyan
- The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Liang Hualun
- Department of Pharmacy, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tang Xiaocui
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Lai Guoxiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China.,College of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Shuai Ou
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zheng Chaoqun
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| | - Zhao Jun
- Department of Obstetrics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xie Yizhen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, China
| |
Collapse
|
33
|
O'Leary TP, Hussin AT, Gunn RK, Brown RE. Locomotor activity, emotionality, sensori-motor gating, learning and memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease. Brain Res Bull 2018; 140:347-354. [PMID: 29870778 DOI: 10.1016/j.brainresbull.2018.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 05/11/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The APPswe/PS1dE9 mouse (line 85) is a double transgenic model of Alzheimer's disease (AD) with familial amyloid precursor protein and presenilin-1 mutations. These mice develop age-related behavioral changes reflective of the neuropsychiatric symptoms (altered anxiety-like behaviour, hyperactivity) and cognitive dysfunction (impaired learning and memory) observed in AD. The APPswe/PS1dE9 mouse has been used to examine the efficacy of therapeutic interventions on behaviour, despite previous difficulties in replicating behavioural phenotypes. Therefore, the purpose of this study was to establish the reliability of these phenotypes by further characterizing the behaviour of male APPswe/PS1dE9 and wild-type mice between 7 and 14 months of age. Mice were tested on the open-field over 5-days to examine emotionality, locomotor activity and inter-session habituation. Mice were also tested on the repeated-reversal water maze task and spontaneous alternation on the Y-maze to assess working memory. Sensori-motor gating was examined with acoustic startle and pre-pulse inhibition. Lastly contextual and cued (trace) memory was assessed with fear conditioning. The results show that among non-cognitive behaviours, APPswe/PS1dE9 mice have normal locomotor activity, anxiety-like behavior, habituation and sensori-motor gating. However, APPswe/PS1dE9 mice show impaired working memory on the repeated-reversal water-maze and impaired memory in contextual but not trace-cued fear conditioning. These results indicate that the APPswe/PS1dE9 (line 85) mice have deficits in some types of hippocampal-dependent learning and memory and, at the ages tested, APPswe/PS1dE9 mice model cognitive dysfunction but not neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Timothy P O'Leary
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ahmed T Hussin
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Rhian K Gunn
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|
34
|
Zolotovskaya IA, Davydkin IL. The Cognitive Cytokine Effect of Nonsteroidal Antiinflammatory Drugs in the Treatment of Elderly Patients with Osteoarthritis. ADVANCES IN GERONTOLOGY 2018. [DOI: 10.1134/s2079057018010149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Guo Y, Lei W, Wang J, Hu X, Wei Y, Ji C, Yang J. Misoprostol Reverse Hippocampal Neuron Cyclooxygenase-2 Downstream Signaling Imbalance in Aluminum-Overload Rats. Curr Alzheimer Res 2017; 13:1006-16. [PMID: 27033056 PMCID: PMC4997938 DOI: 10.2174/1567205013666160401114601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 01/06/2016] [Accepted: 03/15/2016] [Indexed: 12/19/2022]
Abstract
Although COX-2 inhibition in animal models of neurodegenerative diseases has shown neuroprotection, recent studies have revealed some serious side effects (ulcers, bleeding, fatal cerebrovascular diseases etc.) and the limited benefits of COX-2 inhibitors. A more focused approach is necessary to explore the therapeutic effect of the COX downstream signaling pathway in neurological research. The aim of this study was to explore the alterations of the PGES-PGE2-EP signal pathway and the effect of misoprostol on neurodegeneration by chronic aluminum-overload in rats. Adult rats were treated by intragastric administration of aluminum gluconate. The PGE2 content and expression of PGES and EPs in the hippocampi of rats were detected using ELISA, q-PCR and Western blot analysis, respectively. The content of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD) in the rat hippocampi were also detected. The misoprostol treatment dose-dependently improved spatial learning and memory function as well as healing after hippocampal neuron damage induced by chronic aluminum-overload in rats. Meanwhile, the administration of misoprostol resulted in a decrease in the PGE2 level and down-regulation of the mPGES-1, EP2 and EP4 expression levels, while there was a dosedependent up-regulation of EP3 expression. These results suggest that misoprostol possesses a neuroprotective property, and the mechanism involves affecting the EP3 level and reducing the endogenous production of PGE2 through a negative feedback mechanism, increasing the EP3 expression level, decreasing the EP2 and EP4 expression levels, and rebuilding the mPGES-1-PGE2-EP1-4 signal pathway balance. In this way, misoprostol has a counteractive effect on oxidant stress and inflammation in the central nervous system. The PGES-PGE2-EPs signaling pathway is a potential therapeutic strategy for treating neurodegeneration in patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
36
|
Yu J, Kong L, Zhang A, Han Y, Liu Z, Sun H, Liu L, Wang X. High-Throughput Metabolomics for Discovering Potential Metabolite Biomarkers and Metabolic Mechanism from the APPswe/PS1dE9 Transgenic Model of Alzheimer’s Disease. J Proteome Res 2017; 16:3219-3228. [DOI: 10.1021/acs.jproteome.7b00206] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jingbo Yu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ling Kong
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Aihua Zhang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Ying Han
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Zhidong Liu
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Hui Sun
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
| | - Liang Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| | - Xijun Wang
- Sino-America
Chinmedomics Technology Collaboration Center, National TCM Key Laboratory
of Serum Pharmacochemistry, Chinmedomics Research Center of State
Administration of TCM, Metabolomics Laboratory, Department of Pharmaceutical
Analysis, Heilongjiang University of Chinese Medicine, Heping Road
24, Harbin 150040, China
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau 999078, China
| |
Collapse
|
37
|
Guo JW, Guan PP, Ding WY, Wang SL, Huang XS, Wang ZY, Wang P. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimer's disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017; 145:106-127. [PMID: 28865290 DOI: 10.1016/j.biomaterials.2017.07.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is characterized by the loss of neurogenesis and excessive induction of apoptosis. The induction of neurogenesis and inhibition of apoptosis may be a promising therapeutic approach to combating the disease. Celecoxib (CB), a cyclooxygenase-2 specific inhibitor, could offer neuroprotection. Specifically, the CB-encapsulated erythrocyte membranes (CB-RBCMs) sustained the release of CB over a period of 72 h in vitro and exhibited high brain biodistribution efficiency following intranasal administration, which resulted in the clearance of aggregated β-amyloid proteins (Aβ) in neurons. The high accumulation of the CB-RBCMs in neurons resulted in a decrease in the neurotoxicity of CB and an increase in the migratory activity of neurons, and alleviated cognitive decline in APP/PS1 transgenic (Tg) mice. Indeed, COX-2 metabolic products including prostaglandin E2 (PGE2) and PGD2, PGE2 induced neurogenesis by enhancing the expression of SOD2 and 14-3-3ζ, and PGD2 stimulated apoptosis by increasing the expression of BIK and decreasing the expression of ARRB1. To this end, the CB-RBCMs achieved better effects on concurrently increasing neurogenesis and decreasing apoptosis than the phospholipid membrane-encapsulated CB liposomes (CB-PSPD-LPs), which are critical for the development and progression of AD. Therefore, CB-RBCMs provide a rational design to treat AD by promoting the self-repairing capacity of the brain.
Collapse
Affiliation(s)
- Jing-Wen Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Wei-Yan Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Ling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, PR China
| | - Xue-Shi Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| | - Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
38
|
Snow WM, Albensi BC. Neuronal Gene Targets of NF-κB and Their Dysregulation in Alzheimer's Disease. Front Mol Neurosci 2016; 9:118. [PMID: 27881951 PMCID: PMC5101203 DOI: 10.3389/fnmol.2016.00118] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Although, better known for its role in inflammation, the transcription factor nuclear factor kappa B (NF-κB) has more recently been implicated in synaptic plasticity, learning, and memory. This has been, in part, to the discovery of its localization not just in glia, cells that are integral to mediating the inflammatory process in the brain, but also neurons. Several effectors of neuronal NF-κB have been identified, including calcium, inflammatory cytokines (i.e., tumor necrosis factor alpha), and the induction of experimental paradigms thought to reflect learning and memory at the cellular level (i.e., long-term potentiation). NF-κB is also activated after learning and memory formation in vivo. In turn, activation of NF-κB can elicit either suppression or activation of other genes. Studies are only beginning to elucidate the multitude of neuronal gene targets of NF-κB in the normal brain, but research to date has confirmed targets involved in a wide array of cellular processes, including cell signaling and growth, neurotransmission, redox signaling, and gene regulation. Further, several lines of research confirm dysregulation of NF-κB in Alzheimer's disease (AD), a disorder characterized clinically by a profound deficit in the ability to form new memories. AD-related neuropathology includes the characteristic amyloid beta plaque formation and neurofibrillary tangles. Although, such neuropathological findings have been hypothesized to contribute to memory deficits in AD, research has identified perturbations at the cellular and synaptic level that occur even prior to more gross pathologies, including transcriptional dysregulation. Indeed, synaptic disturbances appear to be a significant correlate of cognitive deficits in AD. Given the more recently identified role for NF-κB in memory and synaptic transmission in the normal brain, the expansive network of gene targets of NF-κB, and its dysregulation in AD, a thorough understanding of NF-κB-related signaling in AD is warranted and may have important implications for uncovering treatments for the disease. This review aims to provide a comprehensive view of our current understanding of the gene targets of this transcription factor in neurons in the intact brain and provide an overview of studies investigating NF-κB signaling, including its downstream targets, in the AD brain as a means of uncovering the basic physiological mechanisms by which memory becomes fragile in the disease.
Collapse
Affiliation(s)
- Wanda M Snow
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| | - Benedict C Albensi
- Division of Neurodegenerative Disorders, St. Boniface Hospital ResearchWinnipeg, MB, Canada; Department of Pharmacology and Therapeutics, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
39
|
Differential Effects of Meloxicam on Pentylenetetrazole- and Maximal Electroshock-Induced Convulsions in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.5812/jjnpp.36412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Darvishi H, Rezaei M, Khodayar MJ, Reza Zargar H, Dehghani MA, Rajabi Vardanjani H, Ghanbari S. Differential Effects of Meloxicam on Pentylenetetrazole- and Maximal Electroshock-Induced Convulsions in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-36412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
41
|
Melnikova T, Park D, Becker L, Lee D, Cho E, Sayyida N, Tian J, Bandeen-Roche K, Borchelt DR, Savonenko AV. Sex-related dimorphism in dentate gyrus atrophy and behavioral phenotypes in an inducible tTa:APPsi transgenic model of Alzheimer's disease. Neurobiol Dis 2016; 96:171-185. [PMID: 27569580 DOI: 10.1016/j.nbd.2016.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 07/07/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
Sex differences are a well-known phenomenon in Alzheimer's disease (AD), with women having a higher risk for AD than men. Many AD mouse models display a similar sex-dependent pattern, with females showing earlier cognitive deficits and more severe neuropathology than males. However, whether those differences are relevant to human disease is unclear. Here we show that in AD mouse models that overexpress amyloid precursor protein (APP) under control of the prion protein promoter (PrP), female transgenic mice have higher APP expression than males, complicating interpretations of the role of sex-related factors in such models. By contrast, in a tTa:APPsi model, in which APP expression is driven by the tetracycline transactivator (tTa) from the CaMKIIα promoter, there are no sex-related differences in expression or processing of APP. In addition, the levels of Aβ dimers and tetramers, as well as Aβ peptide accumulation, are similar between sexes. Behavioral testing demonstrated that both male and female tTa:APPsi mice develop age-dependent deficits in spatial recognition memory and conditional freezing to context. These cognitive deficits were accompanied by habituation-associated hyperlocomotion and startle hyper-reactivity. Significant sex-related dimorphisms were observed, due to females showing earlier onsets of the deficits in conditioned freezing and hyperlocomotion. In addition, tTa:APPsi males but not females demonstrated a lack of novelty-induced activation. Both males and females showed atrophy of the dentate gyrus (DG) of the dorsal hippocampus, associated with widening of the pyramidal layer of the CA1 area in both sexes. Ventral DG was preserved. Sex-related differences were limited to the DG, with females showing more advanced degeneration than males. Collectively, our data show that the tTa:APPsi model is characterized by a lack of sex-related differences in APP expression, making this model useful in deciphering the mechanisms of sex differences in AD pathogenesis. Sex-related dimorphisms observed in this model under conditions of equal APP expression between sexes suggest a higher sensitivity of females to the effects of APP and/or Aβ production.
Collapse
Affiliation(s)
- Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - DaMin Park
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Lauren Becker
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| | - Jing Tian
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - Karen Bandeen-Roche
- Department of Biostatistics, School of Public Health, The Johns Hopkins University, 615 N Wolfe St E3527, Baltimore, MD 21205, USA.
| | - David R Borchelt
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, 100 Newell Drive, Gainesville, FL 32610, USA.
| | - Alena V Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Ave, Ross 558, Baltimore, MD 21205, USA.
| |
Collapse
|
42
|
Kynurenine pathway and cognitive impairments in schizophrenia: Pharmacogenetics of galantamine and memantine. SCHIZOPHRENIA RESEARCH-COGNITION 2016; 4:4-9. [PMID: 27069875 PMCID: PMC4824953 DOI: 10.1016/j.scog.2016.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) project designed to facilitate the development of new drugs for the treatment of cognitive impairments in people with schizophrenia, identified three drug mechanisms of particular interest: dopaminergic, cholinergic, and glutamatergic. Galantamine is an acetylcholinesterase inhibitor and a positive allosteric modulator of the α7 nicotinic receptors. Memantine is an N-methyl-D-aspartate (NMDA) receptor antagonist. There is evidence to suggest that the combination of galantamine and memantine may be effective in the treatment of cognitive impairments in schizophrenia. There is a growing body of evidence that excess kynurenic acid (KYNA) is associated with cognitive impairments in schizophrenia. The α-7 nicotinic and the NMDA receptors may counteract the effects of kynurenic acid (KYNA) resulting in cognitive enhancement. Galantamine and memantine through its α-7 nicotinic and NMDA receptors respectively may counteract the effects of KYNA thereby improving cognitive impairments. The Single Nucleotide Polymorphisms in the Cholinergic Receptor, Nicotinic, Alpha 7 gene (CHRNA7), Glutamate (NMDA) Receptor, Metabotropic 1 (GRM1) gene, Dystrobrevin Binding Protein 1 (DTNBP1) and kynurenine 3-monooxygenase (KMO) gene may predict treatment response to galantamine and memantine combination for cognitive impairments in schizophrenia in the kynurenine pathway.
Collapse
|
43
|
Woodling NS, Colas D, Wang Q, Minhas P, Panchal M, Liang X, Mhatre SD, Brown H, Ko N, Zagol-Ikapitte I, van der Hart M, Khroyan TV, Chuluun B, Priyam PG, Milne GL, Rassoulpour A, Boutaud O, Manning-Boğ AB, Heller HC, Andreasson KI. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer's disease model mice. Brain 2016; 139:2063-81. [PMID: 27190010 DOI: 10.1093/brain/aww117] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 03/31/2016] [Indexed: 01/22/2023] Open
Abstract
Identifying preventive targets for Alzheimer's disease is a central challenge of modern medicine. Non-steroidal anti-inflammatory drugs, which inhibit the cyclooxygenase enzymes COX-1 and COX-2, reduce the risk of developing Alzheimer's disease in normal ageing populations. This preventive effect coincides with an extended preclinical phase that spans years to decades before onset of cognitive decline. In the brain, COX-2 is induced in neurons in response to excitatory synaptic activity and in glial cells in response to inflammation. To identify mechanisms underlying prevention of cognitive decline by anti-inflammatory drugs, we first identified an early object memory deficit in APPSwe-PS1ΔE9 mice that preceded previously identified spatial memory deficits in this model. We modelled prevention of this memory deficit with ibuprofen, and found that ibuprofen prevented memory impairment without producing any measurable changes in amyloid-β accumulation or glial inflammation. Instead, ibuprofen modulated hippocampal gene expression in pathways involved in neuronal plasticity and increased levels of norepinephrine and dopamine. The gene most highly downregulated by ibuprofen was neuronal tryptophan 2,3-dioxygenase (Tdo2), which encodes an enzyme that metabolizes tryptophan to kynurenine. TDO2 expression was increased by neuronal COX-2 activity, and overexpression of hippocampal TDO2 produced behavioural deficits. Moreover, pharmacological TDO2 inhibition prevented behavioural deficits in APPSwe-PS1ΔE9 mice. Taken together, these data demonstrate broad effects of cyclooxygenase inhibition on multiple neuronal pathways that counteract the neurotoxic effects of early accumulating amyloid-β oligomers.
Collapse
Affiliation(s)
- Nathaniel S Woodling
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 2 Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Damien Colas
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qian Wang
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paras Minhas
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maharshi Panchal
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xibin Liang
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Siddhita D Mhatre
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Holden Brown
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA 4 Brains On-line LLC, South San Francisco, CA, USA
| | - Novie Ko
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irene Zagol-Ikapitte
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marieke van der Hart
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Taline V Khroyan
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bayarsaikhan Chuluun
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Prachi G Priyam
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ginger L Milne
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Arash Rassoulpour
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olivier Boutaud
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amy B Manning-Boğ
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - H Craig Heller
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katrin I Andreasson
- 1 Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
44
|
Xiao J, Li Y, Prandovszky E, Kannan G, Viscidi RP, Pletnikov MV, Yolken RH. Behavioral Abnormalities in a Mouse Model of Chronic Toxoplasmosis Are Associated with MAG1 Antibody Levels and Cyst Burden. PLoS Negl Trop Dis 2016; 10:e0004674. [PMID: 27124472 PMCID: PMC4849725 DOI: 10.1371/journal.pntd.0004674] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
There is marked variation in the human response to Toxoplasma gondii infection. Epidemiological studies indicate associations between strain virulence and severity of toxoplasmosis. Animal studies on the pathogenic effect of chronic infection focused on relatively avirulent strains (e.g. type II) because they can easily establish latent infections in mice, defined by the presence of bradyzoite-containing cysts. To provide insight into virulent strain-related severity of human toxoplasmosis, we established a chronic model of the virulent type I strain using outbred mice. We found that type I-exposed mice displayed variable outcomes ranging from aborted to severe infections. According to antibody profiles, we found that most of mice generated antibodies against T. gondii organism but varied greatly in the production of antibodies against matrix antigen MAG1. There was a strong correlation between MAG1 antibody level and brain cyst burden in chronically infected mice (r = 0.82, p = 0.0021). We found that mice with high MAG1 antibody level displayed lower weight, behavioral changes, altered levels of gene expression and immune activation. The most striking change in behavior we discovered was a blunted response to amphetamine-trigged locomotor activity. The extent of most changes was directly correlated with levels of MAG1 antibody. These changes were not found in mice with less cyst burden or mice that were acutely but not chronically infected. Our finding highlights the critical role of cyst burden in a range of disease severity during chronic infection, the predictive value of MAG1 antibody level to brain cyst burden and to changes in behavior or other pathology in chronically infected mice. Our finding may have important implications for understanding the heterogeneous effects of T. gondii infections in human. Chronic infection with Toxoplasma gondii, a common neurotropic pathogen, affects approximately 1 billion people worldwide. There is marked variation in the human response to infection. Epidemiological studies indicate that virulent strains of T. gondii are associated with increased frequency and severity of human toxoplasmosis. However, animal studies on the pathogenic effect of chronic infection have focused on relatively avirulent strains because they can easily establish latent infections in mice. Employing a murine model of chronic infection with virulent strain, we found that mice displayed variable outcomes ranging from aborted to severe infections. Parasite burden, as measured serologically, was found to be the critical determinant of behavioral and pathogenic changes in chronically infected mice. This study demonstrated the predictive value of serologically determined parasite burden to the levels of chronic infection. Our finding highlights the critical role of parasite burden in a range of disease severity during chronic infection. Our finding may have important implications for understanding the heterogeneous effects of T. gondii infections in human.
Collapse
Affiliation(s)
- Jianchun Xiao
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| | - Ye Li
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Geetha Kannan
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raphael P. Viscidi
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Mikhail V. Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert H. Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Woodling NS, Andreasson KI. Untangling the Web: Toxic and Protective Effects of Neuroinflammation and PGE2 Signaling in Alzheimer's Disease. ACS Chem Neurosci 2016; 7:454-63. [PMID: 26979823 DOI: 10.1021/acschemneuro.6b00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The neuroinflammatory response has received increasing attention as a key factor in the pathogenesis of Alzheimer's disease (AD). Microglia, the innate immune cells and resident phagocytes of the brain, respond to accumulating Aβ peptides by generating a nonresolving inflammatory response. While this response can clear Aβ peptides from the nervous system in some settings, its failure to do so in AD accelerates synaptic injury, neuronal loss, and cognitive decline. The complex molecular components of this response are beginning to be unraveled, with identification of both damaging and protective roles for individual components of the neuroinflammatory response. Even within one molecular pathway, contrasting effects are often present. As one example, recent studies of the inflammatory cyclooxygenase-prostaglandin pathway have revealed both beneficial and detrimental effects dependent on the disease context, cell type, and downstream signaling pathway. Nonsteroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenases, are associated with reduced AD risk when taken by cognitively normal populations, but additional clinical and mouse model studies have added complexities and caveats to this finding. Downstream of cyclooxygenase activity, prostaglandin E2 signaling exerts both damaging pro-inflammatory and protective anti-inflammatory effects through actions of specific E-prostanoid G-protein coupled receptors on specific cell types. These complexities underscore the need for careful study of individual components of the neuroinflammatory response to better understand their contribution to AD pathogenesis and progression.
Collapse
Affiliation(s)
- Nathaniel S. Woodling
- Department of Neurology and
Neurological Sciences, Stanford University School of Medicine, 1201
Welch Road, Stanford, California 94305, United States
| | - Katrin I. Andreasson
- Department of Neurology and
Neurological Sciences, Stanford University School of Medicine, 1201
Welch Road, Stanford, California 94305, United States
| |
Collapse
|
46
|
Baldissera MD, Sagrillo MR, de Sá MF, Peroza LR, Posser CP, de Brum GF, Peres DS, De Mello ALB, Ferrão M, Souza CF, da Silva AS, Monteiro SG. Increased in cyclooxygenase—2 immunoreactivity and DNA damage in hippocampus of rats infected by Trypanosoma evansi. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s00580-016-2235-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Wang P, Guan PP, Yu X, Zhang LC, Su YN, Wang ZY. Prostaglandin I₂ Attenuates Prostaglandin E₂-Stimulated Expression of Interferon γ in a β-Amyloid Protein- and NF-κB-Dependent Mechanism. Sci Rep 2016; 6:20879. [PMID: 26869183 PMCID: PMC4751455 DOI: 10.1038/srep20879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) has been recently identified as being involved in the pathogenesis of Alzheimer's disease (AD). However, the role of an important COX-2 metabolic product, prostaglandin (PG) I2, in AD development remains unknown. Using mouse-derived astrocytes as well as APP/PS1 transgenic mice as model systems, we firstly elucidated the mechanisms of interferon γ (IFNγ) regulation by PGE2 and PGI2. Specifically, PGE2 accumulation in astrocytes activated the ERK1/2 and NF-κB signaling pathways by phosphorylation, which resulted in IFNγ expression. In contrast, the administration of PGI2 attenuated the effects of PGE2 on stimulating the production of IFNγ via inhibiting the translocation of NF-κB from the cytosol to the nucleus. Due to these observations, we further studied these prostaglandins and found that both PGE2 and PGI2 increased Aβ1-42 levels. In detail, PGE2 induced IFNγ expression in an Aβ1-42-dependent manner, whereas PGI2-induced Aβ1-42 production did not alleviate cells from IFNγ inhibition by PGI2 treatment. More importantly, our data also revealed that not only Aβ1-42 oligomer but also fibrillar have the ability to induce the expression of IFNγ via stimulation of NF-κB nuclear translocation in astrocytes of APP/PS1 mice. The production of IFNγ finally accelerated the deposition of Aβ1-42 in β-amyloid plaques.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Pei-Pei Guan
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Xin Yu
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Li-Chao Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Ya-Nan Su
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
48
|
Wolf A, Bauer B, Abner EL, Ashkenazy-Frolinger T, Hartz AMS. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice. PLoS One 2016; 11:e0147733. [PMID: 26808326 PMCID: PMC4726499 DOI: 10.1371/journal.pone.0147733] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/07/2016] [Indexed: 01/16/2023] Open
Abstract
Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer's disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background--scopolamine-treated 129S6/SvEvTac mice (3-5 month-old) and transgenic 129S6/Tg2576 mice (11-13 month-old)-to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added.
Collapse
Affiliation(s)
- Andrea Wolf
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, United States of America
| | - Björn Bauer
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, United States of America
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States of America
| | - Erin L. Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States of America
| | - Tal Ashkenazy-Frolinger
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States of America
| | - Anika M. S. Hartz
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, MN 55812, United States of America
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, United States of America
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, United States of America
| |
Collapse
|
49
|
Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology. Mol Neurobiol 2015; 53:4548-62. [PMID: 26298663 DOI: 10.1007/s12035-015-9384-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.
Collapse
|
50
|
Savonenko AV, Melnikova T, Wang Y, Ravert H, Gao Y, Koppel J, Lee D, Pletnikova O, Cho E, Sayyida N, Hiatt A, Troncoso J, Davies P, Dannals RF, Pomper MG, Horti AG. Cannabinoid CB2 Receptors in a Mouse Model of Aβ Amyloidosis: Immunohistochemical Analysis and Suitability as a PET Biomarker of Neuroinflammation. PLoS One 2015; 10:e0129618. [PMID: 26086915 PMCID: PMC4472959 DOI: 10.1371/journal.pone.0129618] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/11/2015] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer's disease (AD), one of the early responses to Aβ amyloidosis is recruitment of microglia to areas of new plaque. Microglial receptors such as cannabinoid receptor 2 (CB2) might be a suitable target for development of PET radiotracers that could serve as imaging biomarkers of Aβ-induced neuroinflammation. Mouse models of amyloidosis (J20APPswe/ind and APPswe/PS1ΔE9) were used to investigate the cellular distribution of CB2 receptors. Specificity of CB2 antibody (H60) was confirmed using J20APPswe/ind mice lacking CB2 receptors. APPswe/PS1ΔE9 mice were used in small animal PET with a CB2-targeting radiotracer, [11C]A836339. These studies revealed increased binding of [11C]A836339 in amyloid-bearing mice. Specificity of the PET signal was confirmed in a blockade study with a specific CB2 antagonist, AM630. Confocal microscopy revealed that CB2-receptor immunoreactivity was associated with astroglial (GFAP) and, predominantly, microglial (CD68) markers. CB2 receptors were observed, in particular, in microglial processes forming engulfment synapses with Aβ plaques. In contrast to glial cells, neuron (NeuN)-derived CB2 signal was equal between amyloid-bearing and control mice. The pattern of neuronal CB2 staining in amyloid-bearing mice was similar to that in human cases of AD. The data collected in this study indicate that Aβ amyloidosis without concomitant tau pathology is sufficient to activate CB2 receptors that are suitable as an imaging biomarker of neuroinflammation. The main source of enhanced CB2 PET binding in amyloid-bearing mice is increased CB2 immunoreactivity in activated microglia. The presence of CB2 immunoreactivity in neurons does not likely contribute to the enhanced CB2 PET signal in amyloid-bearing mice due to a lack of significant neuronal loss in this model. However, significant loss of neurons as seen at late stages of AD might decrease the CB2 PET signal due to loss of neuronally-derived CB2. Thus this study in mouse models of AD indicates that a CB2-specific radiotracer can be used as a biomarker of neuroinflammation in the early preclinical stages of AD, when no significant neuronal loss has yet developed.
Collapse
Affiliation(s)
- Alena V. Savonenko
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| | - Tatiana Melnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yuchuan Wang
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Hayden Ravert
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yongjun Gao
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Jeremy Koppel
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Deidre Lee
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Olga Pletnikova
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Eugenia Cho
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Nuzhat Sayyida
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew Hiatt
- MAPP Biopharmaceutical Inc, San-Diego, CA, United States of America
| | - Juan Troncoso
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Departments of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Peter Davies
- Litwin-Zucker Research Center, Feinstein Institute for Medical Research, North-Shore Long Island Jewish Health System, Manhasset, NY, United States of America
| | - Robert F. Dannals
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Martin G. Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Andrew G. Horti
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- * E-mail: (AGH); (AS)
| |
Collapse
|