1
|
Svirsky SE, Henchir J, Li Y, Carlson SW, Dixon CE. Temporal-Specific Sex and Injury-Dependent Changes on Neurogranin-Associated Synaptic Signaling After Controlled Cortical Impact in Rats. Mol Neurobiol 2024; 61:7256-7268. [PMID: 38376763 DOI: 10.1007/s12035-024-04043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Extensive effort has been made to study the role of synaptic deficits in cognitive impairment after traumatic brain injury (TBI). Neurogranin (Ng) is a calcium-sensitive calmodulin (CaM)-binding protein essential for Ca2+/CaM-dependent kinase II (CaMKII) autophosphorylation which subsequently modulates synaptic plasticity. Given the loss of Ng expression after injury, additional research is warranted to discern changes in hippocampal post-synaptic signaling after TBI. Under isoflurane anesthesia, adult, male and female Sprague-Dawley rats received a sham/control or controlled cortical impact (CCI) injury. Ipsilateral hippocampal synaptosomes were isolated at 24 h and 1, 2, and 4 weeks post-injury, and western blot was used to evaluate protein expression of Ng-associated signaling proteins. Non-parametric Mann-Whitney tests were used to determine significance of injury for each sex at each time point. There were significant changes in the hippocampal synaptic expression of Ng and associated synaptic proteins such as phosphorylated Ng, CaMKII, and CaM up to 4 weeks post-CCI, demonstrating TBI alters hippocampal post-synaptic signaling. This study furthers our understanding of mechanisms of cognitive dysfunction within the synapse sub-acutely after TBI.
Collapse
Affiliation(s)
- Sarah E Svirsky
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Jeremy Henchir
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Youming Li
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - Shaun W Carlson
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA
| | - C Edward Dixon
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh Medical Center, 4401 Penn Ave, Pittsburgh, PA, 15224, USA.
- V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Haskel MVL, da Silva Correa V, Queiroz R, Bonini JS, da Silva WC. On the participation of glycine receptors in the reconsolidation of spatial long-term memory in male rats. Behav Brain Res 2024; 471:115086. [PMID: 38825024 DOI: 10.1016/j.bbr.2024.115086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
The effects of intra-hippocampal manipulation of glycine receptors on the reconsolidation of recent and late long-term spatial memory were evaluated and assessed in the Morris water maze. The results obtained from the intra-hippocampal infusion of glycine and taurine demonstrated that taurine at a 100 nmol/side dose impaired the reconsolidation of recent and late long-term spatial memory. In comparison, at a dose of 10 nmol/side, it only affected the reconsolidation of late long-term spatial memory, reinforcing that there are differences between molecular mechanisms underlying recent and late long-term memory reconsolidation. On the other hand, glycine impaired the reconsolidation of early and late spatial memory when infused at a dose of 10 nmol/side, but not at a dose of 100 nmol/side, unless it is co-infused with an allosteric site antagonist of the NMDA receptor. Altogether these results show that glycine acting in situ in the hippocampal CA1 region exerts a pharmacological effect on U-curve, which can be explained by its concomitant action on its ionotropic receptor GlyR and on its NMDA receptor co-agonist site.
Collapse
MESH Headings
- Animals
- Receptors, Glycine/metabolism
- Receptors, Glycine/drug effects
- Male
- Glycine/pharmacology
- Rats
- Spatial Memory/drug effects
- Spatial Memory/physiology
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Rats, Wistar
- Taurine/pharmacology
- Taurine/administration & dosage
- Hippocampus/drug effects
- Hippocampus/metabolism
- Memory Consolidation/drug effects
- Memory Consolidation/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/drug effects
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiology
- Maze Learning/drug effects
- Maze Learning/physiology
Collapse
Affiliation(s)
- Maria Vaitsa Loch Haskel
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Vinicius da Silva Correa
- Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Ruliam Queiroz
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Juliana Sartori Bonini
- Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil
| | - Weber Claudio da Silva
- Program in Physiology, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, Brazil; Laboratory of Neuropsychopharmacology, Department of Pharmacy, State University of Centre-West of Paraná, Guarapuava 85040-167, Brazil.
| |
Collapse
|
3
|
Vörös D, Kiss O, Taigiszer M, László BR, Ollmann T, Péczely L, Zagorácz O, Kertes E, Kállai V, Berta B, Kovács A, Karádi Z, Lénárd L, László K. The role of intraamygdaloid oxytocin in spatial learning and avoidance learning. Peptides 2024; 175:171169. [PMID: 38340898 DOI: 10.1016/j.peptides.2024.171169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
The goal of the present study is to investigate the role of intraamygdaloid oxytocin in learning-related mechanisms. Oxytocin is a neuropeptide which is involved in social bonding, trust, emotional responses and various social behaviors. By conducting passive avoidance and Morris water maze tests on male Wistar rats, the role of intraamygdaloid oxytocin in memory performance and learning was investigated. Oxytocin doses of 10 ng and 100 ng were injected into the central nucleus of the amygdala. Our results showed that 10 ng oxytocin significantly reduced the time required to locate the platform during the Morris water maze test while significantly increasing the latency time in the passive avoidance test. However, the 100 ng oxytocin experiment failed to produce a significant effect in either of the tests. Wistar rats pretreated with 20 ng oxytocin receptor antagonist (L-2540) were administered 10 ng of oxytocin into the central nucleus of the amygdala and were also subjected to the aforementioned tests to highlight the role of oxytocin receptors in spatial- and avoidance learning. Results suggest that oxytocin supports memory processing during both the passive avoidance and the Morris water maze tests. Oxytocin antagonists can however block the effects of oxytocin in both tests. The results substantiate that oxytocin uses oxytocin receptors to enhance memory and learning performance.
Collapse
Affiliation(s)
- Dávid Vörös
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Orsolya Kiss
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Márton Taigiszer
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Bettina Réka László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Tamás Ollmann
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - László Péczely
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Olga Zagorácz
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Erika Kertes
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Veronika Kállai
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Beáta Berta
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Learning in Biological and Artificial Systems Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary
| | - Anita Kovács
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary
| | - Zoltán Karádi
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Cellular Bioimpedance Research Group, Szentágothai Research Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - László Lénárd
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary; Molecular Endocrinology and Neurophysiology Research Group, Szentágothai Center, University of Pécs, 7602 Pécs, Hungary
| | - Kristóf László
- Medical School, Institute of Physiology, University of Pécs, Szigeti Str. 12, P.O. Box 99, 7602 Pécs, Hungary; Neuropeptides, Cognition, Animal Models of Neuropsychiatric Disorders Research Group, Medical School, Institute of Physiology, University of Pécs, 7602 Pécs, Hungary; Neuroscience Center, University of Pécs, 7602 Pécs, Hungary.
| |
Collapse
|
4
|
Emerging roles of PHLPP phosphatases in the nervous system. Mol Cell Neurosci 2022; 123:103789. [PMID: 36343848 DOI: 10.1016/j.mcn.2022.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
It has been more than a decade since the discovery of a novel class of phosphatase, the Pleckstrin Homology (PH) domain Leucine-rich repeat Protein Phosphatases (PHLPP). Over time, they have been recognized as crucial regulators of various cellular processes, such as memory formation, cellular survival and proliferation, maintenance of circadian rhythm, and others, with any deregulation in their expression or cellular localization causing havoc in any cellular system. With the ever-growing number of downstream substrates across multiple tissue systems, a web is emerging wherein the central point is PHLPP. A slight nick in the normal signaling cascade of the two isoforms of PHLPP, namely PHLPP1 and PHLPP2, has been recently found to invoke a variety of neurological disorders including Alzheimer's disease, epileptic seizures, Parkinson's disease, and others, in the neuronal system. Improper regulation of the two isoforms has also been associated with various disease pathologies such as diabetes, cardiovascular disorders, cancer, musculoskeletal disorders, etc. In this review, we have summarized all the current knowledge about PHLPP1 (PHLPP1α and PHLPP1β) and PHLPP2 and their emerging roles in regulating various neuronal signaling pathways to pave the way for a better understanding of the complexities. This would in turn aid in providing context for the development of possible future therapeutic strategies.
Collapse
|
5
|
Lods M, Pacary E, Mazier W, Farrugia F, Mortessagne P, Masachs N, Charrier V, Massa F, Cota D, Ferreira G, Abrous DN, Tronel S. Adult-born neurons immature during learning are necessary for remote memory reconsolidation in rats. Nat Commun 2021; 12:1778. [PMID: 33741954 PMCID: PMC7979763 DOI: 10.1038/s41467-021-22069-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/25/2021] [Indexed: 01/09/2023] Open
Abstract
Memory reconsolidation, the process by which memories are again stabilized after being reactivated, has strengthened the idea that memory stabilization is a highly plastic process. To date, the molecular and cellular bases of reconsolidation have been extensively investigated particularly within the hippocampus. However, the role of adult neurogenesis in memory reconsolidation is unclear. Here, we combined functional imaging, retroviral and chemogenetic approaches in rats to tag and manipulate different populations of rat adult-born neurons. We find that both mature and immature adult-born neurons are activated by remote memory retrieval. However, only specific silencing of the adult-born neurons immature during learning impairs remote memory retrieval-induced reconsolidation. Hence, our findings show that adult-born neurons immature during learning are required for the maintenance and update of remote memory reconsolidation.
Collapse
Affiliation(s)
- Marie Lods
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Emilie Pacary
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Wilfrid Mazier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Fanny Farrugia
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Pierre Mortessagne
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Nuria Masachs
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Vanessa Charrier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Federico Massa
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Guillaume Ferreira
- INRA, Bordeaux INP, Nutrition and Integrative Neurobiology, UMR 1286, Bordeaux Cedex, France
| | - Djoher Nora Abrous
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| | - Sophie Tronel
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France.
| |
Collapse
|
6
|
da Silva TR, Sohn JMB, Andreatini R, Stern CA. The role of prelimbic and anterior cingulate cortices in fear memory reconsolidation and persistence depends on the memory age. Learn Mem 2020; 27:292-300. [PMID: 32669384 PMCID: PMC7365014 DOI: 10.1101/lm.051615.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/01/2020] [Indexed: 01/05/2023]
Abstract
Reconsolidation is a time-limited process under which reactivated memory content can be modified. Works focused on studying reconsolidation mainly restrict intervention to the moments immediately after reactivation and to recently acquired memories. However, the brain areas activated during memory retrieval depend on when it was acquired, and it is relatively unknown how different brain sites contribute to reconsolidation and persistence of reactivated recent and remote fear memories. Here, we sought to investigate the participation of prelimbic (PL) and anterior cingulate cortices (ACC) in recent (1 d old) and remote (21 d old) fear memory reconsolidation and persistence. Male Wistar rats were submitted to the contextual fear conditioning protocol. Tamoxifen (TMX), an estrogen receptor modulator known to inhibit protein kinase C activity was used to interfere with these processes. When infused into the PL cortex, but not into the ACC, TMX administration immediately or 6 h after recent fear memory reactivation impaired memory reconsolidation and persistence, respectively. TMX administered immediately after remote memory reactivation impaired memory reconsolidation when infused into the PL cortex and ACC. However, remote memory persistence was only affected when TMX was infused 6 h after memory reactivation into the ACC and no effect was observed when TMX was infused 6 h after memory reactivation into PL cortex. Together, the findings provide further evidence on the participation of PL cortex and ACC in reconsolidation of recent and remote fear memories and suggest that the persistence of a reactivated fear memory becomes independent on the PL cortex with memory age and dependent on the ACC.
Collapse
Affiliation(s)
| | | | - Roberto Andreatini
- Department of Pharmacology, Federal University of Parana, Curitiba 81531-980, Brazil
| | | |
Collapse
|
7
|
Role of prelimbic cortex PKC and PKMζ in fear memory reconsolidation and persistence following reactivation. Sci Rep 2020; 10:4076. [PMID: 32139711 PMCID: PMC7057960 DOI: 10.1038/s41598-020-60046-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
The persistence of newly acquired memories is supported by the activity of PKMζ, an atypical isoform of protein kinase C (PKC). Whether the activity of conventional and atypical PKC isoforms contributes to reactivated memories to persist is still unknown. Similarly, whether memory reactivation is a prerequisite for interventions to be able to change memory persistence is scarcely investigated. Based on the above, we examined the role of conventional and atypical PKC isoforms in the prelimbic cortex in reconsolidation and persistence of a reactivated contextual fear memory in male Wistar rats. It is shown that (i) inhibiting the PKC activity with chelerythrine or the PKMζ activity with ZIP impaired the persistence of a reactivated memory for at least 21 days; (ii) ZIP given immediately after memory reactivation affected neither the reconsolidation nor the persistence process. In contrast, when given 1 h later, it impaired the memory persistence; (iii) chelerythrine given immediately after memory reactivation impaired the reconsolidation; (iv) omitting memory reactivation prevented the chelerythrine- and ZIP-induced effects: (v) the ZIP action is independent of the time elapsed between its administration and the initial memory test. The results indicate that prelimbic cortex PKC and PKMζ are involved in memory reconsolidation and persistence.
Collapse
|
8
|
The degraded polysaccharide from Pyropia haitanensis represses amyloid beta peptide-induced neurotoxicity and memory in vivo. Int J Biol Macromol 2020; 146:725-729. [DOI: 10.1016/j.ijbiomac.2019.09.243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 11/23/2022]
|
9
|
Menezes J, Souto das Neves BH, Gonçalves R, Benetti F, Mello-Carpes PB. Maternal deprivation impairs memory and cognitive flexibility, effect that is avoided by environmental enrichment. Behav Brain Res 2020; 381:112468. [DOI: 10.1016/j.bbr.2020.112468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022]
|
10
|
Frame AK, Lone A, Harris RA, Cumming RC. Simple Protocol for Distinguishing Drug-induced Effects on Spatial Memory Acquisition, Consolidation and Retrieval in Mice Using the Morris Water Maze. Bio Protoc 2019; 9:e3376. [PMID: 33654872 DOI: 10.21769/bioprotoc.3376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 11/02/2022] Open
Abstract
The Morris water maze (MWM) is one of the most commonly used tests for assessing spatial learning and memory in mice. While the MWM is highly amenable to testing the effects of memory modifying drugs, most studies do not consider the timing or duration of drug exposure when conducting the MWM assay; factors that can strongly influence the effect of the drug on different stages of memory and interfere with data interpretation. Herein we describe a MWM protocol which offers the advantage of distinguishing the impact of a fast acting intraperitoneally (IP) injected drug on the different stages of spatial memory: acquisition, consolidation, and retrieval. Mice initially undergo habituation to both the MWM apparatus and IP injection procedure over the course of three days. For assessing the effect of a drug on memory acquisition, mice are injected with the drug prior to training sessions over four consecutive days, where mice learn to find an escape platform in a circular water tank using distal spatial cues. To determine the effect of the drug on memory consolidation, mice are injected with the drug immediately after each training session. For testing the effect of a drug on memory retrieval, mice receive mock IP injections on each training day and the drug is IP injected only once, prior to a probe trial, where mice attempt to locate the platform following its removal from the tank. This protocol provides a simple strategy for distinguishing the effect(s) of a CNS acting drug on the different stages of memory.
Collapse
Affiliation(s)
- Ariel K Frame
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Asad Lone
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Richard A Harris
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| | - Robert C Cumming
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada
| |
Collapse
|
11
|
Schurman LD, Carper MC, Moncayo LV, Ogasawara D, Richardson K, Yu L, Liu X, Poklis JL, Liu QS, Cravatt BF, Lichtman AH. Diacylglycerol Lipase-Alpha Regulates Hippocampal-Dependent Learning and Memory Processes in Mice. J Neurosci 2019; 39:5949-5965. [PMID: 31127001 PMCID: PMC6650989 DOI: 10.1523/jneurosci.1353-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 04/24/2019] [Accepted: 05/11/2019] [Indexed: 12/18/2022] Open
Abstract
Diacylglycerol lipase-α (DAGL-α), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-α plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-α gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-α-/- mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-α inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-α in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-α (DAGL-α) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-α-/- mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-α disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.
Collapse
Affiliation(s)
- Lesley D Schurman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Moriah C Carper
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lauren V Moncayo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Daisuke Ogasawara
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California 92037
| | - Karen Richardson
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Laikang Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, and
| | - Benjamin F Cravatt
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, California 92037
| | - Aron H Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298,
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
12
|
Exploring Pharmacological Mechanisms of Xuefu Zhuyu Decoction in the Treatment of Traumatic Brain Injury via a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8916938. [PMID: 30402137 PMCID: PMC6193325 DOI: 10.1155/2018/8916938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Objectives Xuefu Zhuyu decoction (XFZYD), a traditional Chinese medicine (TCM) formula, has been demonstrated to be effective for the treatment of traumatic brain injury (TBI). However, the underlying pharmacological mechanisms remain unclear. This study aims to explore the potential action mechanisms of XFZYD in the treatment of TBI and to elucidate the combination principle of this herbal formula. Methods A network pharmacology approach including ADME (absorption, distribution, metabolism, and excretion) evaluation, target prediction, known therapeutic targets collection, network construction, and molecule docking was used in this study. Results A total of 119 bioactive ingredients from XFZYD were predicted to act on 47 TBI associated specific proteins which intervened in several crucial pathological processes including apoptosis, inflammation, antioxidant, and axon genesis. Almost each of the bioactive ingredients targeted more than one protein. The molecular docking simulation showed that 91 pairs of chemical components and candidate targets had strong binding efficiencies. The “Jun”, “Chen”, and “Zuo-Shi” herbs from XFZYD triggered their specific targets regulation, respectively. Conclusion Our work successfully illuminates the “multicompounds, multitargets” therapeutic action of XFZYD in the treatment of TBI by network pharmacology with molecule docking method. The present work may provide valuable evidence for further clinical application of XFZYD as therapeutic strategy for TBI treatment.
Collapse
|
13
|
Lanke V, Moolamalla STR, Roy D, Vinod PK. Integrative Analysis of Hippocampus Gene Expression Profiles Identifies Network Alterations in Aging and Alzheimer's Disease. Front Aging Neurosci 2018; 10:153. [PMID: 29875655 PMCID: PMC5974201 DOI: 10.3389/fnagi.2018.00153] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/04/2018] [Indexed: 01/22/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder contributing to rapid decline in cognitive function and ultimately dementia. Most cases of AD occur in elderly and later years. There is a growing need for understanding the relationship between aging and AD to identify shared and unique hallmarks associated with the disease in a region and cell-type specific manner. Although genomic studies on AD have been performed extensively, the molecular mechanism of disease progression is still not clear. The major objective of our study is to obtain a higher-order network-level understanding of aging and AD, and their relationship using the hippocampal gene expression profiles of young (20-50 years), aging (70-99 years), and AD (70-99 years). The hippocampus is vulnerable to damage at early stages of AD and altered neurogenesis in the hippocampus is linked to the onset of AD. We combined the weighted gene co-expression network and weighted protein-protein interaction network-level approaches to study the transition from young to aging to AD. The network analysis revealed the organization of co-expression network into functional modules that are cell-type specific in aging and AD. We found that modules associated with astrocytes, endothelial cells and microglial cells are upregulated and significantly correlate with both aging and AD. The modules associated with neurons, mitochondria and endoplasmic reticulum are downregulated and significantly correlate with AD than aging. The oligodendrocytes module does not show significant correlation with neither aging nor disease. Further, we identified aging- and AD-specific interactions/subnetworks by integrating the gene expression with a human protein-protein interaction network. We found dysregulation of genes encoding protein kinases (FYN, SYK, SRC, PKC, MAPK1, ephrin receptors) and transcription factors (FOS, STAT3, CEBPB, MYC, NFKβ, and EGR1) in AD. Further, we found genes that encode proteins with neuroprotective function (14-3-3 proteins, PIN1, ATXN1, BDNF, VEGFA) to be part of the downregulated AD subnetwork. Our study highlights that simultaneously analyzing aging and AD will help to understand the pre-clinical and clinical phase of AD and aid in developing the treatment strategies.
Collapse
Affiliation(s)
- Vinay Lanke
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Hyderabad, India
| | - S T R Moolamalla
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Hyderabad, India
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab, National Brain Research Centre, Gurgaon, India
| | - P K Vinod
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, Hyderabad, India
| |
Collapse
|
14
|
Yu X, Zhou T, Yu H, Chang LY, Wei LL. Corilagin Reduces the Frequency of Seizures and Improves Cognitive Function in a Rat Model of Chronic Epilepsy. Med Sci Monit 2018; 24:2832-2840. [PMID: 29730669 PMCID: PMC5958630 DOI: 10.12659/msm.906509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Worldwide, epilepsy is an important chronic neurological condition. The aim of this study was to evaluate the effects of corilagin, an ellagitannin extracted from medicinal plants, on the frequency of seizures and cognitive function in a rat model of chronic epilepsy. MATERIAL AND METHODS Chronic epilepsy was induced in male Wistar rats by intraperitoneal (IP) injection of pentylenetetrazol (PTZ) for 36 days. Corilagin, 10 mg/kg and 20 mg/kg, was injected IP into treated rats, 24 days before the start of PTZ treatment, until the end of the protocol. The effects of corilagin were assessed by the pattern of epileptic seizures; cognitive function was assessed using the Morris water maze (MWM) navigation test. The mechanism of action of corilagin was investigated by measuring cytokine levels and oxidative stress parameters, including reactive oxygen species (ROS) production, and carbonic anhydrase inhibitory (CAI) activity. Histological analysis of fixed brain tissue sections included cresyl violet acetate staining (Nissl staining) for Nissl substance in the neuronal cytoplasm. RESULTS The corilagin-treated rats, compared with the control group, showed a significantly lower rate of epileptic events, improved cognitive function, reduced level of cytokines, reduced ROS production reduced CAI activity in the brain tissues (P<0.01). Histology of the rat brain tissues study showed that corilagin treatment maintained the neuronal cellular structure and number of surviving cells compared with the control group of rats. CONCLUSIONS The findings of this study showed that corilagin reduced the frequency of seizures and improved the cognitive function in a rat model of chronic epilepsy.
Collapse
Affiliation(s)
- Xue Yu
- Department of Neurology, XiangYang Central Hospital, Xiangyang, Hubei, China (mainland)
| | - Tao Zhou
- Department of Neurology, XiangYang Central Hospital, Xiangyang, Hubei, China (mainland)
| | - Heng Yu
- Department of Neurology, XiangYang Central Hospital, Xiangyang, Hubei, China (mainland)
| | - Li-Ying Chang
- Department of Neurology, XiangYang Central Hospital, Xiangyang, Hubei, China (mainland)
| | - Ling-Li Wei
- Department of Neurology, XiangYang Central Hospital, Xiangyang, Hubei, China (mainland)
| |
Collapse
|
15
|
Haug MF, Gesemann M, Berger M, Neuhauss SCF. Phylogeny and distribution of protein kinase C variants in the zebrafish. J Comp Neurol 2018; 526:1097-1109. [DOI: 10.1002/cne.24395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Marion F. Haug
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| | - Matthias Gesemann
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| | - Manuela Berger
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| | - Stephan C. F. Neuhauss
- University of Zurich, Institute of Molecular Life Sciences, Neuroscience Center Zurich and Center for Integrative Human Physiology; Zurich CH-8057 Switzerland
| |
Collapse
|
16
|
Hippocampal expression of a virus-derived protein impairs memory in mice. Proc Natl Acad Sci U S A 2018; 115:1611-1616. [PMID: 29378968 DOI: 10.1073/pnas.1711977115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The analysis of the biology of neurotropic viruses, notably of their interference with cellular signaling, provides a useful tool to get further insight into the role of specific pathways in the control of behavioral functions. Here, we exploited the natural property of a viral protein identified as a major effector of behavioral disorders during infection. We used the phosphoprotein (P) of Borna disease virus, which acts as a decoy substrate for protein kinase C (PKC) when expressed in neurons and disrupts synaptic plasticity. By a lentiviral-based strategy, we directed the singled-out expression of P in the dentate gyrus of the hippocampus and we examined its impact on mouse behavior. Mice expressing the P protein displayed increased anxiety and impaired long-term memory in contextual and spatial memory tasks. Interestingly, these effects were dependent on P protein phosphorylation by PKC, as expression of a mutant form of P devoid of its PKC phosphorylation sites had no effect on these behaviors. We also revealed features of behavioral impairment induced by P protein expression but that were independent of its phosphorylation by PKC. Altogether, our findings provide insight into the behavioral correlates of viral infection, as well as into the impact of virus-mediated alterations of the PKC pathway on behavioral functions.
Collapse
|
17
|
Rawashdeh O, Jilg A, Maronde E, Fahrenkrug J, Stehle JH. Period1gates the circadian modulation of memory-relevant signaling in mouse hippocampus by regulating the nuclear shuttling of the CREB kinase pP90RSK. J Neurochem 2016; 138:731-45. [DOI: 10.1111/jnc.13689] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Oliver Rawashdeh
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
- School of Biomedical Sciences; University of Queensland; St Lucia Qld Australia
| | - Antje Jilg
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Erik Maronde
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| | - Jan Fahrenkrug
- Department of Clinical Chemistry; Bispebjerg Hospital, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Jörg H. Stehle
- Institute of Cellular and Molecular Anatomy; Dr. Senckenbergische Anatomie; Goethe-University; Frankfurt Germany
| |
Collapse
|
18
|
Girardi BA, Ribeiro DA, Signor C, Muller M, Gais MA, Mello CF, Rubin MA. Spermidine-induced improvement of reconsolidation of memory involves calcium-dependent protein kinase in rats. ACTA ACUST UNITED AC 2015; 23:21-8. [PMID: 26670183 PMCID: PMC4749837 DOI: 10.1101/lm.039396.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022]
Abstract
In this study, we determined whether the calcium-dependent protein kinase (PKC) signaling pathway is involved in the improvement of fear memory reconsolidation induced by the intrahippocampal administration of spermidine in rats. Male Wistar rats were trained in a fear conditioning apparatus using a 0.4-mA footshock as an unconditioned stimulus. Twenty-four hours after training, animals were re-exposed to the apparatus in the absence of shock (reactivation session). Immediately after the reactivation session, spermidine (2–200 pmol/site), the PKC inhibitor 3-[1-(dimethylaminopropyl)indol-3-yl]-4-(indol-3-yl) maleimide hydrochloride (GF 109203X, 0.3–30 pg/site), the antagonist of the polyamine-binding site at the NMDA receptor, arcaine (0.2–200 pmol/site), or the PKC activator phorbol 12-myristate 13-acetate (PMA, 0.02–2 nmol/site) was injected. While the post-reactivation administration of spermidine (20 and 200 pmol/site) and PMA (2 nmol/site) improved memory reconsolidation, GF 109203X (1, 10, and 30 pg/site) and arcaine (200 pmol/site) impaired it. GF 109203X (0.3 pg/site) impaired memory reconsolidation in the presence of spermidine (200 pmol/site). PMA (0.2 nmol/site) prevented the arcaine (200 pmol/site)-induced impairment of memory reconsolidation. Anisomycin (2 µg/site) also impaired memory reconsolidation in the presence of spermidine (200 pmol/site). Drugs had no effect when they were administered in the absence of reactivation. These results suggest that the spermidine-induced enhancement of memory reconsolidation involves PKC activation.
Collapse
Affiliation(s)
- Bruna Amanda Girardi
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Daniela Aymone Ribeiro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Signor
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Michele Muller
- Undergraduate in Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Mayara Ana Gais
- Undergraduate in Pharmacy, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Carlos Fernando Mello
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| | - Maribel Antonello Rubin
- Graduate Program in Pharmacology, Center of Health Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil Graduate Program in Biological Sciences: Toxicological Biochemistry, Center of Exact and Natural Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil
| |
Collapse
|
19
|
Bogard AS, Tavalin SJ. Protein Kinase C (PKC)ζ Pseudosubstrate Inhibitor Peptide Promiscuously Binds PKC Family Isoforms and Disrupts Conventional PKC Targeting and Translocation. Mol Pharmacol 2015; 88:728-35. [PMID: 26199377 PMCID: PMC4576679 DOI: 10.1124/mol.115.099457] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/21/2015] [Indexed: 11/22/2022] Open
Abstract
PKMζ is generated via an alternative transcriptional start site in the atypical protein kinase C (PKC)ζ isoform, which removes N-terminal regulatory elements, including the inhibitory pseudosubstrate domain, consequently rendering the kinase constitutively active. Persistent PKMζ activity has been proposed as a molecular mechanism for the long-term maintenance of synaptic plasticity underlying some forms of memory. Many studies supporting a role for PKMζ in synaptic plasticity and memory have relied on the PKCζ pseudosubstrate-derived ζ-inhibitory peptide (ZIP). However, recent studies have demonstrated that ZIP-induced impairments to synaptic plasticity and memory occur even in the absence of PKCζ, suggesting that ZIP exerts its actions via additional cellular targets. In this study, we demonstrated that ZIP interacts with conventional and novel PKC, in addition to atypical PKC isoforms. Moreover, when brain abundance of each PKC isoform and affinity for ZIP are taken into account, the signaling capacity of ZIP-responsive pools of conventional and novel PKCs may match or exceed that for atypical PKCs. Pseudosubstrate-derived peptides, like ZIP, are thought to exert their cellular action primarily by inhibiting PKC catalytic activity; however, the ZIP-sensitive catalytic core of PKC is known to participate in the enzyme's subcellular targeting, suggesting an additional mode of ZIP action. Indeed, we have demonstrated that ZIP potently disrupts PKCα interaction with the PKC-targeting protein A-kinase anchoring protein (AKAP) 79 and interferes with ionomycin-induced translocation of conventional PKC to the plasma membrane. Thus, ZIP exhibits broad-spectrum action toward the PKC family of enzymes, and this action may contribute to its unique ability to impair memory.
Collapse
Affiliation(s)
- Amy S Bogard
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Steven J Tavalin
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
20
|
Rossato JI, Köhler CA, Radiske A, Bevilaqua LRM, Cammarota M. Inactivation of the dorsal hippocampus or the medial prefrontal cortex impairs retrieval but has differential effect on spatial memory reconsolidation. Neurobiol Learn Mem 2015; 125:146-51. [PMID: 26348793 DOI: 10.1016/j.nlm.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/10/2015] [Accepted: 09/01/2015] [Indexed: 10/23/2022]
Abstract
Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated.
Collapse
Affiliation(s)
- Janine I Rossato
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Andressa Radiske
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Lia R M Bevilaqua
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil
| | - Martín Cammarota
- Memory Research Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Av. Nascimento de Castro 2155, RN 59056-450, Natal, Brazil.
| |
Collapse
|
21
|
Reconsolidation and the regulation of plasticity: moving beyond memory. Trends Neurosci 2015; 38:336-44. [PMID: 25987442 DOI: 10.1016/j.tins.2015.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/31/2023]
Abstract
Memory reconsolidation is a protein synthesis-dependent process that preserves, in some form, memories that have been destabilized through recall. Reconsolidation is a nearly universal phenomenon, occurring in a diverse array of species and learning tasks. The function of reconsolidation remains unclear but it has been proposed as a mechanism for updating or strengthening memories. Observations of an analog of reconsolidation in vitro and in sensory systems indicate that reconsolidation is unlikely to be a learning-specific phenomenon and may serve a broader function. We propose that reconsolidation arises from the activity-dependent induction of two coincident but opposing processes: the depotentiation and repotentiation of strengthened synapses. These processes suggest that reconsolidation reflects a fundamental mechanism that regulates and preserves synaptic strength.
Collapse
|
22
|
Zhao H, Ji ZH, Liu C, Yu XY. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats. Neuroscience 2015; 290:485-91. [DOI: 10.1016/j.neuroscience.2015.01.060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
|
23
|
Yao G, Yue H, Yun Y, Sang N. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats. ENVIRONMENTAL RESEARCH 2015; 137:85-93. [PMID: 25498917 DOI: 10.1016/j.envres.2014.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Sulfur dioxide (SO2), as a ubiquitous air pollutant implicated in the genesis of pulmonary disease, is now being considered to be involved in neurotoxicity and increased risk for hospitalization of brain disorders. However, comparatively little is known about the impact of chronically SO2 inhalation on neuronal function. In the present study, by exposing male Wistar rats to SO2 at 3.50 and 7.00 mg/m(3) (approximately 1225 and 2450 ppb, 4.08-8.16 (24h average concentration) times higher than the EPA standard for environmental air concentrations) or filtered air for 90 days, we investigated the impact of chronic SO2 inhalation on performance in Morris water maze, and probed the accompanying neurobiological effects, including activity-regulated cytoskeletal associated gene (Arc) and glutamate receptor gene expression, memory-related kinase level and inflammatory cytokine release in the hippocampus. Here, we found that SO2 exposure reduced the number of target zone crossings and time spent in the target quadrant during the test session in the spatial memory retention of the Morris water maze. Following the neuro-functional abnormality, we detected that SO2 inhalation reduced the expression of Arc and glutamate receptor subunits (GluR1, GluR2, NR1, NR2A, and NR2B) with a concentration-dependent property in comparison to controls. Additionally, the expression of memory kinases was attenuated statistically in the animals receiving the higher concentration, including protein kinase A (PKA), protein kinase C (PKC) and calcium/calmodulin-dependent protein kinaseIIα (CaMKIIα). And the inflammatory cytokine release was increased in rats exposed to SO2. Taken together, our results suggest that long-term exposure to SO2 air pollution at concentrations above the environmental standard in rats impaired spatial learning and memory, and indicate a close link between the neurobiological changes highlighted in the brain and the behavioral disturbances.
Collapse
Affiliation(s)
- Gaoyi Yao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yang Yun
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
24
|
Activation of neurotensin receptor 1 facilitates neuronal excitability and spatial learning and memory in the entorhinal cortex: beneficial actions in an Alzheimer's disease model. J Neurosci 2014; 34:7027-42. [PMID: 24828655 DOI: 10.1523/jneurosci.0408-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.
Collapse
|
25
|
The "memory kinases": roles of PKC isoforms in signal processing and memory formation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 122:31-59. [PMID: 24484697 DOI: 10.1016/b978-0-12-420170-5.00002-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The protein kinase C (PKC) isoforms, which play an essential role in transmembrane signal conduction, can be viewed as a family of "memory kinases." Evidence is emerging that they are critically involved in memory acquisition and maintenance, in addition to their involvement in other functions of cells. Deficits in PKC signal cascades in neurons are one of the earliest abnormalities in the brains of patients suffering from Alzheimer's disease. Their dysfunction is also involved in several other types of memory impairments, including those related to emotion, mental retardation, brain injury, and vascular dementia/ischemic stroke. Inhibition of PKC activity leads to a reduced capacity of many types of learning and memory, but may have therapeutic values in treating substance abuse or aversive memories. PKC activators, on the other hand, have been shown to possess memory-enhancing and antidementia actions. PKC pharmacology may, therefore, represent an attractive area for developing effective cognitive drugs for the treatment of many types of memory disorders and dementias.
Collapse
|
26
|
Hippocampal protein kinase C family members in spatial memory retrieval in the mouse. Behav Brain Res 2013; 258:202-7. [PMID: 24075976 DOI: 10.1016/j.bbr.2013.09.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/11/2023]
Abstract
Although a few individual members of the protein kinase C (PKC) family were studied in spatial memory no systematic approach was carried out to concomitantly determine all described PKC family members in spatial memory of the mouse. It was therefore the aim of the current study to link hippocampal PKCs to memory retrieval in the Morris water maze (MWM). CD1 mice were trained (n=9) or untrained (n=9) in the MWM, hippocampi were taken 6h following the test for memory retrieval and PKCs were determined in mouse hippocampi by immunoblotting. The trained animals learned the spatial memory task and kept memory at the probe trial. PKCs alpha and epsilon were comparable between groups while PKCs beta, delta, gamma (two forms, i.e. two bands on Western blotting), zeta (2 forms) were higher in trained mice and theta (2 forms) were lower in trained mice. PKC gamma (1 form) was significantly correlating with the time spent in the target quadrant (r=0.7933; P=0.0188). Changes of hippocampal levels of PKCs beta, delta, gamma, zeta and theta were paralleling memory retrieval of the MWM task but correlations revealed that spatial memory retrieval was only linked to one form of PKC gamma. Results are also in agreement with a recent publication showing that PKM zeta is not required for memory formation. These findings may be relevant for the interpretation of previous work and the design of future work on the protein kinase C family in spatial memory of the mouse.
Collapse
|
27
|
|
28
|
Li L, Sase A, Patil S, Sunyer B, Höger H, Smalla KH, Stork O, Lubec G. Distinct set of kinases induced after retrieval of spatial memory discriminate memory modulation processes in the mouse hippocampus. Hippocampus 2013; 23:672-83. [PMID: 23536525 DOI: 10.1002/hipo.22127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2013] [Indexed: 12/15/2022]
Abstract
Protein phosphorylation and dephosphorylation events play a key role in memory formation and various protein kinases and phosphatases have been firmly associated with memory performance. Here, we determined expression changes of protein kinases and phosphatases following retrieval of spatial memory in CD1 mice in a Morris Water Maze task, using antibody microarrays and confirmatory Western blot. Comparing changes following single and consecutive retrieval, we identified stably and differentially expressed kinases, some of which have never been implicated before in memory functions. On the basis of these findings we define a small signaling network associated with spatial memory retrieval. Moreover, we describe differential regulation and correlation of expression levels with behavioral performance of polo-like kinase 1. Together with its recently observed genetic association to autism-spectrum disorders our data suggest a role of this kinase in balancing preservation and flexibility of learned behavior.
Collapse
Affiliation(s)
- Lin Li
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Memory reconsolidation and its maintenance depend on L-voltage-dependent calcium channels and CaMKII functions regulating protein turnover in the hippocampus. Proc Natl Acad Sci U S A 2013; 110:6566-70. [PMID: 23576750 DOI: 10.1073/pnas.1302356110] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immediate postretrieval bilateral blockade of long-acting voltage-dependent calcium channels (L-VDCCs), but not of glutamatergic NMDA receptors, in the dorsal CA1 region of the hippocampus hinders retention of long-term spatial memory in the Morris water maze. Immediate postretrieval bilateral inhibition of calcium/calmodulin-dependent protein kinase (CaMK) II in dorsal CA1 does not affect retention of this task 24 h later but does hinder it 5 d later. These two distinct amnesic effects are abolished if protein degradation by proteasomes is inhibited concomitantly. These results indicate that spatial memory reconsolidation depends on the functionality of L-VDCC in dorsal CA1, that maintenance of subsequent reconsolidated memory trace depends on CaMKII, and these results also suggest that the role played by both L-VDCC and CaMKII is to promote the retrieval-dependent, synaptically localized enhancement of protein synthesis necessary to counteract a retrieval-dependent, synaptic-localized enhancement of protein degradation, which has been described as underlying the characteristic labilization of the memory trace triggered by retrieval. Thus, conceivably, L-VDCC and CaMKII would enhance activity-dependent localized protein renewal, which may account for the improvement of the long-term efficiency of the synapses responsible for the maintenance of reactivated long-term spatial memory.
Collapse
|
30
|
Zeng GF, Zhang ZY, Lu L, Xiao DQ, Zong SH, He JM. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res 2013; 16:124-33. [PMID: 23374025 DOI: 10.1089/rej.2012.1389] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to assess the ability of a traditional Chinese medicinal ginger root extract (GRE) to prevent behavioral dysfunction in the Alzheimer disease (AD) rat model. Rat AD models were established by an operation (OP) in which rats were treated with a one-time intra-cerebroventricuIar injection of amyloid β-protein (Aβ) and continuous gavage of aluminum chloride every day for 4 weeks. GRE was administered intra-gastrically to rats. After 35 days, learning and memory were assessed in all of the rats. Brain sections were processed for immunohistochemistry and Hematoxylin & Eosin (H&E) and Nissl staining. The latency to show significant memory deficits was shorter in the group that received OP with a high dose of GRE (HG)(OP+HG) than in the groups that received OP with a low or moderate dose of GRE (LG, MG)(OP+LG, OP+MG) (p<0.05). The expression of superoxide dismutase (SOD) and catalase (CAT) in the OP+MG and OP+LG groups was up-regulated compared to the OP+HG groups (p<0.05). The rats in the OP+HG groups had lower levels of nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), and malondialdehyde (MDA) expression than the rats in the OP+MG and OP+LG groups (p<0.05). This experiment demonstrates that the administration of GRE reverses behavioral dysfunction and prevents AD-like symptoms in our rat model.
Collapse
Affiliation(s)
- Gao-Feng Zeng
- College of Public Hygiene of Guangxi Medical University, Guangxi, P.R. China
| | | | | | | | | | | |
Collapse
|
31
|
Do Monte FH, Souza RR, Wong TT, Carobrez ADP. Systemic or intra-prelimbic cortex infusion of prazosin impairs fear memory reconsolidation. Behav Brain Res 2013; 244:137-41. [PMID: 23380678 DOI: 10.1016/j.bbr.2013.01.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/19/2013] [Accepted: 01/25/2013] [Indexed: 11/19/2022]
Abstract
The alpha-1 adrenergic antagonist prazosin has been used to alleviate the symptoms of PTSD, but the mechanism remains unclear. One possibility is that prazosin may disrupt fear memory reconsolidation, leading to attenuation of fear responses. To test this hypothesis, we administered a single systemic injection of prazosin during the reconsolidation of olfactory fear conditioning in rats. We found that a post-retrieval injection of prazosin disrupted subsequent retrieval of fear. Similarly, intra-prelimbic cortex infusion of prazosin during the reconsolidation period also disrupted subsequent retrieval of fear. These findings suggest that fear memory undergoes reconsolidation through activation of alpha-1 adrenergic receptors in the prelimbic cortex.
Collapse
Affiliation(s)
- Fabricio H Do Monte
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | | | | | | |
Collapse
|
32
|
Disruption of component processes of spatial working memory by electroconvulsive shock but not magnetic seizure therapy. Int J Neuropsychopharmacol 2013; 16:177-87. [PMID: 22217479 PMCID: PMC3647222 DOI: 10.1017/s1461145711001866] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Self-ordered spatial working memory measures provide important information regarding underlying cognitive strategies, such as stereotypy. This strategy is based on repetitive sequential selection of a spatial pattern once a correct sequence has been identified. We previously reported that electroconvulsive shock (ECS) but not magnetic seizure therapy (MST) impaired performance on a spatial working memory task in a preclinical model. Here we tested the hypothesis that ECS disrupted stereotyped patterns in the selection of spatial stimuli. In a within-subject study design, we assessed the effects of ECS, MST, and sham on stereotypy and reaction time in a preclinical model. Stereotypy was assessed by the correlation of actual and predicted response patterns of spatial stimuli. Predicted patterns were based on performance during baseline sessions. ECS resulted in lower correlations between predicted and actual responses to spatial stimuli in two of the three subjects, and it also disrupted stereotypy. For one subject, there was change in the predictability of the spatial locus of responses between experimental conditions. For all three subjects, reaction time was significantly longer in ECS, relative to MST and sham. This is the first study to examine the effect of ECS, and to contrast the effects of ECS and MST, on spatial working memory component processes. Our preliminary findings show that ECS, but not MST decreased stereotypy and increased reaction time. This line of investigation may have significant implications in our understanding cognitive component processes of memory function and impairment.
Collapse
|
33
|
Besnard A, Caboche J, Laroche S. Reconsolidation of memory: A decade of debate. Prog Neurobiol 2012; 99:61-80. [PMID: 22877586 DOI: 10.1016/j.pneurobio.2012.07.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/13/2012] [Accepted: 07/08/2012] [Indexed: 10/28/2022]
|
34
|
Zeng L, Webster SV, Newton PM. The biology of protein kinase C. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:639-61. [PMID: 22453963 DOI: 10.1007/978-94-007-2888-2_28] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review gives a basic introduction to the biology of protein kinase C, one of the first calcium-dependent kinases to be discovered. We review the structure and function of protein kinase C, along with some of the substrates of individual isoforms. We then review strategies for inhibiting PKC in experimental systems and finally discuss the therapeutic potential of targeting PKC. Each aspect is covered in summary, with links to detailed resources where appropriate.
Collapse
Affiliation(s)
- Lily Zeng
- School of Medicine, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
35
|
Kim H, Han SH, Quan HY, Jung YJ, An J, Kang P, Park JB, Yoon BJ, Seol GH, Min SS. Bryostatin-1 promotes long-term potentiation via activation of PKCα and PKCε in the hippocampus. Neuroscience 2012; 226:348-55. [PMID: 22986161 DOI: 10.1016/j.neuroscience.2012.08.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/16/2022]
Abstract
Activation of protein kinase C (PKC) by bryostatin-1 affects various functions of the central nervous system. We explored whether bryostatin-1 influenced synaptic plasticity via a process involving PKC. Our purpose was to examine whether bryostatin-1 affected the induction of hippocampal long-term potentiation (LTP) in Schaffer-collateral fibers (CA1 fibers) of the hippocampus, and/or influenced the intracellular Ca(2+) level of hippocampal neurons. We also determined the PKC isoforms involved in these processes. We found that bryostatin-1 strongly facilitated LTP induction, in a dose-dependent manner, upon single-theta burst stimulation (TBS). Further, intracellular Ca(2+) levels also increased with increasing concentration of bryostatin-1. The facilitative effects of bryostatin-1 in terms of LTP induction and enhancement of intracellular Ca(2+) levels were blocked by specific inhibitors of PKCα and PKCε, but not of PKCδ. Our results suggest that bryostatin-1 is involved in neuronal functioning and facilitates induction of LTP via activation of PKCα and/or PKCε.
Collapse
Affiliation(s)
- H Kim
- Department of Physiology and Biophysics, School of Medicine, Eulji University, Daejeon 301-746, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ji L, Chauhan A, Chauhan V. Reduced activity of protein kinase C in the frontal cortex of subjects with regressive autism: relationship with developmental abnormalities. Int J Biol Sci 2012; 8:1075-84. [PMID: 22949890 PMCID: PMC3432855 DOI: 10.7150/ijbs.4742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/19/2012] [Indexed: 11/19/2022] Open
Abstract
Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically developing children regress into clinical symptoms of autism, a condition known as regressive autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and are involved in neuronal functions, gene expression, memory, and cell differentiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with regressive autism. In the present study, we analyzed the activity of protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with regressive autism, autistic subjects without clinical history of regression, and age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to control subjects. These results suggest brain region-specific alteration of PKC activity in the frontal cortex of subjects with regressive autism. Further studies showed a negative correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= -0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral abnormalities in autism. These findings suggest that regression in autism may be attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA and PKC in the frontal cortex.
Collapse
Affiliation(s)
- Lina Ji
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | |
Collapse
|
37
|
Guerra GP, Mello CF, Bochi GV, Pazini AM, Rosa MM, Ferreira J, Rubin MA. Spermidine-induced improvement of memory involves a cross-talk between protein kinases C and A. J Neurochem 2012; 122:363-73. [DOI: 10.1111/j.1471-4159.2012.07778.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:273-302. [PMID: 22840750 DOI: 10.1016/b978-0-12-394816-8.00008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Memories are much more easily impaired than improved. Dementias, a lasting impairment of memory function, occur in a variety of cognitive disorders and become more clinically dominant as the population ages. Protein kinase C is one of the "cognitive kinases," and plays an essential role in both memory acquisition and maintenance. Deficits in protein kinase C (PKC) signal cascades in neurons represent one of the earliest changes in the brains of patients with Alzheimer's disease (AD) and other types of memory impairment, including those related to cerebral ischemia and ischemic stroke. Inhibition or impairment of PKC activity results in compromised learning and memory, whereas an appropriate activation of certain PKC isozymes leads to an enhancement of learning and memory and/or antidementic effects. In preclinical studies, PKC activators have been shown to increase the expression and activity of PKC isozymes, thereby restoring PKC signaling and downstream activity, including stimulation of neurotrophic activity, synaptic/structural remodeling, and synaptogenesis in the hippocampus and related cortical areas. PKC activators also reduce the accumulation of neurotoxic amyloid and tau protein hyperphosphorylation and support anti-apoptotic processes in the brain. These observations strongly suggest that PKC pharmacology may represent an attractive area for the development of effective cognition-enhancing therapeutics for the treatment of dementias.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|
39
|
Chen L, Liu J, Xu C, Keblesh J, Zang W, Xiong H. HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents. PLoS One 2011; 6:e25994. [PMID: 22016798 PMCID: PMC3189248 DOI: 10.1371/journal.pone.0025994] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/15/2011] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv) channels play an important role in memory processes and acquired neuronal channelopathies in HAD. To examine whether Kv channels are involved in HIV-1-associated neuronal injury, we studied the effects of HIV-1 glycoprotein 120 (gp120) on outward K+ currents in rat cortical neuronal cultures using whole-cell patch techniques. Exposure of cortical neurons to gp120 produced a dose-dependent enhancement of A-type transient outward K+ currents (IA). The gp120-induced increase of IA was attenuated by T140, a specific antagonist for chemokine receptor CXCR4, suggesting gp120 enhancement of neuronal IA via CXCR4. Pretreatment of neuronal cultures with a protein kinase C (PKC) inhibitor, GF109203X, inhibited the gp120-induced increase of IA. Biological significance of gp120 enhancement of IA was demonstrated by experimental results showing that gp120-induced neuronal apoptosis, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and caspase-3 staining, was attenuated by either an IA blocker 4-aminopyridine or a specific CXCR4 antagonist T140. Taken together, these results suggest that gp120 may induce caspase-3 dependent neuronal apoptosis by enhancing IA via CXCR4-PKC signaling.
Collapse
Affiliation(s)
- Lina Chen
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Jianuo Liu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Changshui Xu
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - James Keblesh
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Weijin Zang
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Huangui Xiong
- Neurophysiology Laboratory, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
40
|
Hong I, Kim J, Song B, Park S, Lee J, Kim J, An B, Lee S, Choi S. Modulation of fear memory by retrieval and extinction: a clue for memory deconsolidation. Rev Neurosci 2011; 22:205-29. [PMID: 21476941 DOI: 10.1515/rns.2011.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Memories are fragile and easily forgotten at first, but after a consolidation period of hours to weeks, are inscribed in our brains as stable traces, no longer vulnerable to conventional amnesic treatments. Retrieval of a memory renders it labile, akin to the early stages of consolidation. This phenomenon has been explored as memory reactivation, in the sense that the memory is temporarily 'deconsolidated', allowing a short time window for amnesic intervention. This window closes again after reconsolidation, which restores the stability of the memory. In contrast to this 'transient deconsolidation' and the short-spanned amnesic effects of consolidation blockers, some specific treatments can disrupt even consolidated memory, leading to apparent amnesia. We propose the term 'amnesic deconsolidation' to describe such processes that lead to disruption of consolidated memory and/or consolidated memory traces. We review studies of these 'amnesic deconsolidation' treatments that enhance memory extinction, alleviate relapse, and reverse learning-induced plasticity. The transient deconsolidation that memory retrieval induces and the amnesic deconsolidation that these regimes induce both seem to dislodge a component that stabilizes consolidated memory. Characterizing this component, at both molecular and network levels, will provide a key to developing clinical treatments for memory-related disorders and to defining the consolidated memory trace.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Colomb J, Brembs B. The biology of psychology: 'Simple' conditioning? Commun Integr Biol 2011; 3:142-5. [PMID: 20585506 DOI: 10.4161/cib.3.2.10334] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/19/2022] Open
Abstract
Operant (instrumental) and classical (Pavlovian) conditioning are taught as the simplest forms of associative learning. Recent research in several invertebrate model systems has now accumulated evidence that the dichotomy is not as simple as it seemed. During operant learning in the fruit fly Drosophila, at least two genetically distinct learning systems interact dynamically. Inspired by analogous results in three other research fields, we propose to term one of these systems world-learning (assigning value to sensory stimuli) and the other self-learning (assigning value to a specific action or movement). During the goal-directed phase of operant learning, world-learning inhibits self-learning (in Drosophila via the mushroom-body neuropil), to allow for flexible generalization. Extended training overcomes this inhibition in a phase transition akin to habit formation in vertebrates, allowing self-learning to transform spontaneous actions to habitual responses. In part, these insights were achieved by reducing operant experiments beyond the traditional set-ups (i.e., 'pure' operant learning) and using modern, molecular and/or genetic model systems.
Collapse
Affiliation(s)
- Julien Colomb
- Freie Universität Berlin; Institut für Biologie-Neurobiologie; Berlin, Germany
| | | |
Collapse
|
42
|
Venturin GT, Greggio S, Marinowic DR, Zanirati G, Cammarota M, Machado DC, DaCosta JC. Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats. Life Sci 2011; 89:229-34. [PMID: 21718708 DOI: 10.1016/j.lfs.2011.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/10/2011] [Accepted: 06/03/2011] [Indexed: 11/27/2022]
Abstract
AIMS Epilepsy affects 0.5-1% of the world's population, and approximately a third of these patients are refractory to current medication. Given their ability to proliferate, differentiate and regenerate tissues, stem cells could restore neural circuits lost during the course of the disease and reestablish the physiological excitability of neurons. This study verified the therapeutic potential of bone marrow mononuclear cells (BMMCs) on seizure control and cognitive impairment caused by experimentally induced epilepsy. MAIN METHODS Status epilepticus (SE) was induced by lithium-pilocarpine injection and controlled with diazepam 90 min after SE onset. Lithium-pilocarpine-treated rats were intravenously transplanted 22 days after SE with BMMCs obtained from enhanced green fluorescent protein (eGFP) transgenic C57BL/6 mice. Control epileptic animals were given an equivalent volume of saline or fibroblast injections. Animals were video-monitored for the presence of spontaneous recurrent seizures prior to and following the cell administration procedure. In addition, rats underwent cognitive evaluation using a Morris water maze. KEY FINDINGS Our data show that BMMCs reduced the frequency of seizures and improved the learning and long-term spatial memory impairments of epileptic rats. EGFP-positive cells were detected in the brains of transplanted animals by PCR analysis. SIGNIFICANCE The positive behavioral effects observed in our study indicate that BMMCs could represent a promising therapeutic option in the management of chronic temporal lobe epilepsy.
Collapse
Affiliation(s)
- Gianina Teribele Venturin
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
van Welie I, du Lac S. Bidirectional control of BK channel open probability by CAMKII and PKC in medial vestibular nucleus neurons. J Neurophysiol 2011; 105:1651-9. [PMID: 21307321 PMCID: PMC3075294 DOI: 10.1152/jn.00058.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 02/04/2011] [Indexed: 11/22/2022] Open
Abstract
Large conductance K(+) (BK) channels are a key determinant of neuronal excitability. Medial vestibular nucleus (MVN) neurons regulate eye movements to ensure image stabilization during head movement, and changes in their intrinsic excitability may play a critical role in plasticity of the vestibulo-ocular reflex. Plasticity of intrinsic excitability in MVN neurons is mediated by kinases, and BK channels influence excitability, but whether endogenous BK channels are directly modulated by kinases is unknown. Double somatic patch-clamp recordings from MVN neurons revealed large conductance potassium channel openings during spontaneous action potential firing. These channels displayed Ca(2+) and voltage dependence in excised patches, identifying them as BK channels. Recording isolated single channel currents at physiological temperature revealed a novel kinase-mediated bidirectional control in the range of voltages over which BK channels are activated. Application of activated Ca(2+)/calmodulin-dependent kinase II (CAMKII) increased BK channel open probability by shifting the voltage activation range towards more hyperpolarized potentials. An opposite shift in BK channel open probability was revealed by inhibition of phosphatases and was occluded by blockade of protein kinase C (PKC), suggesting that active PKC associated with BK channel complexes in patches was responsible for this effect. Accordingly, direct activation of endogenous PKC by PMA induced a decrease in BK open probability. BK channel activity affects excitability in MVN neurons and bidirectional control of BK channels by CAMKII, and PKC suggests that cellular signaling cascades engaged during plasticity may dynamically control excitability by regulating BK channel open probability.
Collapse
Affiliation(s)
- Ingrid van Welie
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, San Diego, CA 92037, USA
| | | |
Collapse
|
44
|
Fernandes FS, de Souza AS, do Carmo MDGT, Boaventura GT. Maternal intake of flaxseed-based diet (Linum usitatissimum) on hippocampus fatty acid profile: implications for growth, locomotor activity and spatial memory. Nutrition 2011; 27:1040-7. [PMID: 21439792 DOI: 10.1016/j.nut.2010.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/06/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate flaxseed as a partial source of protein and an exclusive source of lipids and fibers in the development of the central nervous system by analyzing hippocampal fatty acid composition and cognitive and locomotor functions. METHODS Experimental diets were given to dams during preconception, pregnancy, and lactation and to their pups after weaning. Female Wistar rats were separated into three groups according to experimental diet: a control group (CG) and a flaxseed group (FG), fed ad libitum diets, and a modified control group (MCG), pair-fed with the FG. After weaning, the pups received their mothers' diets. After 30 d, eight males from each group were tested in a Morris water maze to assess learning, memory, and motor function. RESULTS The offspring of FG dams showed a lower body mass than CG dams, probably due to non-nutritional factors and an imbalance between ω-3 and ω-6 fatty acids of the seed, and displayed a higher concentration of α-linolenic acid, possibly suggesting inhibition of arachidonic acid synthesis. The content of docosahexaenoic acid in the hippocampus was higher in the FG followed by the MCG compared with the CG. Hippocampal docosahexaenoic acid content correlated with better spatial memory performance in the FG, whereas arachidonic acid content correlated with longer time in solving the task. CONCLUSION Flaxseed during perinatal and postweaning periods improves spatial memory to the detriment of growth. These findings indicate that there must be caution in encouraging the maternal intake of flaxseed during pregnancy and lactation.
Collapse
|
45
|
Zhang HM, Lin N, Dong Y, Su Q, Luo M. Effect of perinatal thyroid hormone deficiency on expression of rat hippocampal conventional protein kinase C isozymes. Mol Cell Biochem 2011; 353:65-71. [DOI: 10.1007/s11010-011-0775-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/24/2011] [Indexed: 11/30/2022]
|
46
|
Cai LL. Effects of early intervention with Huannao Yicong formula effective components on behavior and cholinergic system of β-amyloid precursor protein transgenic mice. ACTA ACUST UNITED AC 2011; 9:292-8. [DOI: 10.3736/jcim20110310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Kim R, Moki R, Kida S. Molecular mechanisms for the destabilization and restabilization of reactivated spatial memory in the Morris water maze. Mol Brain 2011; 4:9. [PMID: 21314917 PMCID: PMC3045328 DOI: 10.1186/1756-6606-4-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/11/2011] [Indexed: 11/27/2022] Open
Abstract
Background Memory retrieval is not a passive process. Recent studies have shown that reactivated memory is destabilized and then restabilized through gene expression-dependent reconsolidation. Molecular studies on the regulation of memory stability after retrieval have focused almost exclusively on fear memory, especially on the restabilization process of the reactivated fear memory. We previously showed that, similarly with fear memories, reactivated spatial memory undergoes reconsolidation in the Morris water maze. However, the underlying molecular mechanisms by which reactivated spatial memory is destabilized and restabilized remain poorly understood. In this study, we investigated the molecular mechanism that regulates the stability of the reactivated spatial memory. Results We first showed that pharmacological inactivation of the N-methyl-D-aspartate glutamate receptor (NMDAR) in the hippocampus or genetic inhibition of cAMP-responsible element binding protein (CREB)-mediated transcription disrupted reactivated spatial memory. Finally, we showed that pharmacological inhibition of cannabinoid receptor 1 (CB1) and L-type voltage gated calcium channels (LVGCCs) in the hippocampus blocked the disruption of the reactivated spatial memory by the inhibition of protein synthesis. Conclusions Our findings indicated that the reactivated spatial memory is destabilized through the activation of CB1 and LVGCCs and then restabilized through the activation of NMDAR- and CREB-mediated transcription. We also suggest that the reactivated spatial memory undergoes destabilization and restabilization in the hippocampus, through similar molecular processes as those for reactivated contextual fear memories, which require CB1 and LVGCCs for destabilization and NMDAR and CREB for restabilization.
Collapse
Affiliation(s)
- Ryang Kim
- Department of Bioscience, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | | |
Collapse
|
48
|
Abstract
There is a growing concern about the effects of chemicals on the developing nervous system. Chemical exposure at critical periods of development can be associated with effects ranging from subtle to profound on the structure and/or function of the nervous system. Understanding critical biological molecular targets, which underlie chemical-induced neurotoxicity, will provide a scientific basis for risk assessment. Cell signaling molecules such as protein kinase C (PKC) have been shown to play critical roles in motor activity, development of the nervous system, and in learning and memory. PKC also has been shown to be associated with several neurological disorders including Alzheimer's disease, status epilepticus, and cerebellar ataxia. In the literature, there is abundant information linking PKC to cognitive function, long-term potentiation, or brain structural changes. Here, we show the relationship between changes in PKC (as assayed using radioactive material or by western blots) and the neurotoxic effects caused by environmental chemicals in vitro and in vivo.
Collapse
Affiliation(s)
- Prasada Rao S Kodavanti
- Neurotoxicology Branch, National Health and Environmental Effects Research Laboratories, United States Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
49
|
PKC activator therapeutic for mild traumatic brain injury in mice. Neurobiol Dis 2010; 41:329-37. [PMID: 20951803 DOI: 10.1016/j.nbd.2010.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/25/2010] [Accepted: 10/02/2010] [Indexed: 01/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent consequence of vehicle, sport and war related injuries. More than 90% of TBI patients suffer mild injury (mTBI). However, the pathologies underlying the disease are poorly understood and treatment modalities are limited. We report here that in mice, the potent PKC activator bryostatin1 protects against mTBI induced learning and memory deficits and reduction in pre-synaptic synaptophysin and post-synaptic spinophylin immunostaining. An effective treatment has to start within the first 8h after injury, and includes 5 × i.p. injections over a period of 14 days. The treatment is dose dependent. Exploring the effects of the repeated bryostatin1 treatment on the processing of the amyloid precursor protein, we found that the treatment induced an increase in the putative α-secretase ADAM10 and a reduction in β-secretase activities. Both these effects could contribute towards a reduction in β-amyloid production. These results suggest that bryostatin1 protects against mTBI cognitive and synaptic sequela by rescuing synapses, which is possibly mediated by an increase in ADAM10 and a decrease in BACE1 activity. Since bryostatin1 has already been extensively used in clinical trials as an anti-cancer drug, its potential as a remedy for the short- and long-term TBI sequelae is quite promising.
Collapse
|
50
|
Wang B, Xing W, Zhao Y, Deng X. Effects of chronic aluminum exposure on memory through multiple signal transduction pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:308-313. [PMID: 21787618 DOI: 10.1016/j.etap.2010.03.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 03/03/2010] [Accepted: 03/07/2010] [Indexed: 05/27/2023]
Abstract
OBJECTIVE To investigate the effects of chronic aluminum (Al) exposure on memory of rats by recording long-term potentiation (LTP) induction in CA1 region of Schaffer collateral (SC) of hippocampus and observing the changes of key LTP induction-related kinases. METHODS Forty weaned Wistar rats were divided into 4 groups ad libitum, each group 10 rats. Three groups were fed with 0.2%, 0.4% and 0.6% AlCl(3) in drinking water for three months individually to set up the aluminum exposure models and the rest group was the control. After behavioral test, electrophysiological recordings were made at area CA1 from hippocampal SC branch followed by biochemical examination for several key kinases involved in LTP induction and formation. RESULTS Chronic exposure of Al significantly decrease the activities of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) and reduced the expression levels of extracellular signal-regulated kinases (ERK1/2) and Ca(2+)-calmodulin dependent protein kinase II (CaMKII) in hippocampus, attenuating the population spike (PS) amplitude of LTP from the hippocampal CA1 region, causing impaired memory abilities of rats. CONCLUSIONS Aluminum accumulation in the hippocampus affects several crucial kinases involved in LTP induction and formation, resulting in impairment of memory.
Collapse
Affiliation(s)
- Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, No. 92, Beier Road, Heping District, Shenyang 110001, China
| | | | | | | |
Collapse
|