1
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
2
|
Hill KR, Hsu DT, Taylor SF, Ogden RT, Parsey RV, DeLorenzo C. Mu Opioid Receptor Dynamics in Healthy Volunteers with a History of Childhood Maltreatment. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2022; 15:1105-1112. [PMID: 36439668 PMCID: PMC9684394 DOI: 10.1007/s40653-022-00463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 06/16/2023]
Abstract
Evidence suggests that adults with a history of childhood maltreatment, the experience of emotional or physical neglect and/or abuse within the family during childhood, have blunted reward and stress processing, and higher risk of depression. The mu opioid receptor rich nucleus accumbens and amygdala are critical to reward and stress processing respectively. We hypothesized that nucleus accumbens and amygdala mu opioid receptor densities and activity (change in receptor binding due to endogenous opioid release or receptor conformation change) were negatively associated with childhood maltreatment in healthy young adults. Maltreatment was assessed with the Childhood Trauma Questionnaire (CTQ). Healthy participants, n = 75 (52% female) completed [11C]carfentanil positron emission tomography imaging labeling mu opioid receptors. The relationship between CTQ score and binding potential (BPND, proportional to density of unoccupied receptors) was evaluated with a linear mixed effects model. No significant relationship was found between CTQ score and BPND (f = 3.28; df = 1, 73; p = 0.074) or change in BPND (activity) (t = 1.48; df = 198.3; p = 0.14). This is the first investigation of mu opioid receptors in those with childhood maltreatment. We did not identify a significant relationship between mu opioid receptor dynamics and severity of maltreatment in those without psychopathology. Because this cohort has a low CTQ score average, this may indicate that those with low severity of maltreatment may not have associated changes in mu opioid receptor dynamics. Future directions include evaluating a cohort with increased severity of childhood maltreatment.
Collapse
Affiliation(s)
- Kathryn R. Hill
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794 United States
| | - David T. Hsu
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794 United States
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - Stephan F. Taylor
- Department of Psychiatry, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109 USA
| | - R. Todd Ogden
- Department of Biostatistics, Columbia University Mailman School of Public Health, NY, NY 10032 USA
| | - Ramin V. Parsey
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794 United States
| | - Christine DeLorenzo
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794 United States
| |
Collapse
|
3
|
Marshall SA, Robinson SL, Ebert SE, Companion MA, Thiele TE. Chemogenetic inhibition of corticotropin-releasing factor neurons in the central amygdala alters binge-like ethanol consumption in male mice. Behav Neurosci 2022; 136:541-550. [PMID: 35771510 PMCID: PMC9671851 DOI: 10.1037/bne0000522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repetitive bouts of binge drinking can lead to neuroplastic events that alter ethanol's pharmacologic effects and perpetuate excessive consumption. The corticotropin-releasing factor (CRF) system is an example of ethanol-induced neuroadaptations that drive excessive ethanol consumption. Our laboratory has previously shown that CRF antagonist, when infused into the central amygdala (CeA), reduces binge-like ethanol consumption. The present study extends this research by assessing the effects of silencing CRF-producing neurons in CeA on binge-like ethanol drinking stemming from "Drinking in the Dark" (DID) procedures. CRF-ires-Cre mice underwent surgery to infuse Gi/o-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus or a control virus into either the CeA or basolateral amygdala (BLA). Gi/o-DREADD-induced CRF-neuronal inhibition in the CeA resulted in a 33% decrease in binge-like ethanol consumption. However, no effect on ethanol consumption was seen after DREADD manipulation in the BLA. Moreover, CeA CRF-neuronal inhibition had no effect on sucrose consumption. The effects of silencing CRF neurons in the CeA on ethanol consumption are not secondary to changes in motor function or anxiety-like behaviors as assessed in the open-field test (OFT). Finally, the DREADD construct's functional ability to inhibit CRF-neuronal activity was demonstrated by reduced ethanol-induced c-Fos following DREADD activation. Together, these data suggest that the CRF neurons in the CeA play an important role in binge ethanol consumption and that inhibition of the CRF-signaling pathway remains a viable target for manipulating binge-like ethanol consumption. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- S. Alex Marshall
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Biological & Biomedical Sciences Department, The University of North Carolina, Chapel Hill, NC 27599
| | - Stacey L. Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| | - Suzahn E. Ebert
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
| | - Michel A. Companion
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Cooper AH, Hedden NS, Corder G, Lamerand SR, Donahue RR, Morales-Medina JC, Selan L, Prasoon P, Taylor BK. Endogenous µ-opioid receptor activity in the lateral and capsular subdivisions of the right central nucleus of the amygdala prevents chronic postoperative pain. J Neurosci Res 2022; 100:48-65. [PMID: 33957003 PMCID: PMC8571119 DOI: 10.1002/jnr.24846] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
Tissue injury induces a long-lasting latent sensitization (LS) of spinal nociceptive signaling that is kept in remission by an opposing µ-opioid receptor (MOR) constitutive activity. To test the hypothesis that supraspinal sites become engaged, we induced hindpaw inflammation, waited 3 weeks for mechanical hypersensitivity to resolve, and then injected the opioid receptor inhibitors naltrexone, CTOP or β-funaltrexamine subcutaneously, and/or into the cerebral ventricles. Intracerebroventricular injection of each inhibitor reinstated hypersensitivity and produced somatic signs of withdrawal, indicative of LS and endogenous opioid dependence, respectively. In naïve or sham controls, systemic naloxone (3 mg/kg) produced conditioned place aversion, and systemic naltrexone (3 mg/kg) increased Fos expression in the central nucleus of the amygdala (CeA). In LS animals tested 3 weeks after plantar incision, systemic naltrexone reinstated mechanical hypersensitivity and produced an even greater increase in Fos than in sham controls, particularly in the capsular subdivision of the right CeA. One third of Fos+ profiles co-expressed protein kinase C delta (PKCδ), and 35% of PKCδ neurons co-expressed tdTomato+ in Oprm1Cre ::tdTomato transgenic mice. CeA microinjection of naltrexone (1 µg) reinstated mechanical hypersensitivity only in male mice and did not produce signs of somatic withdrawal. Intra-CeA injection of the MOR-selective inhibitor CTAP (300 ng) reinstated hypersensitivity in both male and female mice. We conclude that MORs in the capsular subdivision of the right CeA prevent the transition from acute to chronic postoperative pain.
Collapse
Affiliation(s)
- Andrew H. Cooper
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Naomi S. Hedden
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Gregory Corder
- Department of Psychiatry and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney R. Lamerand
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for Neurosciences at the University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Renee R. Donahue
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | | | - Lindsay Selan
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Pittsburgh Center for Pain Research, and the Pittsburgh Project to end Opioid Misuse, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
6
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
7
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
8
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
9
|
Carrero JP, Kaigler KF, Hartshorn GH, Fadel JR, Wilson MA. Mu opioid receptor regulation of glutamate efflux in the central amygdala in response to predator odor. Neurobiol Stress 2019; 11:100197. [PMID: 31832510 PMCID: PMC6888766 DOI: 10.1016/j.ynstr.2019.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The amygdala plays an important role in the responses to predator threat. Glutamatergic processes in amygdala regulate the behavioral responses to predator stress, and we have found that exposure to ferret odor activates glutamatergic neurons of the basolateral amygdala [BLA] which are known to project to the central amygdala [CeA]. Therefore, we tested if predator stress would increase glutamate release in the rat CeA using in vivo microdialysis, while monitoring behavioral responses during a 1 h exposure to ferret odor. Since injections of mu opioid receptor [MOR] agonists and antagonists into the CeA modulate behavioral responses to predator odor, we locally infused the MOR agonist DAMGO or the MOR antagonist CTAP into the CeA during predator stress to examine effects on glutamate efflux and behavior. We found that ferret odor exposure increased glutamate, but not GABA, efflux in the CeA, and this effect was attenuated by tetrodotoxin. Interestingly, increases in glutamate efflux elicited by ferret odor exposure were blocked by infusion of CTAP, but CTAP did not alter the behavioral responses during predator stress. DAMGO alone enhanced glutamate efflux, but did not modulate glutamate efflux during predator stress. These studies demonstrate that ferret odor exposure, like other stressors, enhances glutamate efflux in the CeA. Further, they suggest that activation of MOR in the CeA may help shape the defensive response to predator odor and other threats.
Collapse
Affiliation(s)
- Jeffrey Parrilla Carrero
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - George H. Hartshorn
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| |
Collapse
|
10
|
Walter AL, Bartsch JC, Datunashvili M, Blaesse P, Lange MD, Pape HC. Physiological Profile of Neuropeptide Y-Expressing Neurons in Bed Nucleus of Stria Terminalis in Mice: State of High Excitability. Front Cell Neurosci 2018; 12:393. [PMID: 30455634 PMCID: PMC6231247 DOI: 10.3389/fncel.2018.00393] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
Both, the anterior bed nucleus of the stria terminalis (BNST) and the neuropeptide Y (NPY) system are involved in shaping fear and defensive responses that adapt the organism to potentially life-threatening conditions. NPY is expressed in the BNST but NPY-expressing neurons in this critical hub in the stress response network have not been addressed before. Therefore, we performed whole-cell patch-clamp recordings in acute slices of anterior BNST from Npy-hrGFP transgenic mice to identify and characterize NPY-expressing neurons. We show that NPY-positive and NPY-negative neurons in anterior BNST match the previous classification scheme of type I (Regular Spiking), type II (Low-Threshold Bursting), and type III (fast Inward Rectifying) cells, although the proportion of these physiological phenotypes was similar within both neuronal subpopulations. However, NPY-positive and NPY-negative neurons possessed distinct intrinsic electrophysiological properties. NPY-positive neurons displayed higher input resistance and lower membrane capacitance, corresponding to small cell bodies and shorter less ramified dendrites, as compared to their NPY-negative counterparts. Furthermore, NPY-positive neurons generated higher frequent series of action potentials upon membrane depolarization and displayed significantly lower GABAA receptor-mediated synaptic responsiveness during evoked, spontaneous, and elementary synaptic activity. Taken together, these properties indicate an overall state of high excitability in NPY-positive neurons in anterior BNST. In view of the role of the anterior BNST in anxiety- and stress-related behaviors, these findings suggest a scenario where NPY-positive neurons are preferentially active and responsive to afferent inputs, thereby contributing to adaptation of the organism to stressful environmental encounters.
Collapse
Affiliation(s)
- Achim Leonhard Walter
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | | | - Maia Datunashvili
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Peter Blaesse
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Maren Denise Lange
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Christian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
11
|
Janeček M, Dabrowska J. Oxytocin facilitates adaptive fear and attenuates anxiety responses in animal models and human studies-potential interaction with the corticotropin-releasing factor (CRF) system in the bed nucleus of the stria terminalis (BNST). Cell Tissue Res 2018; 375:143-172. [PMID: 30054732 DOI: 10.1007/s00441-018-2889-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/04/2018] [Indexed: 01/28/2023]
Abstract
Despite its relatively well-understood role as a reproductive and pro-social peptide, oxytocin (OT) tells a more convoluted story in terms of its modulation of fear and anxiety. This nuanced story has been obscured by a great deal of research into the therapeutic applications of exogenous OT, driving more than 400 ongoing clinical trials. Drawing from animal models and human studies, we review the complex evidence concerning OT's role in fear learning and anxiety, clarifying the existing confusion about modulation of fear versus anxiety. We discuss animal models and human studies demonstrating the prevailing role of OT in strengthening fear memory to a discrete signal or cue, which allows accurate and rapid threat detection that facilitates survival. We also review ostensibly contrasting behavioral studies that nonetheless provide compelling evidence of OT attenuating sustained contextual fear and anxiety-like behavior, arguing that these OT effects on the modulation of fear vs. anxiety are not mutually exclusive. To disambiguate how endogenous OT modulates fear and anxiety, an understudied area compared to exogenous OT, we survey behavioral studies utilizing OT receptor (OTR) antagonists. Based on emerging evidence about the role of OTR in rat dorsolateral bed nucleus of stria terminalis (BNST) and elsewhere, we postulate that OT plays a critical role in facilitating accurate discrimination between stimuli representing threat and safety. Supported by human studies, we demonstrate that OT uniquely facilitates adaptive fear but reduces maladaptive anxiety. Last, we explore the limited literature on endogenous OT and its interaction with corticotropin-releasing factor (CRF) with a special emphasis on the dorsolateral BNST, which may hold the key to the neurobiology of phasic fear and sustained anxiety.
Collapse
Affiliation(s)
- Michael Janeček
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
12
|
Martinon D, Dabrowska J. Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST) in Male Rats. Front Neurosci 2018; 12:183. [PMID: 29618970 PMCID: PMC5871712 DOI: 10.3389/fnins.2018.00183] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
The neuropeptide oxytocin (OT) plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl), a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF) receptor type 2 (CRFR2). This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3) or antagonist (Astressin 2B, As2B). To determine if type 1 CRF receptors (CRFR1) are also involved, we used selective CRFR1 antagonist (NBI35965) as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.
Collapse
Affiliation(s)
- Daisy Martinon
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Department of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.,Department of Neuroscience, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
13
|
Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis. J Neurosci 2017; 36:8038-49. [PMID: 27488624 DOI: 10.1523/jneurosci.0856-16.2016] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans. Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis leads us to conclude that BNST's influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within the small volume of BNST raises significant technical obstacles for functional imaging studies in humans.
Collapse
|
14
|
Oler JA, Tromp DPM, Fox AS, Kovner R, Davidson RJ, Alexander AL, McFarlin DR, Birn RM, E Berg B, deCampo DM, Kalin NH, Fudge JL. Connectivity between the central nucleus of the amygdala and the bed nucleus of the stria terminalis in the non-human primate: neuronal tract tracing and developmental neuroimaging studies. Brain Struct Funct 2017; 222:21-39. [PMID: 26908365 PMCID: PMC4995160 DOI: 10.1007/s00429-016-1198-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/30/2016] [Indexed: 01/10/2023]
Abstract
The lateral division of the bed nucleus of the stria terminalis (BSTL) and central nucleus of the amygdala (Ce) form the two poles of the 'central extended amygdala', a theorized subcortical macrostructure important in threat-related processing. Our previous work in nonhuman primates, and humans, demonstrating strong resting fMRI connectivity between the Ce and BSTL regions, provides evidence for the integrated activity of these structures. To further understand the anatomical substrates that underlie this coordinated function, and to investigate the integrity of the central extended amygdala early in life, we examined the intrinsic connectivity between the Ce and BSTL in non-human primates using ex vivo neuronal tract tracing, and in vivo diffusion-weighted imaging and resting fMRI techniques. The tracing studies revealed that BSTL receives strong input from Ce; however, the reciprocal pathway is less robust, implying that the primate Ce is a major modulator of BSTL function. The sublenticular extended amygdala (SLEAc) is strongly and reciprocally connected to both Ce and BSTL, potentially allowing the SLEAc to modulate information flow between the two structures. Longitudinal early-life structural imaging in a separate cohort of monkeys revealed that extended amygdala white matter pathways are in place as early as 3 weeks of age. Interestingly, resting functional connectivity between Ce and BSTL regions increases in coherence from 3 to 7 weeks of age. Taken together, these findings demonstrate a time period during which information flow between Ce and BSTL undergoes postnatal developmental changes likely via direct Ce → BSTL and/or Ce ↔ SLEAc ↔ BSTL projections.
Collapse
Affiliation(s)
- Jonathan A Oler
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA.
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA.
| | - Do P M Tromp
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Andrew S Fox
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Rothem Kovner
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Richard J Davidson
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
| | - Andrew L Alexander
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | - Daniel R McFarlin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, USA
| | | | - Danielle M deCampo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, USA
- HealthEmotions Research Institute, Wisconsin Psychiatric Institute and Clinics, 6001 Research Park Blvd., Madison, WI, 53719, USA
| | - Julie L Fudge
- Department of Neuroscience, University of Rochester Medical Center, Rochester, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
15
|
Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry 2016; 21:450-63. [PMID: 26878891 PMCID: PMC4804181 DOI: 10.1038/mp.2016.1] [Citation(s) in RCA: 462] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/19/2015] [Accepted: 12/15/2015] [Indexed: 12/13/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a center of integration for limbic information and valence monitoring. The BNST, sometimes referred to as the extended amygdala, is located in the basal forebrain and is a sexually dimorphic structure made up of between 12 and 18 sub-nuclei. These sub-nuclei are rich with distinct neuronal subpopulations of receptors, neurotransmitters, transporters and proteins. The BNST is important in a range of behaviors such as: the stress response, extended duration fear states and social behavior, all crucial determinants of dysfunction in human psychiatric diseases. Most research on stress and psychiatric diseases has focused on the amygdala, which regulates immediate responses to fear. However, the BNST, and not the amygdala, is the center of the psychogenic circuit from the hippocampus to the paraventricular nucleus. This circuit is important in the stimulation of the hypothalamic-pituitary-adrenal axis. Thus, the BNST has been largely overlooked with respect to its possible dysregulation in mood and anxiety disorders, social dysfunction and psychological trauma, all of which have clear gender disparities. In this review, we will look in-depth at the anatomy and projections of the BNST, and provide an overview of the current literature on the relevance of BNST dysregulation in psychiatric diseases.
Collapse
Affiliation(s)
- M A Lebow
- grid.13992.300000 0004 0604 7563Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel ,grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| | - A Chen
- grid.13992.300000 0004 0604 7563Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel ,grid.419548.50000 0000 9497 5095Department of Stress Neurobiology and Neurogenetics, Max-Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
16
|
Weathington JM, Hamki A, Cooke BM. Sex- and region-specific pubertal maturation of the corticotropin-releasing factor receptor system in the rat. J Comp Neurol 2014; 522:1284-98. [PMID: 24115088 DOI: 10.1002/cne.23475] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 12/27/2022]
Abstract
One of the most reliable findings in psychiatry is in the incidence of anxiety and depression. Beginning at puberty, women develop mood disorders twice as often as men. Because corticotropin-releasing factor (CRF) receptors are implicated, we compared CRF receptor binding in pre- and postpubertal rats. In each brain area, CRF receptor binding was sexually dimorphic, but no two areas were alike in the way the sexes differed. In the nucleus accumbens and olfactory tubercle, CRF1 binding was initially the same in juveniles, but became greater in adult females. In piriform cortex, CRF1 binding increased in females and decreased in males, again becoming sexually dimorphic. CRF1 binding in the anterior cingulate was greater in females than in males at both ages. In CA3, CRF1 binding was greater in males before puberty but decreased during puberty, abolishing the sex difference. CRF2 binding in the posterior bed nucleus of the stria terminalis was greater in males irrespective of age. In contrast, in each of three subdivisions of the lateral septum, females had greater CRF2 binding than males as juveniles, or, as juveniles and as adults. CRF2 binding in the ventromedial hypothalamus was the same in juveniles, but binding levels increased in males, leading to an adult sex difference. Thus, eight CRF receptor-expressing areas displayed eight distinct sex differences. These results show that sex differences pervade the CRF receptor system in juvenile and adult rats, and the mechanisms that control them are likely to be sex-, region-, and subtype-specific.
Collapse
Affiliation(s)
- Jill M Weathington
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, 30303
| | | | | |
Collapse
|
17
|
Abiri D, Douglas CE, Calakos KC, Barbayannis G, Roberts A, Bauer EP. Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behav Brain Res 2014; 271:234-9. [PMID: 24946071 PMCID: PMC5126972 DOI: 10.1016/j.bbr.2014.06.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/14/2014] [Accepted: 06/09/2014] [Indexed: 02/05/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is released during periods of anxiety and modulates learning and memory formation. One region with particularly dense concentrations of CRF receptors is the basolateral nucleus of the amygdala (BLA), a critical structure for both Pavlovian fear conditioning and fear extinction. While CRF has the potential to modify amygdala-dependent learning, its effect on fear extinction has not yet been assessed. In the present study, we examined the modulatory role of CRF on within-session extinction and fear extinction consolidation. Intra-BLA infusions of the CRF binding protein ligand inhibitor CRF(6-33) which increases endogenous levels of free CRF, or intra-BLA infusions of exogenous CRF made prior to fear extinction learning did not affect either fear expression or within-session extinction learning. However, when these animals were tested twenty-four hours later, drug free, they showed impairments in extinction memory. Conversely, intra-BLA infusions of the CRF receptor antagonist α-helical CRF(9-41) enhanced memory of fear extinction. These results suggest that increased CRF levels within the BLA at the time of fear extinction learning actively impair the consolidation of long-term fear extinction.
Collapse
Affiliation(s)
- Dina Abiri
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Christina E Douglas
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Katina C Calakos
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Georgia Barbayannis
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Andrea Roberts
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Elizabeth P Bauer
- Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, United States.
| |
Collapse
|
18
|
Meleine M, Matricon J. Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones. World J Gastroenterol 2014; 20:6725-6743. [PMID: 24944465 PMCID: PMC4051914 DOI: 10.3748/wjg.v20.i22.6725] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 02/08/2014] [Accepted: 03/19/2014] [Indexed: 02/06/2023] Open
Abstract
According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical to decipher how stress, ovarian hormones, and female brain processing of pain can translate into gut dysfunctions.
Collapse
|
19
|
Jaremko KM, Thompson NL, Reyes BAS, Jin J, Ebersole B, Jenney CB, Grigson PS, Levenson R, Berrettini WH, Van Bockstaele EJ. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:53-65. [PMID: 24333843 PMCID: PMC3928604 DOI: 10.1016/j.pnpbp.2013.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/26/2013] [Accepted: 12/05/2013] [Indexed: 12/14/2022]
Abstract
Opiate addiction is a devastating health problem, with approximately 2million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [d-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As the LC-NE system is important for cognition as well as decisions underlying substance abuse, adaptations in WLS trafficking and expression may play a role in modulating MOR function in the LC and contribute to the negative sequelae of opiate exposure on executive function.
Collapse
Affiliation(s)
- Kellie M Jaremko
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Nicholas L Thompson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Jay Jin
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Brittany Ebersole
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Christopher B Jenney
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Patricia S Grigson
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Robert Levenson
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, United States
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, United States
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| |
Collapse
|
20
|
Beckerman MA, Ogorodnik E, Glass MJ. Acute morphine associated alterations in the subcellular location of the AMPA-GluR1 receptor subunit in dendrites of neurons in the mouse central nucleus of the amygdala: comparisons and contrasts with other glutamate receptor subunits. Synapse 2013; 67:692-704. [PMID: 23564315 PMCID: PMC4061138 DOI: 10.1002/syn.21673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/22/2013] [Indexed: 01/27/2023]
Abstract
Within the amygdala, AMPA receptors expressing the AMPA-GluR1 (GluR1) subunit play an important role in basal glutamate signaling as well as behaviors associated with exposure to drugs of abuse like opiates. Although the ultrastructural location of GluR1 is an important functional feature of this protein, the basal distribution of GluR1, as well as its sensitivity to acute morphine, has never been characterized in the mouse central nucleus of the amygdala (CeA). Electron microscopic immunocytochemistry employing visually distinct gold and peroxidase markers was used to explore the distribution of GluR1 and its relationship with the mu-opioid receptor (µOR) in the mouse CeA under basal conditions and after morphine. We also looked at the effect of morphine on other glutamate receptor subunits, including AMPA-GluR2 (GluR2) and NMDA-NR1 (NR1). In opiate naive animals, GluR1 and µOR were present in diverse populations of neuronal profiles, but mainly in somatodendritic structures that expressed exclusive labeling for either antigen, as well as those co-expressing both proteins. Compared to saline treated animals, mice given morphine showed significant differences in the subcellular location of GluR1 in dendrites without co-expression of µOR. Although GluR2 also showed similar changes in non-µOR expressing dendrites, contrasting effects were seen in GluR2 and µOR co-expressing profiles. These results provide the ultrastructural basis for basal interactions involving the modulation of GluR1 or µOR activity in the mouse CeA. Further, they indicate that the subcellular distribution of GluR1 is modified by acute opiates in a manner that compares, as well as contrasts, with GluR2.
Collapse
Affiliation(s)
- Marc A. Beckerman
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Evgeny Ogorodnik
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Michael J. Glass
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
21
|
Abstract
In addition to its neurotrophic role, brain-derived neurotrophic factor (BDNF) is involved in a wide array of functions, including anxiety and pain. The central amygdaloid nucleus (CeA) contains a high concentration of BDNF in terminals, originating from the pontine parabrachial nucleus. Since the spino-parabrachio-amygdaloid neural pathway is known to convey nociceptive information, we hypothesized a possible involvement of BDNF in supraspinal pain-related processes. To test this hypothesis, we generated localized deletion of BDNF in the parabrachial nucleus using local bilateral injections of adeno-associated viruses in adult floxed-BDNF mice. Basal thresholds of thermal and mechanical nociceptive responses were not altered by BDNF loss and no behavioural deficit was noticed in anxiety and motor tests. However, BDNF-deleted animals displayed a major decrease in the analgesic effect of morphine. In addition, intra-CeA injections of the BDNF scavenger TrkB-Fc in control mice also decreased morphine-induced analgesia. Finally, the number of c-Fos immunoreactive nuclei after acute morphine injection was decreased by 45% in the extended amygdala of BDNF-deleted animals. The absence of BDNF in the parabrachial nucleus thus altered the parabrachio-amygdaloid pathway. Overall, our study provides evidence that BDNF produced in the parabrachial nucleus modulates the functions of the parabrachio-amygdaloid pathway in opiate analgesia.
Collapse
|
22
|
Veinante P, Yalcin I, Barrot M. The amygdala between sensation and affect: a role in pain. J Mol Psychiatry 2013; 1:9. [PMID: 25408902 PMCID: PMC4223879 DOI: 10.1186/2049-9256-1-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/11/2013] [Indexed: 01/15/2023] Open
Abstract
The amygdala is a structure of the temporal lobe thought to be involved in assigning emotional significance to environmental information and triggering adapted physiological, behavioral and affective responses. A large body of literature in animals and human implicates the amygdala in fear. Pain having a strong affective and emotional dimension, the amygdala, especially its central nucleus (CeA), has also emerged in the last twenty years as key element of the pain matrix. The CeA receives multiple nociceptive information from the brainstem, as well as highly processed polymodal information from the thalamus and the cerebral cortex. It also possesses the connections that allow influencing most of the descending pain control systems as well as higher centers involved in emotional, affective and cognitive functions. Preclinical studies indicate that the integration of nociceptive inputs in the CeA only marginally contributes to sensory-discriminative components of pain, but rather contributes to associated behavior and affective responses. The CeA doesn’t have a major influence on responses to acute nociception in basal condition, but it induces hypoalgesia during aversive situation, such as stress or fear. On the contrary, during persistent pain states (inflammatory, visceral, neuropathic), a long-lasting functional plasticity of CeA activity contributes to an enhancement of the pain experience, including hyperalgesia, aversive behavioral reactions and affective anxiety-like states.
Collapse
Affiliation(s)
- Pierre Veinante
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| | - Michel Barrot
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212, Centre National de la Recherche Scientifique, 21 Rue René Descartes, 67084 Strasbourg Cedex, France ; Université de Strasbourg, 21 Rue René Descartes, 67084 Strasbourg Cedex, France
| |
Collapse
|
23
|
Neuroanatomical distribution of μ-opioid receptor mRNA and binding in monogamous prairie voles (Microtus ochrogaster) and non-monogamous meadow voles (Microtus pennsylvanicus). Neuroscience 2013; 244:122-33. [PMID: 23537838 DOI: 10.1016/j.neuroscience.2013.03.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 01/06/2023]
Abstract
The opiate system has long been implicated in the rewarding properties of social interactions. In particular, the μ-opioid receptor (MOR) mediates multiple forms of social attachment, including the attachment of offspring to the mother and social bonding between mates. We have previously shown that MOR in the caudate-putamen is involved in partner preference formation in monogamous prairie voles. Here, using in situ hybridization and receptor autoradiography, we mapped in detail the distribution of MOR mRNA and ligand binding in monogamous prairie vole brains and compared MOR binding density with that of promiscuous meadow vole brains. Comparison of MOR binding in these closely related species with distinctly different social behavior revealed that while the distribution of MOR is similar, prairie voles have significantly higher densities of MOR than meadow voles in a majority of regions in the forebrain, including the caudate-putamen, nucleus accumbens shell, lateral septum and several thalamic nuclei, including the anteroventral and anteromedial thalamic nuclei. These differences in MOR expression between prairie and meadow voles could potentially contribute to species differences in behavior, including social attachment.
Collapse
|
24
|
Glass MJ, Robinson DC, Waters E, Pickel VM. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior. Synapse 2013; 67:265-79. [PMID: 23345061 DOI: 10.1002/syn.21637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/15/2013] [Indexed: 12/21/2022]
Abstract
The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders.
Collapse
Affiliation(s)
- Michael J Glass
- Brain and Mind Research Institute, Weill Cornell Medical College, New York 10065, USA.
| | | | | | | |
Collapse
|
25
|
Beckerman MA, Van Kempen TA, Justice NJ, Milner TA, Glass MJ. Corticotropin-releasing factor in the mouse central nucleus of the amygdala: ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as well as projection neurons to the bed nucleus of the stria terminalis. Exp Neurol 2012; 239:120-32. [PMID: 23063907 DOI: 10.1016/j.expneurol.2012.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/21/2012] [Accepted: 10/05/2012] [Indexed: 12/16/2022]
Abstract
Corticotropin-releasing factor (CRF) and glutamate are critical signaling molecules in the central nucleus of the amygdala (CeA). Central amygdala CRF, acting via the CRF type 1 receptor (CRF-R1), plays an integral role in stress responses and emotional learning, processes that are generally known to involve functional NMDA-type glutamate receptors. There is also evidence that CRF expressing CeA projection neurons to the bed nucleus of the stria terminalis (BNST) play an important role in stress related behaviors. Despite the potentially significant interactions between CRF and NMDA receptors in the CeA, the synaptic organization of these systems is largely unknown. Using dual labeling high resolution immunocytochemical electron microscopy, it was found that individual somata and dendrites displayed immunoreactivity for CRF and the NMDA-NR1 (NR1) subunit in the mouse CeA. In addition, CRF-containing axon terminals contacted postsynaptic targets in the CeA, some of which also expressed NR1. Neuronal profiles expressing the CRF type 1 receptor (CRF-R1), identified by the expression of green fluorescent protein (GFP) in bacterial artificial chromosome (BAC) transgenic mice, also contained NR1, and GFP immunoreactive terminals formed synapses with NR1 containing dendrites. Although CRF and GFP were only occasionally co-expressed in individual somata and dendritic profiles, contacts between labeled axon terminals and dendrites were frequently observed. A combination of tract tracing and immunocytochemistry revealed that a population of CeA CRF neurons projected to the BNST. It was also found that CRF, or GFP expressing terminals directly contacted CeA-BNST projection neurons. These results indicate that the NMDA receptor is positioned for the postsynaptic regulation of CRF expressing CeA neurons and the modulation of signals conveyed by CRF inputs. Interactions between CRF and NMDA receptor mediated signaling in CeA neurons, including those projecting to the BNST, may provide the synaptic basis for integrating the experience of stress and relevant environmental stimuli with behaviors that may be of particular relevance to stress-related learning and the emergence of psychiatric disorders, including drug addiction.
Collapse
Affiliation(s)
- Marc A Beckerman
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
26
|
Volume transmission of beta-endorphin via the cerebrospinal fluid; a review. Fluids Barriers CNS 2012; 9:16. [PMID: 22883598 PMCID: PMC3439317 DOI: 10.1186/2045-8118-9-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/07/2012] [Indexed: 02/08/2023] Open
Abstract
There is increasing evidence that non-synaptic communication by volume transmission in the flowing CSF plays an important role in neural mechanisms, especially for extending the duration of behavioral effects. In the present review, we explore the mechanisms involved in the behavioral and physiological effects of β-endorphin (β-END), especially those involving the cerebrospinal fluid (CSF), as a message transport system to reach distant brain areas. The major source of β-END are the pro-opio-melano-cortin (POMC) neurons, located in the arcuate hypothalamic nucleus (ARH), bordering the 3rd ventricle. In addition, numerous varicose β-END-immunoreactive fibers are situated close to the ventricular surfaces. In the present paper we surveyed the evidence that volume transmission via the CSF can be considered as an option for messages to reach remote brain areas. Some of the points discussed in the present review are: release mechanisms of β-END, independence of peripheral versus central levels, central β-END migration over considerable distances, behavioral effects of β-END depend on location of ventricular administration, and abundance of mu and delta opioid receptors in the periventricular regions of the brain.
Collapse
|
27
|
Beckerman MA, Glass MJ. The NMDA-NR1 receptor subunit and the mu-opioid receptor are expressed in somatodendritic compartments of central nucleus of the amygdala neurons projecting to the bed nucleus of the stria terminalis. Exp Neurol 2011; 234:112-26. [PMID: 22227057 DOI: 10.1016/j.expneurol.2011.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 12/26/2022]
Abstract
The pathway between the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) is emerging as a critical mediator of stress-related affective processes. Evidence also indicates that exposure to drugs of abuse, like opioids, is associated with NMDA-type glutamate receptor-dependent plasticity in the CeA and BNST. However, there is little evidence that NMDA receptors are expressed in CeA neurons projecting to the BNST, or are required for opioid-induced BNST neural activation. Immunoelectron microscopy, tract tracing, and conditional gene deletion technology were used to investigate the synaptic organization of the NMDA receptor and the mu-opioid receptor (μOR) in the CeA-BNST pathway. By dual labeling electron microscopy, numerous CeA-BNST projection neurons expressed the NMDA-NR1 receptor subunit (NR1) or μOR. By triple labeling, it was also found that NR1 and μOR were co-expressed in some CeA-BNST projection neurons. Despite being colocalized in somato-dendritic compartments of CeA neurons, NR1 and μOR were rarely expressed in their axonal terminations in the BNST. Deleting the NR1 gene in CeA neurons resulted in a reduction of morphine-induced Fos protein labeling in the ventral BNST. In summary, NR1 and μOR are coexpressed in somatodendritic sites of CeA neurons, including those projecting to the BNST. In addition, expression of the NR1 gene in CeA neurons is required for morphine-induced BNST neural activation. Thus, postsynaptic NMDA receptors and μORs are positioned for the co-modulation of CeA projection neurons to the BNST, which may provide a synaptic substrate for stress-induced emotional processes critically involved in opioid addictive behaviors.
Collapse
Affiliation(s)
- Marc A Beckerman
- Department of Neurology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
28
|
McCool BA. Ethanol modulation of synaptic plasticity. Neuropharmacology 2011; 61:1097-108. [PMID: 21195719 PMCID: PMC3149748 DOI: 10.1016/j.neuropharm.2010.12.028] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 12/10/2010] [Accepted: 12/22/2010] [Indexed: 12/19/2022]
Abstract
Synaptic plasticity in the most general terms represents the flexibility of neurotransmission in response to neuronal activity. Synaptic plasticity is essential both for the moment-by-moment modulation of neural activity in response to dynamic environmental cues and for long-term learning and memory formation. These temporal characteristics are served by an array of pre- and post-synaptic mechanisms that are frequently modulated by ethanol exposure. This modulation likely makes significant contributions to both alcohol abuse and dependence. In this review, I discuss the modulation of both short-term and long-term synaptic plasticity in the context of specific ethanol-sensitive cellular substrates. A general discussion of the available preclinical, animal-model based neurophysiology literature provides a comparison between results from in vitro and in vivo studies. Finally, in the context of alcohol abuse and dependence, the review proposes potential behavioral contributions by ethanol modulation of plasticity.
Collapse
Affiliation(s)
- Brian A McCool
- Department of Physiology & Pharmacology and the Translational Center for the Neurobehavioral Study of Alcohol, Wake Forest University School of Medicine, Winston-Salem NC 27157, USA.
| |
Collapse
|
29
|
Taylor WA, Evans NP, Hertz C, Skinner DC. Intra-pituitary administration revisited: development of a novel in vivo approach to investigate the ovine hypophysis. J Neurosci Methods 2011; 199:175-82. [PMID: 21376082 PMCID: PMC3152251 DOI: 10.1016/j.jneumeth.2011.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 02/21/2011] [Accepted: 02/21/2011] [Indexed: 11/17/2022]
Abstract
The anterior pituitary gland regulates physiological processes via the secretion of hormones, which are under the control of factors produced either in the hypothalamus or the pituitary gland itself. Studies investigating how the pituitary gland functions have employed both in vitro and in vivo approaches. Although in vitro analysis has the advantage that it is pituitary specific, the results may be incomplete because the tissue is isolated from other physiological inputs that could affect function under natural conditions. Without vascular input, such studies are inherently of short duration. Conversely, in vivo experiments that rely upon systemic hormone injections require high doses, are non-target specific and the precise hormone concentrations reaching the pituitary gland are difficult to control. Intracerebroventricular hormone infusions are reliant on assumptions that factors are transported to the pituitary gland from the cerebrospinal fluid and are without cerebral effects. Here we describe an innovative method to investigate anterior pituitary function in conscious sheep by direct infusion of peptides into the pituitary tissue surrounding the hypophyseal portal blood vessels. This approach is an adaptation of the hypophyseal portal cannulation technique whereby an indwelling cannula provides direct access to the rostral aspect of the adenohypophysis. Peptide infusions were achieved by insertion of a needle through the implanted cannula such that it penetrated the pituitary. Using this technique, infusion of TRH (17 ng/1 μl/min for up to 6h) induced a sustained rise in systemic prolactin levels that lasted for the duration of the infusion.
Collapse
Affiliation(s)
- W. Andrew Taylor
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | - Neil P. Evans
- College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
| | - Carole Hertz
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| | - Donal C. Skinner
- Neurobiology Program and Department of Zoology and Physiology, University of Wyoming, 1000 E Univ. Ave., Dept. 3166, Laramie, WY 82071, USA
| |
Collapse
|
30
|
Scavone JL, Asan E, Van Bockstaele EJ. Unraveling glutamate-opioid receptor interactions using high-resolution electron microscopy: implications for addiction-related processes. Exp Neurol 2011; 229:207-13. [PMID: 21459090 PMCID: PMC3274957 DOI: 10.1016/j.expneurol.2011.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
Abstract
Adaptive responses in glutamate and opioid receptor systems in limbic circuits are emerging as a critical component of the neural plasticity induced by chronic use of abused substances. The present commentary reviews findings from neuroanatomical studies, with superior spatial resolution, that support a cellular basis for prominent interactions of glutamate and opioid receptor systems in preclinical models of drug addiction. The review begins by highlighting the advantages of high-resolution electron microscopic immunohistochemistry for unraveling receptor interactions at the synapse. With an emphasis on a recent publication describing the anatomical relationship between the μ-opioid receptor (MOR) and the AMPA-GluR2 subunit (Beckerman, M. A., and Glass, M. J., 2011. Ultrastructural relationship between the AMPA-GluR2 receptor subunit and the mu-opioid receptor in the mouse central nucleus of the amygdala. Exp Neurol), we review the anatomical evidence for opioid-induced neural plasticity of glutamate receptors in selected brain circuits that are key integrative substrates in the brain's motivational system. The findings stress the importance of glutamate-opioid interactions as important neural mediators of adaptations to chronic use of abused drugs, particularly within the amygdaloid complex.
Collapse
Affiliation(s)
- Jillian L Scavone
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
31
|
Jaferi A, Zhou P, Pickel VM. Enhanced dendritic availability of μ-opioid receptors in inhibitory neurons of the extended amygdala in mice deficient in the corticotropin-releasing factor-1 receptor. Synapse 2011; 65:8-20. [PMID: 20506149 PMCID: PMC2955181 DOI: 10.1002/syn.20810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Activation of the corticotropin-releasing factor-1 (CRF-1) receptor in the anterolateral BNST (BSTal), a key subdivision of the extended amygdala, elicits opiate-seeking behavior exacerbated by stress. However, it is unknown whether the presence of CRF-1 affects expression of the μ-opioid receptor (μ-OR) in the many GABAergic BSTal neurons implicated in the stress response. We hypothesized that deletion of the CRF-1 receptor gene would alter the density and/or subcellular distribution of μ-ORs in GABAergic neurons of the BSTal. We used electron microscopy to quantitatively examine μ-OR immunogold and γ-aminobutyric acid (GABA) immunoperoxidase labeling in the BSTal of CRFr-1 knockout (KO) compared to wild-type (WT) mice. To assess regional specificity, we examined μ-OR distribution in dorsal striatum. The μ-ORs in each region were predominantly localized in dendrites, many of which were GABA-immunoreactive. Significantly, more cytoplasmic μ-OR gold particles per dendritic area were observed selectively in GABA-containing dendrites of the BSTal, but not of the dorsal striatum, in KO compared to WT mice. In both regions, however, significantly fewer GABA-immunoreactive axon terminals were present in KO compared to WT mice. Our results suggest that the absence of CRF-1 results in enhanced expression and/or dendritic trafficking of μ-ORs in inhibitory BSTal neurons. They also suggest that the expression of CRF-1 is a critical determinant of the availability of GABA in functionally diverse brain regions. These findings underscore the complex interplay between CRF, opioid, and GABA systems in limbic and striatal regions and have implications for the role of CRF-1 in influencing the pharmacological effects of opiates active at μ-ORs.
Collapse
Affiliation(s)
- Azra Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61 Street, New York, NY 10065
| | - Ping Zhou
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61 Street, New York, NY 10065
| | - Virginia M. Pickel
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61 Street, New York, NY 10065
| |
Collapse
|
32
|
Beckerman MA, Glass MJ. Ultrastructural relationship between the AMPA-GluR2 receptor subunit and the mu-opioid receptor in the mouse central nucleus of the amygdala. Exp Neurol 2011; 227:149-58. [PMID: 20970421 PMCID: PMC3021976 DOI: 10.1016/j.expneurol.2010.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/13/2010] [Accepted: 10/15/2010] [Indexed: 02/06/2023]
Abstract
Activation of GluR2-expressing non-calcium-permeable AMPA-type glutamate receptors in the central nucleus of the amygdala (CeA) may play an important role in integrating emotion and memory with goal-directed behaviors involved in opioid addiction. The location of non-calcium-permeable AMPA receptors within distinct neuronal compartments (i.e., soma, dendrite, or axon) is an important functional feature of these proteins; however, their ultrastructural location and subcellular relationship with mu-opioid receptors (μOR) in the CeA are unknown. Immunocytochemical electron microscopy was used to characterize the ultrastructural distribution of GluR2 and its association with μOR in the mouse CeA. A single-labeling analysis of GluR2 distribution employing immunoperoxidase or immunogold markers revealed that this protein was frequently affiliated with intracellular vesicular organelles, as well as the plasma membrane of CeA neuronal profiles. Among all GluR2-labeled neuronal structures, over 85% were dendrites or somata. Unlabeled axon terminals frequently formed asymmetric excitatory-type synaptic junctions with GluR2-labeled dendritic profiles. Dual-labeling immunocytochemical analysis showed that GluR2 and μOR were co-localized in neuronal compartments. Among all dual-labeled structures, approximately 80% were dendritic. Synaptic inputs to these dual-labeled dendrites were frequently from unlabeled axon terminals forming asymmetric excitatory-type synapses. The presence of GluR2 in dendritic profiles receiving asymmetric synapses suggests that activation of the non-calcium-permeable AMPA receptor plays a role in the postsynaptic modulation of excitatory signaling involving CeA neuronal circuits that coordinate sensory, affective, and behavioral processes involved in drug addiction. Given the critical role of non-calcium-permeable AMPA receptor function in neural and behavioral adaptability, their dendritic association with μOR in CeA dendrites provides a neuronal substrate for opioid-mediated plasticity.
Collapse
Affiliation(s)
- Marc A. Beckerman
- Department of Neurology and Neuroscience, Weill Cornell Medical College, NY, NY 10065
| | - Michael J. Glass
- Department of Neurology and Neuroscience, Weill Cornell Medical College, NY, NY 10065
| |
Collapse
|
33
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
34
|
Pain is a salient "stressor" that is mediated by corticotropin-releasing factor-1 receptors. Neuropharmacology 2010; 59:160-6. [PMID: 20470804 DOI: 10.1016/j.neuropharm.2010.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 04/20/2010] [Accepted: 05/04/2010] [Indexed: 12/19/2022]
Abstract
Corticotropin-releasing factor (CRF) plays a major role in controlling the body's response to stress. Because painful conditions are inherently stressful, we hypothesize that CRF may act via CRF-1 receptors to contribute to the pain experience. Studies were designed to investigate whether blocking CRF-1 receptors with selective antagonists or reducing their expression with CRF-Saporin, would attenuate ulcer, inflammatory- and neuropathic-like pain. Five experimental designs were undertaken. In experiment 1, ulcer pain was induced in mice following oral administration of indomethacin, while in experiments 2 and 3, inflammatory pain was induced in rats with either carrageenan or FCA, respectively. For these studies, animals were dosed with CP-154,526 (3, 10, 30 mg/kg) and NBI 27914 (1-30 mg/kg) 1 h prior to the assessment of tactile, thermal or mechanical hypersensitivity, respectively. In experiment 4, neuropathic pain was induced. Twenty-one days following spinal nerve ligation (SNL), animals received CRF-Saporin or control. Three weeks later tactile allodynia was assessed. Similarly, in experiment 5, a separate set of rats received CRF-Saporin or control. Twenty-one days later, mechanical hyperalgesia was assessed following intraplantar carrageenan. Results from the antagonist studies showed that CP-154,526 and NBI 27914 either fully or partially reversed the referred ulcer pain with minimal effective doses (MED) equal to 3 and 10 mg/kg, respectively. Similarly, both NBI 27914 and CP-154,526 reversed the thermal and mechanical hypersensitivity elicited by carrageenan and FCA with MEDs </= 5 and 10 mg/kg, respectively. Findings from the two CRF-Saporin studies determined that pre-treatment with this toxin significantly attenuated SNL- and carrageenan-induced tactile hypersensitivity. Together, these findings suggest that CRF-1 receptors mediate pain and implicate CRF in this regard.
Collapse
|
35
|
Glass MJ, Vanyo L, Quimson L, Pickel VM. Ultrastructural relationship between N-methyl-D-aspartate-NR1 receptor subunit and mu-opioid receptor in the mouse central nucleus of the amygdala. Neuroscience 2009; 163:857-67. [PMID: 19607886 PMCID: PMC2881487 DOI: 10.1016/j.neuroscience.2009.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 07/09/2009] [Accepted: 07/10/2009] [Indexed: 12/23/2022]
Abstract
The central nucleus of the amygdala (CeA) is an important neuroanatomical substrate of emotional processes that are critically involved in addictive behaviors. Glutamate and opioid systems in the CeA play significant roles in neural plasticity and addictive processes, however the cellular sites of interaction between agonists of N-methyl-d-aspartate (NMDA) and mu-opioid receptors (muOR) in the CeA are unknown. Dual labeling immunocytochemistry was used to determine the ultrastructural relationship between the essential NMDA-NR1 receptor subunit and muOR in the CeA. It was found that over 80% of NR1-labeled profiles were dendrites while less than 10% were axons. In the case of muOR-labeled profiles, approximately 60% were dendritic, and over 35% were axons. Despite their somewhat distinctive patterns of cellular location, numerous dual-labeled profiles were observed. Approximately 80% of these were dendritic, and less than 10% were axonal. Moreover, many dual-labeled dendritic profiles were contacted by axon terminals receiving asymmetric-type synapses indicative of excitatory signaling. These results indicate that NMDA and muORs are strategically localized in dendrites, including those receiving excitatory synapses, of central amygdala neurons. Thus, postsynaptic co-modulation of central amygdala neurons may be a key cellular substrate mediating glutamate and opioid interaction on neural signaling and plasticity associated with normal and pathological emotional processes associated with addictive behaviors.
Collapse
Affiliation(s)
- M J Glass
- Department of Neurology and Neuroscience, Weill Cornell Medical College, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
36
|
Jaferi A, Lane DA, Pickel VM. Subcellular plasticity of the corticotropin-releasing factor receptor in dendrites of the mouse bed nucleus of the stria terminalis following chronic opiate exposure. Neuroscience 2009; 163:143-54. [PMID: 19539724 PMCID: PMC2740727 DOI: 10.1016/j.neuroscience.2009.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/24/2009] [Accepted: 06/12/2009] [Indexed: 10/20/2022]
Abstract
Chronic opiate administration alters the expression levels of the stress-responsive peptide, corticotropin-releasing factor (CRF), in the bed nucleus of the stria terminalis (BNST). This brain region contains CRF receptors that drive drug-seeking behavior exacerbated by stress. We used electron microscopy to quantitatively compare immunolabeling of the corticotropin-releasing factor receptor (CRFr) and CRF in the anterolateral bed nucleus of the stria terminalis (BSTal) of mice injected with saline or morphine in escalating doses for 14 days. We also compared the results with those in non-injected control mice. The tissue was processed for CRFr immunogold and CRF immunoperoxidase labeling. The non-injected controls had a significantly lower plasmalemmal density of CRFr immunogold particles in dendrites compared with mice receiving saline, but not those receiving morphine, injections. Compared with saline, however, mice receiving chronic morphine showed a significantly lower plasmalemmal, and greater cytoplasmic, density of CRFr immunogold in dendrites. Within the cytoplasmic compartment of somata and dendrites of the BSTal, the proportion of CRFr gold particles associated with mitochondria was three times as great in mice receiving morphine compared with saline. This subcellular distribution is consistent with morphine,- and CRFr-associated modulation of intracellular calcium release or oxidative stress. The between-group changes occurred without effect on the total number of dendritic CRFr immunogold particles, suggesting that chronic morphine enhances internalization or decreases delivery of the CRFr to the plasma membrane, a trafficking effect that is also affected by the stress of daily injections. In contrast, saline and morphine treatment groups showed no significant differences in the total number of CRF-immunoreactive axon terminals, or the frequency with which these terminals contacted CRFr-containing dendrites. This suggests that morphine does not influence axonal availability of CRF in the BSTal. The results have important implications for drug-associated adaptations in brain stress systems that may contribute to the motivation to continue drug use during dependence.
Collapse
Affiliation(s)
- A Jaferi
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 407 East 61st Street, New York, NY 10065, USA.
| | | | | |
Collapse
|
37
|
The effect of CRF and α-helical CRF(9–41) on rat fear responses and amino acids release in the central nucleus of the amygdala. Neuropharmacology 2009; 57:148-56. [DOI: 10.1016/j.neuropharm.2009.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/01/2009] [Accepted: 04/28/2009] [Indexed: 11/15/2022]
|