1
|
Milanick W, Li J, Thomas CI, Al-Yaari M, Guerrero-Given D, Kamasawa N, Young SM. Presynaptic α 2δs specify synaptic gain, not synaptogenesis, in the mammalian brain. Neuron 2025:S0896-6273(25)00296-X. [PMID: 40367942 DOI: 10.1016/j.neuron.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 03/13/2025] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
The α2δs are a family of extracellular synaptic molecules that are auxiliary subunits of voltage-gated Ca2+ channel (CaV) complexes. They are linked to brain disorders and are drug targets. The α2δs are implicated in controlling synapse development and function through distinct CaV-dependent and CaV-independent pathways. However, the mechanisms of action remain enigmatic since synapses contain mixtures of α2δ isoforms in the pre- and postsynaptic compartments. We developed a triple conditional knockout mouse model and demonstrated the combined selective presynaptic ablation of α2δs in vivo in a developing mammalian glutamatergic synapse. We identified presynaptic α2δs as positive regulators of Munc13-1 levels, an essential neurotransmitter release protein. We found that mammalian synapse development, presynaptic CaV2.1 organization, and the transsynaptic alignment of presynaptic release sites and postsynaptic glutamate receptors are independent of presynaptic α2δs. Therefore, our results define presynaptic α2δ regulatory roles and suggest a new α2δ role in controlling synaptic strength and plasticity.
Collapse
Affiliation(s)
- William Milanick
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
| | - Jianing Li
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Connon I Thomas
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Mohammed Al-Yaari
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Debbie Guerrero-Given
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Naomi Kamasawa
- The Imaging Center and Electron Microscopy Core Facility, Max Planck Institute for Neuroscience, Jupiter, FL 33458, USA
| | - Samuel M Young
- Gene Therapy Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pediatrics, Department of Pharmacology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
Wang K, Nilsson M, Angelini M, Olcese R, Elinder F, Pantazis A. A rich conformational palette underlies human Ca V2.1-channel availability. Nat Commun 2025; 16:3815. [PMID: 40268901 PMCID: PMC12019389 DOI: 10.1038/s41467-025-58884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
Depolarization-evoked opening of CaV2.1 (P/Q-type) Ca2+-channels triggers neurotransmitter release, while voltage-dependent inactivation (VDI) limits channel availability to open, contributing to synaptic plasticity. The mechanism of CaV2.1 response to voltage is unclear. Using voltage-clamp fluorometry and kinetic modeling, we optically track and physically characterize the structural dynamics of the four CaV2.1 voltage-sensor domains (VSDs). The VSDs are differentially sensitive to voltage changes, both brief and long-lived. VSD-I seems to directly drive opening and convert between two modes of function, associated with VDI. VSD-II is apparently voltage-insensitive. VSD-III and VSD-IV sense more negative voltages and undergo voltage-dependent conversion uncorrelated with VDI. Auxiliary β-subunits regulate VSD-I-to-pore coupling and VSD conversion kinetics. Hence, the central role of CaV2.1 channels in synaptic release, and their contribution to plasticity, memory formation and learning, can arise from the voltage-dependent conformational changes of VSD-I.
Collapse
Affiliation(s)
- Kaiqian Wang
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Michelle Nilsson
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marina Angelini
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Fredrik Elinder
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Science for Life Laboratory, Linköping University, Linköping, Sweden
| | - Antonios Pantazis
- Division of Cell and Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Haddad S, Ablinger C, Stanika R, Hessenberger M, Campiglio M, Ortner NJ, Tuluc P, Obermair GJ. A biallelic mutation in CACNA2D2 associated with developmental and epileptic encephalopathy affects calcium channel-dependent as well as synaptic functions of α 2δ-2. J Neurochem 2025; 169:e16197. [PMID: 39161180 PMCID: PMC11657932 DOI: 10.1111/jnc.16197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
α2δ proteins serve as auxiliary subunits of voltage-gated calcium channels and regulate channel membrane expression and current properties. Besides their channel function, α2δ proteins regulate synapse formation, differentiation, and synaptic wiring. Considering these important functions, it is not surprising that CACNA2D1-4, the genes encoding for α2δ-1 to -4 isoforms, have been implicated in neurological, neurodevelopmental, and neuropsychiatric disorders. Mutations in CACNA2D2 have been associated with developmental and epileptic encephalopathy (DEE) and cerebellar atrophy. In our present study, we performed a detailed functional characterization of the p.R593P mutation in α2δ-2, a homozygous mutation previously identified in two siblings with DEE. Importantly, we analyzed both calcium channel-dependent as well as synaptic functions of α2δ-2. Our data show that the corresponding p.R596P mutation in mouse α2δ-2 drastically decreases membrane expression and synaptic targeting of α2δ-2. This defect correlates with altered biophysical properties of postsynaptic CaV1.3 channel but has no effect on presynaptic CaV2.1 channels upon heterologous expression in tsA201 cells. However, homologous expression of α2δ-2_R596P in primary cultures of hippocampal neurons affects the ability of α2δ-2 to induce a statistically significant increase in the presynaptic abundance of endogenous CaV2.1 channels and presynaptic calcium transients. Moreover, our data demonstrate that in addition to lowering membrane expression, the p.R596P mutation reduces the trans-synaptic recruitment of GABAA receptors and presynaptic synapsin clustering in glutamatergic synapses. Lastly, the α2δ-2_R596P reduces the amplitudes of glutamatergic miniature postsynaptic currents in transduced hippocampal neurons. Taken together, our data strongly link the human biallelic p.R593P mutation to the underlying severe neurodevelopmental disorder and highlight the importance of studying α2δ mutations not only in the context of channelopathies but also synaptopathies.
Collapse
Affiliation(s)
- Sabrin Haddad
- Institute of PhysiologyMedical University InnsbruckInnsbruckAustria
- Division of PhysiologyDepartment of Pharmacology, Physiology, and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
| | - Cornelia Ablinger
- Institute of PhysiologyMedical University InnsbruckInnsbruckAustria
- Division of PhysiologyDepartment of Pharmacology, Physiology, and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
| | - Ruslan Stanika
- Division of PhysiologyDepartment of Pharmacology, Physiology, and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
| | - Manuel Hessenberger
- Division of PhysiologyDepartment of Pharmacology, Physiology, and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
| | - Marta Campiglio
- Institute of PhysiologyMedical University InnsbruckInnsbruckAustria
| | - Nadine J. Ortner
- Department of Pharmacology and ToxicologyUniversity of InnsbruckInnsbruckAustria
| | - Petronel Tuluc
- Department of Pharmacology and ToxicologyUniversity of InnsbruckInnsbruckAustria
| | - Gerald J. Obermair
- Division of PhysiologyDepartment of Pharmacology, Physiology, and MicrobiologyKarl Landsteiner University of Health SciencesKremsAustria
| |
Collapse
|
4
|
Parker EM, Kindja NL, DeGiosio RA, Salisbury RB, Krivinko JM, Cheetham CEJ, MacDonald ML, Fan W, Cheng B, Sweet RA. Impacts of CACNB4 overexpression on dendritic spine density in both sexes and relevance to schizophrenia. Transl Psychiatry 2024; 14:484. [PMID: 39632796 PMCID: PMC11618769 DOI: 10.1038/s41398-024-03181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 06/23/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
The voltage-gated calcium channel (VGCC) subunit complex is comprised of the α1 subunit, the ion-permeable channel, and three auxiliary subunits: β, α2δ, and γ. β is the most extensively studied auxiliary subunit and is necessary for forward trafficking of the α1 subunit to the plasma membrane. VGCCs mediate voltage-dependent movement of calcium ions into neuronal cytoplasm, including at dendrites, where intracellular calcium spikes initiate signaling cascades that shape the structural plasticity of dendritic spines. Genetic studies strongly implicate calcium signaling dysfunction in the etiology of neurodevelopmental disorders including schizophrenia. Dendritic spine density is significantly decreased in schizophrenia in the primary auditory cortex where it is driven by the loss of small spines, and small spine loss associated with increased peptide levels of ALFDFLK found in the VGCC β subunit β4. Overexpressing the gene that encodes the voltage-gated calcium channel subunit β4, CACNB4, selectively reduced small spine density in vitro. In the current study we extended this observation in an intact mammalian system within a relevant neurodevelopmental context. We overexpressed CACNB4 in early development, assessed spine density and morphology in adult male and female mouse cortex, and characterized β1-4 protein levels and β4 protein-protein interactions. Overexpression reduced small spine density in females. This effect was not dependent on the estrous stage. Instead, it corresponded to sex differences in the murine β4 interactome. The VGCC subunit β1b was significantly enriched in the β4 interactome of male relative to female mice, and thus may have served to mitigate VGCC overexpression-mediated spine loss in male mice.
Collapse
Affiliation(s)
- Emily M Parker
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan L Kindja
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A DeGiosio
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan B Salisbury
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josh M Krivinko
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claire E J Cheetham
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew L MacDonald
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Weijia Fan
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Bin Cheng
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Robert A Sweet
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2024; 168:3853-3871. [PMID: 37822150 PMCID: PMC11591408 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J. Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| |
Collapse
|
6
|
Haddad S, Hessenberger M, Ablinger C, Eibl C, Stanika R, Campiglio M, Obermair GJ. Autism-Linked Mutations in α 2δ-1 and α 2δ-3 Reduce Protein Membrane Expression but Affect Neither Calcium Channels nor Trans-Synaptic Signaling. Pharmaceuticals (Basel) 2024; 17:1608. [PMID: 39770450 PMCID: PMC11677996 DOI: 10.3390/ph17121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND α2δ proteins regulate membrane trafficking and biophysical properties of voltage-gated calcium channels. Moreover, they modulate axonal wiring, synapse formation, and trans-synaptic signaling. Several rare missense variants in CACNA2D1 (coding for α2δ-1) and CACNA2D3 (coding for α2δ-3) genes were identified in patients with autism spectrum disorder (ASD). However, the pathogenicity of these variants is not known, and the molecular mechanism by which α2δ proteins may contribute to the pathophysiology of autism is, as of today, not understood. Therefore, in this study we functionally characterized two heterozygous missense variants in α2δ-1 (p.R351T) and α2δ-3 (p.A275T), previously identified in patients with ASD. METHODS Electrophysiological recordings in transfected tsA201 cells were used to study specific channel-dependent functions of mutated α2δ proteins. Membrane expression, presynaptic targeting, and trans-synaptic signaling of mutated α2δ proteins were studied upon expression in murine cultured hippocampal neurons. RESULTS Homologous expression of both mutated α2δ proteins revealed a strongly reduced membrane expression and synaptic localization compared to the corresponding wild type α2δ proteins. Moreover, the A275T mutation in α2δ-3 resulted in an altered glycosylation pattern upon heterologous expression. However, neither of the mutations compromised the biophysical properties of postsynaptic L-type (CaV1.2 and CaV1.3) and presynaptic P/Q-type (CaV2.1) channels when co-expressed in tsA201 cells. Furthermore, presynaptic expression of p.R351T in the α2δ-1 splice variant lacking exon 23 did not affect trans-synaptic signaling to postsynaptic GABAA receptors. CONCLUSIONS Our data provide evidence that the pathophysiological mechanisms of ASD-causing mutations of α2δ proteins may not involve their classical channel-dependent and trans-synaptic functions. Alternatively, these mutations may induce subtle changes in synapse formation or neuronal network function, highlighting the need for future α2δ protein-linked disease models.
Collapse
Affiliation(s)
- Sabrin Haddad
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Manuel Hessenberger
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| | - Cornelia Ablinger
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clarissa Eibl
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| | - Ruslan Stanika
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gerald J. Obermair
- Division of Physiology, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (S.H.)
| |
Collapse
|
7
|
Wan D, Lu T, Li C, Hu C. Glucocorticoids Rapidly Modulate Ca V1.2-Mediated Calcium Signals through Kv2.1 Channel Clusters in Hippocampal Neurons. J Neurosci 2024; 44:e0179242024. [PMID: 39299804 PMCID: PMC11551909 DOI: 10.1523/jneurosci.0179-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/15/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
The precise regulation of Ca2+ signals plays a crucial role in the physiological functions of neurons. Here, we investigated the rapid effect of glucocorticoids on Ca2+ signals in cultured hippocampal neurons from both female and male rats. In cultured hippocampal neurons, glucocorticoids inhibited the spontaneous somatic Ca2+ spikes generated by Kv2.1-organized Ca2+ microdomains. Furthermore, glucocorticoids rapidly reduced the cell surface expressions of Kv2.1 and CaV1.2 channels in hippocampal neurons. In HEK293 cells transfected with Kv2.1 alone, glucocorticoids significantly reduced the surface expression of Kv2.1 with little effect on K+ currents. In HEK293 cells transfected with CaV1.2 alone, glucocorticoids inhibited CaV1.2 currents but had no effect on the cell surface expression of CaV1.2. Notably, in the presence of wild-type Kv2.1, glucocorticoids caused a decrease in the surface expression of CaV1.2 channels in HEK293 cells. However, this effect was not observed in the presence of nonclustering Kv2.1S586A mutant channels. Live-cell imaging showed that glucocorticoids rapidly decreased Kv2.1 clusters on the plasma membrane. Correspondingly, Western blot results indicated a significant increase in the cytoplasmic level of Kv2.1, suggesting the endocytosis of Kv2.1 clusters. Glucocorticoids rapidly decreased the intracellular cAMP concentration and the phosphorylation level of PKA in hippocampal neurons. The PKA inhibitor H89 mimicked the effect of glucocorticoids on Kv2.1, while the PKA agonist forskolin abrogated the effect. In conclusion, glucocorticoids rapidly suppress CaV1.2-mediated Ca2+ signals in hippocampal neurons by promoting the endocytosis of Kv2.1 channel clusters through reducing PKA activity.
Collapse
Affiliation(s)
- Di Wan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Tongchuang Lu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Chenyang Li
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| | - Changlong Hu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, P.R.China,
- International Human Phenome Institute (Shanghai), Shanghai 200433, P.R.China
| |
Collapse
|
8
|
Loganathan S, Menegaz D, Delling JP, Eder M, Deussing JM. Cacna1c deficiency in forebrain glutamatergic neurons alters behavior and hippocampal plasticity in female mice. Transl Psychiatry 2024; 14:421. [PMID: 39370418 PMCID: PMC11456591 DOI: 10.1038/s41398-024-03140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024] Open
Abstract
CACNA1C, coding for the α1 subunit of L-type voltage-gated calcium channel (LTCC) Cav1.2, has been associated with multiple psychiatric disorders. Clinical studies have revealed alterations in behavior as well as in brain structure and function in CACNA1C risk allele carriers. These findings are supported by rodent models of Cav1.2 deficiency, which showed increased anxiety, cognitive and social impairments as well as a shift towards active stress-coping strategies. These behavioral alterations were accompanied by functional deficits, such as reduced long-term potentiation (LTP) and an excitation/inhibition (E/I) imbalance. However, these preclinical studies are largely limited to male rodents, with few studies exploring sex-specific effects. Here, we investigated the effects of Cav1.2 deficiency in forebrain glutamatergic neurons in female conditional knockout (CKO) mice. CKO mice exhibited hyperlocomotion in a novel environment, increased anxiety-related behavior, cognitive deficits, and increased active stress-coping behavior. These behavioral alterations were neither influenced by the stage of the estrous cycle nor by the Nex/Neurod6 haploinsufficiency or Cre expression, which are intrinsically tied to the utilization of the Nex-Cre driver line for conditional inactivation of Cacna1c. In the hippocampus, Cav1.2 inactivation enhanced presynaptic paired-pulse facilitation without altering postsynaptic LTP at CA3-CA1 synapses. In addition, CA1 pyramidal neurons of female CKO mice displayed a reduction in dendritic complexity and spine density. Taken together, our findings extend the existing knowledge suggesting Cav1.2-dependent structural and functional alterations as possible mechanisms for the behavioral alterations observed in female Cav1.2-Nex mice.
Collapse
Affiliation(s)
- Srivaishnavi Loganathan
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Danusa Menegaz
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan Philipp Delling
- Research Group Neural Dynamics and Behavior, Max Planck Institute of Psychiatry, Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
9
|
Geisler SM, Ottaviani MM, Jacobo-Piqueras N, Theiner T, Mastrolia V, Guarina L, Ebner K, Obermair GJ, Carbone E, Tuluc P. Deletion of the α 2δ-1 calcium channel subunit increases excitability of mouse chromaffin cells. J Physiol 2024; 602:3793-3814. [PMID: 39004870 DOI: 10.1113/jp285681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
High voltage-gated Ca2+ channels (HVCCs) shape the electrical activity and control hormone release in most endocrine cells. HVCCs are multi-subunit protein complexes formed by the pore-forming α1 and the auxiliary β, α2δ and γ subunits. Four genes code for the α2δ isoforms. At the mRNA level, mouse chromaffin cells (MCCs) express predominantly the CACNA2D1 gene coding for the α2δ-1 isoform. Here we show that α2δ-1 deletion led to ∼60% reduced HVCC Ca2+ influx with slower inactivation kinetics. Pharmacological dissection showed that HVCC composition remained similar in α2δ-1-/- MCCs compared to wild-type (WT), demonstrating that α2δ-1 exerts similar functional effects on all HVCC isoforms. Consistent with reduced HVCC Ca2+ influx, α2δ-1-/- MCCs showed reduced spontaneous electrical activity with action potentials (APs) having a shorter half-maximal duration caused by faster rising and decay slopes. However, the induced electrical activity showed opposite effects with α2δ-1-/- MCCs displaying significantly higher AP frequency in the tonic firing mode as well as an increase in the number of cells firing AP bursts compared to WT. This gain-of-function phenotype was caused by reduced functional activation of Ca2+-dependent K+ currents. Additionally, despite the reduced HVCC Ca2+ influx, the intracellular Ca2+ transients and vesicle exocytosis or endocytosis were unaltered in α2δ-1-/- MCCs compared to WT during sustained stimulation. In conclusion, our study shows that α2δ-1 genetic deletion reduces Ca2+ influx in cultured MCCs but leads to a paradoxical increase in catecholamine secretion due to increased excitability. KEY POINTS: Deletion of the α2δ-1 high voltage-gated Ca2+ channel (HVCC) subunit reduces mouse chromaffin cell (MCC) Ca2+ influx by ∼60% but causes a paradoxical increase in induced excitability. MCC intracellular Ca2+ transients are unaffected by the reduced HVCC Ca2+ influx. Deletion of α2δ-1 reduces the immediately releasable pool vesicle exocytosis but has no effect on catecholamine (CA) release in response to sustained stimuli. The increased electrical activity and CA release from MCCs might contribute to the previously reported cardiovascular phenotype of patients carrying α2δ-1 loss-of-function mutations.
Collapse
Affiliation(s)
- Stefanie M Geisler
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Matteo M Ottaviani
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Noelia Jacobo-Piqueras
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Tamara Theiner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Vincenzo Mastrolia
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Laura Guarina
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Gerald J Obermair
- Division of Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of Torino, Torino, Italy
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Ezell KM, Tinker RJ, Furuta Y, Gulsevin A, Bastarache L, Hamid R, Cogan JD, Rives L, Neumann S, Corner B, Kozuria M, Phillips JA, Undiagnosed Diseases Network. Undiagnosed Disease Network collaborative approach in diagnosing rare disease in a patient with a mosaic CACNA1D variant. Am J Med Genet A 2024; 194:e63597. [PMID: 38511854 PMCID: PMC11161305 DOI: 10.1002/ajmg.a.63597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
The Undiagnosed Disease Network (UDN) is comprised of clinical and research experts collaborating to diagnose rare disease. The UDN is funded by the National Institutes of Health and includes 12 different clinical sites (About Us, 2022). Here we highlight the success of collaborative efforts within the UDN Clinical Site at Vanderbilt University Medical Center (VUMC) in utilizing a cohort of experts in bioinformatics, structural biology, and genetics specialists in diagnosing rare disease. Our UDN team identified a de novo mosaic CACNA1D variant c.2299T>C in a 5-year-old female with a history of global developmental delay, dystonia, dyskinesis, and seizures. Using a collaborative multidisciplinary approach, our VUMC UDN team diagnosed the participant with Primary Aldosteronism, Seizures, and Neurologic abnormalities (PASNA) OMIM: 615474 due to a rare mosaic CACNA1D variant (O'Neill, 2013). Interestingly, this patient was mosaic, a phenotypic trait previously unreported in PASNA cases. This report highlights the importance of a multidisciplinary approach in diagnosing rare disease.
Collapse
Affiliation(s)
- Kimberly M. Ezell
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rory J. Tinker
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yutaka Furuta
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Alican Gulsevin
- Department of Chemistry, Center for Structural Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Butler University, Indianapolis, Indiana, USA
| | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rizwan Hamid
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joy D. Cogan
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Lynette Rives
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Serena Neumann
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brian Corner
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mary Kozuria
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A. Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | |
Collapse
|
11
|
Chen K, Forrest AM, Burgos GG, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng 2024; 21:10.1088/1741-2552/ad5049. [PMID: 38788704 PMCID: PMC11948186 DOI: 10.1088/1741-2552/ad5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective.This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near chronically implanted microelectrodes. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how the FBR affects the functional stability of neural circuits near implanted brain-computer interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders.Approach.This study utilized single-shank, 16-channel,100µm site-spacing Michigan-style microelectrodes (3 mm length, 703µm2 site area) that span all cortical layers and the hippocampal CA1 region. Sex balanced C57BL6 wildtype mice (11-13 weeks old) received perpendicularly implanted microelectrode in left primary visual cortex. Electrophysiological recordings were performed during both spontaneous activity and visual sensory stimulation. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of local field potential (LFP) and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation.Main results. The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations.Significance. This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Adam M Forrest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
12
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 PMCID: PMC9980663 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
13
|
Dhyani V, George K, Gare S, Venkatesh KV, Mitra K, Giri L. A computational model to uncover the biophysical underpinnings of neural firing heterogeneity in dissociated hippocampal cultures. Hippocampus 2023; 33:1208-1227. [PMID: 37705290 DOI: 10.1002/hipo.23575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Calcium (Ca2+ ) imaging reveals a variety of correlated firing in cultures of dissociated hippocampal neurons, pinpointing the non-synaptic paracrine release of glutamate as a possible mediator for such firing patterns, although the biophysical underpinnings remain unknown. An intriguing possibility is that extracellular glutamate could bind metabotropic receptors linked with inositol trisphosphate (IP3 ) mediated release of Ca2+ from the endoplasmic reticulum of individual neurons, thereby modulating neural activity in combination with sarco/endoplasmic reticulum Ca2+ transport ATPase (SERCA) and voltage-gated Ca2+ channels (VGCC). However, the possibility that such release may occur in different neuronal compartments and can be inherently stochastic poses challenges in the characterization of such interplay between various Ca2+ channels. Here we deploy biophysical modeling in association with Monte Carlo parameter sampling to characterize such interplay and successfully predict experimentally observed Ca2+ patterns. The results show that the neurotransmitter level at the plasma membrane is the extrinsic source of heterogeneity in somatic Ca2+ transients. Our analysis, in particular, identifies the origin of such heterogeneity to an intrinsic differentiation of hippocampal neurons in terms of multiple cellular properties pertaining to intracellular Ca2+ signaling, such as VGCC, IP3 receptor, and SERCA expression. In the future, the biophysical model and parameter estimation approach used in this study can be upgraded to predict the response of a system of interconnected neurons.
Collapse
Affiliation(s)
- Vaibhav Dhyani
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
- Optical Science Centre, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Kevin George
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Suman Gare
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, India
| | - Kishalay Mitra
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Lopamudra Giri
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
14
|
Samhan-Arias AK, Poejo J, Marques-da-Silva D, Martínez-Costa OH, Gutierrez-Merino C. Hexa-Histidine, a Peptide with Versatile Applications in the Study of Amyloid-β(1-42) Molecular Mechanisms of Action. Molecules 2023; 28:7138. [PMID: 38067638 PMCID: PMC10708093 DOI: 10.3390/molecules28237909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 12/18/2023] Open
Abstract
Amyloid β (Aβ) oligomers are the most neurotoxic forms of Aβ, and Aβ(1-42) is the prevalent Aβ peptide found in the amyloid plaques of Alzheimer's disease patients. Aβ(25-35) is the shortest peptide that retains the toxicity of Aβ(1-42). Aβ oligomers bind to calmodulin (CaM) and calbindin-D28k with dissociation constants in the nanomolar Aβ(1-42) concentration range. Aβ and histidine-rich proteins have a high affinity for transition metal ions Cu2+, Fe3+ and Zn2+. In this work, we show that the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 can be used to monitor hexa-histidine peptide (His6) interaction with Aβ(1-42). The formation of His6/Aβ(1-42) complexes is also supported by docking results yielded by the MDockPeP Server. Also, we found that micromolar concentrations of His6 block the increase in the fluorescence of Aβ(1-42) HiLyteTM-Fluor555 produced by its interaction with the proteins CaM and calbindin-D28k. In addition, we found that the His6-tag provides a high-affinity site for the binding of Aβ(1-42) and Aβ(25-35) peptides to the human recombinant cytochrome b5 reductase, and sensitizes this enzyme to inhibition by these peptides. In conclusion, our results suggest that a His6-tag could provide a valuable new tool to experimentally direct the action of neurotoxic Aβ peptides toward selected cellular targets.
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| | - Dorinda Marques-da-Silva
- LSRE—Laboratory of Separation and Reaction Engineering and LCM—Laboratory of Catalysis and Materials, School of Management and Technology, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Sols-Morreale’ (CSIC-UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
15
|
Seitter H, Obkircher J, Grabher P, Hartl J, Zanetti L, Lux UT, Fotakis G, Fernández-Quintero ML, Kaserer T, Koschak A. A novel calcium channel Cavβ 2 splice variant with unique properties predominates in the retina. J Biol Chem 2023; 299:102972. [PMID: 36738788 PMCID: PMC10074810 DOI: 10.1016/j.jbc.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cavβ subunits are essential for surface expression of voltage-gated calcium channel complexes and crucially modulate biophysical properties like voltage-dependent inactivation. Here, we describe the discovery and characterization of a novel Cavβ2 variant with distinct features that predominates in the retina. We determined spliced exons in retinal transcripts of the Cacnb2 gene, coding for Cavβ2, by RNA-Seq data analysis and quantitative PCR. We cloned a novel Cavβ2 splice variant from mouse retina, which we are calling β2i, and investigated biophysical properties of calcium currents with this variant in a heterologous expression system as well as its intrinsic membrane interaction when expressed alone. Our data showed that β2i predominated in the retina with expression in photoreceptors and bipolar cells. Furthermore, we observed that the β2i N-terminus exhibited an extraordinary concentration of hydrophobic residues, a distinct feature not seen in canonical variants. The biophysical properties resembled known membrane-associated variants, and β2i exhibited both a strong membrane association and a propensity for clustering, which depended on hydrophobic residues in its N-terminus. We considered available Cavβ structure data to elucidate potential mechanisms underlying the observed characteristics but resolved N-terminus structures were lacking and thus, precluded clear conclusions. With this description of a novel N-terminus variant of Cavβ2, we expand the scope of functional variation through N-terminal splicing with a distinct form of membrane attachment. Further investigation of the molecular mechanisms underlying the features of β2i could provide new angles on the way Cavβ subunits modulate Ca2+ channels at the plasma membrane.
Collapse
Affiliation(s)
- Hartwig Seitter
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| | - Jana Obkircher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Patricia Grabher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Julia Hartl
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Lucia Zanetti
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Uwe Thorsten Lux
- Department of Biology, Animal Physiology/Neurobiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Georgios Fotakis
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Teresa Kaserer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Alexandra Koschak
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
16
|
Leyva-Leyva M, Sandoval A, Morales-Lázaro SL, Corzo-López A, Felix R, González-Ramírez R. Identification of Dp140 and α1-syntrophin as novel molecular interactors of the neuronal Ca V2.1 channel. Pflugers Arch 2023; 475:595-606. [PMID: 36964781 DOI: 10.1007/s00424-023-02803-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 03/26/2023]
Abstract
The primary function of dystrophin is to form a link between the cytoskeleton and the extracellular matrix. In addition to this crucial structural function, dystrophin also plays an essential role in clustering and organizing several signaling proteins, including ion channels. Proteomic analysis of the whole rodent brain has stressed the role of some components of the dystrophin-associated glycoprotein complex (DGC) as potential interacting proteins of the voltage-gated Ca2+ channels of the CaV2 subfamily. The interaction of CaV2 with signaling and scaffolding proteins, such as the DGC components, may influence their function, stability, and location in neurons. This work aims to study the interaction between dystrophin and CaV2.1. Our immunoprecipitation data showed the presence of a complex formed by CaV2.1, CaVα2δ-1, CaVβ4e, Dp140, and α1-syntrophin in the brain. Furthermore, proximity ligation assays (PLA) showed that CaV2.1 and CaVα2δ-1 interact with dystrophin in the hippocampus and cerebellum. Notably, Dp140 and α1-syntrophin increase CaV2.1 protein stability, half-life, permanence in the plasma membrane, and current density through recombinant CaV2.1 channels. Therefore, we have identified the Dp140 and α1-syntrophin as novel interaction partners of CaV2.1 channels in the mammalian brain. Consistent with previous findings, our work provides evidence of the role of DGC in anchoring and clustering CaV channels in a macromolecular complex.
Collapse
Affiliation(s)
- Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, México
| | - Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of México (UNAM), Tlalnepantla, Mexico
| | - Sara Luz Morales-Lázaro
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de Mexico, México
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico.
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico.
| |
Collapse
|
17
|
Rinné S, Stallmeyer B, Pinggera A, Netter MF, Matschke LA, Dittmann S, Kirchhefer U, Neudorf U, Opp J, Striessnig J, Decher N, Schulze-Bahr E. Whole Exome Sequencing Identifies a Heterozygous Variant in the Cav1.3 Gene CACNA1D Associated with Familial Sinus Node Dysfunction and Focal Idiopathic Epilepsy. Int J Mol Sci 2022; 23:14215. [PMID: 36430690 PMCID: PMC9693521 DOI: 10.3390/ijms232214215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in CACNA1D encoding the Cav1.3 α1-subunit are described in congenital sinus node dysfunction and deafness. In addition, germline mutations in CACNA1D have been linked to neurodevelopmental syndromes including epileptic seizures, autism, intellectual disability and primary hyperaldosteronism. Here, a three-generation family with a syndromal phenotype of sinus node dysfunction, idiopathic epilepsy and attention deficit hyperactivity disorder (ADHD) is investigated. Whole genome sequencing and functional heterologous expression studies were used to identify the disease-causing mechanisms in this novel syndromal disorder. We identified a heterozygous non-synonymous variant (p.Arg930His) in the CACNA1D gene that cosegregated with the combined clinical phenotype in an autosomal dominant manner. Functional heterologous expression studies showed that the CACNA1D variant induces isoform-specific alterations of Cav1.3 channel gating: a gain of ion channel function was observed in the brain-specific short CACNA1D isoform (Cav1.3S), whereas a loss of ion channel function was seen in the long (Cav1.3L) isoform. The combined gain-of-function (GOF) and loss-of-function (LOF) induced by the R930H variant are likely to be associated with the rare combined clinical and syndromal phenotypes in the family. The GOF in the Cav1.3S variant with high neuronal expression is likely to result in epilepsy, whereas the LOF in the long Cav1.3L variant results in sinus node dysfunction.
Collapse
Affiliation(s)
- Susanne Rinné
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster, 48149 Muenster, Germany
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Michael F. Netter
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Lina A. Matschke
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Sven Dittmann
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster, 48149 Muenster, Germany
| | - Uwe Kirchhefer
- Institute of Pharmacology and Toxicology, University Hospital Muenster, 48149 Muenster, Germany
| | - Ulrich Neudorf
- Zentrum für Kinder-und Jugendmedizin, Klinik für Kinderheilkunde III-Bereich Kardiologie, University Hospital Essen, 45147 Essen, Germany
| | - Joachim Opp
- Ev. Krankenhaus Oberhausen, 46047 Oberhausen, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, 6020 Innsbruck, Austria
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, University of Marburg, 35037 Marburg, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
18
|
Tau isoform-specific enhancement of L-type calcium current and augmentation of afterhyperpolarization in rat hippocampal neurons. Sci Rep 2022; 12:15231. [PMID: 36075936 PMCID: PMC9458744 DOI: 10.1038/s41598-022-18648-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Accumulation of tau is observed in dementia, with human tau displaying 6 isoforms grouped by whether they display either 3 or 4 C-terminal repeat domains (3R or 4R) and exhibit no (0N), one (1N) or two (2N) N terminal repeats. Overexpression of 4R0N-tau in rat hippocampal slices enhanced the L-type calcium (Ca2+) current-dependent components of the medium and slow afterhyperpolarizations (AHPs). Overexpression of both 4R0N-tau and 4R2N-tau augmented CaV1.2-mediated L-type currents when expressed in tsA-201 cells, an effect not observed with the third 4R isoform, 4R1N-tau. Current enhancement was only observed when the pore-forming subunit was co-expressed with CaVβ3 and not CaVβ2a subunits. Non-stationary noise analysis indicated that enhanced Ca2+ channel current arose from a larger number of functional channels. 4R0N-tau and CaVβ3 were found to be physically associated by co-immunoprecipitation. In contrast, the 4R1N-tau isoform that did not augment expressed macroscopic L-type Ca2+ current exhibited greatly reduced binding to CaVβ3. These data suggest that physical association between tau and the CaVβ3 subunit stabilises functional L-type channels in the membrane, increasing channel number and Ca2+ influx. Enhancing the Ca2+-dependent component of AHPs would produce cognitive impairment that underlie those seen in the early phases of tauopathies.
Collapse
|
19
|
Ablinger C, Eibl C, Geisler SM, Campiglio M, Stephens GJ, Missler M, Obermair GJ. α 2δ-4 and Cachd1 Proteins Are Regulators of Presynaptic Functions. Int J Mol Sci 2022; 23:9885. [PMID: 36077281 PMCID: PMC9456004 DOI: 10.3390/ijms23179885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The α2δ auxiliary subunits of voltage-gated calcium channels (VGCC) were traditionally regarded as modulators of biophysical channel properties. In recent years, channel-independent functions of these subunits, such as involvement in synapse formation, have been identified. In the central nervous system, α2δ isoforms 1, 2, and 3 are strongly expressed, regulating glutamatergic synapse formation by a presynaptic mechanism. Although the α2δ-4 isoform is predominantly found in the retina with very little expression in the brain, it was recently linked to brain functions. In contrast, Cachd1, a novel α2δ-like protein, shows strong expression in brain, but its function in neurons is not yet known. Therefore, we aimed to investigate the presynaptic functions of α2δ-4 and Cachd1 by expressing individual proteins in cultured hippocampal neurons. Both α2δ-4 and Cachd1 are expressed in the presynaptic membrane and could rescue a severe synaptic defect present in triple knockout/knockdown neurons that lacked the α2δ-1-3 isoforms (α2δ TKO/KD). This observation suggests that presynaptic localization and the regulation of synapse formation in glutamatergic neurons is a general feature of α2δ proteins. In contrast to this redundant presynaptic function, α2δ-4 and Cachd1 differentially regulate the abundance of presynaptic calcium channels and the amplitude of presynaptic calcium transients. These functional differences may be caused by subtle isoform-specific differences in α1-α2δ protein-protein interactions, as revealed by structural homology modelling. Taken together, our study identifies both α2δ-4 and Cachd1 as presynaptic regulators of synapse formation, differentiation, and calcium channel functions that can at least partially compensate for the loss of α2δ-1-3. Moreover, we show that regulating glutamatergic synapse formation and differentiation is a critical and surprisingly redundant function of α2δ and Cachd1.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Clarissa Eibl
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Stefanie M. Geisler
- Department Pharmacology and Toxicology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Gary J. Stephens
- Reading School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Division Physiology, Department of Pharmacology, Physiology and Microbiology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| |
Collapse
|
20
|
Dahimene S, von Elsner L, Holling T, Mattas LS, Pickard J, Lessel D, Pilch KS, Kadurin I, Pratt WS, Zhulin IB, Dai H, Hempel M, Ruzhnikov MRZ, Kutsche K, Dolphin AC. Biallelic CACNA2D1 loss-of-function variants cause early-onset developmental epileptic encephalopathy. Brain 2022; 145:2721-2729. [PMID: 35293990 PMCID: PMC9420018 DOI: 10.1093/brain/awac081] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/26/2022] [Accepted: 02/13/2022] [Indexed: 11/14/2022] Open
Abstract
Voltage-gated calcium (CaV) channels form three subfamilies (CaV1-3). The CaV1 and CaV2 channels are heteromeric, consisting of an α1 pore-forming subunit, associated with auxiliary CaVβ and α2δ subunits. The α2δ subunits are encoded in mammals by four genes, CACNA2D1-4. They play important roles in trafficking and function of the CaV channel complexes. Here we report biallelic variants in CACNA2D1, encoding the α2δ-1 protein, in two unrelated individuals showing a developmental and epileptic encephalopathy. Patient 1 has a homozygous frameshift variant c.818_821dup/p.(Ser275Asnfs*13) resulting in nonsense-mediated mRNA decay of the CACNA2D1 transcripts, and absence of α2δ-1 protein detected in patient-derived fibroblasts. Patient 2 is compound heterozygous for an early frameshift variant c.13_23dup/p.(Leu9Alafs*5), highly probably representing a null allele and a missense variant c.626G>A/p.(Gly209Asp). Our functional studies show that this amino-acid change severely impairs the function of α2δ-1 as a calcium channel subunit, with strongly reduced trafficking of α2δ-1G209D to the cell surface and a complete inability of α2δ-1G209D to increase the trafficking and function of CaV2 channels. Thus, biallelic loss-of-function variants in CACNA2D1 underlie the severe neurodevelopmental disorder in these two patients. Our results demonstrate the critical importance and non-interchangeability of α2δ-1 and other α2δ proteins for normal human neuronal development.
Collapse
Affiliation(s)
- Shehrazade Dahimene
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lauren S Mattas
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, Stanford University and Lucile Packard Children's Hospital, Palo Alto, CA 94304, USA
| | - Jess Pickard
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kjara S Pilch
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK
| | - Ivan Kadurin
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK
| | - Igor B Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine/NGS-Molecular, Baylor Genetics, Houston, TX, USA
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maura R Z Ruzhnikov
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, Stanford University and Lucile Packard Children's Hospital, Palo Alto, CA 94304, USA
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annette C Dolphin
- Department of Neuroscience Physiology and Pharmacology, University College London (UCL), London WC1E 6BT, UK
| |
Collapse
|
21
|
Siller A, Hofer NT, Tomagra G, Burkert N, Hess S, Benkert J, Gaifullina A, Spaich D, Duda J, Poetschke C, Vilusic K, Fritz EM, Schneider T, Kloppenburg P, Liss B, Carabelli V, Carbone E, Ortner NJ, Striessnig J. β2-subunit alternative splicing stabilizes Cav2.3 Ca 2+ channel activity during continuous midbrain dopamine neuron-like activity. eLife 2022; 11:e67464. [PMID: 35792082 PMCID: PMC9307272 DOI: 10.7554/elife.67464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
In dopaminergic (DA) Substantia nigra (SN) neurons Cav2.3 R-type Ca2+-currents contribute to somatodendritic Ca2+-oscillations. This activity may contribute to the selective degeneration of these neurons in Parkinson's disease (PD) since Cav2.3-knockout is neuroprotective in a PD mouse model. Here, we show that in tsA-201-cells the membrane-anchored β2-splice variants β2a and β2e are required to stabilize Cav2.3 gating properties allowing sustained Cav2.3 availability during simulated pacemaking and enhanced Ca2+-currents during bursts. We confirmed the expression of β2a- and β2e-subunit transcripts in the mouse SN and in identified SN DA neurons. Patch-clamp recordings of mouse DA midbrain neurons in culture and SN DA neurons in brain slices revealed SNX-482-sensitive R-type Ca2+-currents with voltage-dependent gating properties that suggest modulation by β2a- and/or β2e-subunits. Thus, β-subunit alternative splicing may prevent a fraction of Cav2.3 channels from inactivation in continuously active, highly vulnerable SN DA neurons, thereby also supporting Ca2+ signals contributing to the (patho)physiological role of Cav2.3 channels in PD.
Collapse
Affiliation(s)
- Anita Siller
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Giulia Tomagra
- Department of Drug Science, NIS Centre, University of TorinoTorinoItaly
| | - Nicole Burkert
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Simon Hess
- Institute for Zoology, Biocenter, University of CologneCologneGermany
| | - Julia Benkert
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Aisylu Gaifullina
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Desiree Spaich
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | - Johanna Duda
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
| | | | - Kristina Vilusic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Eva Maria Fritz
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Toni Schneider
- Institute of Neurophysiology, University of CologneCologneGermany
| | - Peter Kloppenburg
- Institute for Zoology, Biocenter, University of CologneCologneGermany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, Ulm, GermanyUlmGermany
- Linacre College & New College, University of OxfordOxfordUnited Kingdom
| | | | - Emilio Carbone
- Department of Drug Science, NIS Centre, University of TorinoTorinoItaly
| | - Nadine Jasmin Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of InnsbruckInnsbruckAustria
| |
Collapse
|
22
|
Li Y, Chen W, Deng H, Li T, Liu Z, Liu X, Zhang Z, Chen X, Sheng J, Li K. TGF-β1 Protects Trauma-injured Murine Cortical Neurons by Upregulating L-type Calcium Channel Ca v1.2 via the p38 Pathway. Neuroscience 2022; 492:47-57. [PMID: 35460836 DOI: 10.1016/j.neuroscience.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability and death in adolescents, and there is a lack of effective methods of treatment. The neuroprotective effects exerted by TGF-β1 can ameliorate a range of neuronal lesions in multiple central nervous system diseases. In this study, we used an in-vitro TBI model of mechanical injury on murine primary cortical neurons and the neuro-2a cell line to investigate the neuroprotective role played by TGF-β1 in cortical neurons in TBI. Our results showed that TGF-β1 significantly increased neuronal viability and inhibited apoptosis for 24 h after trauma. The expression of Cav1.2, an L-type calcium channel (LTCC) isoform, decreased significantly after trauma injury, and this change was reversed by TGF-β1. Nimodipine, a classic LTCC blocker, abolished the protective effect of TGF-β1 on trauma-induced neuronal apoptosis. The knockdown of Cav1.2 in differentiated neuro-2a cells significantly inhibited the anti-apoptosis effect of TGF-β1 exerted on injured neuro-2a cells. Moreover, TGF-β1 rescued and enhanced the trauma-suppressed neuro-2a intracellular Ca2+ concentration, while the effect of TGF-β1 was partially inhibited by nimodipine. TGF-β1 significantly upregulated the expression of Cav1.2 by activating the p38 MAPK pathway and by inhibiting trauma-induced neuronal apoptosis. In conclusion, TGF-β1 increased trauma-injured murine cortical neuronal activity and inhibited apoptosis by upregulating Cav1.2 channels via activating the p38 MAPK pathway. Therefore, the TGF-β1/p38 MAPK/Cav 1.2 pathway has the potential to be used as a novel therapeutic target for TBI.
Collapse
Affiliation(s)
- Yanlei Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huixiong Deng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Tian Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zhenning Liu
- Department of Laboratory, Guangzhou Chest Hospital, China
| | - Xueer Liu
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| | - Kangsheng Li
- Department of Microbiology and Immunology, Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
23
|
Nimodipine Exerts Beneficial Effects on the Rat Oligodendrocyte Cell Line OLN-93. Brain Sci 2022; 12:brainsci12040476. [PMID: 35448007 PMCID: PMC9029615 DOI: 10.3390/brainsci12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.
Collapse
|
24
|
Klomp A, Omichi R, Iwasa Y, Smith RJ, Usachev YM, Russo AF, Narayanan NS, Lee A. The voltage-gated Ca2+ channel subunit α2δ-4 regulates locomotor behavior and sensorimotor gating in mice. PLoS One 2022; 17:e0263197. [PMID: 35353835 PMCID: PMC8967030 DOI: 10.1371/journal.pone.0263197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated Ca2+ channels are critical for the development and mature function of the nervous system. Variants in the CACNA2D4 gene encoding the α2δ-4 auxiliary subunit of these channels are associated with neuropsychiatric and neurodevelopmental disorders. α2δ-4 is prominently expressed in the retina and is crucial for vision, but extra-retinal functions of α2δ-4 have not been investigated. Here, we sought to fill this gap by analyzing the behavioral phenotypes of α2δ-4 knockout (KO) mice. α2δ-4 KO mice (both males and females) exhibited significant impairments in prepulse inhibition that were unlikely to result from the modestly elevated auditory brainstem response thresholds. Whereas α2δ-4 KO mice of both sexes were hyperactive in various assays, only females showed impaired motor coordination in the rotarod assay. α2δ-4 KO mice exhibited anxiolytic and anti-depressive behaviors in the elevated plus maze and tail suspension tests, respectively. Our results reveal an unexpected role for α2δ-4 in sensorimotor gating and motor function and identify α2δ-4 KO mice as a novel model for studying the pathophysiology associated with CACNA2D4 variants.
Collapse
Affiliation(s)
- Annette Klomp
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ryotaro Omichi
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Yoichiro Iwasa
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Richard J. Smith
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Yuriy M. Usachev
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Andrew F. Russo
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nandakumar S. Narayanan
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
| | - Amy Lee
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, United States of America
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, United States of America
- Department of Neurology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
25
|
Naseer MI, Abdulkareem AA, Rasool M, Algahtani H, Muthaffar OY, Pushparaj PN. Whole-Exome Sequencing Identifies Novel SCN1A and CACNB4 Genes Mutations in the Cohort of Saudi Patients With Epilepsy. Front Pediatr 2022; 10:919996. [PMID: 35813387 PMCID: PMC9257097 DOI: 10.3389/fped.2022.919996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/25/2022] [Indexed: 12/14/2022] Open
Abstract
Epilepsy is a neurological disorder described as recurrent seizures mild to severe convulsions along with conscious loss. There are many different genetic anomalies or non-genetic conditions that affect the brain and cause epilepsy. The exact cause of epilepsy is unknown so far. In this study, whole-exome sequencing showed a family having novel missense variant c.1603C>T, p. Arg535Cys in exon 10 of Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) gene. Moreover, targeted Sanger sequencing analysis showed c.1212A>G p.Val404Ile in SCN1A gene in 10 unrelated patients and a mutation in Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 gene where one base pair insertion of "G" c.78_79insG, p.Asp27Glyfs*26 in the exon 3 in three different patients were observed from the cohort of 25 epileptic sporadic cases. The insertion changes the amino acid sequence leading to a frameshift mutation. Here, we have described, for the first time, three novel mutations that may be associated with epilepsy in the Saudi population. The study not only help us to identify the exact cause of genetic variations causing epilepsy whereas but it would also eventually enable us to establish a database to provide a foundation for understanding the critical genomic regions to control epilepsy in Saudi patients.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hussein Algahtani
- King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Osama Yousef Muthaffar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Heck J, Palmeira Do Amaral AC, Weißbach S, El Khallouqi A, Bikbaev A, Heine M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels (Austin) 2021; 15:322-338. [PMID: 34107849 PMCID: PMC8205089 DOI: 10.1080/19336950.2021.1900024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners and recent progress in omics technologies have extended the actual concept of these molecules. With this review, we want to illustrate some new perspectives of VGCCs reaching beyond their function as calcium-permeable pores in the plasma membrane. Therefore, we will discuss the relevance of VGCCs as voltage sensors in functional complexes with ryanodine receptors, channel-independent actions of auxiliary VGCC subunits, and provide an insight into how VGCCs even directly participate in gene regulation. Furthermore, we will illustrate how structural changes in the intracellular C-terminus of VGCCs generated by alternative splicing events might not only affect the biophysical channel characteristics but rather determine their molecular environment and downstream signaling pathways.
Collapse
Affiliation(s)
- Jennifer Heck
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Ana Carolina Palmeira Do Amaral
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Stephan Weißbach
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
- Computational Genomics and Bioinformatics, Johannes Gutenberg-University Mainz, University Medical Center Mainz, Institute for Human Genetics, Mainz, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Arthur Bikbaev
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Martin Heine
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| |
Collapse
|
27
|
Hofer NT, Pinggera A, Nikonishyna YV, Tuluc P, Fritz EM, Obermair GJ, Striessnig J. Stabilization of negative activation voltages of Cav1.3 L-Type Ca 2+-channels by alternative splicing. Channels (Austin) 2021; 15:38-52. [PMID: 33380256 PMCID: PMC7781618 DOI: 10.1080/19336950.2020.1859260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 11/30/2022] Open
Abstract
-->Low voltage-activated Cav1.3 L-type Ca2+-channels are key regulators of neuronal excitability controlling neuronal development and different types of learning and memory. Their physiological functions are enabled by their negative activation voltage-range, which allows Cav1.3 to be active at subthreshold voltages. Alternative splicing in the C-terminus of their pore-forming α1-subunits gives rise to C-terminal long (Cav1.3L) and short (Cav1.3S) splice variants allowing Cav1.3S to activate at even more negative voltages than Cav1.3L. We discovered that inclusion of exons 8b, 11, and 32 in Cav1.3S further shifts activation (-3 to -4 mV) and inactivation (-4 to -6 mV) to more negative voltages as revealed by functional characterization in tsA-201 cells. We found transcripts of these exons in mouse chromaffin cells, the cochlea, and the brain. Our data further suggest that Cav1.3-containing exons 11 and 32 constitute a significant part of native channels in the brain. We therefore investigated the effect of these splice variants on human disease variants. Splicing did not prevent the gating defects of the previously reported human pathogenic variant S652L, which further shifted the voltage-dependence of activation of exon 11-containing channels by more than -12 mV. In contrast, we found no evidence for gating changes of the CACNA1D missense variant R498L, located in exon 11, which has recently been identified in a patient with an epileptic syndrome. Our data demonstrate that alternative splicing outside the C-terminus involving exons 11 and 32 contributes to channel fine-tuning by stabilizing negative activation and inactivation gating properties of wild-type and mutant Cav1.3 channels.
Collapse
Affiliation(s)
- Nadja T. Hofer
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yuliia V. Nikonishyna
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Eva M. Fritz
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Centre for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
28
|
Chatterjee D, Mahabir S, Chatterjee D, Gerlai R. Lasting effects of mild embryonic ethanol exposure on voltage-gated ion channels in adult zebrafish brain. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110327. [PMID: 33864849 DOI: 10.1016/j.pnpbp.2021.110327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023]
Abstract
The zebrafish is increasingly well utilized in alcohol research, particularly in modeling human fetal alcohol spectrum disorders (FASD). FASD results from alcohol reaching the developing fetus intra utero, a completely preventable yet prevalent and devastating life-long disorder. The hope with animal models, including the zebrafish, is to discover the mechanisms underlying this disease, which may aid treatment and diagnosis. In the past, we developed an embryonic alcohol exposure regimen that is aimed at mimicking the milder, and most prevalent, forms of FASD in zebrafish. We have found numerous lasting alterations in behavior, neurochemistry, neuronal markers and glial cell phenotypes in this zebrafish FASD model. Using the same model (2 h long bath immersion of 24 h post-fertilization old zebrafish eggs into 1% vol/vol ethanol), here we conduct a proof of concept analysis of voltage-gated cation channels, investigating potential embryonic alcohol induced changes in L-, T- and N- type Ca++ and the SCN1A Na+ channels using Western blot followed by immunohistochemical analysis of the same channels in the pallium and cerebellum of the zebrafish brain. We report significant reduction of expression in all four channel proteins using both methods. We conclude that reduced voltage-gated cation channel expression induced by short and low dose exposure to alcohol during embryonic development of zebrafish may contribute to the previously demonstrated lasting behavioral and neurobiological changes.
Collapse
Affiliation(s)
| | - Samantha Mahabir
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada
| | | | - Robert Gerlai
- Department of Psychology, University of Toronto, Mississauga, Ontario, Canada.
| |
Collapse
|
29
|
Perissinotti PP, Martínez-Hernández E, Piedras-Rentería ES. TRPC1/5-Ca V 3 Complex Mediates Leptin-Induced Excitability in Hypothalamic Neurons. Front Neurosci 2021; 15:679078. [PMID: 34177455 PMCID: PMC8226082 DOI: 10.3389/fnins.2021.679078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin regulates hypothalamic POMC+ (pro-opiomelanocortin) neurons by inducing TRPC (Transient Receptor Potential Cation) channel-mediate membrane depolarization. The role of TRPC channels in POMC neuron excitability is clearly established; however, it remains unknown whether their activity alone is sufficient to trigger excitability. Here we show that the right-shift voltage induced by the leptin-induced TRPC channel-mediated depolarization of the resting membrane potential brings T-type channels into the active window current range, resulting in an increase of the steady state T-type calcium current from 40 to 70% resulting in increased intrinsic excitability of POMC neurons. We assessed the role and timing of T-type channels on excitability and leptin-induced depolarization in vitro in cultured mouse POMC neurons. The involvement of TRPC channels in the leptin-induced excitability of POMC neurons was corroborated by using the TRPC channel inhibitor 2APB, which precluded the effect of leptin. We demonstrate T-type currents are indispensable for both processes, as treatment with NNC-55-0396 prevented the membrane depolarization and rheobase changes induced by leptin. Furthermore, co-immunoprecipitation experiments suggest that TRPC1/5 channels and CaV3.1 and CaV3.2 channels co-exist in complex. The functional relevance of this complex was corroborated using intracellular Ca2+ chelators; intracellular BAPTA (but not EGTA) application was sufficient to preclude POMC neuron excitability. However, leptin-induced depolarization still occurred in the presence of either BAPTA or EGTA suggesting that the calcium entry necessary to self-activate the TRPC1/5 complex is not blocked by the presence of BAPTA in hypothalamic neurons. Our study establishes T-type channels as integral part of the signaling cascade induced by leptin, modulating POMC neuron excitability. Leptin activation of TRPC channels existing in a macromolecular complex with T-type channels recruits the latter by locally induced membrane depolarization, further depolarizing POMC neurons, triggering action potentials and excitability.
Collapse
Affiliation(s)
- Paula P Perissinotti
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Elizabeth Martínez-Hernández
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| | - Erika S Piedras-Rentería
- Cell and Molecular Physiology Department and Neuroscience Division of the Cardiovascular Research Institute, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
30
|
Cammalleri M, Amato R, Olivieri M, Pezzino S, Bagnoli P, Dal Monte M, Rusciano D. Effects of Topical Gabapentin on Ocular Pain and Tear Secretion. Front Pharmacol 2021; 12:671238. [PMID: 34163358 PMCID: PMC8216672 DOI: 10.3389/fphar.2021.671238] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Neuropathic ocular pain is a frequent occurrence in medium to severe dry eye disease (DED). Only palliative treatments, such as lubricants and anti-inflammatory drugs, are available to alleviate patients’ discomfort. Anesthetic drugs are not indicated, because they may interfere with the neural feedback between the cornea and the lacrimal gland, impairing tear production and lacrimation. Gabapentin (GBT) is a structural analog of gamma-amino butyric acid that has been used by systemic administration to provide pain relief in glaucomatous patients. We have already shown in a rabbit model system that its topic administration as eye drops has anti-inflammatory properties. We now present data on rabbits’ eyes showing that indeed GBT given topically as eye drops has analgesic but not anesthetic effects. Therefore, opposite to an anesthetic drug such as oxybuprocaine, GBT does not decrease lacrimation, but–unexpectedly–even stimulates it, apparently through the upregulation of acetylcholine and norepinephrine, and by induction of aquaporin 5 (AQP5) expression in the lacrimal gland. Moreover, data obtained in vitro on a primary human corneal epithelial cell line also show direct induction of AQP5 by GBT. This suggests that corneal cells might also contribute to the lacrimal stimulation promoted by GBT and participate with lacrimal glands in the restoration of the tear film, thus reducing friction on the ocular surface, which is a known trigger of ocular pain. In conclusion, GBT is endowed with analgesic, anti-inflammatory and secretagogue properties, all useful to treat neuropathic pain of the ocular surface, especially in case of DED.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
31
|
Tripartite synaptomics: Cell-surface proximity labeling in vivo. Neurosci Res 2021; 173:14-21. [PMID: 34019951 DOI: 10.1016/j.neures.2021.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022]
Abstract
The astrocyte is a central glial cell and plays a critical role in the architecture and activity of neuronal circuits and brain functions through forming a tripartite synapse with neurons. Emerging evidence suggests that dysfunction of tripartite synaptic connections contributes to a variety of psychiatric and neurodevelopmental disorders. Furthermore, recent advancements with transcriptome profiling, cell biological and physiological approaches have provided new insights into the molecular mechanisms into how astrocytes control synaptogenesis in the brain. In addition to these findings, we have recently developed in vivo cell-surface proximity-dependent biotinylation (BioID) approaches, TurboID-surface and Split-TurboID, to comprehensively understand the molecular composition between astrocytes and neuronal synapses. These proteomic approaches have discovered a novel molecular framework for understanding the tripartite synaptic cleft that arbitrates neuronal circuit formation and function. Here, this short review highlights novel in vivo cell-surface BioID approaches and recent advances in this rapidly evolving field, emphasizing how astrocytes regulate excitatory and inhibitory synapse formation in vitro and in vivo.
Collapse
|
32
|
Kessi M, Chen B, Peng J, Yan F, Yang L, Yin F. Calcium channelopathies and intellectual disability: a systematic review. Orphanet J Rare Dis 2021; 16:219. [PMID: 33985586 PMCID: PMC8120735 DOI: 10.1186/s13023-021-01850-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Calcium ions are involved in several human cellular processes including corticogenesis, transcription, and synaptogenesis. Nevertheless, the relationship between calcium channelopathies (CCs) and intellectual disability (ID)/global developmental delay (GDD) has been poorly investigated. We hypothesised that CCs play a major role in the development of ID/GDD and that both gain- and loss-of-function variants of calcium channel genes can induce ID/GDD. As a result, we performed a systematic review to investigate the contribution of CCs, potential mechanisms underlying their involvement in ID/GDD, advancements in cell and animal models, treatments, brain anomalies in patients with CCs, and the existing gaps in the knowledge. We performed a systematic search in PubMed, Embase, ClinVar, OMIM, ClinGen, Gene Reviews, DECIPHER and LOVD databases to search for articles/records published before March 2021. The following search strategies were employed: ID and calcium channel, mental retardation and calcium channel, GDD and calcium channel, developmental delay and calcium channel. MAIN BODY A total of 59 reports describing 159 cases were found in PubMed, Embase, ClinVar, and LOVD databases. Variations in ten calcium channel genes including CACNA1A, CACNA1C, CACNA1I, CACNA1H, CACNA1D, CACNA2D1, CACNA2D2, CACNA1E, CACNA1F, and CACNA1G were found to be associated with ID/GDD. Most variants exhibited gain-of-function effect. Severe to profound ID/GDD was observed more for the cases with gain-of-function variants as compared to those with loss-of-function. CACNA1E, CACNA1G, CACNA1F, CACNA2D2 and CACNA1A associated with more severe phenotype. Furthermore, 157 copy number variations (CNVs) spanning calcium genes were identified in DECIPHER database. The leading genes included CACNA1C, CACNA1A, and CACNA1E. Overall, the underlying mechanisms included gain- and/ or loss-of-function, alteration in kinetics (activation, inactivation) and dominant-negative effects of truncated forms of alpha1 subunits. Forty of the identified cases featured cerebellar atrophy. We identified only a few cell and animal studies that focused on the mechanisms of ID/GDD in relation to CCs. There is a scarcity of studies on treatment options for ID/GDD both in vivo and in vitro. CONCLUSION Our results suggest that CCs play a major role in ID/GDD. While both gain- and loss-of-function variants are associated with ID/GDD, the mechanisms underlying their involvement need further scrutiny.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fangling Yan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, Hunan, China.
| |
Collapse
|
33
|
Schöpf CL, Ablinger C, Geisler SM, Stanika RI, Campiglio M, Kaufmann WA, Nimmervoll B, Schlick B, Brockhaus J, Missler M, Shigemoto R, Obermair GJ. Presynaptic α 2δ subunits are key organizers of glutamatergic synapses. Proc Natl Acad Sci U S A 2021; 118:e1920827118. [PMID: 33782113 PMCID: PMC8040823 DOI: 10.1073/pnas.1920827118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.
Collapse
Affiliation(s)
- Clemens L Schöpf
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Cornelia Ablinger
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Stefanie M Geisler
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
- Department of Pharmacology and Toxicology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Ruslan I Stanika
- Division of Physiology, Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Walter A Kaufmann
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Benedikt Nimmervoll
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Bettina Schlick
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria, A-3400 Klosterneuburg, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
- Division of Physiology, Karl Landsteiner University of Health Sciences, A-3500 Krems, Austria
| |
Collapse
|
34
|
Gezalian MM, Mangiacotti L, Rajput P, Sparrow N, Schlick K, Lahiri S. Cerebrovascular and neurological perspectives on adrenoceptor and calcium channel modulating pharmacotherapies. J Cereb Blood Flow Metab 2021; 41:693-706. [PMID: 33210576 PMCID: PMC7983505 DOI: 10.1177/0271678x20972869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 02/02/2023]
Abstract
Adrenoceptor and calcium channel modulating medications are widely used in clinical practice for acute neurological and systemic conditions. It is generally assumed that the cerebrovascular effects of these drugs mirror that of their systemic effects - and this is reflected in how these medications are currently used in clinical practice. However, recent research suggests that there are distinct cerebrovascular-specific effects of these medications that are related to the unique characteristics of the cerebrovascular anatomy including the regional heterogeneity in density and distribution of adrenoceptor subtypes and calcium channels along the cerebrovasculature. In this review, we critically evaluate existing basic science and clinical research to discuss known and putative interactions between adrenoceptor and calcium channel modulating pharmacotherapies, the neurovascular unit, and cerebrovascular anatomy. In doing so, we provide a rationale for selecting vasoactive medications based on lesion location and lay a foundation for future investigations that will define neuroprotective paradigms of adrenoceptor and calcium channel modulating therapies to improve neurological outcomes in acute neurological and systemic disorders.
Collapse
Affiliation(s)
- Michael M Gezalian
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Luigi Mangiacotti
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Padmesh Rajput
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Nicklaus Sparrow
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Konrad Schlick
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shouri Lahiri
- Departments of Neurology, Neurosurgery, and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
35
|
Geisler SM, Benedetti A, Schöpf CL, Schwarzer C, Stefanova N, Schwartz A, Obermair GJ. Phenotypic Characterization and Brain Structure Analysis of Calcium Channel Subunit α 2δ-2 Mutant (Ducky) and α 2δ Double Knockout Mice. Front Synaptic Neurosci 2021; 13:634412. [PMID: 33679366 PMCID: PMC7933509 DOI: 10.3389/fnsyn.2021.634412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Auxiliary α2δ subunits of voltage-gated calcium channels modulate channel trafficking, current properties, and synapse formation. Three of the four isoforms (α2δ-1, α2δ-2, and α2δ-3) are abundantly expressed in the brain; however, of the available knockout models, only α2δ-2 knockout or mutant mice display an obvious abnormal neurological phenotype. Thus, we hypothesize that the neuronal α2δ isoforms may have partially specific as well as redundant functions. To address this, we generated three distinct α2δ double knockout mouse models by crossbreeding single knockout (α2δ-1 and -3) or mutant (α2δ-2/ducky) mice. Here, we provide a first phenotypic description and brain structure analysis. We found that genotypic distribution of neonatal litters in distinct α2δ-1/-2, α2δ-1/-3, and α2δ-2/-3 breeding combinations did not conform to Mendel's law, suggesting premature lethality of single and double knockout mice. Notably, high occurrences of infant mortality correlated with the absence of specific α2δ isoforms (α2Δ-2 > α2δ-1 > α2δ-3), and was particularly observed in cages with behaviorally abnormal parenting animals of α2δ-2/-3 cross-breedings. Juvenile α2δ-1/-2 and α2δ-2/-3 double knockout mice displayed a waddling gate similar to ducky mice. However, in contrast to ducky and α2δ-1/-3 double knockout animals, α2δ-1/-2 and α2δ-2/-3 double knockout mice showed a more severe disease progression and highly impaired development. The observed phenotypes within the individual mouse lines may be linked to differences in the volume of specific brain regions. Reduced cortical volume in ducky mice, for example, was associated with a progressively decreased space between neurons, suggesting a reduction of total synaptic connections. Taken together, our findings show that α2δ subunits differentially regulate premature survival, postnatal growth, brain development, and behavior, suggesting specific neuronal functions in health and disease.
Collapse
Affiliation(s)
- Stefanie M. Geisler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ariane Benedetti
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens L. Schöpf
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Arnold Schwartz
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
36
|
Different functions of two putative Drosophila α 2δ subunits in the same identified motoneurons. Sci Rep 2020; 10:13670. [PMID: 32792569 PMCID: PMC7426832 DOI: 10.1038/s41598-020-69748-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022] Open
Abstract
Voltage gated calcium channels (VGCCs) regulate neuronal excitability and translate activity into calcium dependent signaling. The α1 subunit of high voltage activated (HVA) VGCCs associates with α2δ accessory subunits, which may affect calcium channel biophysical properties, cell surface expression, localization and transport and are thus important players in calcium-dependent signaling. In vertebrates, the functions of the different combinations of the four α2δ and the seven HVA α1 subunits are incompletely understood, in particular with respect to partially redundant or separate functions in neurons. This study capitalizes on the relatively simpler situation in the Drosophila genetic model containing two neuronal putative α2δ subunits, straightjacket and CG4587, and one Cav1 and Cav2 homolog each, both with well-described functions in different compartments of identified motoneurons. Straightjacket is required for normal Cav1 and Cav2 current amplitudes and correct Cav2 channel function in all neuronal compartments. By contrast, CG4587 does not affect Cav1 or Cav2 current amplitudes or presynaptic function, but is required for correct Cav2 channel allocation to the axonal versus the dendritic domain. We suggest that the two different putative α2δ subunits are required in the same neurons to regulate different functions of VGCCs.
Collapse
|
37
|
Rufenach B, Christy D, Flucher BE, Bui JM, Gsponer J, Campiglio M, Van Petegem F. Multiple Sequence Variants in STAC3 Affect Interactions with CaV1.1 and Excitation-Contraction Coupling. Structure 2020; 28:922-932.e5. [DOI: 10.1016/j.str.2020.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/03/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
38
|
Ablinger C, Geisler SM, Stanika RI, Klein CT, Obermair GJ. Neuronal α 2δ proteins and brain disorders. Pflugers Arch 2020; 472:845-863. [PMID: 32607809 PMCID: PMC7351808 DOI: 10.1007/s00424-020-02420-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023]
Abstract
α2δ proteins are membrane-anchored extracellular glycoproteins which are abundantly expressed in the brain and the peripheral nervous system. They serve as regulatory subunits of voltage-gated calcium channels and, particularly in nerve cells, regulate presynaptic and postsynaptic functions independently from their role as channel subunits. α2δ proteins are the targets of the widely prescribed anti-epileptic and anti-allodynic drugs gabapentin and pregabalin, particularly for the treatment of neuropathic pain conditions. Recently, the human genes (CACNA2D1-4) encoding for the four known α2δ proteins (isoforms α2δ-1 to α2δ-4) have been linked to a large variety of neurological and neuropsychiatric disorders including epilepsy, autism spectrum disorders, bipolar disorders, schizophrenia, and depressive disorders. Here, we provide an overview of the hitherto identified disease associations of all known α2δ genes, hypothesize on the pathophysiological mechanisms considering their known physiological roles, and discuss the most immanent future research questions. Elucidating their specific physiological and pathophysiological mechanisms may open the way for developing entirely novel therapeutic paradigms for treating brain disorders.
Collapse
Affiliation(s)
- Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie M Geisler
- Department of Pharmacology and Toxicology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Ruslan I Stanika
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Christian T Klein
- Department of Life Sciences, IMC University of Applied Sciences, 3500, Krems, Austria
| | - Gerald J Obermair
- Institute of Physiology, Medical University Innsbruck, 6020, Innsbruck, Austria.
- Division Physiology, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria.
| |
Collapse
|
39
|
Bikbaev A, Ciuraszkiewicz-Wojciech A, Heck J, Klatt O, Freund R, Mitlöhner J, Enrile Lacalle S, Sun M, Repetto D, Frischknecht R, Ablinger C, Rohlmann A, Missler M, Obermair GJ, Di Biase V, Heine M. Auxiliary α2δ1 and α2δ3 Subunits of Calcium Channels Drive Excitatory and Inhibitory Neuronal Network Development. J Neurosci 2020; 40:4824-4841. [PMID: 32414783 PMCID: PMC7326358 DOI: 10.1523/jneurosci.1707-19.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/31/2020] [Accepted: 05/09/2020] [Indexed: 01/21/2023] Open
Abstract
VGCCs are multisubunit complexes that play a crucial role in neuronal signaling. Auxiliary α2δ subunits of VGCCs modulate trafficking and biophysical properties of the pore-forming α1 subunit and trigger excitatory synaptogenesis. Alterations in the expression level of α2δ subunits were implicated in several syndromes and diseases, including chronic neuropathic pain, autism, and epilepsy. However, the contribution of distinct α2δ subunits to excitatory/inhibitory imbalance and aberrant network connectivity characteristic for these pathologic conditions remains unclear. Here, we show that α2δ1 overexpression enhances spontaneous neuronal network activity in developing and mature cultures of hippocampal neurons. In contrast, overexpression, but not downregulation, of α2δ3 enhances neuronal firing in immature cultures, whereas later in development it suppresses neuronal activity. We found that α2δ1 overexpression increases excitatory synaptic density and selectively enhances presynaptic glutamate release, which is impaired on α2δ1 knockdown. Overexpression of α2δ3 increases the excitatory synaptic density as well but also facilitates spontaneous GABA release and triggers an increase in the density of inhibitory synapses, which is accompanied by enhanced axonaloutgrowth in immature interneurons. Together, our findings demonstrate that α2δ1 and α2δ3 subunits play distinct but complementary roles in driving formation of structural and functional network connectivity during early development. An alteration in α2δ surface expression during critical developmental windows can therefore play a causal role and have a profound impact on the excitatory-to-inhibitory balance and network connectivity.SIGNIFICANCE STATEMENT The computational capacity of neuronal networks is determined by their connectivity. Chemical synapses are the main interface for transfer of information between individual neurons. The initial formation of network connectivity requires spontaneous electrical activity and the calcium channel-mediated signaling. We found that, in early development, auxiliary α2δ3 subunits of calcium channels foster presynaptic release of GABA, trigger formation of inhibitory synapses, and promote axonal outgrowth in inhibitory interneurons. In contrast, later in development, α2δ1 subunits promote the glutamatergic neurotransmission and synaptogenesis, as well as strongly enhance neuronal network activity. We propose that formation of connectivity in neuronal networks is associated with a concerted interplay of α2δ1 and α2δ3 subunits of calcium channels.
Collapse
Affiliation(s)
- Arthur Bikbaev
- RG Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Anna Ciuraszkiewicz-Wojciech
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany
| | - Jennifer Heck
- RG Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Oliver Klatt
- Institute for Anatomy and Molecular Neurobiology, University of Münster, Münster, 48149, Germany
| | - Romy Freund
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| | - Jessica Mitlöhner
- RG Brain Extracellular Matrix, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| | - Sara Enrile Lacalle
- RG Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
| | - Miao Sun
- Institute for Anatomy and Molecular Neurobiology, University of Münster, Münster, 48149, Germany
| | - Daniele Repetto
- Institute for Anatomy and Molecular Neurobiology, University of Münster, Münster, 48149, Germany
| | - Renato Frischknecht
- RG Brain Extracellular Matrix, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany
- Department of Biology, Animal Physiology, Friedrich Alexander University of Erlangen-Nuremberg, Erlangen, 91058, Germany
| | - Cornelia Ablinger
- Institute of Physiology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Astrid Rohlmann
- Institute for Anatomy and Molecular Neurobiology, University of Münster, Münster, 48149, Germany
| | - Markus Missler
- Institute for Anatomy and Molecular Neurobiology, University of Münster, Münster, 48149, Germany
| | - Gerald J Obermair
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, 3500, Austria
| | - Valentina Di Biase
- Institute of Molecular and Clinical Pharmacology, Medical University Innsbruck, Innsbruck, 6020, Austria
| | - Martin Heine
- RG Functional Neurobiology, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, 55128, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, 39106, Germany
| |
Collapse
|
40
|
Kaehler K, Seitter H, Sandbichler AM, Tschugg B, Obermair GJ, Stefanova N, Koschak A. Assessment of the Retina of Plp-α-Syn Mice as a Model for Studying Synuclein-Dependent Diseases. Invest Ophthalmol Vis Sci 2020; 61:12. [PMID: 32503050 PMCID: PMC7415298 DOI: 10.1167/iovs.61.6.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease are associated with a variety of visual symptoms. Functional and morphological retinal aberrations are therefore supposed to be valuable biomarkers for these neurodegenerative diseases. This study examined the retinal morphology and functionality resulting from human α-synuclein (α-Syn) overexpression in the transgenic Plp-α-Syn mouse model. Methods Immunohistochemistry on retinal sections and whole-mounts was performed on 8- to 11-week-old and 12-month-old Plp-α-Syn mice and C57BL/6N controls. Quantitative RT-PCR experiments were performed to study the expression of endogenous and human α-Syn and tyrosine hydroxylase (TH). We confirmed the presence of human α-Syn in the retina in western blot analyses. Multi-electrode array (MEA) analyses from light-stimulated whole-mounted retinas were used to investigate their functionality. Results Biochemical and immunohistochemical analyses showed human α-Syn in the retina of Plp-α-Syn mice. We found distinct staining in different retinal cell layers, most abundantly in rod bipolar cells of the peripheral retina. In the periphery, we also observed a trend toward a decline in the number of retinal ganglion cells. The number of TH+ neurons was unaffected in this human α-Syn overexpression model. MEA recordings showed that Plp-α-Syn retinas were functional but exhibited mild alterations in dim light conditions. Conclusions Together, these findings implicate an impairment of retinal neurons in the Plp-α-Syn mouse. The phenotype partly relates to retinal deficits reported in MSA patients. We further propose the suitability of the Plp-α-Syn retina as a biological model to study synuclein-mediated mechanisms.
Collapse
Affiliation(s)
- Kathrin Kaehler
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | | | - Bettina Tschugg
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
- Physiology Division, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
41
|
Redecker TM, Kisko TM, Wöhr M, Schwarting RKW. Cacna1c haploinsufficiency lacks effects on adult hippocampal neurogenesis and volumetric properties of prefrontal cortex and hippocampus in female rats. Physiol Behav 2020; 223:112974. [PMID: 32473156 DOI: 10.1016/j.physbeh.2020.112974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
The cross-disorder risk gene CACNA1C is strongly involved in the etiology of all major neuropsychiatric disorders, with women often being more affected by CACNA1C mutations than men. Human neuroimaging studies provided evidence that CACNA1C variants are associated with anatomical and functional brain alterations, such as decreased prefrontal volumes, microstructural changes in the hippocampus, and reduced hippocampal activity during memory tasks. In mouse models, Cacna1c alterations were repeatedly linked to disorder-like behavioral phenotypes and reduced adult hippocampal neurogenesis, which has been implicated in the pathology of neuropsychiatric disorders. Here, we applied a recently developed rat model and conducted two studies to investigate the effects of partial Cacna1c depletion on adult hippocampal neurogenesis and volumetric properties of the hippocampus and the prefrontal cortex in adult female constitutive heterozygous (Cacna1c+/-) rats and wildtype (Cacna1c+/+) littermate controls. In study 1, we analyzed proliferation versus survival of adult-born hippocampal cells based on a 5-bromodeoxyuridine assay ensuring neuronal cell-type specificity through applying an immunofluorescent multiple staining approach. In study 2, we performed a detailed volumetric analysis with high structural resolution of the dorsal hippocampus and the medial prefrontal cortex, including their major substructures. Our results indicate comparable levels of cell proliferation and neuronal survival in Cacna1c+/- rats and Cacna1c+/+ controls. Additionally, we found similar volumes of the dorsal hippocampus and the medial prefrontal cortex across major substructures irrespective of genotype, indicating that Cacna1c haploinsufficiency has no prominent effects on these brain features in female rats.
Collapse
Affiliation(s)
- Tobias M Redecker
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany
| | - Theresa M Kisko
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Department of Psychology, Philipps-Universität Marburg, Gutenbergstr. 18, D-35037 Marburg, Germany; Center for Mind, Brain, and Behavior (CMBB), Hans-Meerwein-Str. 6, D-35032 Marburg, Germany.
| |
Collapse
|
42
|
Sheng L, Leshchyns'ka I, Sytnyk V. Neural Cell Adhesion Molecule 2 (NCAM2)-Induced c-Src-Dependent Propagation of Submembrane Ca2+ Spikes Along Dendrites Inhibits Synapse Maturation. Cereb Cortex 2020. [PMID: 29522129 DOI: 10.1093/cercor/bhy041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The neural cell adhesion molecule 2 (NCAM2) is encoded by a gene on chromosome 21 in humans. NCAM2 accumulates in synapses, but its role in regulation of synapse formation remains poorly understood. We demonstrate that an increase in NCAM2 levels results in increased instability of dendritic protrusions and reduced conversion of protrusions to dendritic spines in mouse cortical neurons. NCAM2 overexpression induces an increase in the frequency of submembrane Ca2+ spikes localized in individual dendritic protrusions and promotes propagation of submembrane Ca2+ spikes over segments of dendrites or the whole dendritic tree. NCAM2-dependent submembrane Ca2+ spikes are L-type voltage-gated Ca2+ channel-dependent, and their propagation but not initiation depends on the c-Src protein tyrosine kinase. Inhibition of initiation or propagation of NCAM2-dependent submembrane Ca2+ spikes reduces the NCAM2-dependent instability of dendritic protrusions. Synaptic boutons formed on dendrites of neurons with elevated NCAM2 expression are enriched in the protein marker of immature synapses GAP43, and the number of boutons with mature activity-dependent synaptic vesicle recycling is reduced. Our results indicate that synapse maturation is inhibited in NCAM2-overexpressing neurons and suggest that changes in NCAM2 levels and altered submembrane Ca2+ dynamics can cause defects in synapse maturation in Down syndrome and other brain disorders associated with abnormal NCAM2 expression.
Collapse
Affiliation(s)
- Lifu Sheng
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
43
|
Siddig S, Aufmkolk S, Doose S, Jobin ML, Werner C, Sauer M, Calebiro D. Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. SCIENCE ADVANCES 2020; 6:eaay7193. [PMID: 32494600 PMCID: PMC7159906 DOI: 10.1126/sciadv.aay7193] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 05/12/2023]
Abstract
G protein-coupled receptors (GPCRs) play a fundamental role in the modulation of synaptic transmission. A pivotal example is provided by the metabotropic glutamate receptor type 4 (mGluR4), which inhibits glutamate release at presynaptic active zones (AZs). However, how GPCRs are organized within AZs to regulate neurotransmission remains largely unknown. Here, we applied two-color super-resolution imaging by direct stochastic optical reconstruction microscopy (dSTORM) to investigate the nanoscale organization of mGluR4 at parallel fiber AZs in the mouse cerebellum. We find an inhomogeneous distribution, with multiple nanodomains inside AZs, each containing, on average, one to two mGluR4 subunits. Within these nanodomains, mGluR4s are often localized in close proximity to voltage-dependent CaV2.1 channels and Munc-18-1, which are both essential for neurotransmitter release. These findings provide previously unknown insights into the molecular organization of GPCRs at AZs, suggesting a likely implication of a close association between mGluR4 and the secretory machinery in modulating synaptic transmission.
Collapse
Affiliation(s)
- Sana Siddig
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Sarah Aufmkolk
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, QC H3A 2B4, Canada
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
| | - Christian Werner
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
- Corresponding author. (M.S.); (D.C.)
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology and Bio-Imaging Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Nottingham and Birmingham, Birmingham, UK
- Corresponding author. (M.S.); (D.C.)
| |
Collapse
|
44
|
Coste de Bagneaux P, von Elsner L, Bierhals T, Campiglio M, Johannsen J, Obermair GJ, Hempel M, Flucher BE, Kutsche K. A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions. PLoS Genet 2020; 16:e1008625. [PMID: 32176688 PMCID: PMC7176149 DOI: 10.1371/journal.pgen.1008625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
P/Q-type channels are the principal presynaptic calcium channels in brain functioning in neurotransmitter release. They are composed of the pore-forming CaV2.1 α1 subunit and the auxiliary α2δ-2 and β4 subunits. β4 is encoded by CACNB4, and its multiple splice variants serve isoform-specific functions as channel subunits and transcriptional regulators in the nucleus. In two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy we identified rare homozygous variants in the genes LTBP1, EMILIN1, CACNB4, MINAR1, DHX38 and MYO15 by whole-exome sequencing. In silico tools, animal model, clinical, and genetic data suggest the p.(Leu126Pro) CACNB4 variant to be likely pathogenic. To investigate the functional consequences of the CACNB4 variant, we introduced the corresponding mutation L125P into rat β4b cDNA. Heterologously expressed wild-type β4b associated with GFP-CaV1.2 and accumulated in presynaptic boutons of cultured hippocampal neurons. In contrast, the β4b-L125P mutant failed to incorporate into calcium channel complexes and to cluster presynaptically. When co-expressed with CaV2.1 in tsA201 cells, β4b and β4b-L125P augmented the calcium current amplitudes, however, β4b-L125P failed to stably complex with α1 subunits. These results indicate that p.Leu125Pro disrupts the stable association of β4b with native calcium channel complexes, whereas membrane incorporation, modulation of current density and activation properties of heterologously expressed channels remained intact. Wildtype β4b was specifically targeted to the nuclei of quiescent excitatory cells. Importantly, the p.Leu125Pro mutation abolished nuclear targeting of β4b in cultured myotubes and hippocampal neurons. While binding of β4b to the known interaction partner PPP2R5D (B56δ) was not affected by the mutation, complex formation between β4b-L125P and the neuronal TRAF2 and NCK interacting kinase (TNIK) seemed to be disturbed. In summary, our data suggest that the homozygous CACNB4 p.(Leu126Pro) variant underlies the severe neurological phenotype in the two siblings, most likely by impairing both channel and non-channel functions of β4b.
Collapse
Affiliation(s)
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Jessika Johannsen
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
45
|
Granados K, Hüser L, Federico A, Sachindra S, Wolff G, Hielscher T, Novak D, Madrigal-Gamboa V, Sun Q, Vierthaler M, Larribère L, Umansky V, Utikal J. T-type calcium channel inhibition restores sensitivity to MAPK inhibitors in de-differentiated and adaptive melanoma cells. Br J Cancer 2020; 122:1023-1036. [PMID: 32063604 PMCID: PMC7109069 DOI: 10.1038/s41416-020-0751-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/19/2019] [Accepted: 01/24/2020] [Indexed: 11/25/2022] Open
Abstract
Background Drug resistance remains as one of the major challenges in melanoma therapy. It is well known that tumour cells undergo phenotypic switching during melanoma progression, increasing melanoma plasticity and resistance to mitogen-activated protein kinase inhibitors (MAPKi). Methods We investigated the melanoma phenotype switching using a partial reprogramming model to de-differentiate murine melanoma cells and target melanoma therapy adaptation against MAPKi. Results Here, we show that partially reprogrammed cells are a less proliferative and more de-differentiated cell population, expressing a gene signature for stemness and suppressing melanocyte-specific markers. To investigate adaptation to MAPKi, cells were exposed to B-Raf Proto-Oncogene (BRAF) and mitogen-activated protein kinase kinase (MEK) inhibitors. De-differentiated cells became less sensitive to MAPKi, showed increased cell viability and decreased apoptosis. Furthermore, T-type calcium channels expression increased in adaptive murine cells and in human adaptive melanoma cells. Treatment with the calcium channel blocker mibefradil induced cell death, differentiation and susceptibility to MAPKi in vitro and in vivo. Conclusion In summary, we show that partial reprogramming of melanoma cells induces de-differentiation and adaptation to MAPKi. Moreover, we postulated a calcium channel blocker such as mibefradil, as a potential candidate to restore sensitivity to MAPKi in adaptive melanoma cells.
Collapse
Affiliation(s)
- Karol Granados
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany.,Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose, 2060, Costa Rica
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Aniello Federico
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Sachindra Sachindra
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany.,Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gretchen Wolff
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Verónica Madrigal-Gamboa
- Department of Biochemistry, School of Medicine, University of Costa Rica (UCR), Rodrigo Facio Campus, San Pedro Montes Oca, San Jose, 2060, Costa Rica
| | - Qian Sun
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Marlene Vierthaler
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Lionel Larribère
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, D-68135, Mannheim, Germany.
| |
Collapse
|
46
|
Ortner NJ, Pinggera A, Hofer NT, Siller A, Brandt N, Raffeiner A, Vilusic K, Lang I, Blum K, Obermair GJ, Stefan E, Engel J, Striessnig J. RBP2 stabilizes slow Cav1.3 Ca 2+ channel inactivation properties of cochlear inner hair cells. Pflugers Arch 2019; 472:3-25. [PMID: 31848688 PMCID: PMC6960213 DOI: 10.1007/s00424-019-02338-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/18/2019] [Accepted: 12/04/2019] [Indexed: 01/31/2023]
Abstract
Cav1.3 L-type Ca2+ channels (LTCCs) in cochlear inner hair cells (IHCs) are essential for hearing as they convert sound-induced graded receptor potentials into tonic postsynaptic glutamate release. To enable fast and indefatigable presynaptic Ca2+ signaling, IHC Cav1.3 channels exhibit a negative activation voltage range and uniquely slow inactivation kinetics. Interaction with CaM-like Ca2+-binding proteins inhibits Ca2+-dependent inactivation, while the mechanisms underlying slow voltage-dependent inactivation (VDI) are not completely understood. Here we studied if the complex formation of Cav1.3 LTCCs with the presynaptic active zone proteins RIM2α and RIM-binding protein 2 (RBP2) can stabilize slow VDI. We detected both RIM2α and RBP isoforms in adult mouse IHCs, where they co-localized with Cav1.3 and synaptic ribbons. Using whole-cell patch-clamp recordings (tsA-201 cells), we assessed their effect on the VDI of the C-terminal full-length Cav1.3 (Cav1.3L) and a short splice variant (Cav1.342A) that lacks the C-terminal RBP2 interaction site. When co-expressed with the auxiliary β3 subunit, RIM2α alone (Cav1.342A) or RIM2α/RBP2 (Cav1.3L) reduced Cav1.3 VDI to a similar extent as observed in IHCs. Membrane-anchored β2 variants (β2a, β2e) that inhibit inactivation on their own allowed no further modulation of inactivation kinetics by RIM2α/RBP2. Moreover, association with RIM2α and/or RBP2 consolidated the negative Cav1.3 voltage operating range by shifting the channel's activation threshold toward more hyperpolarized potentials. Taken together, the association with "slow" β subunits (β2a, β2e) or presynaptic scaffolding proteins such as RIM2α and RBP2 stabilizes physiological gating properties of IHC Cav1.3 LTCCs in a splice variant-dependent manner ensuring proper IHC function.
Collapse
Affiliation(s)
- Nadine J Ortner
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Nadja T Hofer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Anita Siller
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Niels Brandt
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Andrea Raffeiner
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kristina Vilusic
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Isabelle Lang
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, Innsbruck, Austria.,Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Eduard Stefan
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Jutta Engel
- Department of Biophysics and CIPMM, Saarland University, Homburg, Germany
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
47
|
Dahimene S, Page KM, Kadurin I, Ferron L, Ho DY, Powell GT, Pratt WS, Wilson SW, Dolphin AC. The α 2δ-like Protein Cachd1 Increases N-type Calcium Currents and Cell Surface Expression and Competes with α 2δ-1. Cell Rep 2019; 25:1610-1621.e5. [PMID: 30404013 PMCID: PMC6231325 DOI: 10.1016/j.celrep.2018.10.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/31/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
Voltage-gated calcium channel auxiliary α2δ subunits are important for channel trafficking and function. Here, we compare the effects of α2δ-1 and an α2δ-like protein called Cachd1 on neuronal N-type (CaV2.2) channels, which are important in neurotransmission. Previous structural studies show the α2δ-1 VWA domain interacting with the first loop in CaV1.1 domain-I via its metal ion-dependent adhesion site (MIDAS) motif and additional Cache domain interactions. Cachd1 has a disrupted MIDAS motif. However, Cachd1 increases CaV2.2 currents substantially (although less than α2δ-1) and increases CaV2.2 cell surface expression by reducing endocytosis. Although the effects of α2δ-1 are abolished by mutation of Asp122 in CaV2.2 domain-I, which mediates interaction with its VWA domain, the Cachd1 responses are unaffected. Furthermore, Cachd1 co-immunoprecipitates with CaV2.2 and inhibits co-immunoprecipitation of α2δ-1 by CaV2.2. Cachd1 also competes with α2δ-1 for effects on trafficking. Thus, Cachd1 influences both CaV2.2 trafficking and function and can inhibit responses to α2δ-1. Cachd1 enhances CaV2.2 currents and increases CaV2.2 surface expression Effects of Cachd1 are not prevented by mutation in CaV2.2 VWA interaction site The effects of α2δ-1 are prevented by the same mutation in CaV2.2 Cachd1 competes with α2δ-1 for its effects on CaV2.2
Collapse
Affiliation(s)
- Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Karen M Page
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ivan Kadurin
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Dominique Y Ho
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Gareth T Powell
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6BT, UK.
| |
Collapse
|
48
|
Plumbly W, Brandon N, Deeb TZ, Hall J, Harwood AJ. L-type voltage-gated calcium channel regulation of in vitro human cortical neuronal networks. Sci Rep 2019; 9:13810. [PMID: 31554851 PMCID: PMC6761148 DOI: 10.1038/s41598-019-50226-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/02/2019] [Indexed: 11/09/2022] Open
Abstract
The combination of in vitro multi-electrode arrays (MEAs) and the neuronal differentiation of stem cells offers the capability to study human neuronal networks from patient or engineered human cell lines. Here, we use MEA-based assays to probe synaptic function and network interactions of hiPSC-derived neurons. Neuronal network behaviour first emerges at approximately 30 days of culture and is driven by glutamate neurotransmission. Over a further 30 days, inhibitory GABAergic signalling shapes network behaviour into a synchronous regular pattern of burst firing activity and low activity periods. Gene mutations in L-type voltage gated calcium channel subunit genes are strongly implicated as genetic risk factors for the development of schizophrenia and bipolar disorder. We find that, although basal neuronal firing rate is unaffected, there is a dose-dependent effect of L-type voltage gated calcium channel inhibitors on synchronous firing patterns of our hiPSC-derived neural networks. This demonstrates that MEA assays have sufficient sensitivity to detect changes in patterns of neuronal interaction that may arise from hypo-function of psychiatric risk genes. Our study highlights the utility of in vitro MEA based platforms for the study of hiPSC neural network activity and their potential use in novel compound screening.
Collapse
Affiliation(s)
- William Plumbly
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Nick Brandon
- Neuroscience, IMED Biotech Unit, AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA
| | - Tarek Z Deeb
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Adrian J Harwood
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
49
|
Stephani F, Scheuer V, Eckrich T, Blum K, Wang W, Obermair GJ, Engel J. Deletion of the Ca 2+ Channel Subunit α 2δ3 Differentially Affects Ca v2.1 and Ca v2.2 Currents in Cultured Spiral Ganglion Neurons Before and After the Onset of Hearing. Front Cell Neurosci 2019; 13:278. [PMID: 31293392 PMCID: PMC6606706 DOI: 10.3389/fncel.2019.00278] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated Ca2+ channels are composed of a pore-forming α1 subunit and auxiliary β and α2δ subunits, which modulate Ca2+ current properties and channel trafficking. So far, the partial redundancy and specificity of α1 for α2δ subunits in the CNS have remained largely elusive. Mature spiral ganglion (SG) neurons express α2δ subunit isoforms 1, 2, and 3 and multiple Ca2+ channel subtypes. Differentiation and in vivo functions of their endbulb of Held synapses, which rely on presynaptic P/Q channels (Lin et al., 2011), require the α2δ3 subunit (Pirone et al., 2014). This led us to hypothesize that P/Q channels may preferentially co-assemble with α2δ3. Using a dissociated primary culture, we analyzed the effects of α2δ3 deletion on somatic Ca2+ currents (ICa) of SG neurons isolated at postnatal day 20 (P20), when the cochlea is regarded to be mature. P/Q currents were the dominating steady-state Ca2+ currents (54% of total) followed by T-type, L-type, N-type, and R-type currents. Deletion of α2δ3 reduced P/Q- and R-type currents by 60 and 38%, respectively, whereas L-type, N-type, and T-type currents were not altered. A subset of ICa types was also analyzed in SG neurons isolated at P5, i.e., before the onset of hearing (P12). Both L-type and N-type current amplitudes of wildtype SG neurons were larger at P5 compared with P20. Deletion of α2δ3 reduced L-type and N-type currents by 23 and 44%, respectively. In contrast, small P/Q currents, which were just being up-regulated at P5, were unaffected by the lack of α2δ3. In summary, α2δ3 regulates amplitudes of L- and N-type currents of immature cultured SG neurons, whereas it regulates P/Q- and R-type currents at P20. Our data indicate a developmental switch from dominating somatic N- to P/Q-type currents in cultured SG neurons. A switch from N- to P/Q-type channels, which has been observed at several central synapses, may also occur at developing endbulbs of Held. In this case, reduction of both neonatal N- (P5) and more mature P/Q-type currents (around/after hearing onset) may contribute to the impaired morphology and function of endbulb synapses in α2δ3-deficient mice.
Collapse
Affiliation(s)
- Friederike Stephani
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Veronika Scheuer
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Tobias Eckrich
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Kerstin Blum
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| | - Wenying Wang
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Gerald J Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria.,Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
50
|
Geisler S, Schöpf CL, Stanika R, Kalb M, Campiglio M, Repetto D, Traxler L, Missler M, Obermair GJ. Presynaptic α 2δ-2 Calcium Channel Subunits Regulate Postsynaptic GABA A Receptor Abundance and Axonal Wiring. J Neurosci 2019; 39:2581-2605. [PMID: 30683685 PMCID: PMC6445987 DOI: 10.1523/jneurosci.2234-18.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 01/26/2023] Open
Abstract
Presynaptic α2δ subunits of voltage-gated calcium channels regulate channel abundance and are involved in glutamatergic synapse formation. However, little is known about the specific functions of the individual α2δ isoforms and their role in GABAergic synapses. Using primary neuronal cultures of embryonic mice of both sexes, we here report that presynaptic overexpression of α2δ-2 in GABAergic synapses strongly increases clustering of postsynaptic GABAARs. Strikingly, presynaptic α2δ-2 exerts the same effect in glutamatergic synapses, leading to a mismatched localization of GABAARs. This mismatching is caused by an aberrant wiring of glutamatergic presynaptic boutons with GABAergic postsynaptic positions. The trans-synaptic effect of α2δ-2 is independent of the prototypical cell-adhesion molecules α-neurexins (α-Nrxns); however, α-Nrxns together with α2δ-2 can modulate postsynaptic GABAAR abundance. Finally, exclusion of the alternatively spliced exon 23 of α2δ-2 is essential for the trans-synaptic mechanism. The novel function of α2δ-2 identified here may explain how abnormal α2δ subunit expression can cause excitatory-inhibitory imbalance often associated with neuropsychiatric disorders.SIGNIFICANCE STATEMENT Voltage-gated calcium channels regulate important neuronal functions such as synaptic transmission. α2δ subunits modulate calcium channels and are emerging as regulators of brain connectivity. However, little is known about how individual α2δ subunits contribute to synapse specificity. Here, we show that presynaptic expression of a single α2δ variant can modulate synaptic connectivity and the localization of inhibitory postsynaptic receptors. Our findings provide basic insights into the development of specific synaptic connections between nerve cells and contribute to our understanding of normal nerve cell functions. Furthermore, the identified mechanism may explain how an altered expression of calcium channel subunits can result in aberrant neuronal wiring often associated with neuropsychiatric disorders such as autism or schizophrenia.
Collapse
Affiliation(s)
- Stefanie Geisler
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Clemens L Schöpf
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Ruslan Stanika
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Marcus Kalb
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Marta Campiglio
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Larissa Traxler
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Gerald J Obermair
- Division of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria, and
| |
Collapse
|