1
|
Cai H, Lee SM, Choi Y, Lee B, Im SJ, Kim DH, Choi HJ, Kim JH, Kim Y, Shin BA, Jeon S. Memory Decline and Aberration of Synaptic Proteins in X-Linked Moesin Knockout Male Mice. Psychiatry Investig 2025; 22:10-25. [PMID: 39885788 PMCID: PMC11788833 DOI: 10.30773/pi.2024.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 02/01/2025] Open
Abstract
OBJECTIVE This study aims to investigate may moesin deficiency resulted in neurodevelopmental abnormalities caused by negative impact on synaptic signaling ultimately leading to synaptic structure and plasticity. METHODS Behavioral assessments measured neurodevelopment (surface righting, negative geotaxis, cliff avoidance), anxiety (open field test, elevated plus maze test), and memory (passive avoidance test, Y-maze test) in moesin-knockout mice (KO) compared to wild-type mice (WT). Whole exome sequencing (WES) of brain (KO vs. WT) and analysis of synaptic proteins were performed to determine the disruption of signal pathways downstream of moesin. Risperidone, a therapeutic agent, was utilized to reverse the neurodevelopmental aberrance in moesin KO. RESULTS Moesin-KO pups exhibited decrease in the surface righting ability on postnatal day 7 (p<0.05) and increase in time spent in the closed arms (p<0.01), showing increased anxiety-like behavior. WES revealed mutations in pathway aberration in neuron projection, actin filament-based processes, and neuronal migration in KO. Decreased cell viability (p<0.001) and expression of soluble NSF adapter protein 25 (SNAP25) (p<0.001) and postsynaptic density protein 95 (PSD95) (p<0.01) was observed in days in vitro 7 neurons. Downregulation of synaptic proteins, and altered phosphorylation levels of Synapsin I, mammalian uncoordinated 18 (MUNC18), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB) was observed in KO cortex and hippocampus. Risperidone reversed the memory impairment in the passive avoidance test and the spontaneous alternation percentage in the Y maze test. Risperidone also restored the reduced expression of PSD95 (p<0.01) and the phosphorylation of Synapsin at Ser605 (p<0.05) and Ser549 (p<0.001) in the cortex of moesin-KO. CONCLUSION Moesin deficiency leads to neurodevelopmental delay and memory decline, which may be caused through altered regulation in synaptic proteins and function.
Collapse
Affiliation(s)
- Hua Cai
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Seong Mi Lee
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Yura Choi
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
| | - Bomlee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Soo Jung Im
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Dong Hyeon Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Hyung Jun Choi
- Mental Health Research Institute, National Center for Mental Health, Seoul, Republic of Korea
| | - Jin Hee Kim
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeni Kim
- Department of Neuropsychiatry, Dongguk University School of Medicine, Seoul, Republic of Korea
- Department of Child and Adolescent Psychiatry, National Center for Mental Health, Seoul, Republic of Korea
- Dongguk University International Hospital, Institute of Clinical Psychopharmacology, Goyang, Republic of Korea
| | - Boo Ahn Shin
- Department of Microbiology and Immunology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Songhee Jeon
- Department of Biomedical Sciences, Center for Glocal Future Biomedical Scientists at Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Cattaneo S, Bettegazzi B, Crippa L, Asth L, Regoni M, Soukupova M, Zucchini S, Cantore A, Codazzi F, Valtorta F, Simonato M. Gene therapy for epilepsy targeting neuropeptide Y and its Y2 receptor to dentate gyrus granule cells. EMBO Rep 2024; 25:4387-4409. [PMID: 39251828 PMCID: PMC11467199 DOI: 10.1038/s44319-024-00244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Gene therapy is emerging as an alternative option for individuals with drug-resistant focal epilepsy. Here, we explore the potential of a novel gene therapy based on Neuropeptide Y (NPY), a well-known endogenous anticonvulsant. We develop a lentiviral vector co-expressing NPY with its inhibitory receptor Y2 in which, for the first time, both transgenes are placed under the control of the minimal CamKIIa(0.4) promoter, biasing expression toward excitatory neurons and allowing autoregulation of neuronal excitability by Y2 receptor-mediated inhibition. Vector-induced NPY and Y2 expression and safety are first assessed in cultures of hippocampal neurons. In vivo experiments demonstrate efficient and nearly selective overexpression of both genes in granule cell mossy fiber terminals following vector administration in the dentate gyrus. Telemetry video-EEG monitoring reveals a reduction in the frequency and duration of seizures in the synapsin triple KO model. This study shows that targeting a small subset of neurons (hippocampal granule cells) with a combined overexpression of NPY and Y2 receptor is sufficient to reduce the occurrence of spontaneous seizures.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Barbara Bettegazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Lucia Crippa
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Maria Regoni
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Silvia Zucchini
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy
| | - Alessio Cantore
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, 20123, Milan, Italy
| | - Franca Codazzi
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Flavia Valtorta
- Vita-Salute San Raffaele University, 20132, Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Michele Simonato
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121, Ferrara, Italy.
| |
Collapse
|
3
|
Bruentgens F, Moreno Velasquez L, Stumpf A, Parthier D, Breustedt J, Benfenati F, Milovanovic D, Schmitz D, Orlando M. The Lack of Synapsin Alters Presynaptic Plasticity at Hippocampal Mossy Fibers in Male Mice. eNeuro 2024; 11:ENEURO.0330-23.2024. [PMID: 38866497 PMCID: PMC11223178 DOI: 10.1523/eneuro.0330-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.
Collapse
Affiliation(s)
- Felicitas Bruentgens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Laura Moreno Velasquez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Alexander Stumpf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Daniel Parthier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Jörg Breustedt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Dragomir Milovanovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Marta Orlando
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
4
|
Stavsky A, Parra-Rivas LA, Tal S, Riba J, Madhivanan K, Roy S, Gitler D. Synapsin E-domain is essential for α-synuclein function. eLife 2024; 12:RP89687. [PMID: 38713200 PMCID: PMC11076041 DOI: 10.7554/elife.89687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024] Open
Abstract
The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.
Collapse
Affiliation(s)
- Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Leonardo A Parra-Rivas
- Department of Pathology, University of California, San DiegoLa JollaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Shani Tal
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | - Jen Riba
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| | | | - Subhojit Roy
- Department of Pathology, University of California, San DiegoLa JollaUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Neurosciences, University of California, San DiegoLa JollaUnited States
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and School of Brain Sciences and Cognition, Ben-Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
5
|
Riva M, Moriceau S, Morabito A, Dossi E, Sanchez-Bellot C, Azzam P, Navas-Olive A, Gal B, Dori F, Cid E, Ledonne F, David S, Trovero F, Bartolomucci M, Coppola E, Rebola N, Depaulis A, Rouach N, de la Prida LM, Oury F, Pierani A. Aberrant survival of hippocampal Cajal-Retzius cells leads to memory deficits, gamma rhythmopathies and susceptibility to seizures in adult mice. Nat Commun 2023; 14:1531. [PMID: 36934089 PMCID: PMC10024761 DOI: 10.1038/s41467-023-37249-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/08/2023] [Indexed: 03/20/2023] Open
Abstract
Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.
Collapse
Affiliation(s)
- Martina Riva
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Stéphanie Moriceau
- Platform for Neurobehavioral and metabolism, Structure Fédérative de Recherche Necker, 26 INSERM US24/CNRS UAR, 3633, Paris, France
| | - Annunziato Morabito
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Patrick Azzam
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | | | - Beatriz Gal
- Instituto Cajal, CSIC, Madrid, Spain
- Universidad Camilo José Cela, Madrid, Spain
| | - Francesco Dori
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | - Fanny Ledonne
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Sabrina David
- Key-Obs SAS, 13 avenue Buffon, 45100, Orléans, France
| | | | - Magali Bartolomucci
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Eva Coppola
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Nelson Rebola
- Sorbonne Université, Institut Du Cerveau-Paris Brain Institute-ICM, Inserm U1127, CNRS UMR 7225, 47 Boulevard de l'Hopital, 75013, Paris, France
| | - Antoine Depaulis
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Labex Memolife, Université PSL, Paris, France
| | | | - Franck Oury
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015, Paris, France
| | - Alessandra Pierani
- Université Paris Cité, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, 75015, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France.
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
6
|
Activation of the PI3K/AKT/mTOR Pathway in Cajal–Retzius Cells Leads to Their Survival and Increases Susceptibility to Kainate-Induced Seizures. Int J Mol Sci 2023; 24:ijms24065376. [PMID: 36982451 PMCID: PMC10048971 DOI: 10.3390/ijms24065376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/15/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Cajal–Retzius cells (CRs) are a class of transient neurons in the mammalian cortex that play a critical role in cortical development. Neocortical CRs undergo almost complete elimination in the first two postnatal weeks in rodents and the persistence of CRs during postnatal life has been detected in pathological conditions related to epilepsy. However, it is unclear whether their persistence is a cause or consequence of these diseases. To decipher the molecular mechanisms involved in CR death, we investigated the contribution of the PI3K/AKT/mTOR pathway as it plays a critical role in cell survival. We first showed that this pathway is less active in CRs after birth before massive cell death. We also explored the spatio-temporal activation of both AKT and mTOR pathways and reveal area-specific differences along both the rostro–caudal and medio–lateral axes. Next, using genetic approaches to maintain an active pathway in CRs, we found that the removal of either PTEN or TSC1, two negative regulators of the pathway, lead to differential CR survivals, with a stronger effect in the Pten model. Persistent cells in this latter mutant are still active. They express more Reelin and their persistence is associated with an increase in the duration of kainate-induced seizures in females. Altogether, we show that the decrease in PI3K/AKT/mTOR activity in CRs primes these cells to death by possibly repressing a survival pathway, with the mTORC1 branch contributing less to the phenotype.
Collapse
|
7
|
Vasile F, Dossi E, Moulard J, Ezan P, Lecoin L, Cohen-Salmon M, Mailly P, Le Bert M, Couillin I, Bemelmans A, Rouach N. Pannexin 1 activity in astroglia sets hippocampal neuronal network patterns. PLoS Biol 2022; 20:e3001891. [PMID: 36477165 PMCID: PMC9728857 DOI: 10.1371/journal.pbio.3001891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022] Open
Abstract
Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.
Collapse
Affiliation(s)
- Flora Vasile
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Elena Dossi
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Julien Moulard
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Pascal Ezan
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Laure Lecoin
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Martine Cohen-Salmon
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
| | - Marc Le Bert
- CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Isabelle Couillin
- CNRS UMR7355, Experimental and Molecular Immunology and Neurogenetics, Orleans, France
| | - Alexis Bemelmans
- Université Paris-Saclay, Commissariat à l’Energie Atomique et aux Energies Alternatives, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Nathalie Rouach
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS, INSERM, Labex Memolife, PSL Research University, Paris, France
- * E-mail:
| |
Collapse
|
8
|
Schwark R, Andrade R, Bykhovskaia M. Synapsin II Directly Suppresses Epileptic Seizures In Vivo. Brain Sci 2022; 12:brainsci12030325. [PMID: 35326282 PMCID: PMC8946686 DOI: 10.3390/brainsci12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
The synapsin family offers a strong linkage between synaptic mechanisms and the epileptic phenotype. Synapsins are phosphoproteins reversibly associated with synaptic vesicles. Synapsin deficiency can cause epilepsy in humans, and synapsin II (SynII) in knockout (KO) mice causes generalized epileptic seizures. To differentiate between the direct effect of SynII versus its secondary adaptations, we used neonatal intracerebroventricular injections of the adeno-associated virus (AAV) expressing SynII. We found that SynII reintroduction diminished the enhanced synaptic activity in Syn2 KO hippocampal slices. Next, we employed the epileptogenic agent 4-aminopyridine (4-AP) and found that SynII reintroduction completely rescued the epileptiform activity observed in Syn2 KO slices upon 4-AP application. Finally, we developed a protocol to provoke behavioral seizures in young Syn2 KO animals and found that SynII reintroduction balances the behavioral seizures. To elucidate the mechanisms through which SynII suppresses hyperexcitability, we injected the phospho-incompetent version of Syn2 that had the mutated protein kinase A (PKA) phosphorylation site. The introduction of the phospho-incompetent SynII mutant suppressed the epileptiform and seizure activity in Syn2 KO mice, but not to the extent observed upon the reintroduction of native SynII. These findings show that SynII can directly suppress seizure activity and that PKA phosphorylation contributes to this function.
Collapse
Affiliation(s)
- Ryan Schwark
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- The Zuckerman Institute, Columbia University, New York, NY 10027, USA
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48203, USA;
- Correspondence:
| |
Collapse
|
9
|
Chai K, Liang J, Zhang X, Cao P, Chen S, Gu H, Ye W, Liu R, Hu W, Peng C, Liu GL, Shen D. Application of Machine Learning and Weighted Gene Co-expression Network Algorithm to Explore the Hub Genes in the Aging Brain. Front Aging Neurosci 2021; 13:707165. [PMID: 34733151 PMCID: PMC8558222 DOI: 10.3389/fnagi.2021.707165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/27/2021] [Indexed: 01/31/2023] Open
Abstract
Aging is a major risk factor contributing to neurodegeneration and dementia. However, it remains unclarified how aging promotes these diseases. Here, we use machine learning and weighted gene co-expression network (WGCNA) to explore the relationship between aging and gene expression in the human frontal cortex and reveal potential biomarkers and therapeutic targets of neurodegeneration and dementia related to aging. The transcriptional profiling data of the human frontal cortex from individuals ranging from 26 to 106 years old was obtained from the GEO database in NCBI. Self-Organizing Feature Map (SOM) was conducted to find the clusters in which gene expressions downregulate with aging. For WGCNA analysis, first, co-expressed genes were clustered into different modules, and modules of interest were identified through calculating the correlation coefficient between the module and phenotypic trait (age). Next, the overlapping genes between differentially expressed genes (DEG, between young and aged group) and genes in the module of interest were discovered. Random Forest classifier was performed to obtain the most significant genes in the overlapping genes. The disclosed significant genes were further identified through network analysis. Through WGCNA analysis, the greenyellow module is found to be highly negatively correlated with age, and functions mainly in long-term potentiation and calcium signaling pathways. Through step-by-step filtering of the module genes by overlapping with downregulated DEGs in aged group and Random Forest classifier analysis, we found that MAPT, KLHDC3, RAP2A, RAP2B, ELAVL2, and SYN1 were co-expressed and highly correlated with aging.
Collapse
Affiliation(s)
- Keping Chai
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Jiawei Liang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolin Zhang
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panlong Cao
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Shufang Chen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Huaqian Gu
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Weiping Ye
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| | - Rong Liu
- Key Laboratory of Ministry of Education for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjun Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Caixia Peng
- Key Laboratory for Molecular Diagnosis of Hubei Province, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China.,Central Laboratory, Tongji Medical College, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Logan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Daojiang Shen
- Department of Pediatrics, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
10
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
11
|
Dysfunction of the serotonergic system in the brain of synapsin triple knockout mice is associated with behavioral abnormalities resembling synapsin-related human pathologies. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110135. [PMID: 33058959 DOI: 10.1016/j.pnpbp.2020.110135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022]
Abstract
Synapsins (Syns) are a family of phosphoproteins associated with synaptic vesicles (SVs). Their main function is to regulate neurotransmitter release by maintaining a reserve pool of SVs at the presynaptic terminal. Previous studies reported that the deletion of one or more Syn genes in mice results in an epileptic phenotype and autism-related behavioral abnormalities. Here we aimed at characterizing the behavioral phenotype and neurobiological correlates of the deletion of Syns in a Syn triple knockout (TKO) mouse model. Wild type (WT) and TKO mice were tested in the open field, novelty suppressed feeding, light-dark box, forced swim, tail suspension and three-chamber sociability tests. Using in vivo electrophysiology, we recorded the spontaneous activity of dorsal raphe nucleus (DRN) serotonin (5-HT) and ventral tegmental area (VTA) dopamine (DA) neurons. Levels of 5-HT and DA in the frontal cortex and hippocampus of WT and TKO mice were also assessed using a High-Performance Liquid Chromatography. TKO mice displayed hyperactivity and impaired social and anxiety-like behavior. Behavioral dysfunctions were accompanied by reduced firing activity of DRN 5-HT, but not VTA DA, neurons. TKO mice also showed increased responsiveness of DRN 5-HT-1A autoreceptors, measured as a reduced dose of the 5-HT-1A agonist 8-OH-DPAT necessary to inhibit DRN 5-HT firing activity by 50%. Finally, hippocampal 5-HT levels were lower in TKO than in WT mice. Overall, Syns deletion in mice leads to a reduction in DRN 5-HT firing activity and hippocampal 5-HT levels along with behavioral alterations reminiscent of human neuropsychiatric conditions associated with Syn dysfunction.
Collapse
|
12
|
Spanu A, Colistra N, Farisello P, Friz A, Arellano N, Rettner CT, Bonfiglio A, Bozano L, Martinoia S. A three-dimensional micro-electrode array for in-vitro neuronal interfacing. J Neural Eng 2020; 17:036033. [DOI: 10.1088/1741-2552/ab9844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Ihara M, Saito S. Drug Repositioning for Alzheimer’s Disease: Finding Hidden Clues in Old Drugs. J Alzheimers Dis 2020; 74:1013-1028. [DOI: 10.3233/jad-200049] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| | - Satoshi Saito
- Department of Neurology, National Cerebral and Cardiovascular Center, Japan
| |
Collapse
|
14
|
Alshuaib S, Mosaddeghi J, Lin JW. Effects of levetiracetam on axon excitability and synaptic transmission at the crayfish neuromuscular junction. Synapse 2020; 74:e22154. [PMID: 32189403 DOI: 10.1002/syn.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/24/2020] [Accepted: 03/15/2020] [Indexed: 11/06/2022]
Abstract
Levetiracetam (LEV) is a widely prescribed antiepileptic drug, but its actions on neuronal function are not fully characterized. Since this drug is believed to enter neurons by binding to a vesicular protein during endocytosis, we used motor axons of the crayfish opener neuromuscular junction to examine potential impacts of LEV on axon excitability. Two electrode current clamp from the inhibitory axon of the opener showed that LEV reduced action potential (AP) amplitude (APamp ) and suppressed synaptic transmission, although the latter occurred with a longer delay than the reduction in APamp . Comparison of antidromic and orthodromic conducting APs in LEV suggested that this drug preferentially reduced excitability of the proximal axon, despite the expectation that it entered the axon at the terminals and should affect the distal branches first. Results presented here suggest that LEV modulates axonal excitability, which may in turn contribute to its antiepileptic effects.
Collapse
Affiliation(s)
| | | | - Jen-We Lin
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
15
|
Beretta S, Gritti L, Verpelli C, Sala C. Eukaryotic Elongation Factor 2 Kinase a Pharmacological Target to Regulate Protein Translation Dysfunction in Neurological Diseases. Neuroscience 2020; 445:42-49. [PMID: 32088293 DOI: 10.1016/j.neuroscience.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 02/02/2023]
Abstract
Two major processes tightly regulate protein synthesis, the initiation of mRNA translation and elongation phase that mediates the movement of ribosomes along the mRNA. The elongation phase is a high energy-consuming process, and is mainly regulated by the eukaryotic elongation factor 2 kinase (eEF2K) activity that phosphorylates and inhibits eEF2, the only known substrate of the kinase. eEF2K activity is closely regulated by several signaling pathways because the translation elongation phase strongly influences the cellular energy demand and can change the expression of specific proteins in different tissues. An increasing number of recent findings link eEF2k over activation to an array of human diseases, such as atherosclerosis, pulmonary arterial hypertension, progression of solid tumors, and some major neurological disorders. Several neurological studies suggest that eEF2K is a valuable target in treating epilepsy, depression and major neurodegenerative diseases. Despite eEF2k is an ubiquitous and conserved protein, it has been proved that its deletion does not affect development in animal models and in general cell viability. Therefore, it is possible to postulate that inhibiting its function may not cause serious side effects. In addition, eEF2K is a peculiar kinase molecularly different from most of other mammalian kinases and new compounds that inhibit eEF2K should not necessarily interfere with other important protein kinases. In this review we will critically summarize the evidence supporting the role of the altered eEF2K/eEF2 pathway in defined neurological diseases and its implications in curing these diseases in animal models, and possibly in humans, by targeting eEF2K activity.
Collapse
Affiliation(s)
| | | | | | - Carlo Sala
- CNR Neuroscience Institute, Milano, Italy.
| |
Collapse
|
16
|
Heuzeroth H, Wawra M, Fidzinski P, Dag R, Holtkamp M. The 4-Aminopyridine Model of Acute Seizures in vitro Elucidates Efficacy of New Antiepileptic Drugs. Front Neurosci 2019; 13:677. [PMID: 31316344 PMCID: PMC6610309 DOI: 10.3389/fnins.2019.00677] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/13/2019] [Indexed: 12/28/2022] Open
Abstract
Up to date, preclinical screening for new antiepileptic substances is performed by a combination of different in vivo models of acute seizures, for which large numbers of animals are necessary. So far, little attention has been paid to in vitro models, which are also able to detect antiepileptic efficacy and in principle could likewise serve for exploratory preclinical screening. One of the established in vitro models of acute seizures is the 4-aminopyridine (4-AP) model. Previous studies have shown that the 4-AP model is capable to recapitulate the antiepileptic efficacy of standard antiepileptic drugs (AEDs) such as valproate or carbamazepine. Here, we employed a dual methodological approach using electrophysiology and optical imaging to systematically test the antiepileptic efficacy of three new-generation AEDs with distinct mechanisms of action (lacosamide, zonisamide, and levetiracetam). We found that frequency of 4-AP induced seizure like events (SLE) was the most sensitive parameter to detect dose-dependent antiepileptic effects in these compounds. Specifically, levetiracetam reduced SLE frequency while lacosamide and zonisamide at higher doses completely blocked SLE incidence. Analysis of the intrinsic optical signal additionally revealed a subiculum-specific reduction of the area involved in the propagation of ictal activity when lacosamide or zonisamide were administered. Taken together, our data adds some evidence that acute seizure models in vitro are in principle capable to detect antiepileptic effects across different mechanisms of action with efficacy similar to acute models in vivo. Further studies with negative controls, e.g., penicillin as a proconvulsant, and other clinically relevant AEDs are needed to determine if this acute in vitro model might be useful as exploratory screening tool. In view of the increasing sensitivity toward animal welfare, an affective in vitro model may help to reduce the number of laboratory animals deployed in burdening in vivo experiments and to preselect substances for subsequent testing in time- and cost-laborious models of chronic epilepsy.
Collapse
Affiliation(s)
- Hanno Heuzeroth
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Wawra
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Pawel Fidzinski
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ramazan Dag
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Holtkamp
- Epilepsy-Center Berlin-Brandenburg, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Matos H, Quiles R, Andrade R, Bykhovskaia M. Growth and excitability at synapsin II deficient hippocampal neurons. Mol Cell Neurosci 2019; 96:25-34. [PMID: 30858140 DOI: 10.1016/j.mcn.2019.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/25/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022] Open
Abstract
Synapsins are neuronal phosphoproteins that fine-tune synaptic transmission and suppress seizure activity. Synapsin II (SynII) deletion produces epileptic seizures and overexcitability in neuronal networks. Early studies in primary neuronal cultures have shown that SynII deletion results in a delay in synapse formation. More recent studies at hippocampal slices have revealed increased spontaneous activity in SynII knockout (SynII(-)) mice. To reconcile these observations, we systematically re-examined synaptic transmission, synapse formation, and neurite growth in primary hippocampal neuronal cultures. We find that spontaneous glutamatergic synaptic activity was suppressed in SynII(-) neurons during the initial developmental epoch (7 days in vitro, DIV) but was enhanced at later times (12 and18 DIV). The density of synapses, transmission between connected pairs of neurons, and the number of docked synaptic vesicles were not affected by SynII deletion. However, we found that neurite outgrowth in SynII(-) neurons was suppressed during the initial developmental epoch (7 DIV) but enhanced at subsequent developmental stages (12 and18 DIV). This finding can account for the observed effect of SynII deletion on synaptic activity. To test whether the observed phenotype resulted directly from the deletion of SynII we expressed SynII in SynII(-) cultures using an adeno-associated virus (AAV). Expression of SynII at 2 DIV rescued the SynII deletion-dependent alterations in both synaptic activity and neuronal growth. To test whether the increased neurite outgrowth in SynII(-) observed at DIV 12 and18 represents an overcompensation for the initial developmental delay or results directly from SynII deletion we performed "late expression" experiments, transfecting SynII(-) cultures with AAV at 7 DIV. The late SynII expression suppressed neurite outgrowth at 12 and 18 DIV to the levels observed in control neurons, suggesting that these phenotypes directly depend on SynII. These results reveal a novel developmentally regulated role for SynII function in the control of neurite growth.
Collapse
Affiliation(s)
- Heidi Matos
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Raymond Quiles
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Maria Bykhovskaia
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States of America.
| |
Collapse
|
18
|
Kim JH, Lee CH, Kim HG, Kim HR. Decreased dopamine in striatum and difficult locomotor recovery from MPTP insult after exposure to radiofrequency electromagnetic fields. Sci Rep 2019; 9:1201. [PMID: 30718744 PMCID: PMC6362053 DOI: 10.1038/s41598-018-37874-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
Concern is growing about possible neuronal effects of human exposure to radiofrequency electromagnetic fields because of the increasing usage of cell phones and the close proximity of these devices to the brain when in use. We found that exposure to a radiofrequency electromagnetic field (RF-EMF) of 835 MHz (4.0 W/kg specific absorption rate [SAR] for 5 h/day for 12 weeks) affects striatal neurons in C57BL/6 mice. The number of synaptic vesicles (SVs) in striatal presynaptic boutons was significantly decreased after RF-EMF exposure. The expression levels of synapsin I and II were also significantly decreased in the striatum of the RF-EMF-exposed group. RF-EMF exposure led to a reduction in dopamine concentration in the striatum and also to a decrease in the expression of tyrosine hydroxylase in striatal neurons. Furthermore, in behavioral tests, exposure to RF-EMF impeded the recovery of locomotor activities after repeated treatments with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). These results suggest that the observed decrease in dopamine concentration in the striatum was caused by both a reduction in the number of dopaminergic neurons and a decline in the number of SVs. The decreased dopamine neuron numbers and concentration seen after RF-EMF exposure would have caused the difficult recovery after MPTP treatment. In summary, our results strongly suggest that exposing the brain to RF-EMF can decrease the number of SVs and dopaminergic neurons in the striatum. These primary changes impair the recovery of locomotor activities following MPTP damage to the striatum.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hyung-Gun Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan, Chungnam, Republic of Korea.
| |
Collapse
|
19
|
Panuccio G, Colombi I, Chiappalone M. Recording and Modulation of Epileptiform Activity in Rodent Brain Slices Coupled to Microelectrode Arrays. J Vis Exp 2018. [PMID: 29863681 PMCID: PMC6101224 DOI: 10.3791/57548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common partial complex epileptic syndrome and the least responsive to medications. Deep brain stimulation (DBS) is a promising approach when pharmacological treatment fails or neurosurgery is not recommended. Acute brain slices coupled to microelectrode arrays (MEAs) represent a valuable tool to study neuronal network interactions and their modulation by electrical stimulation. As compared to conventional extracellular recording techniques, they provide the added advantages of a greater number of observation points and a known inter-electrode distance, which allow studying the propagation path and speed of electrophysiological signals. However, tissue oxygenation may be greatly impaired during MEA recording, requiring a high perfusion rate, which comes at the cost of decreased signal-to-noise ratio and higher oscillations in the experimental temperature. Electrical stimulation further stresses the brain tissue, making it difficult to pursue prolonged recording/stimulation epochs. Moreover, electrical modulation of brain slice activity needs to target specific structures/pathways within the brain slice, requiring that electrode mapping be easily and quickly performed live during the experiment. Here, we illustrate how to perform the recording and electrical modulation of 4-aminopyridine (4AP)-induced epileptiform activity in rodent brain slices using planar MEAs. We show that the brain tissue obtained from mice outperforms rat brain tissue and is thus better suited for MEA experiments. This protocol guarantees the generation and maintenance of a stable epileptiform pattern that faithfully reproduces the electrophysiological features observed with conventional field potential recording, persists for several hours, and outlasts sustained electrical stimulation for prolonged epochs. Tissue viability throughout the experiment is achieved thanks to the use of a small-volume custom recording chamber allowing for laminar flow and quick solution exchange even at low (1 mL/min) perfusion rates. Quick MEA mapping for real-time monitoring and selection of stimulating electrodes is performed by a custom graphic user interface (GUI).
Collapse
Affiliation(s)
- Gabriella Panuccio
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia;
| | - Ilaria Colombi
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia
| | - Michela Chiappalone
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia; Rehab Technologies, Istituto Italiano di Tecnologia
| |
Collapse
|
20
|
Marcotulli D, Fattorini G, Bragina L, Perugini J, Conti F. Levetiracetam Affects Differentially Presynaptic Proteins in Rat Cerebral Cortex. Front Cell Neurosci 2017; 11:389. [PMID: 29311825 PMCID: PMC5732259 DOI: 10.3389/fncel.2017.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/24/2017] [Indexed: 01/23/2023] Open
Abstract
Presynaptic proteins are potential therapeutic targets for epilepsy and other neurological diseases. We tested the hypothesis that chronic treatment with the SV2A ligand levetiracetam affects the expression of other presynaptic proteins. Results showed that in rat neocortex no significant difference was detected in SV2A protein levels in levetiracetam treated animals compared to controls, whereas levetiracetam post-transcriptionally decreased several vesicular proteins and increased LRRK2, without any change in mRNA levels. Analysis of SV2A interactome indicates that the presynaptic proteins regulation induced by levetiracetam reported here is mediated by this interactome, and suggests that LRRK2 plays a role in forging the pattern of effects.
Collapse
Affiliation(s)
- Daniele Marcotulli
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgia Fattorini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Luca Bragina
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| | - Jessica Perugini
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Fiorenzo Conti
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, INRCA IRCCS, Ancona, Italy
| |
Collapse
|
21
|
Höltje M, Mertens R, Schou MB, Saether SG, Kochova E, Jarius S, Prüss H, Komorowski L, Probst C, Paul F, Bellmann-Strobl J, Gitler D, Benfenati F, Piepgras J, Ahnert-Hilger G, Ruprecht K. Synapsin-antibodies in psychiatric and neurological disorders: Prevalence and clinical findings. Brain Behav Immun 2017; 66:125-134. [PMID: 28733081 DOI: 10.1016/j.bbi.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/01/2017] [Accepted: 07/17/2017] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To study the prevalence of autoantibodies to synapsin in patients with psychiatric and neurological disorders and to describe clinical findings in synapsin antibody positive patients. METHODS Sera of 375 patients with different psychiatric and neurological disorders and sera of 97 healthy controls were screened (dilution 1:320) for anti-synapsin IgG using HEK293 cells transfected with rat synapsin Ia. Positive sera were further analyzed by immunoblots with brain tissue from wild type and synapsin knock out mice and with HEK293 cells transfected with human synapsin Ia and Ib. Binding of synapsin IgG positive sera to primary neurons was studied using murine hippocampal neurons. RESULTS IgG in serum from 23 (6.1%) of 375 patients, but from none of the 97 healthy controls (p=0.007), bound to rat synapsin Ia transfected cells with a median (range) titer of 1:1000 (1:320-1:100,000). Twelve of the 23 positive sera reacted with a protein of the molecular size of synapsin I in immunoblots of wild type but not of synapsin knock out mouse brain tissue. Out of 19/23 positive sera available for testing, 13 bound to human synapsin Ia and 16 to human synapsin Ib transfected cells. Synapsin IgG positive sera stained fixed and permeabilized murine hippocampal neurons. Synapsin IgG positive patients had various psychiatric and neurological disorders. Tumors were documented in 2 patients (melanoma, small cell lung carcinoma); concomitant anti-neuronal or other autoantibodies were present in 8 patients. CONCLUSIONS Autoantibodies to human synapsin Ia and Ib are detectable in a proportion of sera from patients with different psychiatric and neurological disorders, warranting further investigation into the potential pathophysiological relevance of these antibodies.
Collapse
Affiliation(s)
- Markus Höltje
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Robert Mertens
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Morten Brix Schou
- St. Olav's Hospital, Trondheim University Hospital, Department of Psychiatry, Trondheim, Norway; Norwegian University of Science and Technology, Faculty of Medicine and Health Science, Department of Mental Health, Trondheim, Norway.
| | - Sverre Georg Saether
- St. Olav's Hospital, Trondheim University Hospital, Department of Psychiatry, Trondheim, Norway; Norwegian University of Science and Technology, Faculty of Medicine and Health Science, Department of Mental Health, Trondheim, Norway.
| | - Elena Kochova
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Germany.
| | - Harald Prüss
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| | - Lars Komorowski
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany.
| | - Christian Probst
- Institute for Experimental Immunology, Affiliated to Euroimmun AG, Lübeck, Germany.
| | - Friedemann Paul
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Germany.
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Germany.
| | - Daniel Gitler
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.
| | - Johannes Piepgras
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Klemens Ruprecht
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Valente P, Farisello P, Valtorta F, Baldelli P, Benfenati F. Impaired GABA B-mediated presynaptic inhibition increases excitatory strength and alters short-term plasticity in synapsin knockout mice. Oncotarget 2017; 8:90061-90076. [PMID: 29163811 PMCID: PMC5685732 DOI: 10.18632/oncotarget.21405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype. These changes are associated with an increased strength of excitatory transmission that has never been mechanistically investigated. Here, we observed that an identical effect in excitatory transmission could be induced in wild-type (WT) Schaffer collateral-CA1 pyramidal cell synapses by blockade of GABAB receptors (GABABRs). The same treatment was virtually ineffective in TKO slices, suggesting that the increased strength of the excitatory transmission results from an impairment of GABAB presynaptic inhibition. Exogenous stimulation of GABABRs in excitatory autaptic neurons, where GABA spillover is negligible, demonstrated that GABABRs were effective in inhibiting excitatory transmission in both WT and TKO neurons. These results demonstrate that the decreased GABA release and spillover, previously observed in TKO hippocampal slices, removes the tonic brake of presynaptic GABABRs on glutamate transmission, making the excitation/inhibition imbalance stronger.
Collapse
Affiliation(s)
- Pierluigi Valente
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy
| | - Pasqualina Farisello
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Flavia Valtorta
- S. Raffaele Scientific Institute and Vita-Salute University, 20132 Milano, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Fabio Benfenati
- Department of Experimental Medicine, Section of Physiology, University of Genoa, 16132 Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| |
Collapse
|
23
|
Werner FM, Coveñas R. Classical neurotransmitters and neuropeptides involved in generalized epilepsy in a multi-neurotransmitter system: How to improve the antiepileptic effect? Epilepsy Behav 2017; 71:124-129. [PMID: 25819950 DOI: 10.1016/j.yebeh.2015.01.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/20/2022]
Abstract
Here, we describe in generalized epilepsies the alterations of classical neurotransmitters and neuropeptides acting at specific subreceptors. In order to consider a network context rather than one based on focal substrates and in order to make the interaction between neurotransmitters and neuropeptides and their specific subreceptors comprehensible, neural networks in the hippocampus, thalamus, and cerebral cortex are described. In this disease, a neurotransmitter imbalance between dopaminergic and serotonergic neurons and between presynaptic GABAergic neurons (hypoactivity) and glutaminergic neurons (hyperactivity) occurs. Consequently, combined GABAA agonists and NMDA antagonists could furthermore stabilize the neural networks in a multimodal pharmacotherapy. The antiepileptic effect and the mechanisms of action of conventional and recently developed antiepileptic drugs are reviewed. The GASH:Sal animal model can contribute to examine the efficacy of antiepileptic drugs. The issues of whether the interaction of classical neurotransmitters with other subreceptors (5-HT7, metabotropic 5 glutaminergic, A2A adenosine, and alpha nicotinic 7 cholinergic receptors) or whether the administration of agonists/antagonists of neuropeptides might improve the therapeutic effect of antiepileptic drugs should be addressed. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Felix-Martin Werner
- Höhere Berufsfachschule für Altenpflege und Ergotherapie der Euro Akademie Pößneck, Pößneck, Germany; Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain.
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain.
| |
Collapse
|
24
|
Synapsin II Regulation of GABAergic Synaptic Transmission Is Dependent on Interneuron Subtype. J Neurosci 2017; 37:1757-1771. [PMID: 28087765 DOI: 10.1523/jneurosci.0844-16.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/22/2016] [Accepted: 12/31/2016] [Indexed: 11/21/2022] Open
Abstract
Synapsins are epilepsy susceptibility genes that encode phosphoproteins reversibly associated with synaptic vesicles. Synapsin II (SynII) gene deletion produces a deficit in inhibitory synaptic transmission, and this defect is thought to cause epileptic activity. We systematically investigated how SynII affects synchronous and asynchronous release components of inhibitory transmission in the CA1 region of the mouse hippocampus. We found that the asynchronous GABAergic release component is diminished in SynII-deleted (SynII(-)) slices. To investigate this defect at different interneuron subtypes, we selectively blocked either N-type or P/Q-type Ca2+ channels. SynII deletion suppressed the asynchronous release component at synapses dependent on N-type Ca2+ channels but not at synapses dependent on P/Q-type Ca2+ channels. We then performed paired double-patch recordings from inhibitory basket interneurons connected to pyramidal neurons and used cluster analysis to classify interneurons according to their spiking and synaptic parameters. We identified two cell subtypes, presumably parvalbumin (PV) and cholecystokinin (CCK) expressing basket interneurons. To validate our interneuron classification, we took advantage of transgenic animals with fluorescently labeled PV interneurons and confirmed that their spiking and synaptic parameters matched the parameters of presumed PV cells identified by the cluster analysis. The analysis of the release time course at the two interneuron subtypes demonstrated that the asynchronous release component was selectively reduced at SynII(-) CCK interneurons. In contrast, the transmission was desynchronized at SynII(-) PV interneurons. Together, our results demonstrate that SynII regulates the time course of GABAergic release, and that this SynII function is dependent on the interneuron subtype.SIGNIFICANCE STATEMENT Deletion of the neuronal protein synapsin II (SynII) leads to the development of epilepsy, probably due to impairments in inhibitory synaptic transmission. We systematically investigated SynII function at different subtypes of inhibitory neurons in the hippocampus. We discovered that SynII affects the time course of GABA release, and that this effect is interneuron subtype specific. Within one of the subtypes, SynII deficiency synchronizes the release and suppresses the asynchronous release component, while at the other subtype SynII deficiency suppresses the synchronous release component. These results reveal a new SynII function in the regulation of the time course of GABA release and demonstrate that this function is dependent on the interneuron subtype.
Collapse
|
25
|
Subconvulsant doses of pentylenetetrazol uncover the epileptic phenotype of cultured synapsin-deficient Helix serotonergic neurons in the absence of excitatory and inhibitory inputs. Epilepsy Res 2016; 127:241-251. [PMID: 27639349 DOI: 10.1016/j.eplepsyres.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
Synapsins are a family of presynaptic proteins related to several processes of synaptic functioning. A variety of reports have linked mutations in synapsin genes with the development of epilepsy. Among the proposed mechanisms, a main one is based on the synapsin-mediated imbalance towards network hyperexcitability due to differential effects on neurotransmitter release in GABAergic and glutamatergic synapses. Along this line, a non-synaptic effect of synapsin depletion increasing neuronal excitability has recently been described in Helix neurons. To further investigate this issue, we examined the effect of synapsin knock-down on the development of pentylenetetrazol (PTZ)-induced epileptic-like activity using single neurons or isolated monosynaptic circuits reconstructed on microelectrode arrays (MEAs). Compared to control neurons, synapsin-silenced neurons showed a lower threshold for the development of epileptic-like activity and prolonged periods of activity, together with the occurrence of spontaneous firing after recurrent PTZ-induced epileptic-like activity. These findings highlight the crucial role of synapsin on neuronal excitability regulation in the absence of inhibitory or excitatory inputs.
Collapse
|
26
|
Chever O, Dossi E, Pannasch U, Derangeon M, Rouach N. Astroglial networks promote neuronal coordination. Sci Signal 2016; 9:ra6. [DOI: 10.1126/scisignal.aad3066] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Zhu W, Mao Z, Zhu C, Li M, Cao C, Guan Y, Yuan J, Xie G, Guan X. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats. Neuroscience 2015; 313:174-83. [PMID: 26621120 DOI: 10.1016/j.neuroscience.2015.11.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/24/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults.
Collapse
Affiliation(s)
- W Zhu
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - Z Mao
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - M Li
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - C Cao
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Y Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Yuan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - G Xie
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China
| | - X Guan
- Department of Human Anatomy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
28
|
Mari JF, Saito JH, Neves AF, Lotufo CMDC, Destro-Filho JB, Nicoletti MDC. Quantitative Analysis of Rat Dorsal Root Ganglion Neurons Cultured on Microelectrode Arrays Based on Fluorescence Microscopy Image Processing. Int J Neural Syst 2015; 25:1550033. [PMID: 26510475 DOI: 10.1142/s0129065715500331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microelectrode Arrays (MEA) are devices for long term electrophysiological recording of extracellular spontaneous or evocated activities on in vitro neuron culture. This work proposes and develops a framework for quantitative and morphological analysis of neuron cultures on MEAs, by processing their corresponding images, acquired by fluorescence microscopy. The neurons are segmented from the fluorescence channel images using a combination of segmentation by thresholding, watershed transform, and object classification. The positioning of microelectrodes is obtained from the transmitted light channel images using the circular Hough transform. The proposed method was applied to images of dissociated culture of rat dorsal root ganglion (DRG) neuronal cells. The morphological and topological quantitative analysis carried out produced information regarding the state of culture, such as population count, neuron-to-neuron and neuron-to-microelectrode distances, soma morphologies, neuron sizes, neuron and microelectrode spatial distributions. Most of the analysis of microscopy images taken from neuronal cultures on MEA only consider simple qualitative analysis. Also, the proposed framework aims to standardize the image processing and to compute quantitative useful measures for integrated image-signal studies and further computational simulations. As results show, the implemented microelectrode identification method is robust and so are the implemented neuron segmentation and classification one (with a correct segmentation rate up to 84%). The quantitative information retrieved by the method is highly relevant to assist the integrated signal-image study of recorded electrophysiological signals as well as the physical aspects of the neuron culture on MEA. Although the experiments deal with DRG cell images, cortical and hippocampal cell images could also be processed with small adjustments in the image processing parameter estimation.
Collapse
Affiliation(s)
- João Fernando Mari
- * Instituto de Ciências Exatas e Tecnológicas - Universidade Federal de Viçosa, 38810-000 Rio Paranaí, MG, Brazil.,† Department of Computer Science - UFSCar, 13565-905 S. Carlos, SP, Brazil
| | - José Hiroki Saito
- † Department of Computer Science - UFSCar, 13565-905 S. Carlos, SP, Brazil.,‡ FACCAMP - 13231-230 Campo Limpo Paulista, SP, Brazil
| | - Amanda Ferreira Neves
- § School of Electrical Engineering - UFU, 38400-902 Uberlândia, MG, Brazil.,∥ Department of Structural and Functional Biology - UNICAMP, 13083-970 Campinas, SP, Brazil
| | | | | | - Maria do Carmo Nicoletti
- † Department of Computer Science - UFSCar, 13565-905 S. Carlos, SP, Brazil.,‡ FACCAMP - 13231-230 Campo Limpo Paulista, SP, Brazil
| |
Collapse
|
29
|
Nesher E, Koman I, Gross M, Tikhonov T, Bairachnaya M, Salmon-Divon M, Levin Y, Gerlitz G, Michaelevski I, Yadid G, Pinhasov A. Synapsin IIb as a functional marker of submissive behavior. Sci Rep 2015; 5:10287. [PMID: 25998951 PMCID: PMC4441117 DOI: 10.1038/srep10287] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
Dominance and submissiveness are important functional elements of the social hierarchy. By employing selective breeding based on a social interaction test, we developed mice with strong and stable, inheritable features of dominance and submissiveness. In order to identify candidate genes responsible for dominant and submissive behavior, we applied transcriptomic and proteomic studies supported by molecular, behavioral and pharmacological approaches. We clearly show here that the expression of Synapsin II isoform b (Syn IIb) is constitutively upregulated in the hippocampus and striatum of submissive mice in comparison to their dominant and wild type counterparts. Moreover, the reduction of submissive behavior achieved after mating and delivery was accompanied by a marked reduction of Syn IIb expression. Since submissiveness has been shown to be associated with depressive-like behavior, we applied acute SSRI (Paroxetine) treatment to reduce submissiveness in studied mice. We found that reduction of submissive behavior evoked by Paroxetine was paired with significantly decreased Syn IIb expression. In conclusion, our findings indicate that submissiveness, known to be an important element of depressive-like behavioral abnormalities, is strongly linked with changes in Syn IIb expression.
Collapse
Affiliation(s)
- Elimelech Nesher
- 1] Department of Molecular Biology. Ariel University, Ariel. Israel [2] Faculty of Life Sciences. Bar-Ilan University, Ramat Gan. Israel
| | - Igor Koman
- Department of Molecular Biology. Ariel University, Ariel. Israel
| | - Moshe Gross
- Department of Molecular Biology. Ariel University, Ariel. Israel
| | - Tatiana Tikhonov
- Department of Molecular Biology. Ariel University, Ariel. Israel
| | | | | | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine. Weizmann Institute of Science, Rehovot. Israel
| | - Gabi Gerlitz
- Department of Molecular Biology. Ariel University, Ariel. Israel
| | - Izhak Michaelevski
- 1] Department of Biochemistry and Molecular Biology. Tel-Aviv University, Tel-Aviv. Israel [2] Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv. Israel
| | - Gal Yadid
- Faculty of Life Sciences. Bar-Ilan University, Ramat Gan. Israel
| | - Albert Pinhasov
- Department of Molecular Biology. Ariel University, Ariel. Israel
| |
Collapse
|
30
|
ATP binding to synaspsin IIa regulates usage and clustering of vesicles in terminals of hippocampal neurons. J Neurosci 2015; 35:985-98. [PMID: 25609616 DOI: 10.1523/jneurosci.0944-14.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Synaptic transmission is expensive in terms of its energy demands and was recently shown to decrease the ATP concentration within presynaptic terminals transiently, an observation that we confirm. We hypothesized that, in addition to being an energy source, ATP may modulate the synapsins directly. Synapsins are abundant neuronal proteins that associate with the surface of synaptic vesicles and possess a well defined ATP-binding site of undetermined function. To examine our hypothesis, we produced a mutation (K270Q) in synapsin IIa that prevents ATP binding and reintroduced the mutant into cultured mouse hippocampal neurons devoid of all synapsins. Remarkably, staining for synaptic vesicle markers was enhanced in these neurons compared with neurons expressing wild-type synapsin IIa, suggesting overly efficient clustering of vesicles. In contrast, the mutation completely disrupted the capability of synapsin IIa to slow synaptic depression during sustained 10 Hz stimulation, indicating that it interfered with synapsin-dependent vesicle recruitment. Finally, we found that the K270Q mutation attenuated the phosphorylation of synapsin IIa on a distant PKA/CaMKI consensus site known to be essential for vesicle recruitment. We conclude that ATP binding to synapsin IIa plays a key role in modulating its function and in defining its contribution to hippocampal short-term synaptic plasticity.
Collapse
|
31
|
Medrihan L, Ferrea E, Greco B, Baldelli P, Benfenati F. Asynchronous GABA Release Is a Key Determinant of Tonic Inhibition and Controls Neuronal Excitability: A Study in the Synapsin II-/- Mouse. Cereb Cortex 2014; 25:3356-68. [PMID: 24962993 PMCID: PMC4585492 DOI: 10.1093/cercor/bhu141] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Idiopathic epilepsies have frequently been linked to mutations in voltage-gated channels (channelopathies); recently, mutations in several genes encoding presynaptic proteins have been shown to cause epilepsy in humans and mice, indicating that epilepsy can also be considered a synaptopathy. However, the functional mechanisms by which presynaptic dysfunctions lead to hyperexcitability and seizures are not well understood. We show that deletion of synapsin II (Syn II), a presynaptic protein contributing to epilepsy predisposition in humans, leads to a loss of tonic inhibition in mouse hippocampal slices due to a dramatic decrease in presynaptic asynchronous GABA release. We also show that the asynchronous GABA release reduces postsynaptic cell firing, and the parallel impairment of asynchronous GABA release and tonic inhibition results in an increased excitability at both single-neuron and network levels. Restoring tonic inhibition with THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist of δ subunit-containing GABAA receptors, fully rescues the SynII−/− epileptic phenotype both ex vivo and in vivo. The results demonstrate a causal relationship between the dynamics of GABA release and the generation of tonic inhibition, and identify a novel mechanism of epileptogenesis generated by dysfunctions in the dynamics of release that can be effectively targeted by novel antiepileptic strategies.
Collapse
Affiliation(s)
- Lucian Medrihan
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Enrico Ferrea
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Barbara Greco
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Pietro Baldelli
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
32
|
le Feber J, Stoyanova II, Chiappalone M. Connectivity, excitability and activity patterns in neuronal networks. Phys Biol 2014; 11:036005. [DOI: 10.1088/1478-3975/11/3/036005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Synapsin II and Rab3a cooperate in the regulation of epileptic and synaptic activity in the CA1 region of the hippocampus. J Neurosci 2014; 33:18319-30. [PMID: 24227741 DOI: 10.1523/jneurosci.5293-12.2013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Some forms of idiopathic epilepsy in animals and humans are associated with deficiency of synapsin, a phosphoprotein that reversibly associates with synaptic vesicles. We have previously shown that the epileptic phenotype seen in synapsin II knock-out mice (SynII(-)) can be rescued by the genetic deletion of the Rab3a protein. Here we have examined the cellular basis for this rescue using whole-cell recordings from CA1 hippocampal pyramidal cells in brain slices. We find that SynII(-) neurons have increased spontaneous activity and a reduced threshold for the induction of epileptiform activity by 4-aminopyridine (4-AP). Using selective recordings of glutamatergic and GABAergic activity we show that in wild-type neurons low concentrations of 4-AP facilitate glutamatergic and GABAergic transmission in a balanced way, whereas in SynII(-) neurons this balance is shifted toward excitation. This imbalance reflects a deficit in inhibitory synaptic transmission that appears to be secondary to reduced Ca(2+) sensitivity in SynII(-) neurons. This suggestion is supported by our finding that synaptic and epileptiform activity at SynII(-) and wild-type synapses is similar when GABAergic transmission is blocked. Deletion of Rab3a results in glutamatergic synapses that have a compromised responsiveness to either low 4-AP concentrations or elevated extracellular Ca(2+). These changes mitigate the overexcitable phenotype observed in SynII(-) neurons. Thus, Rab3a deletion appears to restore the excitatory/inhibitory imbalance observed in SynII(-) hippocampal slices indirectly, not by correcting the deficit in GABAergic synaptic transmission but rather by impairing excitatory glutamatergic synaptic transmission.
Collapse
|
34
|
Barrera-Bailón B, Oliveira JAC, López DE, Muñoz LJ, Garcia-Cairasco N, Sancho C. Pharmacological and neuroethological studies of three antiepileptic drugs in the Genetic Audiogenic Seizure Hamster (GASH:Sal). Epilepsy Behav 2013; 28:413-25. [PMID: 23872084 DOI: 10.1016/j.yebeh.2013.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/25/2022]
Abstract
Epilepsy modeling is essential for understanding the basic mechanisms of the epileptic process. The Genetic Audiogenic Seizure Hamster (GASH:Sal) exhibits generalized tonic-clonic seizures of genetic origin in response to sound stimulation and is currently being validated as a reliable model of epilepsy. Here, we performed a pharmacological and neuroethological study using well-known and widely used antiepileptic drugs (AEDs), including phenobarbital (PB), valproic acid (VPA), and levetiracetam (LEV). The intraperitoneal administration of PB (5-20mg/kg) and VPA (100-300mg/kg) produced a dose-dependent decrease in GASH:Sal audiogenic seizure severity scores. The administration of LEV (30-100mg/kg) did not produce a clear effect. Phenobarbital showed a short plasmatic life and had a high antiepileptic effect starting at 10mg/kg that was accompanied by ataxia. Valproic acid acted only at high concentrations and was the AED with the most ataxic effects. Levetiracetam at all doses also produced sedation and ataxia side effects. We conclude that the GASH:Sal is a reliable genetic model of epilepsy suitable to evaluate AEDs.
Collapse
Affiliation(s)
- B Barrera-Bailón
- Institute of Neurosciences of Castilla and León/IBSAL, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Giannandrea M, Guarnieri FC, Gehring NH, Monzani E, Benfenati F, Kulozik AE, Valtorta F. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I. PLoS One 2013; 8:e67724. [PMID: 23818987 PMCID: PMC3688603 DOI: 10.1371/journal.pone.0067724] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 11/22/2022] Open
Abstract
Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/-) ) mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD). Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/-) mice as an experimental model mimicking the human pathology.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Cells, Cultured
- Codon, Nonsense
- Epilepsy/genetics
- Epilepsy/metabolism
- Female
- Gene Expression
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- HeLa Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Fluorescence
- Microtubule-Associated Proteins/metabolism
- Neurons/metabolism
- Nonsense Mediated mRNA Decay
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Synapsins/genetics
- Synapsins/metabolism
Collapse
Affiliation(s)
- Maila Giannandrea
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabrizia C. Guarnieri
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | | | - Elena Monzani
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| | - Fabio Benfenati
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, Genoa, Italy
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andreas E. Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg Medical Center and Molecular Medicine Partnership Unit, EMBL and University of Heidelberg, Heidelberg, Germany
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute University, Milan, Italy
| |
Collapse
|
36
|
Etholm L, Bahonjic E, Heggelund P. Sensitive and critical periods in the development of handling induced seizures in mice lacking synapsins: differences between synapsin I and synapsin II knockouts. Exp Neurol 2013; 247:59-65. [PMID: 23570901 DOI: 10.1016/j.expneurol.2013.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/22/2013] [Accepted: 03/29/2013] [Indexed: 01/14/2023]
Abstract
Mice lacking either synapsin I or synapsin II develop handling induced seizures from around two months of age. In mice lacking synapsin I (synapsin 1 knock-out mice, Syn1KO mice) such seizures can either consist of mild myoclonic jerks or of fully developed generalized tonic-clonic seizures, and the two seizure types are quite evenly distributed. In mice lacking synapsin II (synapsin 2 knock-out mice, Syn2KO mice) all seizures are in the form of generalized tonic-clonic seizures. Through the use of specialized animal rearing procedures whereby human-animal interaction was minimized (minimal handling procedures), this study investigated effects of handling also prior to the emergence of actual seizures. The effect of minimal handling procedures was significant in both genotypes, but most pronounced in Syn1KO mice. In this genotype, minimal handling reduced the frequency of mild seizures, and completely eliminated generalized tonic-clonic seizures when the animals were tested with regular handling at 4 1/2 months of age. Neither seizure frequency nor generalized tonic-clonic seizures could be re-established through regular handling from 4 1/2 to 8 months. This suggests that the period up to 4 1/2 months constitute a sensitive period for seizures in general, and a critical period for generalized tonic-clonic seizures in this genotype. In Syn2KO mice minimal handling did not remove generalized tonic-clonic seizures, as such seizures were present when handling was introduced at 4 1/2 months. We found an initial reduction of seizure frequency, but the seizure frequency eventually reached levels seen in mice kept under regular handling regimes. Thus, it is unlikely that the period up to 4 1/2 months is a sensitive period in the Syn2KO genotype.
Collapse
Affiliation(s)
- Lars Etholm
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | | | | |
Collapse
|
37
|
Lignani G, Raimondi A, Ferrea E, Rocchi A, Paonessa F, Cesca F, Orlando M, Tkatch T, Valtorta F, Cossette P, Baldelli P, Benfenati F. Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity. Hum Mol Genet 2013; 22:2186-99. [PMID: 23406870 PMCID: PMC3652419 DOI: 10.1093/hmg/ddt071] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Synapsin I (SynI) is a synaptic vesicle (SV) phosphoprotein playing multiple roles in synaptic transmission and plasticity by differentially affecting crucial steps of SV trafficking in excitatory and inhibitory synapses. SynI knockout (KO) mice are epileptic, and nonsense and missense mutations in the human SYN1 gene have a causal role in idiopathic epilepsy and autism. To get insights into the mechanisms of epileptogenesis linked to SYN1 mutations, we analyzed the effects of the recently identified Q555X mutation on neurotransmitter release dynamics and short-term plasticity (STP) in excitatory and inhibitory synapses. We used patch-clamp electrophysiology coupled to electron microscopy and multi-electrode arrays to dissect synaptic transmission of primary SynI KO hippocampal neurons in which the human wild-type and mutant SynI were expressed by lentiviral transduction. A parallel decrease in the SV readily releasable pool in inhibitory synapses and in the release probability in excitatory synapses caused a marked reduction in the evoked synchronous release. This effect was accompanied by an increase in asynchronous release that was much more intense in excitatory synapses and associated with an increased total charge transfer. Q555X-hSynI induced larger facilitation and post-tetanic potentiation in excitatory synapses and stronger depression after long trains in inhibitory synapses. These changes were associated with higher network excitability and firing/bursting activity. Our data indicate that imbalances in STP and release dynamics of inhibitory and excitatory synapses trigger network hyperexcitability potentially leading to epilepsy/autism manifestations.
Collapse
Affiliation(s)
- Gabriele Lignani
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Greco B, Managò F, Tucci V, Kao HT, Valtorta F, Benfenati F. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res 2012; 251:65-74. [PMID: 23280234 PMCID: PMC3730181 DOI: 10.1016/j.bbr.2012.12.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/19/2012] [Accepted: 12/10/2012] [Indexed: 02/08/2023]
Abstract
Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy.
Collapse
Affiliation(s)
- Barbara Greco
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Ketzef M, Gitler D. Epileptic synapsin triple knockout mice exhibit progressive long-term aberrant plasticity in the entorhinal cortex. ACTA ACUST UNITED AC 2012; 24:996-1008. [PMID: 23236212 DOI: 10.1093/cercor/bhs384] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studying epileptogenesis in a genetic model can facilitate the identification of factors that promote the conversion of a normal brain into one chronically prone to seizures. Synapsin triple-knockout (TKO) mice exhibit adult-onset epilepsy, thus allowing the characterization of events as preceding or following seizure onset. Although it has been proposed that a congenital reduction in inhibitory transmission is the underlying cause for epilepsy in these mice, young TKO mice are asymptomatic. We report that the genetic lesion exerts long-term progressive effects that extend well into adulthood. Although inhibitory transmission is initially reduced, it is subsequently strengthened relative to its magnitude in control mice, so that the excitation to inhibition balance in adult TKOs is inverted in favor of inhibition. In parallel, we observed long-term alterations in synaptic depression kinetics of excitatory transmission and in the extent of tonic inhibition, illustrating adaptations in synaptic properties. Moreover, age-dependent acceleration of the action potential did not occur in TKO cortical pyramidal neurons, suggesting wide-ranging secondary changes in brain excitability. In conclusion, although congenital impairments in inhibitory transmission may initiate epileptogenesis in the synapsin TKO mice, we suggest that secondary adaptations are crucial for the establishment of this epileptic network.
Collapse
Affiliation(s)
- Maya Ketzef
- Department of Physiology and Cell Biology, Faculty of Health Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | |
Collapse
|
40
|
Ferrea E, Maccione A, Medrihan L, Nieus T, Ghezzi D, Baldelli P, Benfenati F, Berdondini L. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits 2012; 6:80. [PMID: 23162432 PMCID: PMC3496908 DOI: 10.3389/fncir.2012.00080] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/17/2012] [Indexed: 11/13/2022] Open
Abstract
Multielectrode arrays (MEAs) are extensively used for electrophysiological studies on brain slices, but the spatial resolution and field of recording of conventional arrays are limited by the low number of electrodes available. Here, we present a large-scale array recording simultaneously from 4096 electrodes used to study propagating spontaneous and evoked network activity in acute murine cortico-hippocampal brain slices at unprecedented spatial and temporal resolution. We demonstrate that multiple chemically induced epileptiform episodes in the mouse cortex and hippocampus can be classified according to their spatio-temporal dynamics. Additionally, the large-scale and high-density features of our recording system enable the topological localization and quantification of the effects of antiepileptic drugs in local neuronal microcircuits, based on the distinct field potential propagation patterns. This novel high-resolution approach paves the way to detailed electrophysiological studies in brain circuits spanning spatial scales from single neurons up to the entire slice network.
Collapse
Affiliation(s)
- E Ferrea
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Synapsins contribute to the dynamic spatial organization of synaptic vesicles in an activity-dependent manner. J Neurosci 2012; 32:12214-27. [PMID: 22933803 DOI: 10.1523/jneurosci.1554-12.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The precise subcellular organization of synaptic vesicles (SVs) at presynaptic sites allows for rapid and spatially restricted exocytotic release of neurotransmitter. The synapsins (Syns) are a family of presynaptic proteins that control the availability of SVs for exocytosis by reversibly tethering them to each other and to the actin cytoskeleton in a phosphorylation-dependent manner. Syn ablation leads to reduction in the density of SV proteins in nerve terminals and increased synaptic fatigue under high-frequency stimulation, accompanied by the development of an epileptic phenotype. We analyzed cultured neurons from wild-type and Syn I,II,III(-/-) triple knock-out (TKO) mice and found that SVs were severely dispersed in the absence of Syns. Vesicle dispersion did not affect the readily releasable pool of SVs, whereas the total number of SVs was considerably reduced at synapses of TKO mice. Interestingly, dispersion apparently involved exocytosis-competent SVs as well; it was not affected by stimulation but was reversed by chronic neuronal activity blockade. Altogether, these findings indicate that Syns are essential to maintain the dynamic structural organization of synapses and the size of the reserve pool of SVs during intense SV recycling, whereas an additional Syn-independent mechanism, whose molecular substrate remains to be clarified, targets SVs to synaptic boutons at rest and might be outpaced by activity.
Collapse
|
42
|
Temporal evolution of neurophysiological and behavioral features of synapsin I/II/III triple knock-out mice. Epilepsy Res 2012; 103:153-60. [PMID: 22846639 PMCID: PMC3574234 DOI: 10.1016/j.eplepsyres.2012.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/07/2012] [Accepted: 07/10/2012] [Indexed: 11/23/2022]
Abstract
Deletion of one or more synapsin genes in mice results in a spontaneous epilepsy. In these animals, seizures can be evoked by opening or moving the cage. Aim of the present study was to characterize the evolution of the epileptic phenotype by neurophysiological examination and behavioral observation in synapsin triple knock-out (Syn-TKO) mice. Syn-TKO mice were studied from 20 postnatal days (PND) up to 6 months of age by video-EEG recording and behavioral observation. Background EEG spectral analysis was performed and data were compared to WT animals. Syn-TKO revealed rare spontaneous seizures and increased susceptibility to evoked seizures in mice from 60 to 100 PND. Spontaneous and evoked seizures presented similar duration and morphology. At times, seizures were followed by a post-ictal phase characterized by a 4 Hz rhythmic activity and immobility of the animal. Spectral analysis of background EEG evidenced a slowing of the theta-alpha peak in Syn-TKO mice compared to WT mice within the period from PND 40 to 100. These data indicate that Syn-TKO mice do not exhibit a linear progression of the epileptic phenotype, with the period corresponding to a higher susceptibility to evoked seizures characterized by background EEG slowing. This aspect might be connected to brain dysfunction often associated to epilepsy in the interictal period.
Collapse
|
43
|
Campbell SL, Buckingham SC, Sontheimer H. Human glioma cells induce hyperexcitability in cortical networks. Epilepsia 2012; 53:1360-70. [PMID: 22709330 DOI: 10.1111/j.1528-1167.2012.03557.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE Patients with gliomas frequently present with seizures, but the factors associated with seizure development are still poorly understood. In this study, we assessed peritumoral synaptic network activity in a glioma animal model and tested the contribution of aberrant glutamate release from gliomas on glioma-associated epileptic network activity. METHODS In vitro brain slices were made from glioma-implanted mice. Using extracellular field recordings, we analyzed peritumoral epileptiform activity induced by Mg(2+)-free medium in slices from tumor-bearing animals and sham-operated controls. We assessed the effect of sulfasalazine (SAS), a blocker of system and glutamate release, on spontaneous and evoked activity in tumor-associated slices. KEY FINDINGS Tumor-associated cortical networks were hyperexcitable. The onset latency of Mg(2+)-free-induced epileptiform activity was significantly shorter in tumor-bearing slices, and the incidence of Mg(2+)-free-induced ictal-like events was higher. Block of glutamate release from system decreased the response area of evoked activity and completely blocked Mg(2+)-free-induced ictal-like, but not interictal-like events. SIGNIFICANCE Control of seizures in patients with gliomas is an essential component of clinical management; therefore, understanding the origin of seizures is vital. This work provides evidence that peritumoral synaptic network activity is disrupted by tumor masses resulting in network excitability. We show that blocking glutamate release via system with SAS, a drug already approved by the U.S. Food and Drug Administration (FDA), can inhibit Mg(2+)-free-induced ictal-like epileptiform events similar to other chemicals used to decrease seizure activity. We, therefore, suggest that further studies should consider SAS a promising agent to aid in the treatment of seizures associated with gliomas.
Collapse
Affiliation(s)
- Susan L Campbell
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
44
|
Farisello P, Boido D, Nieus T, Medrihan L, Cesca F, Valtorta F, Baldelli P, Benfenati F. Synaptic and extrasynaptic origin of the excitation/inhibition imbalance in the hippocampus of synapsin I/II/III knockout mice. Cereb Cortex 2012; 23:581-93. [PMID: 22368083 DOI: 10.1093/cercor/bhs041] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synapsins (Syn I, Syn II, and Syn III) are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans and synapsin I/II/III triple knockout (TKO) mice are epileptic. However, excitatory and inhibitory synaptic transmission and short-term plasticity have never been analyzed in intact neuronal circuits of TKO mice. To clarify the generation and expression of the epileptic phenotype, we performed patch-clamp recordings in the CA1 region of acute hippocampal slices from 1-month-old presymptomatic and 6-month-old epileptic TKO mice and age-matched controls. We found a strong imbalance between basal glutamatergic and γ-aminobutyric acid (GABA)ergic transmission with increased evoked excitatory postsynaptic current and impaired evoked inhibitory postsynaptic current amplitude. This imbalance was accompanied by a parallel derangement of short-term plasticity paradigms, with enhanced facilitation of glutamatergic transmission in the presymptomatic phase and milder depression of inhibitory synapses in the symptomatic phase. Interestingly, a lower tonic GABA(A) current due to the impaired GABA release is responsible for the more depolarized resting potential found in TKO CA1 neurons, which makes them more susceptible to fire. All these changes preceded the appearance of epilepsy, indicating that the distinct changes in excitatory and inhibitory transmission due to the absence of Syns initiate the epileptogenic process.
Collapse
Affiliation(s)
- Pasqualina Farisello
- Department of Neuroscience and Brain Technologies, The Italian Institute of Technology, 16163 Genova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Etholm L, Bahonjic E, Walaas SI, Kao HT, Heggelund P. Neuroethologically delineated differences in the seizure behavior of synapsin 1 and synapsin 2 knock-out mice. Epilepsy Res 2012; 99:252-9. [PMID: 22236379 DOI: 10.1016/j.eplepsyres.2011.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
The highly homologous nerve terminal phosphoproteins synapsin I and synapsin II have been linked to the pathogenesis of epilepsy through associations between synapsin gene mutations and epileptic disease in humans and to the observation of handling induced seizures in mice genetically depleted of one or both of these proteins. Whereas seizure behavior in mice lacking both synapsin I and synapsin II is well characterized, the seizure behavior in mice lacking either is less well studied. Through so called neuroethologically based analyses of fully established seizure behavior in Synapsin 1 and 2 knock-out mice (Syn1KO and Syn2KO mice) aged 4 1/2 months, this study reveals significant differences in the seizure behavior of the two genotypes: whereas Syn1KO mice show both partial and generalized forebrain seizure activity, Syn2KO mice show only fully generalized forebrain seizures. Analysis of seizure behavior at earlier stages shows that the mature seizure pattern in Syn2KO mice establishes rapidly from the age of ∼2 months, when Syn1KO partial seizures are rare, and Syn1KO generalized seizures are almost absent. The specific behavioral phenotypes of the two strains suggest that the slight differences in structure, function and expression of these highly related proteins could be important factors during seizure generating neural activity.
Collapse
Affiliation(s)
- Lars Etholm
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
46
|
Douaud M, Feve K, Pituello F, Gourichon D, Boitard S, Leguern E, Coquerelle G, Vieaud A, Batini C, Naquet R, Vignal A, Tixier-Boichard M, Pitel F. Epilepsy caused by an abnormal alternative splicing with dosage effect of the SV2A gene in a chicken model. PLoS One 2011; 6:e26932. [PMID: 22046416 PMCID: PMC3203167 DOI: 10.1371/journal.pone.0026932] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/06/2011] [Indexed: 11/18/2022] Open
Abstract
Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.
Collapse
Affiliation(s)
- Marine Douaud
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Katia Feve
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Fabienne Pituello
- CNRS-Université Toulouse III, Centre de Biologie du Développement, Toulouse, France
| | - David Gourichon
- INRA PEAT, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Simon Boitard
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | - Eric Leguern
- INSERM, Neurogénétique Moléculaire et Cellulaire, Paris, France
| | - Gérard Coquerelle
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Agathe Vieaud
- INRA, Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Cesira Batini
- CNRS, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Paris, France
| | - Robert Naquet
- CNRS, Institut de Neurobiologie Alfred Fessard, Gif-sur-Yvette, France
| | - Alain Vignal
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
| | | | - Frédérique Pitel
- INRA-ENVT, Laboratoire de Génétique Cellulaire, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
47
|
Fassio A, Raimondi A, Lignani G, Benfenati F, Baldelli P. Synapsins: from synapse to network hyperexcitability and epilepsy. Semin Cell Dev Biol 2011; 22:408-15. [PMID: 21816229 DOI: 10.1016/j.semcdb.2011.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/13/2011] [Indexed: 01/31/2023]
Abstract
The synapsin family in mammals consists of at least 10 isoforms encoded by three distinct genes and composed by a mosaic of conserved and variable domains. Synapsins, although not essential for the basic development and functioning of neuronal networks, are extremely important for the fine-tuning of SV cycling and neuronal plasticity. Single, double and triple synapsin knockout mice, with the notable exception of the synapsin III knockout mice, show a severe epileptic phenotype without gross alterations in brain morphology and connectivity. However, the molecular and physiological mechanisms underlying the pathogenesis of the epileptic phenotype observed in synapsin deficient mice are still far from being elucidated. In this review, we summarize the current knowledge about the role of synapsins in the regulation of network excitability and about the molecular mechanism leading to epileptic phenotype in mouse lines lacking one or more synapsin isoforms. The current evidences indicate that synapsins exert distinct roles in excitatory versus inhibitory synapses by differentially affecting crucial steps of presynaptic physiology and by this mean participate in the determination of network hyperexcitability.
Collapse
Affiliation(s)
- Anna Fassio
- Department of Experimental Medicine, Section of Physiology and National Institute of Neuroscience, University of Genova, Genova, Italy
| | | | | | | | | |
Collapse
|
48
|
Compensatory network alterations upon onset of epilepsy in synapsin triple knock-out mice. Neuroscience 2011; 189:108-22. [PMID: 21621590 DOI: 10.1016/j.neuroscience.2011.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 04/16/2011] [Accepted: 05/11/2011] [Indexed: 11/21/2022]
Abstract
Adult synapsin triple-knockout mice exhibit epilepsy that manifests as generalized tonic-clonic seizures. Because in vitro recordings have shown a reduction in quantal release from inhibitory neurons, an inherent excitation-inhibition imbalance has been hypothesized as the direct culprit for epilepsy in these mice. We critically assessed this hypothesis by examining neurotransmission during the emergence of epilepsy. Using long-term video and telemetric EEG monitoring we found that synapsin triple-knockout mice exhibit an abrupt transition during early adulthood from a seizure-free presymptomatic latent state to a consistent symptomatic state of sensory-induced seizures. Electrophysiological recordings showed that during the latent period larger field responses could be elicited in slices from mutant mice. However, only after the transition to a symptomatic state in the adult mice did evoked epileptiform activity become prevalent. This state was characterized by resistance to the epileptiform-promoting effects of 4-aminopyridine, by marked hypersensitivity to blockage of GABAA receptors, and by the emergence of unresponsiveness to NMDA receptor antagonism, all of which were not observed during the latent period. Importantly, enhancement in inhibitory transmission was associated with upregulation of GAD67 expression without affecting the number of inhibitory neurons in the same brain areas where epileptiform activity was recorded. We therefore suggest that while deletion of the synapsins initially increases cortical network activity, this enhanced excitability is insufficient to elicit seizures. Rather, compensatory epileptogenic mechanisms are activated during the latent period that lead to an additional almost-balanced enhancement of both the excitatory and inhibitory components of the network, finally culminating in the emergence of epilepsy.
Collapse
|
49
|
Etholm L, Lindén H, Eken T, Heggelund P. Electroencephalographic characterization of seizure activity in the synapsin I/II double knockout mouse. Brain Res 2011; 1383:270-88. [DOI: 10.1016/j.brainres.2011.01.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 10/18/2022]
|