1
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
2
|
Abstract
Depression is a disabling condition that often leads to significant burden. Women are more vulnerable to depression during reproductive-related "windows of vulnerability" such as the menopause transition and early postmenopausal years. This heightened vulnerability can be attributed, at least in part, to the neuromodulatory effects of estrogen on mood and cognition and the exposure to rapid fluctuations of estradiol levels during midlife years. The management of midlife depression can be challenging due to the presence and severity of other complaints such as vasomotor symptoms and sleep disturbances. Psychopharmacologic, behavioral, and hormonal interventions should be part of the treatment armamentarium.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, Kingston, Ontario, Canada.
| |
Collapse
|
3
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Peng Q, Yan Y, Yan H, Xie G, Shi L, Wen Y, Chang Q. Association between CYP19A1 rs6493497 and rs936306 polymorphisms and depression susceptibility in the Chinese population. Biomark Med 2022; 16:1171-1179. [PMID: 36628958 DOI: 10.2217/bmm-2022-0370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: The CYP19A1 gene encodes the key aromatase for estrogen biosynthesis, and this study aimed to explore the relationship between CYP19A1 rs6493497 and rs936306 polymorphisms and depression risk. Methods: CYP19A1 rs6493497 and rs936306 genotyping was performed on 502 depression patients and 504 healthy controls. Results: In the general population, no significant association was observed between the CYP19A1 rs6493497 variant and depression, whereas that CYP19A1 rs936306 variant significantly reduced depression risk in the recessive model. In subgroup analysis, a significant association of the CYP19A1 rs6493497 variant with reduced depression risk was found in males aged 46-65 in the genotype, dominant and additive models. Conclusion: The CYP19A1 rs936306 variant may reduce depression risk, and the rs6493497 variant is associated with decreased depression risk in males aged 46-65.
Collapse
Affiliation(s)
- Qiuju Peng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuan Yan
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huacheng Yan
- Department of Infectious Disease Prevention & Control, Center for Disease Control & Prevention of Southern Theatre Command, Guangzhou, 510507, China
| | - Guibo Xie
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Shi
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, 510010, China
| | - Yuguan Wen
- Department of Pharmacy, Guangzhou Brain Hospital, Guangzhou, 510370, China
| | - Qingxian Chang
- Department of Gynecology & Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Soares CN, Shea AK. The Midlife Transition, Depression, and Its Clinical Management. Obstet Gynecol Clin North Am 2021; 48:215-229. [PMID: 33573787 DOI: 10.1016/j.ogc.2020.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The World Health Organization estimates that more than 260 million people are affected by depression worldwide, a condition that imposes a significant burden to individuals, their families, and society. Women seem to be disproportionately more affected by depression than men, and it is now clear that some women may experience windows of vulnerability for depression at certain reproductive stages across their life span, including the midlife transition. For some, age, the presence of cardiovascular or metabolic problems, and the emergence of significant, bothersome vasomotor symptoms and sleep problems may result in a compounded, deleterious impact on well-being and overall functioning.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, Providence Care Hospital, 752 King Street West, Kingston, Ontario K7L 4X3, Canada.
| | - Alison K Shea
- Department of Obstetrics and Gynecology, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
6
|
Gross KS, Alf RL, Polzin TR, Frick KM. 17β-estradiol activation of dorsal hippocampal TrkB is independent of increased mature BDNF expression and is required for enhanced memory consolidation in female mice. Psychoneuroendocrinology 2021; 125:105110. [PMID: 33352471 PMCID: PMC7904635 DOI: 10.1016/j.psyneuen.2020.105110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 01/15/2023]
Abstract
The potent estrogen 17β-estradiol (E2) is known to enhance hippocampal memory and plasticity, however the molecular mechanisms underlying these effects remain unclear. Brain derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase B (TrkB) are regulated by E2, but the potential mechanistic roles of neurotrophic signaling in E2-induced enhancement of memory are not well understood. Here, we examined the effects of hippocampal TrkB signaling on E2-induced enhancement of memory consolidation in the object placement and recognition tasks. Bilateral infusion of the TrkB antagonist ANA-12 into the dorsal hippocampus of ovariectomized female mice blocked E2-induced enhancement of memory consolidation, supporting a role for TrkB-mediated signaling in estrogenic regulation of memory. Although dorsal hippocampal E2 infusion increased levels of phospho-TrkB and mature BDNF (mBDNF) in the dorsal hippocampus within 4-6 h, E2-induced increases in hippocampal mBDNF expression were not required for hippocampal TrkB activation and were not inhibited by TrkB antagonism. Thus, E2 regulates TrkB signaling to facilitate memory consolidation in a manner independent of mBDNF expression. Together these results provide the first direct evidence that E2 modulation of hippocampal TrkB signaling is required for its beneficial effects on memory consolidation and provide additional characterization of the ways in which TrkB/BDNF signaling is regulated by E2 in the hippocampus.
Collapse
Affiliation(s)
| | | | | | - Karyn M. Frick
- Corresponding author: Karyn M. Frick, Ph.D., Department of Psychology, University of Wisconsin-Milwaukee, 2441 E. Hartford Ave, Milwaukee, WI 53211, Phone: 414-229-6615, Fax: 414-229-5219,
| |
Collapse
|
7
|
Sex Differences in Cognitive Impairment Induced by Cerebral Microhemorrhage. Transl Stroke Res 2020; 12:316-330. [PMID: 32440818 DOI: 10.1007/s12975-020-00820-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
It has been suggested that cerebral microhemorrhages (CMHs) could be involved in cognitive decline. However, little is known about the sex-dependency of this effect. Using a multimodal approach combining behavioral tests, in vivo imaging, biochemistry, and molecular biology, we studied the cortical and hippocampal impact of a CMH in male and female mice (C57BL/6J) 6 weeks post-induction using a collagenase-induced model. Our work shows for the first time that a single cortical CMH exerts sex-specific effects on cognition. It notably induced visuospatial memory impairment in males only. This sex difference might be explained by cortical changes secondary to the lesion. In fact, the CMH induced an upregulation of ERα mRNA only in the female cortex. Besides, in male mice, we observed an impairment of pathways associated to neuronal, glial, or vascular functions: decrease in the P-GSK3β/GSK3β ratio, in BDNF and VEGF levels, and in microvascular water mobility. The CMH also exerted spatial remote effects in the hippocampus by increasing the number of astrocytes in both sexes, increasing the mean area occupied by each astrocyte in males, and decreasing hippocampal BDNF in females suggesting a cortical-hippocampal network impairment. This work demonstrates that a CMH could directly affect cognition in a sex-specific manner and highlights the need to study both sexes in preclinical models.
Collapse
|
8
|
Chen X, Tian Y, Zhu H, Bian C, Li M. Inhibition of steroid receptor coactivator-1 in the hippocampus impairs the consolidation and reconsolidation of contextual fear memory in mice. Life Sci 2020; 245:117386. [PMID: 32006528 DOI: 10.1016/j.lfs.2020.117386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 01/28/2023]
Abstract
AIMS Steroid receptor coactivator-1 (SRC-1) is a key coactivator for the efficient transcriptional activity of steroids in the regulation of hippocampal functions. However, the effect of SRC-1 on hippocampal memory processes remains unknown. Our aim was to investigate the roles of hippocampal SRC-1 in the consolidation and reconsolidation of contextual fear memory in mice. MAIN METHODS Contextual fear conditioning paradigm was constructed in adult male C57BL/6 mice to examine the fear learning and memory processes. Adeno-associated virus (AAV) vector-mediated RNA interference (RNAi) was infused into hippocampus to block hippocampal SRC-1 level. Immunofluorescent staining was used to detect the efficiency of transfection. High plus maze and open field test were used to determine anxiety and locomotor activity. Western blot analyses were used to detect the expression of SRC-1 and synaptic proteins in the hippocampus. KEY FINDINGS We first showed that the expression of SRC-1 was regulated by fear conditioning training in a time-dependent manner, and knockdown of SRC-1 impaired contextual fear memory consolidation without affecting innate anxiety or locomotor activity. In addition, hippocampal SRC-1 was also regulated by the retrieval of contextual fear memory, and downregulation of SRC-1 disrupted fear memory reconsolidation. Moreover, knockdown of SRC-1 reversed the increased GluR1 and PSD-95 levels induced by contextual fear memory retrieval. SIGNIFICANCE Our data indicate that hippocampal SRC-1 is required for the consolidation and reconsolidation of contextual fear memory, and SRC-1 may be a potential therapeutic target for mental disorders that are involved in hippocampal memory dysfunction.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China
| | - Yiqin Tian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China
| | - Haitao Zhu
- Department of Neurology, Airborne Military Hospital, Chinese People's Liberation Army, Wuhan 430014, China
| | - Chen Bian
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China; Department of Developmental Psychology of Army man, College of Psychology, Army Medical University, Chongqing 400038, China.
| | - Min Li
- Department of Military Psychology, College of Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Guan L, Yu WS, Shrestha S, Or YZ, Lufkin T, Chan YS, Lin VCL, Lim LW. TTC9A deficiency induces estradiol-mediated changes in hippocampus and amygdala neuroplasticity-related gene expressions in female mice. Brain Res Bull 2020; 157:162-168. [PMID: 32057953 DOI: 10.1016/j.brainresbull.2020.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/23/2019] [Accepted: 02/07/2020] [Indexed: 01/03/2023]
Abstract
The involvement of tetratricopeptide repeat domain 9A (TTC9A) deficiency in anxiety-like responses and behavioral despair through estradiol action on the serotonergic system has been reported. Emerging evidence suggests that estradiol is a potent modulator of neuroplasticity. As estradiol and neuroplasticity changes are both implicated in mood regulation, and estradiol activity is negatively regulated by TTC9A, we hypothesized that the behavioral changes induced by Ttc9a-/- is also mediated by neuroplasticity-related mechanisms. To understand the effects of TTC9A and estradiol modulation on neuroplasticity functions, we performed a behavioral analysis of tail suspension immobility and neuroplasticity-related gene expression study of brain samples collected in a previous study involving ovariectomized (OVX) Ttc9a-/- mice with estradiol or vehicle treatment. We observed that OVX-Ttc9a-/- mice had significantly reduced the tail suspension immobility compared to OVX-Ttc9a-/- estradiol-treated mice. Interestingly, there was an upregulation in gene expression of tropomyosin receptor kinase B (Trkb) in the ventral hippocampus, as well as brain-derived neurotrophic factor (Bdnf) and postsynaptic density protein-95 (Psd-95) in the amygdala of OVX-Ttc9a-/- mice compared to those treated with estradiol. These findings indicate that estradiol plays an inhibitory role in neuroplasticity in Ttc9a-/- mice. These observations were not found in the wildtype mice, as the presence of TTC9A suppressed the effects of estradiol. Our data suggest the behavioral alterations in Ttc9a-/- mice were mediated by estradiol regulation involving neuroplasticity-related mechanisms in both the hippocampus and amygdala regions.
Collapse
Affiliation(s)
- Li Guan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region; Department of Physiology, Guangzhou University of Chinese Medicine, Guangdong, PR China
| | - Wing Shan Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Smeeta Shrestha
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yu Zuan Or
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Thomas Lufkin
- Department of Biology, Clarkson University, Potsdam, New York, United States
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | | | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
10
|
Vazquez M, Frazier JH, Reichel CM, Peters J. Acute ovarian hormone treatment in freely cycling female rats regulates distinct aspects of heroin seeking. Learn Mem 2020; 27:6-11. [PMID: 31843977 PMCID: PMC6919190 DOI: 10.1101/lm.050187.119] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
Abstract
Females are at higher risk for certain opioid addictive behaviors, but the influence of ovarian hormones is unknown. In our rat model of heroin self-administration, females exhibited higher relapse rates that correlated with rates of heroin seeking on the first extinction session. We administered estradiol alone, or in combination with progesterone, 30 min prior to the first extinction session in freely cycling, heroin-seeking female rats. Although neither treatment produced long-term effects on relapse, each treatment regulated distinct aspects of heroin seeking. Estradiol treatment enhanced extinction memory retention, whereas the combination treatment acutely reduced expression of heroin seeking.
Collapse
Affiliation(s)
- Maribel Vazquez
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jessica H Frazier
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Carmela M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jamie Peters
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
11
|
Soares CN. Depression and Menopause: An Update on Current Knowledge and Clinical Management for this Critical Window. Med Clin North Am 2019; 103:651-667. [PMID: 31078198 DOI: 10.1016/j.mcna.2019.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Windows of vulnerability for depression have been associated with increased sensitivity to hormonal changes experienced by some women during the luteal phase, postpartum, and/or menopause. Increased awareness has resulted in greater adoption of screening tools for mood and behavioral changes and tailored therapies. This article discusses study results and controversies surrounding therapies uniquely designed for menopause-related depression.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, 752 King Street West, Kingston, Ontario K7L 4X3, Canada; Research and Innovation, Providence Care Hospital, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
Estrogenic Regulation of Neuroprotective and Neuroinflammatory Mechanisms: Implications for Depression and Cognition. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11355-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Denley MCS, Gatford NJF, Sellers KJ, Srivastava DP. Estradiol and the Development of the Cerebral Cortex: An Unexpected Role? Front Neurosci 2018; 12:245. [PMID: 29887794 PMCID: PMC5981095 DOI: 10.3389/fnins.2018.00245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
The cerebral cortex undergoes rapid folding in an "inside-outside" manner during embryonic development resulting in the establishment of six discrete cortical layers. This unique cytoarchitecture occurs via the coordinated processes of neurogenesis and cell migration. In addition, these processes are fine-tuned by a number of extracellular cues, which exert their effects by regulating intracellular signaling pathways. Interestingly, multiple brain regions have been shown to develop in a sexually dimorphic manner. In many cases, estrogens have been demonstrated to play an integral role in mediating these sexual dimorphisms in both males and females. Indeed, 17β-estradiol, the main biologically active estrogen, plays a critical organizational role during early brain development and has been shown to be pivotal in the sexually dimorphic development and regulation of the neural circuitry underlying sex-typical and socio-aggressive behaviors in males and females. However, whether and how estrogens, and 17β-estradiol in particular, regulate the development of the cerebral cortex is less well understood. In this review, we outline the evidence that estrogens are not only present but are engaged and regulate molecular machinery required for the fine-tuning of processes central to the cortex. We discuss how estrogens are thought to regulate the function of key molecular players and signaling pathways involved in corticogenesis, and where possible, highlight if these processes are sexually dimorphic. Collectively, we hope this review highlights the need to consider how estrogens may influence the development of brain regions directly involved in the sex-typical and socio-aggressive behaviors as well as development of sexually dimorphic regions such as the cerebral cortex.
Collapse
Affiliation(s)
- Matthew C. S. Denley
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Nicholas J. F. Gatford
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Katherine J. Sellers
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
| | - Deepak P. Srivastava
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
14
|
Bian C, Huang Y, Zhu H, Zhao Y, Zhao J, Zhang J. Steroid Receptor Coactivator-1 Knockdown Decreases Synaptic Plasticity and Impairs Spatial Memory in the Hippocampus of Mice. Neuroscience 2018. [PMID: 29524638 DOI: 10.1016/j.neuroscience.2018.02.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Steroids have been demonstrated to play profound roles in the regulation of hippocampal function by acting on their receptors, which need coactivators for their transcriptional activities. Previous studies have shown that steroid receptor coactivator-1 (SRC-1) is the predominant coactivator in the hippocampus, but its exact role and the underlying mechanisms remain unclear. In this study, we constructed SRC-1 RNA interference (RNAi) lentiviruses, injected them into the hippocampus of male mice, and then examined the changes in the expression of selected synaptic proteins, CA1 synapse density, postsynaptic density (PSD) thickness, and in vivo long-term potentiation (LTP). Spatial learning and memory behavior changes were investigated using the Morris water maze. We then transfected the lentiviruses into cultured hippocampal cells and examined the changes in synaptic protein and phospho-cyclic AMP response element-binding protein (pCREB) expression. The in vivo results showed that SRC-1 knockdown significantly decreased the expression of synaptic proteins and CA1 synapse density as well as PSD thickness; SRC-1 knockdown also significantly impaired in vivo LTP and disrupted spatial learning and memory. The in vitro results showed that while the expression of synaptic proteins was significantly decreased by SRC-1 knockdown, pCREB expression was also significantly decreased. The above results suggest a pivotal role of SRC-1 in the regulation of hippocampal synaptic plasticity and spatial learning and memory, strongly indicating SRC-1 may serve as a novel therapeutic target for hippocampus-dependent memory disorders.
Collapse
Affiliation(s)
- Chen Bian
- Department of Military Psychology, College of Psychology, Third Military Medical University, Chongqing 400038, China; Department of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Yan Huang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Haitao Zhu
- Department of Military Psychology, College of Psychology, Third Military Medical University, Chongqing 400038, China; Medical Company, Troops 95848 of People's Liberation Army, Xiaogan, Hubei 432100, China
| | - Yangang Zhao
- Department of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jikai Zhao
- Department of Neurobiology, Third Military Medical University, Chongqing 400038, China
| | - Jiqiang Zhang
- Department of Neurobiology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
15
|
McCarthny CR, Du X, Wu YC, Hill RA. Investigating the Interactive Effects of Sex Steroid Hormones and Brain-Derived Neurotrophic Factor during Adolescence on Hippocampal NMDA Receptor Expression. Int J Endocrinol 2018; 2018:7231915. [PMID: 29666640 PMCID: PMC5831834 DOI: 10.1155/2018/7231915] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/05/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022] Open
Abstract
Sex steroid hormones have neuroprotective properties which may be mediated by brain-derived neurotrophic factor (BDNF). This study sought to determine the interactive effects of preadolescent hormone manipulation and BDNF heterozygosity (+/-) on hippocampal NMDA-R expression. Wild-type and BDNF+/- mice were gonadectomised, and females received either 17β-estradiol or progesterone treatment, while males received either testosterone or dihydrotestosterone (DHT) treatment. Dorsal (DHP) and ventral hippocampus (VHP) were dissected, and protein expression of GluN1, GluN2A, GluN2B, and PSD-95 was assessed by Western blot analysis. Significant genotype × OVX interactions were found for GluN1 and GluN2 expression within the DHP of female mice, suggesting modulation of select NMDA-R levels by female sex hormones is mediated by BDNF. Furthermore, within the DHP BDNF+/- mice show a hypersensitive response to hormone treatment on GluN2 expression which may result from upstream alterations in TrkB phosphorylation. In contrast to the DHP, the VHP showed no effects of hormone manipulation but significant effects of genotype on NMDA-R expression. Castration had no effect on NMDA-R expression; however, androgen treatment had selective effects on GluN2B. These data show case distinct, interactive roles for sex steroid hormones and BDNF in the regulation of NMDA-R expression that are dependent on dorsal versus ventral hippocampal region.
Collapse
Affiliation(s)
- Cushla R. McCarthny
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Xin Du
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - YeeWen Candace Wu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rachel A. Hill
- Department of Psychiatry, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Wei YC, Wang SR, Xu XH. Sex differences in brain-derived neurotrophic factor signaling: Functions and implications. J Neurosci Res 2017; 95:336-344. [PMID: 27870405 DOI: 10.1002/jnr.23897] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 02/03/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) regulates diverse processes such as neuronal survival, differentiation, and plasticity. Accumulating evidence suggests that molecular events that direct sexual differentiation of the brain interact with BDNF signaling pathways. This Mini-Review first examines potential hormonal and epigenetic mechanisms through which sex influences BDNF signaling. We then examine how sex-specific regulation of BDNF signaling supports the development and function of sexually dimorphic neural circuits that underlie male-specific genital reflexes in rats and song production in birds. Finally, we discuss the implications of sex differences in BDNF signaling for gender-biased presentation of neurological and psychiatric diseases such as Alzheimer's disease. Although this Mini-Review focuses on BDNF, we try to convey the general message that sex influences brain functions in complex ways and underscore the requirement for and challenge of expanding research on sex differences in neuroscience. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Shao-Ran Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
17
|
Reid RL, Soares CN. Premenstrual Dysphoric Disorder: Contemporary Diagnosis and Management. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2017; 40:215-223. [PMID: 29132964 DOI: 10.1016/j.jogc.2017.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/04/2017] [Indexed: 11/17/2022]
Abstract
Most ovulatory women experience premenstrual symptoms (premenstrual syndrome, molimina) which indicate impending menstruation and are of little clinical relevance because they do not affect quality of life. A few women, however, experience significant physical and/or psychological symptoms before menstruation that, if left untreated, would result in deterioration in functioning and relationships. The precise etiology remains elusive, although new theories are gaining support in pre-clinical and early clinical trials. Refined diagnostic criteria allow better discrimination of this condition from other psychiatric diagnoses and the selection of symptom appropriate therapies that afford relief for most women. Pharmacotherapies (particularly selective serotonin reuptake inhibitors and SNRIs) represent the first-line treatment for premenstrual dysphoric disorder and severe, mood-related premenstrual syndrome. Continuous combined oral contraceptives have limited evidence for usefulness in premenstrual dysphoric disorder, whereas medical ovarian suppression is often recommended for patients who fail to respond or cannot tolerate first-line treatments (e.g., selective serotonin reuptake inhibitors). The use of cognitive behavioural therapies is promising, but it remains limited by sparse data and restricted access to trained professionals. A proper diagnosis (particularly the distinction from other underlying psychiatric conditions) is crucial for the implementation of effective therapy and alleviation of this impairing condition.
Collapse
Affiliation(s)
- Robert L Reid
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Queen's University School of Medicine, Kingston, ON.
| | - Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, Kingston, ON
| |
Collapse
|
18
|
Cabrera-Pedraza VR, de Jesús Gómez-Villalobos M, de la Cruz F, Aguilar-Alonso P, Zamudio S, Flores G. Pregnancy improves cognitive deficit and neuronal morphology atrophy in the prefrontal cortex and hippocampus of aging spontaneously hypertensive rats. Synapse 2017; 71:e21991. [DOI: 10.1002/syn.21991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/24/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Verónica R. Cabrera-Pedraza
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Fidel de la Cruz
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | | | - Sergio Zamudio
- Depto. de Fisiología; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional; Cdmx México
| | - Gonzalo Flores
- Instituto de Fisiología; Benemérita Universidad Autónoma de Puebla; Puebla Pue México
| |
Collapse
|
19
|
Soares CN. Depression and Menopause: Current Knowledge and Clinical Recommendations for a Critical Window. Psychiatr Clin North Am 2017; 40:239-254. [PMID: 28477650 DOI: 10.1016/j.psc.2017.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Depression is a disabling condition, which often leads to significant personal, societal, and economic costs. Windows of vulnerability for depression in women likely are associated with an increased sensitivity experienced by some women to changes in the hormonal milieu that occur during the luteal phase of their cycles, during the postpartum period, and/or during the menopause transition. The controversy surrounding a menopause-related depression has been fueled by conflicting methodologies used to characterize reproductive staging or assess psychiatric conditions during midlife years.
Collapse
Affiliation(s)
- Claudio N Soares
- Department of Psychiatry, Queen's University School of Medicine, 76 Stuart Street, Kingston, Ontario K7L 2V7, Canada; Canadian Biomarker Integration Network in Depression (CAN-BIND), Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
20
|
Park JK, Hong YP, Lee SJ. Effects of exercise on mature or precursor brain‑derived neurotrophic factor pathways in ovariectomized rats. Mol Med Rep 2017; 16:435-440. [PMID: 28534952 DOI: 10.3892/mmr.2017.6614] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Ovariectomy (OVX) is a method used to block estrogen in female rats that induces hippocampal dysfunction and affects brain‑derived neurotrophic factor (BDNF) pathways. The majority of previous studies investigating OVX focused on BDNF expression in the hippocampus and cognitive function. The present study focused on the pathways of each BDNF type, precursor (proBDNF) and mature (mBDNF), and the effects of regular exercise in the hippocampus of ovariectomized rats. Female Sprague‑Dawely rats were used and OVX surgery was performed. After 1 week of recovery from surgery, two groups of rats that received OVX surgery were subjected to regular treadmill exercise for 8 weeks. The results of protein levels by western blotting indicated that the expression of proBDNF, p75 neurotrophin receptor (p75NTR) and c‑Jun N‑terminal protein kinase (JNK) was increased, and mBDNF, tropomyosin‑related kinase B (TrkB) and nuclear factor‑κB expression was significantly reduced in the OVX control group compared with the sham control group SC (P<0.05). Thus, the survival pathway by mBDNF was impaired and the pro‑apoptotic response was activated by increased JNK expression due to proBDNF‑p75NTR binding in the hippocampus of ovariectomized rats. By contrast, exercise reduced activation of the pro‑apoptotic response and increased mBDNF‑TrkB expression in the hippocampus of ovariectomized rats. Thus, regular exercise may increase the activation of survival pathways via mBDNF and reducing the activation of the pro‑apoptotic pathway of proBDNF in the hippocampus of ovariectomized rats.
Collapse
Affiliation(s)
- Joon-Ki Park
- Division of Exercise and Health Science, College of Arts and Physical Education, Incheon National University, Incheon 22012, Republic of Korea
| | - Young-Pyo Hong
- Health Education Laboratory, Department of Physical Education, Korea National Sport University, Seoul 05541, Republic of Korea
| | - Sam-Jun Lee
- Department of Physical Education, College of Health, Social Welfare and Education, Tong Myong University, Busan 48520, Republic of Korea
| |
Collapse
|
21
|
Lai BQ, Che MT, Du BL, Zeng X, Ma YH, Feng B, Qiu XC, Zhang K, Liu S, Shen HY, Wu JL, Ling EA, Zeng YS. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord. Biomaterials 2016; 109:40-54. [DOI: 10.1016/j.biomaterials.2016.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
|
22
|
Zhao S, Gao X, Dong W, Chen J. The Role of 7,8-Dihydroxyflavone in Preventing Dendrite Degeneration in Cortex After Moderate Traumatic Brain Injury. Mol Neurobiol 2016; 53:1884-1895. [PMID: 25801526 PMCID: PMC5441052 DOI: 10.1007/s12035-015-9128-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/22/2015] [Indexed: 01/24/2023]
Abstract
Our previous research showed that traumatic brain injury (TBI) induced by controlled cortical impact (CCI) not only causes massive cell death, but also results in extensive dendrite degeneration in those spared neurons in the cortex. Cell death and dendrite degeneration in the cortex may contribute to persistent cognitive, sensory, and motor dysfunction. There is still no approach available to prevent cells from death and dendrites from degeneration following TBI. When we treated the animals with a small molecule, 7,8-dihydroxyflavone (DHF) that mimics the function of brain-derived neurotrophic factor (BDNF) through provoking TrkB activation reduced dendrite swellings in the cortex. DHF treatment also prevented dendritic spine loss after TBI. Functional analysis showed that DHF improved rotarod performance on the third day after surgery. These results suggest that although DHF treatment did not significantly reduced neuron death, it prevented dendrites from degenerating and protected dendritic spines against TBI insult. Consequently, DHF can partially improve the behavior outcomes after TBI.
Collapse
Affiliation(s)
- Shu Zhao
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China
| | - Xiang Gao
- Spinal Cord and Brain Injury Research Group, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
- Stark Neuroscience Research Institute, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Weiren Dong
- Department of Histology and Embryology, Southern Medical University, Guangzhou, China.
- , 1838 North Guangzhou Blvd, Guangzhou, 510515, China.
| | - Jinhui Chen
- Spinal Cord and Brain Injury Research Group, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Stark Neuroscience Research Institute, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, Indiana University, 950 W. Walnut Street, Indianapolis, IN, 46202, USA.
- Indiana University, School of Medicine, 980 W. Walnut Street, R3, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Evans NJ, Bayliss AL, Reale V, Evans PD. Characterisation of Signalling by the Endogenous GPER1 (GPR30) Receptor in an Embryonic Mouse Hippocampal Cell Line (mHippoE-18). PLoS One 2016; 11:e0152138. [PMID: 26998610 PMCID: PMC4801207 DOI: 10.1371/journal.pone.0152138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/09/2016] [Indexed: 01/14/2023] Open
Abstract
Estrogen can modulate neuronal development and signalling by both genomic and non-genomic pathways. Many of its rapid, non-genomic effects on nervous tissue have been suggested to be mediated via the activation of the estrogen sensitive G-protein coupled receptor (GPER1 or GPR30). There has been much controversy over the cellular location, signalling properties and endogenous activators of GPER1. Here we describe the pharmacology and signalling properties of GPER1 in an immortalized embryonic hippocampal cell line, mHippoE-18. This cell line does not suffer from the inherent problems associated with the study of this receptor in native tissue or the problems associated with heterologously expression in clonal cell lines. In mHippoE-18 cells, 17β-Estradiol can mediate a dose-dependent rapid potentiation of forskolin-stimulated cyclic AMP levels but does not appear to activate the ERK1/2 pathway. The effect of 17β-Estradiol can be mimicked by the GPER1 agonist, G1, and also by tamoxifen and ICI 182,780 which activate GPER1 in a variety of other preparations. The response is not mimicked by the application of the classical estrogen receptor agonists, PPT, (an ERα agonist) or DPN, (an ERβ agonist), further suggesting that this effect of 17β-Estradiol is mediated through the activation of GPER1. However, after exposure of the cells to the GPER1 specific antagonists, G15 and G36, the stimulatory effects of the above agonists are replaced by dose-dependent inhibitions of forskolin-stimulated cyclic AMP levels. This inhibitory effect is mimicked by aldosterone in a dose-dependent way even in the absence of the GPER1 antagonists. The results are discussed in terms of possible "Biased Antagonism" whereby the antagonists change the conformation of the receptor resulting in changes in the agonist induced coupling of the receptor to different second messenger pathways.
Collapse
Affiliation(s)
- Nicholas J. Evans
- The Signalling Laboratory, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom
| | - Asha L. Bayliss
- The Signalling Laboratory, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom
| | - Vincenzina Reale
- The Signalling Laboratory, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom
| | - Peter D. Evans
- The Signalling Laboratory, The Babraham Institute, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
24
|
Glover EM, Jovanovic T, Norrholm SD. Estrogen and extinction of fear memories: implications for posttraumatic stress disorder treatment. Biol Psychiatry 2015; 78:178-85. [PMID: 25796471 PMCID: PMC4757430 DOI: 10.1016/j.biopsych.2015.02.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/06/2015] [Accepted: 02/04/2015] [Indexed: 12/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric illness whose prevalence in women is more than twice the rate as men. Despite a burgeoning literature characterizing sex differences in PTSD incidence and its disproportionate burden on society, there is a dearth of literature describing biological mechanisms underlying these disparities. However, the recent identification of biomarkers of PTSD by translational neuroscientists offers a promising opportunity to explore sex interactions in PTSD phenotypes. A notable observation is that individuals with PTSD show deficits in their ability to inhibit conditioned fear responding after extinction training. Given that extinction procedures, via exposure-based cognitive behavioral therapy, make up one of the predominant modes of treatment in PTSD, there is a critical need for more research on sex interactions in this form of fear regulation. An emerging hypothesis is that fluctuating gonadal hormones, especially estrogen, in the menstrual cycle may play a critical role in fear extinction and, hence, PTSD vulnerability and symptom severity in women. The current review discusses how the study of putative activational effects of estrogen on fear extinction may be harnessed to advance the search for better treatments for PTSD in women. We conclude that estrogen treatment may be a putative pharmacologic adjunct in extinction-based therapies and should be tracked in the menstrual cycle during the course of PTSD treatment.
Collapse
Affiliation(s)
- Ebony M Glover
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta; Department of Psychology, Kennesaw State University, Kennesaw
| | - Tanja Jovanovic
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta
| | - Seth Davin Norrholm
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta; Mental Health Service Line , Atlanta Veterans Affairs Medical Center, Decatur, Georgia.
| |
Collapse
|
25
|
Rubinow DR, Johnson SL, Schmidt PJ, Girdler S, Gaynes B. EFFICACY OF ESTRADIOL IN PERIMENOPAUSAL DEPRESSION: SO MUCH PROMISE AND SO FEW ANSWERS. Depress Anxiety 2015; 32:539-49. [PMID: 26130315 PMCID: PMC6309886 DOI: 10.1002/da.22391] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/30/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Controversy regarding the antidepressant efficacy of hormone replacement therapy (HRT) stems almost from its inception and reflects the same methodological inconsistencies that have compromised efforts to determine whether the perimenopause is accompanied by an increase in mood symptoms or depression. Methodologic differences of note (other than study design) include menopausal state (perimenopause vs. postmenopause), determination of state (earlier studies used age as a proxy measure), baseline symptomatology (asymptomatic vs. depressive symptoms vs. syndromic depression), route of hormone administration (transdermal vs. oral), and symptom or syndrome measure. Zweifel and O'Brien's 1997 meta-analysis included 26 studies of the effects of menopausal HRT on depressed mood and revealed an overall effect size of 0.68. This moderate to large effect size, showing lower ratings of depressed mood in treated patients compared with controls, implicated HRT as a potential treatment of or prophylactic for depression in menopausal women. Since this publication, multiple studies have aimed to discern the relationship between HRT and menopausal mood. METHODS The purpose of this systematic review is to examine the findings and quality of the evidence amassed since Zweifel and O'Brien's meta-analysis. RESULTS Of the 24 studies meeting criteria for review, only five RCTs examined depressed subjects, and only two of the study samples were solely perimenopausal. CONCLUSIONS One can generalize from the studies reviewed here only with great caution, but there is little evidence to support the use of estradiol to improve mood in nondepressed patients (not surprisingly) and some evidence to support the antidepressant efficacy of estradiol in perimenopausal but not postmenopausal women.
Collapse
Affiliation(s)
- David R. Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina,Correspondence to: David Rubinow, Department of Psychiatry, University of North Carolina School of Medicine, Campus Box 7160, Chapel Hill, NC 27599–7160.
| | - Sarah Lanier Johnson
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Peter J. Schmidt
- Behavioral Endocrinology Branch, NIMH, Department of Health and Human Services, Bethesda, Maryland
| | - Susan Girdler
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Bradley Gaynes
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
26
|
Colciago A, Casati L, Negri-Cesi P, Celotti F. Learning and memory: Steroids and epigenetics. J Steroid Biochem Mol Biol 2015; 150:64-85. [PMID: 25766520 DOI: 10.1016/j.jsbmb.2015.02.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 12/19/2022]
Abstract
Memory formation and utilization is a complex process involving several brain structures in conjunction as the hippocampus, the amygdala and the adjacent cortical areas, usually defined as medial temporal lobe structures (MTL). The memory processes depend on the formation and modulation of synaptic connectivity affecting synaptic strength, synaptic plasticity and synaptic consolidation. The basic neurocognitive mechanisms of learning and memory are shortly recalled in the initial section of this paper. The effect of sex hormones (estrogens, androgens and progesterone) and of adrenocortical steroids on several aspects of memory processes are then analyzed on the basis of animal and human studies. A specific attention has been devoted to the different types of steroid receptors (membrane or nuclear) involved and on local metabolic transformations when required. The review is concluded by a short excursus on the steroid activated epigenetic mechanisms involved in memory formation.
Collapse
Affiliation(s)
- Alessandra Colciago
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Lavinia Casati
- Department of Medical Biotechnologies and Translational Medicine, Via Vanvitelli 32, 20129 Milano, Italy
| | - Paola Negri-Cesi
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| | - Fabio Celotti
- Department of Pharmacological and Biomolecular Sciences, Section of Biomedicine and Endocrinology, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
27
|
Elsworth JD, Groman SM, Jentsch JD, Leranth C, Redmond DE, Kim JD, Diano S, Roth RH. Primate phencyclidine model of schizophrenia: sex-specific effects on cognition, brain derived neurotrophic factor, spine synapses, and dopamine turnover in prefrontal cortex. Int J Neuropsychopharmacol 2015; 18:pyu048. [PMID: 25522392 PMCID: PMC4438537 DOI: 10.1093/ijnp/pyu048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/15/2014] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cognitive deficits are a core symptom of schizophrenia, yet they remain particularly resistant to treatment. The model provided by repeatedly exposing adult nonhuman primates to phencyclidine has generated important insights into the neurobiology of these deficits, but it remains possible that administration of this psychotomimetic agent during the pre-adult period, when the dorsolateral prefrontal cortex in human and nonhuman primates is still undergoing significant maturation, may provide a greater understanding of schizophrenia-related cognitive deficits. METHODS The effects of repeated phencyclidine treatment on spine synapse number, dopamine turnover and BDNF expression in dorsolateral prefrontal cortex, and working memory accuracy were examined in pre-adult monkeys. RESULTS One week following phencyclidine treatment, juvenile and adolescent male monkeys demonstrated a greater loss of spine synapses in dorsolateral prefrontal cortex than adult male monkeys. Further studies indicated that in juvenile males, a cognitive deficit existed at 4 weeks following phencyclidine treatment, and this impairment was associated with decreased dopamine turnover, decreased brain derived neurotrophic factor messenger RNA, and a loss of dendritic spine synapses in dorsolateral prefrontal cortex. In contrast, female juvenile monkeys displayed no cognitive deficit at 4 weeks after phencyclidine treatment and no alteration in dopamine turnover or brain derived neurotrophic factor messenger RNA or spine synapse number in dorsolateral prefrontal cortex. In the combined group of male and female juvenile monkeys, significant linear correlations were detected between dopamine turnover, spine synapse number, and cognitive performance. CONCLUSIONS As the incidence of schizophrenia is greater in males than females, these findings support the validity of the juvenile primate phencyclidine model and highlight its potential usefulness in understanding the deficits in dorsolateral prefrontal cortex in schizophrenia and developing novel treatments for the cognitive deficits associated with schizophrenia.
Collapse
Affiliation(s)
- John D Elsworth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano).
| | - Stephanie M Groman
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - James D Jentsch
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Csaba Leranth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - D Eugene Redmond
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Jung D Kim
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Sabrina Diano
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| | - Robert H Roth
- Neuropsychopharmacology Research Unit, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut (Drs Elsworth, Groman, Redmond, and Roth); Department of Psychology and Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California (Dr Jentsch); Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut (Drs Leranth, Kim, and Diano)
| |
Collapse
|
28
|
Sellers K, Raval P, Srivastava DP. Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol 2015; 36:72-89. [PMID: 25159586 DOI: 10.1016/j.yfrne.2014.08.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 12/14/2022]
Abstract
There is now a growing appreciation that estrogens are capable of rapidly activating a number of signaling cascades within the central nervous system. In addition, there are an increasing number of studies reporting that 17β-estradiol, the major biologically active estrogen, can modulate cognition within a rapid time frame. Here we review recent studies that have begun to uncover the molecular and cellular framework which contributes to estrogens ability to rapidly modulate cognition. We first describe the mechanisms by which estrogen receptors (ERs) can couple to intracellular signaling cascades, either directly, or via the transactivation of other receptors. Subsequently, we review the evidence that estrogen can rapidly modulate both neuronal function and structure in the hippocampus and the cortex. Finally, we will discuss how estrogens may influence cognitive function through the modulation of neuronal structure, and the implications this may have on the treatment of a range of brain disorders.
Collapse
Affiliation(s)
- Katherine Sellers
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, The James Black Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 9NU, UK.
| |
Collapse
|
29
|
Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci 2014; 16:17-29. [PMID: 25423896 DOI: 10.1038/nrn3856] [Citation(s) in RCA: 323] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hormones regulate homeostasis by communicating through the bloodstream to the body's organs, including the brain. As homeostatic regulators of brain function, some hormones exert neuroprotective actions. This is the case for the ovarian hormone 17β-oestradiol, which signals through oestrogen receptors (ERs) that are widely distributed in the male and female brain. Recent discoveries have shown that oestradiol is not only a reproductive hormone but also a brain-derived neuroprotective factor in males and females and that ERs coordinate multiple signalling mechanisms that protect the brain from neurodegenerative diseases, affective disorders and cognitive decline.
Collapse
Affiliation(s)
- Maria-Angeles Arevalo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| | - Iñigo Azcoitia
- Department of Cell Biology, Faculty of Biology, Universidad Complutense, E-28040 Madrid, Spain
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, E-28002 Madrid, Spain
| |
Collapse
|
30
|
Luine VN. Estradiol and cognitive function: past, present and future. Horm Behav 2014; 66:602-18. [PMID: 25205317 PMCID: PMC4318702 DOI: 10.1016/j.yhbeh.2014.08.011] [Citation(s) in RCA: 320] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
A historical perspective on estradiol's enhancement of cognitive function is presented, and research, primarily in animals, but also in humans, is reviewed. Data regarding the mechanisms underlying the enhancements are discussed. Newer studies showing rapid effects of estradiol on consolidation of memory through membrane interactions and activation of inter-cellular signaling pathways are reviewed as well as studies focused on traditional genomic mechanisms. Recent demonstrations of intra-neuronal estradiol synthesis and possible actions as a neurosteroid to promote memory are discussed. This information is applied to the critical issue of the current lack of effective hormonal (or other) treatments for cognitive decline associated with menopause and aging. Finally, the critical period hypothesis for estradiol effects is discussed along with novel strategies for hormone/drug development. Overall, the historical record documents that estradiol positively impacts some aspects of cognitive function, but effective therapeutic interventions using this hormone have yet to be realized.
Collapse
Affiliation(s)
- Victoria N Luine
- Department of Psychology, Hunter College of CUNY, New York, NY, USA.
| |
Collapse
|
31
|
Yeung ST, Myczek K, Kang AP, Chabrier MA, Baglietto-Vargas D, Laferla FM. Impact of hippocampal neuronal ablation on neurogenesis and cognition in the aged brain. Neuroscience 2014; 259:214-22. [PMID: 24316470 PMCID: PMC4438704 DOI: 10.1016/j.neuroscience.2013.11.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/29/2022]
Abstract
Neuronal loss is the most common and critical feature of a spectrum of brain traumas and neurodegenerative disorders such as Alzheimer's disease (AD). The capacity to generate new neurons in the central nervous system diminishes early during brain development and is restricted mainly to two brain areas in the mature brain: subventricular zone and subgranular zone. Extensive research on the impact of brain injury on endogenous neurogenesis and cognition has been conducted primarily using young animals, when neurogenesis is most active. However, a critical question remains to elucidate the effect of brain injury on endogenous neurogenesis and cognition in older animals, which is far more relevant for age-related neurodegenerative disorders such as AD. Therefore, we examined the impact of neuronal loss on endogenous neurogenesis in aged animals using CaM/Tet-DTA mice, a transgenic model of hippocampal cell loss. Additionally, we investigated whether the upregulation of adult neurogenesis could mitigate cognitive deficits following substantial hippocampal neuronal loss. Our findings demonstrate that aged CaM/Tet-DTA mice that sustain severe neuronal loss exhibit an upregulation of endogenous neurogenesis. However, despite this significant upregulation, neurogenesis alone is not able to mitigate the cognitive deficits observed. Our studies suggest that the aged brain has the capacity to stimulate neurogenesis post-injury; however, multiple therapeutic approaches, including upregulation of endogenous neurogenesis, will be necessary to recover brain function after severe neurodegeneration.
Collapse
Affiliation(s)
- S T Yeung
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - K Myczek
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - A P Kang
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - M A Chabrier
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - D Baglietto-Vargas
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA
| | - F M Laferla
- Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA 92697-4545, USA.
| |
Collapse
|
32
|
Briz V, Baudry M. Estrogen Regulates Protein Synthesis and Actin Polymerization in Hippocampal Neurons through Different Molecular Mechanisms. Front Endocrinol (Lausanne) 2014; 5:22. [PMID: 24611062 PMCID: PMC3933789 DOI: 10.3389/fendo.2014.00022] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/13/2014] [Indexed: 12/21/2022] Open
Abstract
Estrogen rapidly modulates hippocampal synaptic plasticity by activating selective membrane-associated receptors. Reorganization of the actin cytoskeleton and stimulation of mammalian target of rapamycin (mTOR)-mediated protein synthesis are two major events required for the consolidation of hippocampal long-term potentiation and memory. Estradiol regulates synaptic plasticity by interacting with both processes, but the underlying molecular mechanisms are not yet fully understood. Here, we used acute rat hippocampal slices to analyze the mechanisms underlying rapid changes in mTOR activity and actin polymerization elicited by estradiol. Estradiol-induced mTOR phosphorylation was preceded by rapid and transient activation of both extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) and by phosphatase and tensin homolog (PTEN) degradation. These effects were prevented by calpain and ERK inhibitors. Estradiol-induced mTOR stimulation did not require activation of classical estrogen receptors (ER), as specific ERα and ERβ agonists (PPT and DPN, respectively) failed to mimic this effect, and ER antagonists could not block it. Estradiol rapidly activated both RhoA and p21-activated kinase (PAK). Furthermore, a specific inhibitor of RhoA kinase (ROCK), H1152, and a potent and specific PAK inhibitor, PF-3758309, blocked estradiol-induced cofilin phosphorylation and actin polymerization. ER antagonists also blocked these effects of estrogen. Consistently, both PPT and DPN stimulated PAK and cofilin phosphorylation as well as actin polymerization. Finally, the effects of estradiol on actin polymerization were insensitive to protein synthesis inhibitors, but its stimulation of mTOR activity was impaired by latrunculin A, a drug that disrupts actin filaments. Taken together, our results indicate that estradiol regulates local protein synthesis and cytoskeletal reorganization via different molecular mechanisms and signaling pathways.
Collapse
Affiliation(s)
- Victor Briz
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Michel Baudry
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
- *Correspondence: Michel Baudry, Graduate College of Biomedical Sciences, Western University of Health Sciences, NSC, Room 102C, 309 E. 2nd Street, Pomona, CA 91766-1854, USA e-mail:
| |
Collapse
|
33
|
Numakawa T, Richards M, Nakajima S, Adachi N, Furuta M, Odaka H, Kunugi H. The role of brain-derived neurotrophic factor in comorbid depression: possible linkage with steroid hormones, cytokines, and nutrition. Front Psychiatry 2014; 5:136. [PMID: 25309465 PMCID: PMC4175905 DOI: 10.3389/fpsyt.2014.00136] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/12/2014] [Indexed: 01/09/2023] Open
Abstract
Increasing evidence demonstrates a connection between growth factor function (including brain-derived neurotrophic factor, BDNF), glucocorticoid levels (one of the steroid hormones), and the pathophysiology of depressive disorders. Because both BDNF and glucocorticoids regulate synaptic function in the central nervous system, their functional interaction is of major concern. Interestingly, alterations in levels of estrogen, another steroid hormone, may play a role in depressive-like behavior in postpartum females with fluctuations of BDNF-related molecules in the brain. BDNF and cytokines, which are protein regulators of inflammation, stimulate multiple intracellular signaling cascades involved in neuropsychiatric illness. Pro-inflammatory cytokines may increase vulnerability to depressive symptoms, such as the increased risk observed in patients with cancer and/or autoimmune diseases. In this review, we discuss the possible relationship between inflammation and depression, in addition to the cross-talk among cytokines, BDNF, and steroids. Further, since nutritional status has been shown to affect critical pathways involved in depression through both BDNF function and the monoamine system, we also review current evidence surrounding diet and supplementation (e.g., flavonoids) on BDNF-mediated brain functions.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Misty Richards
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles , Los Angeles, CA , USA
| | - Shingo Nakajima
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Naoki Adachi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Miyako Furuta
- Department of Physiology, St. Marianna University School of Medicine , Kanagawa , Japan
| | - Haruki Odaka
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience , Tokyo , Japan
| |
Collapse
|
34
|
Srivastava DP, Evans PD. G-protein oestrogen receptor 1: trials and tribulations of a membrane oestrogen receptor. J Neuroendocrinol 2013; 25:1219-30. [PMID: 23822769 DOI: 10.1111/jne.12071] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/20/2013] [Accepted: 06/29/2013] [Indexed: 11/29/2022]
Abstract
Oestrogens are now recognised to be able to initiate rapid, fast responses, in addition to their classical, longer-term actions. There is a growing appreciation of the potential implications of this mode of action for oestrogenic signalling in both neuronal and non-neuronal systems. As such, much effort has been made to determine the mechanisms that are critical for transducing these rapid effects into cellular responses. Recently, an orphan G-protein-coupled receptor (GPCR), termed GPR30, was identified as an oestrogen-sensitive receptor in cancer cells. This receptor, now term G-protein oestrogen receptor 1 (GPER1) has been the subject of many investigations, and a role for this receptor in the nervous system is now emerging. In this review, we highlight some of the more recent advances in our understanding of the distribution and subcellular localisation of this receptor in the brain, as well as some of the evidence for the potential role that this receptor may play in the brain. We then discuss some of the controversies surrounding the pharmacology of this receptor, and attempt to reconcile these by suggesting that the 'agonist-specific coupling' model of GPCR function may provide a potential explanation for some of the divergent reports of GPER1 pharmacology.
Collapse
Affiliation(s)
- D P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London, UK
| | | |
Collapse
|
35
|
Srivastava DP, Woolfrey KM, Penzes P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 2013; 65:1318-50. [PMID: 24076546 PMCID: PMC3799233 DOI: 10.1124/pr.111.005272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, 125 Coldharbour Lane, The James Black Centre, Institute of Psychiatry, King's College London, London, SE5 9NU, UK.
| | | | | |
Collapse
|
36
|
Sanchez AM, Flamini MI, Genazzani AR, Simoncini T. Effects of progesterone and medroxyprogesterone on actin remodeling and neuronal spine formation. Mol Endocrinol 2013; 27:693-702. [PMID: 23487486 DOI: 10.1210/me.2012-1278] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sex steroids are important regulators of neuronal cell morphology, and this is critical for gender differences in brain function and dysfunction. Neuronal morphology is controlled by multiprotein complexes including moesin (a member of the ezrin/radixin/moesin family), focal adhesion kinase (FAK), or the Wiskott-Aldrich syndrome protein-family verprolin homologous (WAVE1) protein, controlling dynamic remodeling of the cytoskeleton and cell membrane. We investigated the actions of natural progesterone (P) and of the synthetic progestin medroxyprogesterone acetate (MPA) on actin remodeling, focal adhesion complex formation, and actin branching in rat cortical neurons. Treatment with P and, to a lesser extent, MPA, increases the number and density of dendritic spines. P increases the phosphorylation of moesin, FAK, and WAVE1, and their redistribution toward cell membrane sites where spines are formed. Signaling to moesin is achieved by PR via a Gα/Gβ-dependent signaling to the small GTPase Ras homolog gene family, member A and its related kinase, Rho-associated kinase-2. In parallel, WAVE1 recruitment is triggered by a Gαi/Gβ-dependent signaling of PR to c-Src, FAK, and Rac1 GTPase. Rac1 recruits cyclin-dependent kinase-5, which phosphorylates WAVE1. Silencing of moesin, FAK, or WAVE1 abrogates the increase in dendritic spines induced by progesterone. In all applications, MPA is found to act similar to P, albeit with a lower efficacy. In conclusion, our findings indicate that the control of actin polymerization and branching and focal adhesion complex formation via moesin, FAK, and WAVE1 is a key function of progesterone receptor in neurons, which may be relevant for the regulation of dendritic spine turnover and neuronal plasticity.
Collapse
Affiliation(s)
- Angel Matias Sanchez
- Molecular and Cellular Gynecological Endocrinology Laboratory, Department of Experimental and Clinical Medicine, University of Pisa, Via Roma, 67, 56100, Pisa, Italy
| | | | | | | |
Collapse
|