1
|
Slavova D, Ortiz V, Blaise M, Bairachnaya M, Giros B, Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev 2024; 167:105925. [PMID: 39427811 DOI: 10.1016/j.neubiorev.2024.105925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Stressful events, from daily stressors to traumatic experiences, are common and occur at any age. Despite the high prevalence of trauma, not everyone develops stress-related disorders like major depressive disorder (MDD) and post-traumatic stress disorder (PTSD), a variation attributed to resilience, the ability to adapt and avoid negative consequences of significant stress. This review examines the locus coeruleus-norepinephrine (LC-NE) system, a critical component in the brain's stress response. It discusses the LC-NE system's anatomical and functional complexity and its role in individual variability in stress responses. How different etiological factors and stress modalities affect the LC-NE system, influencing both adaptive stress responses and psychopathologies, are discussed and supported by evidence from human and animal studies. It also explores molecular and cellular adaptations in the LC that contribute to resilience, including roles of neuropeptide, inflammatory cytokines, and genetic modulation, and addresses developmental and sex differences in stress vulnerability. The need for a multifaceted approach to understand stress-induced psychopathologies is emphasized and pave the way for more personalized interventions for stress-related disorders.
Collapse
Affiliation(s)
- Déa Slavova
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Vanesa Ortiz
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Maud Blaise
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France
| | - Marya Bairachnaya
- Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Bruno Giros
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France; Douglas Research Center Institute, McGill University, Montreal, Canada
| | - Elsa Isingrini
- Université Paris Cité, INCC UMR 8002, CNRS, Paris F-75006, France.
| |
Collapse
|
2
|
Dahan M, Zohar J, Todder D, Mathé AA, Cohen H. Exploring the Anxiolytic Potential of NPY by a Dipeptidyl Peptidase-IV Inhibitor in an Animal Model of PTSD. Int J Neuropsychopharmacol 2024; 27:pyae062. [PMID: 39626016 DOI: 10.1093/ijnp/pyae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND The regulatory neuropeptide Y (NPY) is implicated in anxiety and post-traumatic stress disorder (PTSD)-related behaviors. NPY exerts its effects through 5 receptor subtypes, with Y1 and Y2 receptors being predominantly expressed in the rat brain. Activation of Y1 by full-length NPY1-36 induces anxiolytic effects, whereas Y2 binds truncated peptides, eliciting region-specific anxiogenic responses. Dipeptidyl peptidase-IV (DPP-IV) cleaves NPY, thereby modulating its functionality. Sitagliptin, a DPP-IV inhibitor (DPP-IV-I), inhibits the degradation of various vasoactive peptides, including cerebral NPY. As such, the therapeutic potential of DPP-IV-I following a traumatic event remains inconclusive. We assessed the effects of a highly selective DPP-IV-I, administered either shortly after the stressor or intermittently over 3 days, on behavioral outcomes using the predator scent stress (PSS) model of PTSD. METHODS Rats exposed to PSS or sham-PSS received a single dose of sitagliptin (10 or 30 mg/kg) or saline 1 hour post-exposure, or repeated doses over 3 days (20 mg/kg). Behavioral outcomes were evaluated using the elevated plus maze and acoustic startle response at 7 days post-exposure. Additionally, rats exposed to PSS or sham-PSS were treated with sitagliptin (30 mg/kg) or saline, and their brains were prepared for immunofluorescence and enzyme-linked immunosorbent assay (ELISA). RESULTS Sitagliptin did not attenuate anxiety-related behaviors or PTSD-related behavior prevalence compared to saline. Notably, the 30 mg/kg dose increased NPY levels in several brain regions without affecting NPY-Y1 levels. CONCLUSIONS The findings suggest that sitagliptin-induced upregulation of NPY levels shortly after PSS is insufficient to prevent the development of post-traumatic responses. The effectiveness of NPY signaling may be influenced by factors beyond peptide concentration alone, potentially limiting its therapeutic efficacy. Activation of NPY-Y1 receptors, rather than merely increasing NPY levels, appears to be crucial for modulating anti-anxiety and post-traumatic responses.
Collapse
Affiliation(s)
- Matan Dahan
- Anxiety and Stress Research Unit, Ministry of Health, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Joseph Zohar
- Post-Trauma Center, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Doron Todder
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Anxiety and Stress Research Unit, Ministry of Health, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
| | - Aleksander A Mathé
- Karolinska Institute Clinical Neuroscience, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Hagit Cohen
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Anxiety and Stress Research Unit, Ministry of Health, Beer-Sheva Mental Health Center, Beer-Sheva, Israel
- Department of Psychology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
3
|
Samandari‐Bahraseman MR, Esmaeilzadeh‐Salestani K, Dogani M, Khaleghdoust B, Hatami N, Esmaeili‐Mahani S, Elyasi L, Loit E, Harro J. Antidepressant- and Anxiolytic-Like Effect of the Froriepia subpinnata Extract in the Rat: Neurochemical Correlates. Brain Behav 2024; 14:e70171. [PMID: 39607287 PMCID: PMC11603432 DOI: 10.1002/brb3.70171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The study aims to explore the potential antianxiety effect of Froriepia subpinnata, a native plant in northern Iran, and it is considered an antiflatulent, appetizing, antiseptic, antispasmodic, and diuretic. Despite its widespread use in diets and its reputation for calming effects, no prior research has specifically investigated its antianxiety properties. METHODS Rats were subjected to a variety of stressors for 24 days. Rats were treated with the F. subpinnata extract (100, 200, and 400 mg/kg, orally) for 14 days starting from the 10th day of stress. Then behavioral tests (elevated plus-maze, open field, sucrose preference, Morris water maze, passive avoidance) were examined. Real-time PCR was used to investigate changes in the expression of candidate genes of stress response and memory. Oxidative stress markers and corticosterone levels in serum were also measured. RESULTS Chronic stress reduced performance in a variety of tests of anxiety and memory, and treatment with the F. subpinnata extract dose-dependently improved the behavioral deficits caused by chronic stress. At the dose of 200 mg/kg, the F. subpinnata extract mitigated the effect of stress on the expression of several genes, such as those encoding dopamine D1 and D2 receptors, glutamate NMDA, and AMPA receptor subunits (Grin1 and Gria1, respectively), glucocorticoid and mineralocorticoid receptors, cholecystokinin (CCK) and CCKB receptor, neuropeptide Y, and the GABAA receptor alpha2 subunit. Also, the expression of two genes, TrkB and BDNF, was significantly affected by the extract, demonstrating meaningful decreasing changes. Furthermore, treatment with the extract led to a decrease in oxidative stress and an elevation in cortisol levels in stressed animals. CONCLUSION In this study, we provide the first evidence of the antistress and antianxiety effects of F. subpinnata extract, along with its potential procognitive impact on memory.
Collapse
Affiliation(s)
- Mohammad R. Samandari‐Bahraseman
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
- Varjavand Kesht Kariman, Limited Liability CompanyKermanIran
| | - Keyvan Esmaeilzadeh‐Salestani
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
- Institute of TechnologyUniversity of TartuTartuEstonia
| | - Manijeh Dogani
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Banafsheh Khaleghdoust
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Nima Hatami
- Department of Endodontic DentistryKerman University of Medical SciencesKermanIran
| | - Saeed Esmaeili‐Mahani
- Department of Biology, Faculty of SciencesShahid Bahonar University of KermanKermanIran
| | - Leila Elyasi
- Neuroscience Research Center, Department of Anatomy, Faculty of MedicineGolestan University of Medical ScienceGorganIran
| | - Evelin Loit
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesTartuEstonia
| | - Jaanus Harro
- Division of Neuropsychopharmacology, Institute of ChemistryUniversity of TartuTartuEstonia
| |
Collapse
|
4
|
Peng L, Zhang J, Feng J, Ge J, Zou Y, Chen Y, Xu L, Zeng Y, Li JX, Liu J. Activation of trace amine-associated receptor 1 ameliorates PTSD-like symptoms. Biochem Pharmacol 2024; 228:116236. [PMID: 38670437 DOI: 10.1016/j.bcp.2024.116236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Trace amine-associated receptor 1 (TAAR1) negatively modulates monoaminergic transmission in the mammalian brain and participates in many psychiatric disorders. Preclinical evidence indicate that selective TAAR1 agonists have anxiolytic effects and anti-stress properties. Post-traumatic stress disorder (PTSD) is an anxiety disorder triggered by experiencing or witnessing traumatic stressors. However, it remains unknown whether TAAR1 is involved in PTSD. Here, we investigated the role of TAAR1 in two PTSD animal models, including single prolonged stress (SPS)-induced impairment of fear extinction and stress-enhanced fear learning (SEFL). SPS decreased TAAR1 mRNA levels in the prefrontal cortex and ventral tegmental area. Acute treatment of the TAAR1 partial agonist RO5263397 attenuated SPS-induced anxiety-like behavior evaluated by the elevated-plus maze test. Compared to non-stressed animals, rats that experienced SPS showed higher freezing levels in the extinction retention test, indicating an impairment of fear extinction retention after SPS exposure. Acute and chronic treatment of RO5263397 ameliorated SPS-induced impairment of fear extinction retention. In the SEFL model, compared to the No-shock group, rats that experienced severe foot shock before fear conditioning showed higher freezing levels during the tests, indicating enhanced fear learning after stress exposure. Chronic treatment of RO5263397 partially attenuated the SEFL. Moreover, chronic treatment with the selective TAAR1 full agonist RO5166017 completely prevented the SEFL. Taken together, these data showed that pharmacological activation of TAAR1 could ameliorate PTSD-like symptoms. The present study thus provides the first evidence that TAAR1 might participate in the development of PTSD, and TAAR1 agonists could be potential pharmacological treatments for this disorder.
Collapse
Affiliation(s)
- Linlin Peng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Zhang
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jialu Feng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Jing Ge
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yu Zou
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yun Chen
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Lang Xu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
| | - Yan Zeng
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14203, USA.
| | - Jianfeng Liu
- Institute of Brain Science and Advanced Technology, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China.
| |
Collapse
|
5
|
Rog J, Nowak K, Wingralek Z. The Relationship between Psychological Stress and Anthropometric, Biological Outcomes: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1253. [PMID: 39202534 PMCID: PMC11356149 DOI: 10.3390/medicina60081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Challenges and threats to global security and the growing demands of today's society lead to significantly increased exposure to stress. Stress can negatively affect numerous physiological processes, including metabolic changes. An unhealthy lifestyle might intensify this disruption. The aim of the systematic review was to establish the effect of psychological stress on metabolic and anthropometric factors in healthy individuals. Materials and Methods: The study was conducted according to the PRISMA guidelines; and the risk of bias (ROB) assessment was based on the Newcastle-Ottawa Scale (NOS). A literature search of the MEDLINE/PubMed database was conducted using specific search terms. Results: We identified 32 articles meeting the inclusion criteria for the review with the different experimental designs and aims. Most of the papers were at high ROB. The included studies were conducted in groups of adults and children/teenagers. The most-often-applied tool to measure stress severity was the Perceived Stress Scale (PSS). Twenty-two studies analyzed the connection between stress and body composition, and bioimpedance analysis (BIA) was the most often used method. For biological parameters, the most frequently analyzed was cortisol (n = 9). The other examined factors included glucose, insulin, parameters related to food intake regulation, carbohydrates, lipid metabolism, inflammation, and oxidative stress. The included studies were incompliance in relation to the assessment method and type of assessed biological fluids. Conclusions: The vast majority of studies do not support the effect of chronic distress on anthropometric measurements and biological markers levels. However, many of them suggest adverse, synergistic effects of unhealthy lifestyle patterns and the stress on the examined variables. Further experiments should implement a similar and repeatable methodology.
Collapse
Affiliation(s)
- Joanna Rog
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 66 Str., 02-787 Warsaw, Poland
| | - Katarzyna Nowak
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-950 Lublin, Poland; (K.N.); (Z.W.)
| | - Zuzanna Wingralek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-950 Lublin, Poland; (K.N.); (Z.W.)
| |
Collapse
|
6
|
Fernández-Vega L, Meléndez-Rodríguez DE, Ospina-Alejandro M, Casanova K, Vázquez Y, Cunci L. Development of a Neuropeptide Y-Sensitive Implantable Microelectrode for Continuous Measurements. ACS Sens 2024; 9:2645-2652. [PMID: 38709872 PMCID: PMC11127761 DOI: 10.1021/acssensors.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
In this work, we present the development of the first implantable aptamer-based platinum microelectrode for continuous measurement of a nonelectroactive molecule, neuropeptide Y (NPY). The aptamer immobilization was performed via conjugation chemistry and characterized using cyclic voltammetry before and after the surface modification. The redox label, methylene blue (MB), was attached at the end of the aptamer sequence and characterized using square wave voltammetry (SWV). NPY standard solutions in a three-electrode cell were used to test three aptamers in steady-state measurement using SWV for optimization. The aptamer with the best performance in the steady-state measurements was chosen, and continuous measurements were performed in a flow cell system using intermittent pulse amperometry. Dynamic measurements were compared against confounding and similar peptides such as pancreatic polypeptide and peptide YY, as well as somatostatin to determine the selectivity in the same modified microelectrode. Our Pt-microelectrode aptamer-based NPY biosensor provides signals 10 times higher for NPY compared to the confounding molecules. This proof-of-concept shows the first potential implantable microelectrode that is selectively sensitive to NPY concentration changes.
Collapse
Affiliation(s)
- Lauren Fernández-Vega
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | | | - Mónica Ospina-Alejandro
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Karina Casanova
- Department of Chemistry, Universidad Ana G. Méndez, Carr. 189, Km 3.3, Gurabo, Puerto Rico 00778, United States
| | - Yolimar Vázquez
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 17 Ave Universidad Ste 1701, San Juan, Puerto Rico 00931, United States
| |
Collapse
|
7
|
Robinson SL, Bendrath SC, Yates EM, Thiele TE. Basolateral amygdala neuropeptide Y system modulates binge ethanol consumption. Neuropsychopharmacology 2024; 49:690-698. [PMID: 37758802 PMCID: PMC10876546 DOI: 10.1038/s41386-023-01742-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/22/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
Neuropeptide Y (NPY) signaling regulation of corticolimbic communication is known to modulate binge-like ethanol consumption in rodents. In this work we sought to assess the impact of intra-BLA NPY system modulation on binge-like ethanol intake and to assess the role of the NPY1R+ projection from the BLA to the mPFC in this behavior. We used "drinking-in-the-dark" (DID) procedures in C57BL6J mice to address these questions. First, the impact of intra-BLA administration of NPY on binge-like ethanol intake was assessed. Next, the impact of repeated cycles of DID intake on NPY1R expression in the BLA was assessed with use of immunohistochemistry (IHC). Finally, chemogenetic inhibition of BLA→mPFC NPY1R+ projections was assessed to determine if limbic communication with the mPFC was specifically involved in binge-like ethanol intake. Importantly, as both the BLA and NPY system are sexually dimorphic, both sexes were assessed in these studies. Intra-BLA NPY dose-dependently decreased binge-like ethanol intake in males only. Repeated DID reduced NPY1R expression in the BLA of both sexes. Silencing of BLA→mPFC NPY1R+ neurons significantly reduced binge-like ethanol intake in both sexes in a dose-dependent manner. We provide novel evidence that (1) intra-BLA NPY reduces binge-like ethanol intake in males; (2) binge-like ethanol intake reduces NPY1R levels in the BLA; and (3) chemogenetic inhibition of BLA→mPFC NPY1R+ neurons blunts binge-like drinking in male and female mice. These observations provide the first direct evidence that NPY signaling in the BLA, and specifically BLA communication with the mPFC, modulates binge-like ethanol consumption.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA
| | - Sophie C Bendrath
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA
| | - Elizabeth M Yates
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC, 27599-3270, USA.
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC, 27599-7178, USA.
| |
Collapse
|
8
|
Tanelian A, Nankova B, Miari M, Sabban EL. Microbial composition, functionality, and stress resilience or susceptibility: unraveling sex-specific patterns. Biol Sex Differ 2024; 15:20. [PMID: 38409102 PMCID: PMC10898170 DOI: 10.1186/s13293-024-00590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Following exposure to traumatic stress, women are twice as likely as men to develop mood disorders. Yet, individual responses to such stress vary, with some people developing stress-induced psychopathologies while others exhibit resilience. The factors influencing sex-related disparities in affective disorders as well as variations in resilience remain unclear; however, emerging evidence suggests differences in the gut microbiota play a role. In this study, using the single prolonged stress (SPS) model of post-traumatic stress disorder, we investigated pre- and post-existing differences in microbial composition, functionality, and metabolites that affect stress susceptibility or resilience in each sex. METHODS Male and female Sprague-Dawley rats were randomly assigned to control or SPS groups. Two weeks following SPS, the animals were exposed to a battery of behavioral tests and decapitated a day later. Based on their anxiety index, they were further categorized as SPS-resilient (SPS-R) or SPS-susceptible (SPS-S). On the day of dissection, cecum, and selected brain tissues were isolated. Stool samples were collected before and after SPS, whereas urine samples were taken before and 30 min into the SPS. RESULTS Before SPS exposure, the sympathoadrenal axis exhibited alterations within male subgroups only. Expression of tight junction protein claudin-5 was lower in brain of SPS-S males, but higher in SPS-R females following SPS. Across the study, alpha diversity remained consistently lower in males compared to females. Beta diversity revealed distinct separations between male and female susceptible groups before SPS, with this separation becoming evident in the resilient groups following SPS. At the genus level, Lactobacillus, Lachnospiraceae_Incertae_Sedis, and Barnesiella exhibited sex-specific alterations, displaying opposing abundances in each sex. Additionally, sex-specific changes were observed in microbial predictive functionality and targeted functional modules both before and after SPS. Alterations in the microbial short-chain fatty acids (SCFAs), were also observed, with major and minor SCFAs being lower in SPS-susceptible males whereas branched-chain SCFAs being higher in SPS-susceptible females. CONCLUSION This study highlights distinct pre- and post-trauma differences in microbial composition, functionality, and metabolites, associated with stress resilience in male and female rats. The findings underscore the importance of developing sex-specific therapeutic strategies to effectively address stress-related disorders. Highlights SPS model induces divergent anxiety and social behavioral responses to traumatic stress in both male and female rodents. SPS-resilient females displayed less anxiety-like behavior and initiated more interactions towards a juvenile rat than SPS-resilient males. Sex-specific pre-existing and SPS-induced differences in the gut microbial composition and predictive functionality were observed in susceptible and resilient rats. SPS-resilient males displayed elevated cecal acetate levels, whereas SPS-susceptible females exhibited heightened branched-chain SCFAs.
Collapse
Affiliation(s)
- Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Bistra Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, 10595, USA
| | - Mariam Miari
- Department of Clinical Sciences in Malmo, Lund University Diabetes Center, Malmo, Sweden
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
9
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
10
|
Sabban EL, Serova L, Nahvi RJ, Liu X. Potential benefits of intranasal neuropeptide Y include sustained extinction of fear memory. J Neuroendocrinol 2023; 35:e13279. [PMID: 37157881 DOI: 10.1111/jne.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Compelling evidence in animals and humans from a variety of approaches demonstrate that neuropeptide Y (NPY) in the brain can provide resilience to development of many stress-elicited symptoms. Preclinical experiments demonstrated that delivery of NPY by intranasal infusion to rats shortly after single exposure to traumatic stress in the single prolonged stress (SPS) rodent model of post-traumatic stress disorder (PTSD) can prevent development of many relevant behavioral alterations weeks later, including heightened anxiety and depressive-like behavior. Here, we examined responses to intranasal NPY in the absence of stress to evaluate the safety profile. Rats were administered intranasal NPY (150 μg/rat) or equal volume of vehicle (distilled water), and 7 days later they were tested on the elevated plus maze (EPM) and forced swim test (FST). There was no significant difference in the number of entries or duration in the open or closed arms, or in their anxiety index. Defecation on the EPM and immobility on the FST, measures of anxiety and depressive-like behavior respectively, were similar in both groups. To further characterize potential benefits of intranasal NPY, its effect on fear memory and extinction, important features of PTSD, were examined. Intranasal administration of NPY at the time of the traumatic stress had a profound effect on fear conditioning a week later. It prevented the SPS-triggered impairment in the retention of extinguished behavior, both contextual and cued. The findings support the translation of non-invasive intranasal NPY delivery to the brain for PTSD-behaviors including impairments in sustained extinction of fear memories.
Collapse
Affiliation(s)
- Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Lidia Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
11
|
Tanelian A, Nankova B, Hu F, Sahawneh JD, Sabban EL. Effect of acetate supplementation on traumatic stress-induced behavioral impairments in male rats. Neurobiol Stress 2023; 27:100572. [PMID: 37781563 PMCID: PMC10539924 DOI: 10.1016/j.ynstr.2023.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023] Open
Abstract
Gut microbiota and their metabolites have emerged as key players in the pathogenesis of neuropsychiatric disorders. Recently, we demonstrated that animals susceptible to Single Prolonged Stress (SPS) have an overall pro-inflammatory gut microbiota and significantly lower cecal acetate levels than SPS-resilient rats, which correlated inversely with the anxiety index. Here, we investigated whether the microbial metabolite, acetate, could ameliorate SPS-triggered impairments. Male rats were randomly divided into unstressed controls or groups exposed to SPS. The groups received continued oral supplementation of either 150 mM of sodium acetate or 150 mM of sodium chloride-matched water. Two weeks after SPS, a battery of behavioral tests was performed, and the animals were euthanized the following day. While not affecting the unstressed controls, acetate supplementation reduced the impact of SPS on body weight gain and ameliorated SPS-induced anxiety-like behavior and the impairments in social interaction, but not depressive-like behavior. These changes were accompanied by several beneficial effects of acetate supplementation. Acetate alleviated the stress response by reducing urinary epinephrine levels, induced epigenetic modification by decreasing histone deacetylase (HDAC2) gene expression, inhibited neuroinflammation by reducing the density of Iba1+ cells and the gene expression of IL-1ß in the hippocampus, and increased serum β-hydroxybutyrate levels. The findings reveal a causal relationship between oral acetate treatment and mitigation of several SPS-induced behavioral impairments. Mechanistically, it impacted neuronal and metabolic pathways including changes in stress response, epigenetic modifications, neuroinflammation and showed novel link to ketone body production. The study demonstrates the preventive-therapeutic potential of acetate supplementation to alleviate adverse responses to traumatic stress.
Collapse
Affiliation(s)
- Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Bistra Nankova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Furong Hu
- Division of Newborn Medicine, Departments of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Jordan D. Sahawneh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
| | - Esther L. Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, USA
- Department of Psychiatry and Behavioral Science, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
12
|
Chang SH, Chen HY, Shaw FZ, Shyu BC. Early- and late-phase changes of brain activity and early-phase neuromodulation in the posttraumatic stress disorder rat model. Neurobiol Stress 2023; 26:100554. [PMID: 37576348 PMCID: PMC10415797 DOI: 10.1016/j.ynstr.2023.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a complex syndrome that may occur after life-threatening events. Fear memory abnormalities may play vital roles in the pathogenesis of PTSD. Previous work has found that fear memories are not rigid; the retrieval of fear memories may change over time. Furthermore, prior studies suggest that theta wave (4 Hz) activity is highly correlated with fear expression in an animal model. However, the relationship between pathological fear memory and potential brain wave features in PTSD remains largely uncharacterized. Here, we hypothesized that after traumatic stress exposure, the longitudinal dynamics of abnormal fears in PTSD animal models could be reflected by the measurement of local field potentials (LFPs). Using a well-established modified single-prolonged stress and footshock (SPS & FS) PTSD rat model, animals were restrained for 2 h and subsequently subjected to 20 min of forced swimming, then exposed to diethyl ether until they lost consciousness and placed in a conditioning chamber for fear conditioning. To characterize the temporal changes, we characterized freezing behavior brain wave features during the conditioning chamber re-exposure in the early (10 and 30 min; 2, 4, and 6 h) and late (day 1, 3, 7, and 14) phases after traumatic stress exposure. Our results indicate that SPS & FS rats showed co-morbid PTSD phenotypes including significantly higher levels of anxiety-, depression-, and anhedonia-like behaviors, and impaired fear extinction. Delta wave (0.5-4 Hz) suppression in the medial prefrontal cortex, amygdala, and ventral hippocampus occurred 10 and 30 min after traumatic stress, followed by continuous delta wave activity from 2 h to day 14, correlating with fear levels. tDCS reduced delta activity and alleviated PTSD-like phenotypes in the SPS & FS group. In this study, profiling abnormal fears with brain wave correlates may improve our understanding of time-dependent pathological fear memory retrieval in PTSD and facilitate the development of effective intervention strategies.
Collapse
Affiliation(s)
- Shao-Han Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Huan-Yuan Chen
- Inflammation Core Facility, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Zen Shaw
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
13
|
Wei R, Li D, Jia S, Chen Y, Wang J. MC4R in Central and Peripheral Systems. Adv Biol (Weinh) 2023; 7:e2300035. [PMID: 37043700 DOI: 10.1002/adbi.202300035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/25/2023] [Indexed: 04/14/2023]
Abstract
Obesity has emerged as a critical and urgent health burden during the current global pandemic. Among multiple genetic causes, melanocortin receptor-4 (MC4R), involved in food intake and energy metabolism regulation through various signaling pathways, has been reported to be the lead genetic factor in severe and early onset obesity and hyperphagia disorders. Most previous studies have illustrated the roles of MC4R signaling in energy intake versus expenditure in the central system, while some evidence indicates that MC4R is also expressed in peripheral systems, such as the gut and endocrine organs. However, its physiopathological function remains poorly defined. This review aims to depict the central and peripheral roles of MC4R in energy metabolism and endocrine hormone homeostasis, the diversity of phenotypes, biased downstream signaling caused by distinct MC4R mutations, and current drug development targeting the receptor.
Collapse
Affiliation(s)
- Ran Wei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200240, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Sheng Jia
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Yuhong Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, 200025, China
| |
Collapse
|
14
|
Sanchís-Ollé M, Belda X, Gagliano H, Visa J, Nadal R, Armario A. Animal models of PTSD: Comparison of the neuroendocrine and behavioral sequelae of immobilization and a modified single prolonged stress procedure that includes immobilization. J Psychiatr Res 2023; 160:195-203. [PMID: 36842332 DOI: 10.1016/j.jpsychires.2023.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
A single exposure to some stressors results in long-lasting consequences reminiscent of those found in post-traumatic stress disorder (PTSD), but results are very often controversial. Although there is no consensus regarding the best animal models of PTSD, the single prolonged stress (SPS) model, consisting of sequential exposure within the same day to various stressors (typically restraint, forced swim, and ether), has gained acceptance. However, results, particularly those related to the hypothalamic-pituitary-adrenal (HPA) axis, are inconsistent and there is no evidence that SPS is clearly distinct from models using a single severe stressor. In the present study, we compared in male rats the behavioral and neuroendocrine (HPA) consequences of exposure to immobilization on boards (IMO) with a SPS-like model (SPSi) in which IMO and isoflurane were substituted for restraint and ether, respectively. Both procedures caused a similar impact on food intake and body weight as well as on sensitization of the HPA response to a novel environment (hole-board) on the following day. Reduction of activity/exploration in the hole-board was also similar with both stressors, although the impact of sudden noise was higher in SPSi than IMO. Neither IMO nor SPSi significantly affected contextual fear conditioning acquisition, although a similar trend for impaired fear extinction was observed compared to controls. Exposure to additional stressors in the SPSi did not interfere with homotypic adaptation of the HPA axis to IMO. Thus, only modest neuroendocrine and behavioral differences were observed between IMO and SPSi and more studies comparing putative PTSD models are needed.
Collapse
Affiliation(s)
- María Sanchís-Ollé
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Xavier Belda
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Humberto Gagliano
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Joan Visa
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain
| | - Roser Nadal
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Psychobiology Unit, School of Psychology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain
| | - Antonio Armario
- Unitat Mixta Translacional, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; Animal Physiology Unit, School of Biosciences, Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, 08193, Barcelona, Spain; CIBERSAM, Instituto de Salud Carlos III, Spain.
| |
Collapse
|
15
|
Nahvi RJ, Tanelian A, Nwokafor C, Godino A, Parise E, Estill M, Shen L, Nestler EJ, Sabban EL. Transcriptome profiles associated with resilience and susceptibility to single prolonged stress in the locus coeruleus and nucleus accumbens in male sprague-dawley rats. Behav Brain Res 2023; 439:114162. [PMID: 36257560 PMCID: PMC9812303 DOI: 10.1016/j.bbr.2022.114162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
Although most people are subjected to traumatic stress at least once in their lifetime, only a subset develop long-lasting, stress-triggered neuropsychiatric disorders, such as PTSD. Here we examined different transcriptome profiles within the locus coeruleus (LC) and nucleus accumbens (NAc) that may contribute to stress susceptibility. Sprague Dawley male rats were exposed to the single prolonged stress (SPS) model for PTSD. Two weeks later they were tested for their anxiety/avoidance behavior on the Elevated Plus Maze (EPM) and were divided into high and low anxiety-like subgroups. RNA (n = 5 per group) was subsequently isolated from LC and NAc and subjected to RNAseq. Transcriptome analysis was used to identify differentially-expressed genes (DEGs) which differed by at least 50 % with significance of 0.01. The LC had more than six times the number of DEGs than the NAc. Only one DEG was regulated similarly in both locations. Many of the DEGs in the LC were associated with morphological changes, including regulation of actin cytoskeleton, growth factor activity, regulation of cell size, brain development and memory, with KEGG pathway of regulation of actin cytoskeleton. The DEGs in the NAc were primarily related to DNA repair and synthesis, and differential regulation of cytokine production. The analysis identified MTPN (myotrophin) and NR3C1 (glucocorticoid receptor) as important upstream regulators of stress susceptibility in the LC. Overall the study provides new insight into molecular pathways in the LC and NAc that are associated with anxiety-like behavior triggered by stress susceptibility or resilience.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
16
|
Karlsson B, Nyberg F, Svärdsudd K, Burell G, Björkegren K, Kristiansson P. Neuropeptide Y and measures of stress in a longitudinal study of women with the fibromyalgia syndrome. Scand J Pain 2023; 23:59-65. [PMID: 35728621 DOI: 10.1515/sjpain-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/03/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Neuropeptide Y is associated with stress in animal and human laboratory studies. However, data from clinical studies are scarce and no clinical longitudinal studies have been published. The aim of this clinical study was to assess the possible association between changes in the levels of pain, depression, and stress measures, on the one hand, and plasma neuropeptide Y levels, on the other. METHODS Forty-four women with the fibromyalgia syndrome were exposed to a Cognitive Behavioral Therapy intervention. Levels of the plasma neuropeptide Y as well as pain, depression, and stress measures were obtained at the start and at the end of the intervention, and after a further six month follow-up. Based on these data, a before-and-after analysis was performed. RESULTS Almost all measures of pain, depression, and stress improved during the study; specifically, variables measuring life control (coping), depression, and stress-related time urgency improved significantly. Moreover, during the same time period, the mean plasma neuropeptide Y level was reduced from 93.2 ± 38.8 fmol/mL before the Cognitive Behavioral Therapy to 75.6 ± 42.9 fmol/mL (p<0.001) at the end of the study. CONCLUSIONS After exposure to a Cognitive Behavioral Therapy intervention, levels of most of the pain, depression, and stress measures improved, half of them significantly, as did the levels of neuropeptide Y. This circumstance indicates a possible functional relationship between pain-depression-stress and neuropeptide Y.
Collapse
Affiliation(s)
- Bo Karlsson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Fred Nyberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kurt Svärdsudd
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Gunilla Burell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Karin Björkegren
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Per Kristiansson
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Zhai X, Zhou D, Han Y, Han MH, Zhang H. Noradrenergic modulation of stress resilience. Pharmacol Res 2023; 187:106598. [PMID: 36481260 DOI: 10.1016/j.phrs.2022.106598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Resilience represents an active adaption process in the face of adversity, trauma, tragedy, threats, or significant sources of stress. Investigations of neurobiological mechanisms of resilience opens an innovative direction for preclinical research and drug development for various stress-related disorders. The locus coeruleus norepinephrine system has been implicated in mediating stress susceptibility versus resilience. It has attracted increasing attention over the past decades with the revolution of modern neuroscience technologies. In this review article, we first briefly go over resilience-related concepts and introduce rodent paradigms for segregation of susceptibility and resilience, then highlight recent literature that identifies the neuronal and molecular substrates of active resilience in the locus coeruleus, and discuss possible future directions for resilience investigations.
Collapse
Affiliation(s)
- Xiaojing Zhai
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongyu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ming-Hu Han
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Hongxing Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
18
|
Bose M, Farias Quipildor G, Ehrlich ME, Salton SR. Intranasal Peptide Therapeutics: A Promising Avenue for Overcoming the Challenges of Traditional CNS Drug Development. Cells 2022; 11:3629. [PMID: 36429060 PMCID: PMC9688574 DOI: 10.3390/cells11223629] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022] Open
Abstract
The central nervous system (CNS) has, among all organ systems in the human body, the highest failure rate of traditional small-molecule drug development, ranging from 80-100% depending on the area of disease research. This has led to widespread abandonment by the pharmaceutical industry of research and development for CNS disorders, despite increased diagnoses of neurodegenerative disorders and the continued lack of adequate treatment options for brain injuries, stroke, neurodevelopmental disorders, and neuropsychiatric illness. However, new approaches, concurrent with the development of sophisticated bioinformatic and genomic tools, are being used to explore peptide-based therapeutics to manipulate endogenous pathways and targets, including "undruggable" intracellular protein-protein interactions (PPIs). The development of peptide-based therapeutics was previously rejected due to systemic off-target effects and poor bioavailability arising from traditional oral and systemic delivery methods. However, targeted nose-to-brain, or intranasal (IN), approaches have begun to emerge that allow CNS-specific delivery of therapeutics via the trigeminal and olfactory nerve pathways, laying the foundation for improved alternatives to systemic drug delivery. Here we review a dozen promising IN peptide therapeutics in preclinical and clinical development for neurodegenerative (Alzheimer's, Parkinson's), neuropsychiatric (depression, PTSD, schizophrenia), and neurodevelopmental disorders (autism), with insulin, NAP (davunetide), IGF-1, PACAP, NPY, oxytocin, and GLP-1 agonists prominent among them.
Collapse
Affiliation(s)
- Meenakshi Bose
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriela Farias Quipildor
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Stephen R. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
19
|
DHA/EPA supplementation decreases anxiety-like behaviour, but it does not ameliorate metabolic profile in obese male rats. Br J Nutr 2022; 128:964-974. [PMID: 34605386 DOI: 10.1017/s0007114521003998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is a major public health problem that predisposes to several diseases and higher mortality in patients with COVID-19. Obesity also generates neuroinflammation, which predisposes to the development of neuropsychiatric diseases. Since there is a lack of effective treatments for obesity, the search for new strategies to reverse its consequences is urgent. In this perspective, the anti-inflammatory properties of omega-3 polyunsaturated fatty acids such as DHA/EPA might reduce the harmful effects of obesity. Here, we used the cafeteria diet (CAF) model to induce obesity in Wistar rats. Animals received ultra-processed food for 20 weeks, and DHA/EPA supplementation (500 mg/kg per d) was performed between the 16th and the 20th week. At the end of the experiment, it was evaluated: body weight, visceral fat deposition, plasma glucose, insulin and triglycerides, and it was also measured the levels of inflammatory cytokines TNF-α and IL-6 in plasma and liver, and TNF-α in the prefrontal cortex. The elevated plus maze test was performed to analyse anxiety-like behaviour. Our results demonstrated that DHA/EPA could not reverse weight and fat gain and did not modify plasma dosages. However, there was a decrease in IL-6 in the liver (DHA/EPA effect: P = 0.023) and TNF-α in the brain (CAF compared with CAF + DHA/EPA, P < 0.05). Also, there was a decrease in the anxiety index in CAF + DHA/EPA compared with the CAF group (P < 0.01). Thus, DHA/EPA supplementation is helpful to reverse the consequences of obesity in the brain.
Collapse
|
20
|
Antidepressant Effect of Neuropeptide Y in Models of Acute and Chronic Stress. Sci Pharm 2022. [DOI: 10.3390/scipharm90030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The search for potential effective antidepressants with minimal side effects is necessary. Peptides are possible applicants for this role. We investigated the antidepressant effect of neuropeptide Y (NY), alone and in combination with clomipramine, in models of acute and chronic stress induced by ultrasound of variable frequencies. Rats were divided into the following groups: the control group, stress group, and stress groups with intranasal administration of NY (100 μg/kg) or clomipramine (7.5 mg/kg), or their combination. Rat behavior was evaluated using a sucrose preference test and forced swimming test in an acute stress model, and a sucrose preference test, forced swimming test, social interaction test, open field test, and Morris water maze test in a chronic stress model. The results of our experiment demonstrated a protective effect of intranasal NY in a model of acute stress, which was comparable to the antidepressant effect of clomipramine. When the same dose was chronically administered, NY also demonstrated an antidepressant action, although expressed in a lesser degree than clomipramine. The combination of NY and clomipramine was much less effective in the chronic stress paradigm compared to the separated drug administration, but was just as effective in the acute stress paradigm. Until now, there was no convincing evidence for the efficacy of the chronic administration of neuropeptide Y; we demonstrated its effectiveness in the animal model of depressive-like behavior. However, our hypothesis that neuropeptide Y can enhance the effect of a classical antidepressant was not confirmed.
Collapse
|
21
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
22
|
Du Q, Meng X, Wang S. A Comprehensive Review on the Chemical Properties, Plant Sources, Pharmacological Activities, Pharmacokinetic and Toxicological Characteristics of Tetrahydropalmatine. Front Pharmacol 2022; 13:890078. [PMID: 35559252 PMCID: PMC9086320 DOI: 10.3389/fphar.2022.890078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Tetrahydropalmatine (THP), a tetrahydroproberine isoquinoline alkaloid, is widely present in some botanical drugs, such as Stephania epigaea H.S. Lo (Menispermaceae; Radix stephaniae epigaeae), Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T. Wang ex Z.Y. Su and C.Y. Wu (Papaveraceae; Corydalis rhizoma), and Phellodendron chinense C.K.Schneid (Berberidaceae; Phellodendri chinensis cortex). THP has attracted considerable attention because of its diverse pharmacological activities. In this review, the chemical properties, plant sources, pharmacological activities, pharmacokinetic and toxicological characteristics of THP were systematically summarized for the first time. The results indicated that THP mainly existed in Papaveraceae and Menispermaceae families. Its pharmacological activities include anti-addiction, anti-inflammatory, analgesic, neuroprotective, and antitumor effects. Pharmacokinetic studies showed that THP was inadequately absorbed in the intestine and had rapid clearance and low bioavailability in vivo, as well as self-microemulsifying drug delivery systems, which could increase the absorption level and absorption rate of THP and improve its bioavailability. In addition, THP may have potential cardiac and neurological toxicity, but toxicity studies of THP are limited, especially its long-duration and acute toxicity tests. In summary, THP, as a natural alkaloid, has application prospects and potential development value, which is promising to be a novel drug for the treatment of pain, inflammation, and other related diseases. Further research on its potential target, molecular mechanism, toxicity, and oral utilization should need to be strengthened in the future.
Collapse
Affiliation(s)
- Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Tanelian A, Nankova B, Miari M, Nahvi RJ, Sabban EL. Resilience or susceptibility to traumatic stress: Potential influence of the microbiome. Neurobiol Stress 2022; 19:100461. [PMID: 35789769 PMCID: PMC9250071 DOI: 10.1016/j.ynstr.2022.100461] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 11/24/2022] Open
Abstract
Exposure to traumatic stress is a major risk factor for development of neuropsychiatric disorders in a sub-population of individuals, while others remain resilient. The mechanisms and contributing factors differentiating between these phenotypes are still unclear. We hypothesize that inter-individual differences in the microbial composition and function contribute to host resilience or susceptibility to stress-induced psychopathologies. The current study aimed to characterize gut microbial community before and after exposure to traumatic stress in an animal model of PTSD. Sprague-Dawley male rats were randomly divided into unstressed controls and experimental group subjected to Single Prolonged Stress (SPS). After 14 days, behavioral analyses were performed using Open Field, Social Interaction and Elevated Plus Maze tests. Based on the anxiety measures, the SPS group was further subdivided into resilient (SPS-R) and susceptible (SPS–S) cohorts. The animals were sacrificed after the last behavioral test and cecum, colon, hippocampus, and medial prefrontal cortex were dissected. Prior to SPS and immediately after Open Field test, fecal samples were collected from each rat for 16S V3–V4 ribosomal DNA sequencing, whereas urine samples were collected before SPS, 90 min into immobilization and on the day of sacrifice to measure epinephrine and norepinephrine levels. Analyses of the fecal microbiota revealed significant differences in microbial communities and in their predictive functionality among the groups before and after SPS stressors. Before SPS, the SPS-S subgroup harbored microbiota with an overall pro-inflammatory phenotype, whereas SPS-R subgroup had microbiota with an overall anti-inflammatory phenotype, with predictive functional pathways enriched in carbohydrate and lipid metabolism and decreased in amino acid metabolism and neurodegenerative diseases. After SPS, the gut microbial communities and their predictive functionality shifted especially in SPS cohorts, with volatility at the genus level correlating inversely with Anxiety Index. In line with the alterations seen in the gut microbiota, the levels of cecal short chain fatty acids were also altered, with SPS-S subgroup having significantly lower levels of acetate, valerate and caproate. The levels of acetate inversely correlated with Anxiety Index. Interestingly, urinary epinephrine and norepinephrine levels were also higher in the SPS-S subgroup at baseline and during stress, indicative of an altered sympathoadrenal stress axis. Finally, shorter colon (marker of intestinal inflammation) and a lower claudin-5 protein expression (marker for increased blood brain barrier permeability) were observed in the SPS-S subgroup. Taken together, our results suggest microbiota is a potential factor in predisposing subjects either to stress susceptibility or resilience. Moreover, SPS triggered significant shifts in the gut microbiota, their metabolites and brain permeability. These findings could lead to new therapeutic directions for PTSD possibly through the controlled manipulation of gut microbiota. It may enable early identification of individuals more likely to develop prolonged anxiogenic symptoms following traumatic stress. Preexisting individual differences in microbiome relate to host's stress response. Shift in the microbial composition differs in SPS-R and SPS-S subgroups after SPS. Cecal levels of acetate in SPS subgroups correlate inversely with anxiety index. Basal and stress-induced urinary catecholamine levels are higher in SPS-S subgroup. SPS-S subgroup has shorter colon, less cecal SCFA and lower brain TJ protein.
Collapse
|
24
|
Yang S, Xu K, Xu X, Zhu J, Jin Y, Liu Q, Xu R, Gu X, Liu Y, Huang Y, Ma Z. S-Ketamine Pretreatment Alleviates Anxiety-Like Behaviors and Mechanical Allodynia and Blocks the Pro-inflammatory Response in Striatum and Periaqueductal Gray From a Post-traumatic Stress Disorder Model. Front Behav Neurosci 2022; 16:848232. [PMID: 35493953 PMCID: PMC9047507 DOI: 10.3389/fnbeh.2022.848232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
This study aims to explore the regulatory effect of S-ketamine on the mechanical allodynia, anxiety-like behaviors and microglia activation in adult male rats exposed to an animal model of post-traumatic stress disorder (PTSD). The rat PTSD model was established by the exposure to single-prolonged stress (SPS), and 1 day later, rats were intraperitoneally injected with 5 mg/kg S-ketamine or normal saline, respectively. Paw withdrawal mechanical threshold was measured 2 days before, and 1, 3, 5, 7, 10, 14, 21 and 28 days after injection to assess mechanical allodynia in the SPS-exposed rats. For anxiety-like behaviors, the open field test and elevated plus maze test were performed at 7 and 14 days after S-ketamine treatment in the SPS-exposed rats, respectively. SPS-induced rats presented pronounced mechanical allodynia and anxiety-like behaviors, which were alleviated by S-ketamine treatment. After behavioral tests, rats were sacrificed for collecting the anterior cingulate cortex (ACC), prefrontal cortex (PFC), dorsal striatum, and periaqueductal gray (PAG). Protein levels of TNF-α, IL-1β, p-NF-κB, and NF-κB in brain regions were examined by Western blot. In addition, microglia activation in each brain region was determined by immunofluorescence staining of the microglia-specific biomarker Iba-1. Interestingly, pro-inflammatory cytokines were significantly upregulated in the dorsal striatum and PAG, rather than ACC and PFC. Activated microglia was observed in the dorsal striatum and PAG as well, and upregulated p-NF-κB was detected in the dorsal striatum. Inflammatory response, phosphorylation of NF-κB and microglia activation in certain brain regions were significantly alleviated by S-ketamine treatment. Collectively, S-ketamine is a promising drug in alleviating mechanical allodynia, anxiety-like behaviors, and pro-inflammatory responses in discrete brain regions in a model of PTSD.
Collapse
|
25
|
Denny RR, Connelly KL, Ghilotti MG, Meissler JJ, Yu D, Eisenstein TK, Unterwald EM. Artificial Intelligence Identified Resilient and Vulnerable Female Rats After Traumatic Stress and Ethanol Exposure: Investigation of Neuropeptide Y Pathway Regulation. Front Neurosci 2021; 15:772946. [PMID: 34975380 PMCID: PMC8716605 DOI: 10.3389/fnins.2021.772946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is initiated by traumatic-stress exposure and manifests into a collection of symptoms including increased anxiety, sleep disturbances, enhanced response to triggers, and increased sympathetic nervous system arousal. PTSD is highly co-occurring with alcohol use disorder. Only some individuals experiencing traumatic stress develop PTSD and a subset of individuals with PTSD develop co-occurring alcohol use disorder. To investigate the basis of these individual responses to traumatic stress, single prolonged stress (SPS) a rodent model of traumatic stress was applied to young adult female rats. Individual responses to SPS were characterized by measuring anxiety-like behaviors with open field and elevated plus maze tests. Rats were then allowed to drink ethanol under an intermittent two bottle choice procedure for 8 weeks, and ethanol consumption was measured. An artificial intelligence algorithm was built to predict resilient and vulnerable individuals based on data from anxiety testing and ethanol consumption. This model was implemented in a second cohort of rats that underwent SPS without ethanol drinking to identify resilient and vulnerable individuals for further study. Analysis of neuropeptide Y (NPY) levels and expression of its receptors Y1R and Y2R mRNA in the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), and bed nucleus stria terminalis (BNST) were performed. Results demonstrate that resilient rats had higher expression of Y2R mRNA in the CeA compared with vulnerable and control rats and had higher levels of NPY protein in the BNST compared to controls. The results of the study show that an artificial intelligence algorithm can identify individual differences in response to traumatic stress which can be used to predict subsequent ethanol drinking, and the NPY pathway is differentially altered following traumatic stress exposure in resilient and vulnerable populations. Understanding neurochemical alterations following traumatic-stress exposure is critical in developing prevention strategies for the vulnerable phenotype and will help further development of novel therapeutic approaches for individuals suffering from PTSD and at risk for alcohol use disorder.
Collapse
Affiliation(s)
- Ray R. Denny
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Krista L. Connelly
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Marco G. Ghilotti
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Center for Biostatistics and Epidemiology, Department of Biomedical Education and Data Science, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Ellen M. Unterwald
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,*Correspondence: Ellen M. Unterwald,
| |
Collapse
|
26
|
Ding J, Chen X, Han F, Meijer OC. An Advanced Transcriptional Response to Corticosterone After Single Prolonged Stress in Male Rats. Front Behav Neurosci 2021; 15:756903. [PMID: 34867228 PMCID: PMC8636037 DOI: 10.3389/fnbeh.2021.756903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Stress-related neuropsychiatric disorders are often accompanied by dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. In patients suffering from post-traumatic stress disorder (PTSD), increased sensitivity of glucocorticoid negative feedback has regularly been observed. The single prolonged stress (SPS) paradigm was developed to model increased negative feedback and other aspects of PTSD in rats. In this study, we used a setup that precluded the evaluation of negative feedback but rather served to test the hypothesis of the enhanced glucocorticoid receptor (GR) signaling in higher brain areas. We injected corticosterone or vehicle 7 days after SPS and evaluated plasma corticosterone, as well as gene expression in the dorsal hippocampus and amygdala. We observed a strikingly rapid change in the expression of established GR target genes (t = 30 min) only in the SPS group on exogenous corticosterone injection. Our results extend the notion of increased GR sensitivity in PTSD to include transcriptional responses in the hippocampus.
Collapse
Affiliation(s)
- Jinlan Ding
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xinzhao Chen
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
27
|
Nwokafor C, Serova LI, Tanelian A, Nahvi RJ, Sabban EL. Variable Response of Norepinephrine Transporter to Traumatic Stress and Relationship to Hyperarousal. Front Behav Neurosci 2021; 15:725091. [PMID: 34650410 PMCID: PMC8507558 DOI: 10.3389/fnbeh.2021.725091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
The noradrenergic systems play a key role in stress triggered disorders such as post-traumatic stress disorder (PTSD). We hypothesized that traumatic stress will alter expression of norepinephrine transporter (NET) in locus coeruleus (LC) and its target brain regions which could be related to hyperarousal. Male Sprague-Dawley rats were subjected to single prolonged stress (SPS) and several weeks later the LC was isolated. NET mRNA levels in LC, determined by RT-PCR, displayed variable response with high and low responsive subgroups. In different cohort, acoustic startle response (ASR) was measured 2 weeks after SPS and levels of NET mRNA and protein in LC determined. The high NET responsive subgroup had greater hyperarousal. Nevertheless, NET protein levels, as determined by western blots, were lower than unstressed controls in LC, ventral hippocampus and medial prefrontal cortex and displayed considerable variability. Hypermethylation of specific CpG region in promoter of SLC6A2 gene, encoding NET, was present in the low, but not high, NET mRNA responsive subgroup. Taken together, the results demonstrate variability in stress elicited changes in NET gene expression and involvement of epigenetic changes. This may underlie mechanisms of susceptibility and resilience to traumatic stress triggered neuropsychiatric symptoms, especially hyperarousal.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
28
|
Mohammadi-Farani A, Taghadosi M, Raziee S, Samimi Z. In vivo blockade of 5HT3 receptors in the infralimbic medial prefrontal cortex enhances fear extinction in a rat model of PTSD. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:776-786. [PMID: 34630955 PMCID: PMC8487606 DOI: 10.22038/ijbms.2021.54299.12197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Objectives Treatments that reverse deficits in fear extinction are promising for the management of post-traumatic stress disorder (PTSD). 5-Hydroxytryptamine type 3 (5-HT3) receptor is involved involved in the extinction of fear memories. The present work aims to investigate the role of 5HT3 receptors in the infralimbic part of the medial prefrontal cortex (IL-mPFC) in extinction of conditioned fear in the single prolonged stress (SPS) model of PTSD in rats. Materials and Methods The effect of SPS administration was evaluated on the freezing behavior in contextual and cued fear conditioning models. After the behavioral tests, levels of 5HT3 transcription in IL-mPFC were also measured in the same animals using the real-time RT-PCR method. To evaluate the possible role of local 5HT3 receptors on fear extinction, conditioned freezing was evaluated in another cohort of animals that received local microinjections of ondansetron (a 5HT3 antagonist) and ondansetron plus a 5HT3 agonist (SR 57227A) after extinction sessions. Results Our findings showed that exposure to SPS increased the freezing response in both contextual and cued fear models. We also found that SPS is associated with increased expression of 5HT3 receptors in the IL-mPFC region. Ondansetron enhanced the fear of extinction in these animals and the enhancement was blocked by the 5HT3 agonist, SR 57227A. Conclusion It seems that up-regulation of 5HT3 receptors in IL-mPFC is an important factor in the neurobiology of PTSD and blockade of these receptors could be considered a potential treatment for this condition.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Pharmaceutical Sciences Research Centre, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Pharmacology and Toxicology, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Taghadosi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Raziee
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Samimi
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Hou Y, Li M, Jin Y, Xu F, Liang S, Xue C, Wang K, Zhao W. Protective effects of tetramethylpyrazine on dysfunction of the locus coeruleus in rats exposed to single prolonged stress by anti-ER stress mechanism. Psychopharmacology (Berl) 2021; 238:2923-2936. [PMID: 34231002 DOI: 10.1007/s00213-021-05908-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious stress-related neuropsychiatric disorder caused by major traumatic events. Abnormal activity of the locus coeruleus (LC)-noradrenergic system is related to the development of PTSD-like symptoms. Our previous studies have indicated that endoplasmic reticulum (ER) stress induced neuronal apoptosis of LC in rats with PTSD. The purpose of this study was to further investigate the role of ER stress pathways in LC neuronal dysfunction and elucidate the effect of the bioactive component tetramethylpyrazine (TMP) against ER stress response. We used an acute exposure to single prolonged stress (SPS) to model PTSD in rats. There were higher norepinephrine (NE) levels in the brain, increased tyrosine hydroxylase expression in LC, and enhanced anxiety-like behaviors in rats exposed to SPS, which were observed by enzyme-linked immunosorbent assay, western blot analysis and elevated plus maze test, respectively. In addition, the three major pathways of ER stress were activated by SPS exposure, which may be involved in the dysregulation of the LC-noradrenergic system of rats with PTSD. Furthermore, we found that TMP administration significantly suppressed the increased responsiveness of LC-noradrenergic system, effectively reduced the anxiety response of SPS rats, and selectively attenuated the activation of pro-apoptotic ER stress pathways. The results suggest that TMP was efficient in improving the LC-NE dysfunction induced by excessive ER stress. TMP exhibited a significant neuroprotective effect and potential therapeutics on PTSD-like symptoms.
Collapse
Affiliation(s)
- Yun Hou
- Department of Histology and Embryology, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Meifeng Li
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital Qingdao University, Yantai, 264000, Shandong, China
| | - Yinchuan Jin
- Department of Medical Psychology, Fourth Military Medical University, No. 169 West Changle Road, Xi'an, 710032, China
| | - Feibo Xu
- Department of Histology and Embryology, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Shaohua Liang
- Department of Anatomy, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Chen Xue
- Clinical Medicine College, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Kaili Wang
- Clinical Medicine College, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China
| | - Wei Zhao
- Department of Histology and Embryology, Binzhou Medical University, No. 346 Guanhai Road, Yantai, 264003, Shandong, China.
| |
Collapse
|
30
|
Nahvi RJ, Tanelian A, Nwokafor C, Hollander CM, Peacock L, Sabban EL. Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Front Behav Neurosci 2021; 15:705579. [PMID: 34566592 PMCID: PMC8456029 DOI: 10.3389/fnbeh.2021.705579] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
The susceptibility to stress-elicited disorders is markedly influenced by sex. Women are twice as likely as men to develop posttraumatic stress disorder (PTSD), depression, anxiety disorders, and social impairments following exposure to traumatic stress. However, most of the studies in animal models examining putative therapeutics for stress-triggered impairments, including single prolonged stress (SPS), were performed predominantly with males. Previous studies in males demonstrated that intranasal neuropeptide Y (NPY) can provide therapeutic relief of many SPS-triggered behaviors, but is ineffective in females at the same dose. Thus, females may need a higher dose of exogenous NPY to attain a therapeutically significant concentration since the overwhelming majority of studies found that NPY levels in females in many brain regions are lower than in male rodents. Here, we examined SPS as an appropriate model to elicit many PTSD-associated symptoms in females and whether intranasal NPY at higher doses than with males is able to alter the development of SPS-triggered behavioral impairments. Sprague-Dawley female rats were exposed to SPS only, or in a separate cohort after SPS stressors were immediately infused intranasally with one of several doses of NPY, starting with 600 μg/rat—four times the dose effective in males. In the third cohort of animals, females were infused intranasally with either 600 μg NPY, omarigliptin [a dipeptidyl peptidase IV (DPP4) inhibitor], or both right after the SPS stressors. After 19 days they were tested on several behavioral tests. SPS elicited significant depressive/despair like behavior on the forced swim test (FST), anxiety behavior on the elevated plus maze (EPM), as well as impaired social interaction. On the FST, there was a dose-response effect of intranasal NPY, with 1,200 μg, but not 600 μg, preventing the development of the SPS-elicited depressive-like behavior. The omarigliptin and 600 μg NPY combined treatment, but neither alone, was also sufficient at preventing depressive-like behavior on the FST. The results demonstrate that: (1) SPS elicits several behavioral manifestations of PTSD in females; (2) early intervention with a high dose of intranasal NPY has therapeutic potential also for females; and (3) NPY cleavage by DPP4 may play a role in the higher dose requirement for females.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Arax Tanelian
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Callie M Hollander
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lauren Peacock
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
31
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
32
|
Duarte-Neves J, Cavadas C, Pereira de Almeida L. Neuropeptide Y (NPY) intranasal delivery alleviates Machado-Joseph disease. Sci Rep 2021; 11:3345. [PMID: 33558582 PMCID: PMC7870889 DOI: 10.1038/s41598-021-82339-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
Machado–Joseph disease (MJD) is the most common dominantly-inherited ataxia worldwide with no effective treatment to prevent, stop or alleviate its progression. Neuropeptide Y (NPY) is a neuroprotective agent widely expressed in the mammalian brain. Our previous work showed that NPY overexpression mediated by stereotaxically-injected viral vectors mitigates motor deficits and neuropathology in MJD mouse models. To pursue a less invasive translational approach, we investigated whether intranasal administration of NPY would alleviate cerebellar neuropathology and motor and balance impairments in a severe MJD transgenic mouse model. For that, a NPY solution was administered into mice nostrils 5 days a week. Upon 8 weeks of treatment, we observed a mitigation of motor and balance impairments through the analysis of mice behavioral tests (rotarod, beam walking, pole and swimming tests). This was in line with a reduction of cerebellar pathology, evidenced by a preservation of cerebellar granular layer and of Purkinje cells and reduction of mutant ataxin-3 aggregate numbers. Furthermore, intranasal administration of NPY did not alter body weight gain, food intake, amount of body fat nor cholesterol or triglycerides levels. Our findings support the translational potential of intranasal infusion of NPY as a pharmacological intervention in MJD.
Collapse
Affiliation(s)
- Joana Duarte-Neves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Pólo 1, Universidade de Coimbra, 3004-504, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Pólo 1, Universidade de Coimbra, 3004-504, Coimbra, Portugal. .,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Pólo 1, Universidade de Coimbra, 3004-504, Coimbra, Portugal. .,CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal. .,Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal.
| |
Collapse
|
33
|
Yang Y, Yu H, Babygirija R, Shi B, Sun W, Zheng X, Zheng J. Electro-Acupuncture Attenuates Chronic Stress Responses via Up-Regulated Central NPY and GABA A Receptors in Rats. Front Neurosci 2021; 14:629003. [PMID: 33574739 PMCID: PMC7870494 DOI: 10.3389/fnins.2020.629003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Stress can increase the release of corticotropin-releasing factor (CRF) in the hypothalamus, resulting in attenuation of gastric motor functions. In contrast, central neuropeptide Y (NPY) can reduce the biological actions of CRF, and in turn weaken stress responses. Although electroacupuncture (EA) at stomach 36 (ST-36) has been shown to have anti-stress effects, its mechanism has not yet been investigated. The effect of EA at ST-36 on the hypothalamus-pituitary-adrenal (HPA) axis and gastrointestinal motility in chronic complicated stress (CCS) conditions have not been studied and the inhibitory mechanism of NPY on CRF through the gamma-aminobutyric acid (GABA)A receptor need to be further investigated. A CCS rat model was set up, EA at ST-36 was applied to the bilateral hind limbs every day prior to the stress loading. Further, a GABAA receptor antagonist was intracerebroventricularly (ICV) injected daily. Central CRF and NPY expression levels were studied, serum corticosterone and NPY concentrations were analyzed, and gastric motor functions were assessed. CCS rats showed significantly elevated CRF expression and corticosterone levels, which resulted in inhibited gastric motor functions. EA at ST-36 significantly increased central NPY mRNA expression and reduced central CRF mRNA expression as well as the plasma corticosterone level, helping to restore gastric motor function. However, ICV administration of the GABAA receptor antagonist significantly abolished these effects. EA at ST-36 upregulates the hypothalamic NPY system. NPY may, through the GABAA receptor, significantly antagonize the overexpressed central CRF and attenuate the HPA axis activities in CCS conditions, exerting influences and helping to restore gastric motor function.
Collapse
Affiliation(s)
- Yu Yang
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Haijie Yu
- Department of Cardiology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Reji Babygirija
- Department of Surgery, Medical College of Wisconsin and Zablocki VA Medical Center, Milwaukee, WI, United States
| | - Bei Shi
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Weinan Sun
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiaojiao Zheng
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Jun Zheng
- Department of Physiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
34
|
Chen L, Liu K, Wang Y, Liu N, Yao M, Hu J, Wang G, Sun Y, Pan J. Phosphodiesterase-2 inhibitor reverses post-traumatic stress induced fear memory deficits and behavioral changes via cAMP/cGMP pathway. Eur J Pharmacol 2021; 891:173768. [PMID: 33271150 DOI: 10.1016/j.ejphar.2020.173768] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/28/2023]
Abstract
Phosphodiesterase 2 is one of the phosphodiesterase (PDEs) family members that regulate cyclic nucleotide (namely cAMP and cGMP) concentrations. The present study determined whether PDE2 inhibition could rescue post-traumatic stress disorder (PTSD)-like symptoms. Mice were subjected to single prolonged stress (SPS) and treated with selective PDE2 inhibitor Bay 60-7550 (0.3, 1, or 3 mg/kg, i.p.). The behavioral tests such as forced swimming, sucrose preference test, open field, elevated plus maze, and contextual fear paradigm were conducted to determine the effects of Bay 60-7550 on SPS-induced depression- and anxiety-like behavior and fear memory deficits. The results suggested that Bay 60-7550 reversed SPS-induced depression- and anxiety-like behavior and fear memory deficits. Moreover, Bay 60-7550 prevented SPS-induced changes in the adrenal gland index, synaptic proteins synaptophysin and PSD95 expression, PKA, PKG, pCREB, and BDNF levels in the hippocampus and amygdala. These effects were completely prevented by PKG inhibitor KT5823. While PKA inhibitor H89 also prevented Bay 60-7550-induced pCREB and BDNF expression, but only partially prevented the effects on PSD95 expression in the hippocampus. These findings suggest that Bay 60-7550 protects mice against PTSD-like stress induced traumatic injury by activation of cGMP- or cAMP-related neuroprotective molecules, such as synaptic proteins, pCREB and BDNF.
Collapse
Affiliation(s)
- Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, PR China; Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kaiping Liu
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yulu Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Na Liu
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Minjie Yao
- Department of Orthopedics, The People's Hospital of Yichun City, Yichun, Jiangxi Province, China
| | - Jinlan Hu
- Department of Anesthesiology, Shanghai Minhang TCM Hospital, Shanghai, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, PR China.
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi, China.
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
35
|
Manukhina EB, Tseilikman VE, Komelkova MV, Lapshin MS, Goryacheva AV, Kondashevskaya MV, Mkhitarov VA, Lazuko SS, Tseilikman OB, Sarapultsev AP, Dmitrieva YA, Strizhikov VK, Kuzhel OP, Downey HF. Сardiac injury in rats with experimental posttraumatic stress disorder and mechanisms of its limitation in experimental posttraumatic stress disorder-resistant rats. J Appl Physiol (1985) 2021; 130:759-771. [PMID: 33411642 DOI: 10.1152/japplphysiol.00694.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic stress causes posttraumatic stress disorder (PTSD). PTSD is associated with cardiovascular diseases and risk of sudden cardiac death in some subjects. We compared effects of predator stress (PS, cat urine scent, 10 days) on mechanisms of cardiac injury and protection in experimental PTSD-vulnerable (PTSD) and -resistant (PTSDr) rats. Fourteen days post-stress, rats were evaluated with an elevated plus-maze test, and assigned to PTSD and PTSDr groups according to an anxiety index calculated from the test results. Cardiac injury was evaluated by: 1) exercise tolerance; 2) ECG; 3) myocardial histomorphology; 4) oxidative stress; 5) pro- and anti-inflammatory cytokines. Myocardial heat shock protein 70 (HSP70) was also measured. Experimental PTSD developed in 40% of rats exposed to PS. Exercise tolerance of PTSD rats was 25% less than control rats and 21% less than PTSDr rats. ECG QRS, QT, and OTc intervals were significantly longer in PTSD rats than in control and PTSDr rats. Only cardiomyocytes of PTSD rats had histomorphological signs of metabolic and hypoxic injury and impaired contractility. Oxidative stress markers were higher in PTSD than in PTSDr rats. Pro-inflammatory IL-6 was higher in PTSD rats than in control and PTSDr rats, and anti-inflammatory IL-4 was lower in PTSD than in control and PTSDr rats. Myocardial HSP70 was lower in PTSD rats than in PTSDr and control rats. Our conclusion was that rats with PTSD developed multiple signs of cardiac injury. PTSDr rats were resistant also to cardiac injury. Factors that limit cardiac damage in PS rats include reduced inflammation and oxidative stress and increased protective HSP70.NEW & NOTEWORTHY For the first time, rats exposed to stress were segregated into experimental PTSD (ePTSD)-susceptible and ePTSD-resistant rats. Cardiac injury, ECG changes, and impaired exercise tolerance were more pronounced in ePTSD-susceptible rats. Resistance to ePTSD was associated with decreased inflammation and oxidative stress and with increased protective heat shock protein 70. Results may help identify individuals at high risk of PTSD and also provide a foundation for developing preventive and therapeutic means to restrict PTSD-associated cardiac morbidity.
Collapse
Affiliation(s)
- Eugenia B Manukhina
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Vadim E Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maria V Komelkova
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Maxim S Lapshin
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Anna V Goryacheva
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Marina V Kondashevskaya
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Vladimir A Mkhitarov
- Laboratory for Immunomorphology of Inflammation, Research Institute of Human Morphology, Moscow, Russian Federation
| | - Svetlana S Lazuko
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - Olga B Tseilikman
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,School of Basic Medicine, Chelyabinsk State University, Chelyabinsk, Russian Federation
| | - Alexey P Sarapultsev
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Laboratory of Immunopathophysiology, Institute of Immunology and Physiology of RAS, Ekaterinburg, Russian Federation
| | - Yulia A Dmitrieva
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation
| | - Viktor K Strizhikov
- Department of Morphology and Histology, South Ural State Agricultural University, Troitsk, Russian Federation
| | - Olga P Kuzhel
- Department of Normal Physiology, Vitebsk State Medical University, Vitebsk, Republic of Belarus
| | - H Fred Downey
- School of Medical Biology, South Ural State University, Chelyabinsk, Russian Federation.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
36
|
Functional deletion of neuropeptide Y receptors type 2 in local synaptic networks of anteroventral BNST facilitates recall and increases return of fear. Mol Psychiatry 2021; 26:2900-2911. [PMID: 32709995 PMCID: PMC8505243 DOI: 10.1038/s41380-020-0846-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Return of previously extinguished fear memories presents a major hurdle in treatment of fear-related disorders. Neuropeptide Y receptors type 2 (Y2R) in the bed nucleus of stria terminalis (BNST) seem to play a crucial role in modulation of remote fear memories. Here, we targeted Cre-channelrhodopsin-2 to defined subregions of BNST or central amygdala (CeA) in floxed Y2R mice (Y2lox/lox) for functional deletion of Y2R. We combined fear training and behavioral studies in vivo with optogenetic-electrophysiological analysis of BNST synaptic network activity ex vivo, in order to identify regional and cellular specificities of Y2R influence. Deletion of Y2R in the ventral section of anterior BNST (BNSTav) did not affect fear acquisition, but increased conditioned fear during recall and extinction learning, and aggravated remote fear return. By contrast, deletion of Y2R in the dorsal section of anterior BNST (BNSTad) or CeA did not influence acquisition, extinction or return of fear memories. Ex vivo optogenetic-electrophysiological analysis revealed Y2R-expressing local GABAergic inhibitory networks in BNST, both within (intraregional) and in-between (inter-regional) BNST subregions. Stimulation of Y2R resulted in a presynaptically mediated reduction of GABAergic responses, which did not differ between intraregional but predominantly affected inter-regional connections from BNSTav to BNSTad. Moreover, deletion of Y2R decreased the excitation/inhibition balance in BNSTav neurons, suggesting a regulatory influence of endogenous NPY via intraregional GABAergic microcircuits. This study reveals Y2R within local GABAergic networks in BNST as key elements in facilitating extinction and reducing return of remote fear memories, suggesting a potential avenue for translational purposes.
Collapse
|
37
|
Belda X, Fuentes S, Labad J, Nadal R, Armario A. Acute exposure of rats to a severe stressor alters the circadian pattern of corticosterone and sensitizes to a novel stressor: Relationship to pre-stress individual differences in resting corticosterone levels. Horm Behav 2020; 126:104865. [PMID: 32991887 DOI: 10.1016/j.yhbeh.2020.104865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 11/17/2022]
Abstract
Traumatic events have been proposed to be associated with hypo-activity of the hypothalamic-pituitary-adrenal (HPA) axis, but data in animal models exposed to severe stressors are controversial and have important methodological concerns. Individual differences in resting or stress levels of corticosterone might explain some of the inconsistencies. We then studied this issue in male rats exposed to 2 h immobilization on boards (IMO), a severe stressor. Thirty-six rats were blood sampled under resting conditions four times a day on three non-consecutive days. Then, they were assigned to control (n = 14) or IMO (n = 22) to study the HPA response to IMO, the stressor-induced alterations in the circadian pattern of corticosterone (CPCORT), and the behavioral and HPA responsiveness to an open-field. Individual differences in pre-IMO resting corticosterone were inconsistent, but averaging data markedly improved consistency. The CPCORT was markedly altered on day 1 post-IMO (higher trough and lower peak levels), less altered on day 3 and apparently normal on day 7. Importantly, when rats were classified in low and high resting corticosterone groups (LCORT and HCORT, respectively), on the basis of the area under the curve (AUC) of the averaged pre-IMO data, AUC differences between LCORT and HCORT groups were maintained in controls but disappeared in IMO rats during the post-IMO week. Open-field hypo-activity and corticosterone sensitization were similar in LCORT and HCORT groups nine days after IMO. A single IMO exposure causes long-lasting HPA alterations, some of them dependent on pre-stress resting corticosterone levels, with no evidence for post-IMO resting corticosterone hypo-activity.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Animals
- Circadian Rhythm/physiology
- Conditioning, Classical/physiology
- Corticosterone/blood
- Corticosterone/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Individuality
- Male
- Pituitary-Adrenal System/metabolism
- Rats
- Rats, Sprague-Dawley
- Rest/physiology
- Rest/psychology
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Stress Disorders, Post-Traumatic/blood
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/psychology
- Stress, Psychological/blood
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Xavier Belda
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain
| | - Silvia Fuentes
- Institut de Neurociències, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain
| | - Javier Labad
- Department of Mental Health, Parc Taulí Hospital Universitari, I3PT, Spain; Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Roser Nadal
- Institut de Neurociències, Spain; Psychobiology Unit, Faculty of Psychology, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain
| | - Antonio Armario
- Institut de Neurociències, Spain; Animal Physiology Unit (Department of Cellular Biology, Physiology and Immunology), Faculty of Biosciences, Universitat Autònoma de Barcelona, Spain; CIBERSAM, Spain.
| |
Collapse
|
38
|
Mathé AA, Michaneck M, Berg E, Charney DS, Murrough JW. A Randomized Controlled Trial of Intranasal Neuropeptide Y in Patients With Major Depressive Disorder. Int J Neuropsychopharmacol 2020; 23:783-790. [PMID: 33009815 PMCID: PMC7770516 DOI: 10.1093/ijnp/pyaa054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Since about one-third of patients with major depressive disorder (MDD) do not respond adequately to available antidepressants, there is a need for treatments based on novel mechanisms of action. Neuropeptide Y (NPY), a normal brain constituent, is reduced in cerebrospinal fluid of patients with MDD and post-traumatic stress disorder and in corresponding rodent models. Moreover, NPY administered centrally or intranasally rescues pathophysiology in these models. Consequently, we conducted the first, to our knowledge, controlled trial of NPY as a treatment for MDD. METHODS Thirty MDD patients on a stable dose of a conventional antidepressant insufflated 6.8 mg NPY (n = 12) or placebo (n = 18) in a double blind randomized fashion. Effects were assessed at baseline, +1 hour, +5 hours, +24 hours, and +48 hours. The primary outcome was change in depression severity measured with the Montgomery-Åsberg Depression Rating Scale (MADRS). RESULTS NPY was superior to placebo at +24 hours (change -10.3 [95% CI: -13.8; -6.8]) vs -5.6 (95% CI: -8.4; -2.7); group*time F = 3.26, DF = (1,28), P = .04; Cohen's d = 0.67). At +5 hours MADRS decreased -7.1 ([95% CI: -10.0; -4.2] vs -3.5 [95% CI: -5.8; -1.2]; group*time F = 2.69, DF = (1,28), P = .05; Cohen's d = 0.61). MADRS reduction at +48 hours was not significant. CONCLUSIONS Since no results regarding the trajectory of NPY effects existed prior to this study we extrapolated from the known NPY biology and predicted the effects will occur 5-48 hours post insufflation. We chose +48 hours as the primary endpoint and +1, +5, and +24 hours as secondary endpoints. The results, the first of their kind, indicate that insufflated NPY is antidepressant, despite not meeting the primary outcome, and call for dose ranging and repeated NPY insufflation trials. CLINICAL TRIAL REGISTRATION EudraCT Number: 2014-000129-19.
Collapse
Affiliation(s)
- Aleksander A Mathé
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Correspondence: Aleksander Mathé, MD, PhD, Department of Clinical Neuroscience, Tomtebodavägen 18A Karolinska Institutet, 17176 Stockholm, Sweden ()
| | - Miranda Michaneck
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elisabeth Berg
- Center for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Dennis S Charney
- Office of the Dean, Icahn School of Medicine at Mount Sinai, New York, New York,Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James W Murrough
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
39
|
Nahvi RJ, Sabban EL. Sex Differences in the Neuropeptide Y System and Implications for Stress Related Disorders. Biomolecules 2020; 10:biom10091248. [PMID: 32867327 PMCID: PMC7564266 DOI: 10.3390/biom10091248] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
The neuropeptide Y (NPY) system is emerging as a promising therapeutic target for neuropsychiatric disorders by intranasal delivery to the brain. However, the vast majority of underlying research has been performed with males despite females being twice as susceptible to many stress-triggered disorders such as posttraumatic stress disorder, depression, anorexia nervosa, and anxiety disorders. Here, we review sex differences in the NPY system in basal and stressed conditions and how it relates to varied susceptibility to stress-related disorders. The majority of studies demonstrate that NPY expression in many brain areas under basal, unstressed conditions is lower in females than in males. This could put them at a disadvantage in dealing with stress. Knock out animals and Flinders genetic models show that NPY is important for attenuating depression in both sexes, while its effects on anxiety appear more pronounced in males. In females, NPY expression after exposure to stress may depend on age, timing, and nature and duration of the stressors and may be especially pronounced in the catecholaminergic systems. Furthermore, alterations in NPY receptor expression and affinity may contribute to the sex differences in the NPY system. Overall, the review highlights the important role of NPY and sex differences in manifestation of neuropsychiatric disorders.
Collapse
|
40
|
Komelkova M, Manukhina E, Downey HF, Sarapultsev A, Cherkasova O, Kotomtsev V, Platkovskiy P, Fedorov S, Sarapultsev P, Tseilikman O, Tseilikman D, Tseilikman V. Hexobarbital Sleep Test for Predicting the Susceptibility or Resistance to Experimental Posttraumatic Stress Disorder. Int J Mol Sci 2020; 21:E5900. [PMID: 32824478 PMCID: PMC7460591 DOI: 10.3390/ijms21165900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022] Open
Abstract
Hexobarbital sleep test (HST) was performed in male Wistar rats (hexobarbital 60 mg/kg, i.p.) 30 days prior to stress exposure. Based on the duration of hexobarbital-induced sleep, rats were divided into two groups, animals with high intensity (fast metabolizers (FM), sleep duration <15 min) or low intensity of hexobarbital metabolism (slow metabolizers (SM), sleep duration ≥15 min). The SM and FM groups were then divided into two subgroups: unstressed and stressed groups. The stressed subgroups were exposed to predator scent stress for 10 days followed by 15 days of rest. SM and FM rats from the unstressed group exhibited different behavioral and endocrinological patterns. SM showed greater anxiety and higher corticosterone levels. In stressed animals, anxiety-like posttraumatic stress disorder (PTSD) behavior was aggravated only in SM. Corticosterone levels in the stressed FM, PTSD-resistant rats, were lower than in unstressed SM. Thus, HST was able to predict the susceptibility or resistance to experimental PTSD, which was consistent with the changes in glucocorticoid metabolism.
Collapse
Affiliation(s)
- Maria Komelkova
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
| | - Eugenia Manukhina
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - H. Fred Downey
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
| | - Olga Cherkasova
- Biophysics Laboratory, Institute of Laser Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia;
| | - Viacheslav Kotomtsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
- Laboratory of Biomedical Research, Ural Research Institute for Phthisiopulmonology of Ministry of Health of Russian Federation, 620039 Ekaterinburg, Russia
| | - Pavel Platkovskiy
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - Stanislav Fedorov
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - Petr Sarapultsev
- Institute of Immunology and Physiology, Ural Division of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia; (V.K.); (P.S.)
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - David Tseilikman
- Department of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia; (P.P.); (S.F.); (D.T.)
| | - Vadim Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia; (M.K.); (E.M.); (H.F.D.); (O.T.); (V.T.)
| |
Collapse
|
41
|
Serova LI, Hansson E, Sabban EL. Effect of intranasal administration of neuropeptide Y and single prolonged stress on food consumption and body weight in male rats. Neuropeptides 2020; 82:102060. [PMID: 32600666 DOI: 10.1016/j.npep.2020.102060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 01/30/2023]
Abstract
Emerging evidence indicates that intranasal delivery of neuropeptide Y (NPY) to the brain has therapeutic potential for management of stress-triggered neuropsychiatric disorders. Here we aimed to determine how intranasal administration of NPY, either before or immediately after, traumatic stress in single prolonged stress (SPS) rodent model of Post-traumatic stress disorder (PTSD) impacts food consumption and body weight. SPS stressors suppressed food consumption for at least two days in the vehicle-treated animals. When given prior to SPS stressors, intranasal NPY prevented the SPS-elicited reduction in food intake only for several hours afterwards. When given after the SPS stressors, under conditions shown to prevent behavioral and biochemical impairments, intranasal NPY had no effect on food intake. Although all groups showed circadian variation, the SPS-exposed rats ate less than unstressed animals during the dark (active) phase. Seven days after exposure to SPS stressors, there were no differences in food intake, although body weight was still lower than unstressed controls in all the experimental groups. Thus, traumatic stress has pronounced effect on food consumption during the rodent's active phase, and a prolonged effect on body weight. Single intranasal infusion of NPY, which was previously shown to prevent development of several PTSD associated behavioral and neuroendocrine impairments, did not elicit prolonged changes in stress triggered food consumption nor regulation of body weight.
Collapse
Affiliation(s)
- Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Evelyn Hansson
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
42
|
Morris LS, McCall JG, Charney DS, Murrough JW. The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci Adv 2020; 4:2398212820930321. [PMID: 32954002 PMCID: PMC7479871 DOI: 10.1177/2398212820930321] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 12/31/2022] Open
Abstract
This review aims to synthesise a large pre-clinical and clinical
literature related to a hypothesised role of the locus coeruleus
norepinephrine system in responses to acute and chronic threat, as
well as the emergence of pathological anxiety. The locus coeruleus has
widespread norepinephrine projections throughout the central nervous
system, which act to globally modulate arousal states and adaptive
behavior, crucially positioned to play a significant role in
modulating both ascending visceral and descending cortical
neurocognitive information. In response to threat or a stressor, the
locus coeruleus–norepinephrine system globally modulates arousal,
alerting and orienting functions and can have a powerful effect on the
regulation of multiple memory systems. Chronic stress leads to
amplification of locus coeruleus reactivity to subsequent stressors,
which is coupled with the emergence of pathological anxiety-like
behaviors in rodents. While direct in vivo evidence for locus
coeruleus dysfunction in humans with pathological anxiety remains
limited, recent advances in high-resolution 7-T magnetic resonance
imaging and computational modeling approaches are starting to provide
new insights into locus coeruleus characteristics.
Collapse
Affiliation(s)
- Laurel S Morris
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordan G McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Dennis S Charney
- Dean's Office, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James W Murrough
- The Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Lee B, Sur B, Lee H, Oh S. Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system. J Ginseng Res 2020; 44:644-654. [PMID: 32617045 PMCID: PMC7322749 DOI: 10.1016/j.jgr.2019.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 01/28/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD), a mental disorder induced by traumatic stress and often accompanied by depression and/or anxiety, may involve an imbalance in the neurotransmitters associated with the fear response. Korean Red Ginseng (KRG) has long been used as a traditional medicine and is known to be involved in a variety of pharmacological activities. We used the open field test and forced swimming test to examine the effects of KRG on the depression-like response of rats after exposure to single prolonged stress (SPS), leading to activation of the serotonergic system. Methods Male rats received KRG (30, 50, and 100 mg/kg, intraperitoneal injection) once daily for 14 days after exposure to SPS. Results Daily KRG administration significantly improved depression-like behaviors in the forced swimming test, increased the number of lines crossed and time spent in the central zone in the open field test, and decreased freezing behavior in contextual and cued fear conditioning. KRG treatment attenuated SPS-induced decreases in serotonin (5-HT) tissue concentrations in the hippocampus and medial prefrontal cortex. The increased 5-HT concentration during KRG treatment may be partially attributable to the 5-hydroxyindoleacetic acid/5-HT ratio in the hippocampus of rats with PTSD. These effects may be caused by the activation of hippocampal genes encoding tryptophan hydroxylase-1 and 2 mRNA levels. Conclusion Our findings suggest that KRG has an antidepressant effect in rats subjected to SPS and may represent an effective use of traditional medicine for the treatment of PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Bongjun Sur
- Department of Molecular medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seikwan Oh
- Department of Molecular medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Han M, Luo H, Bai Y, Zheng S, Li F, Fu J, Jiang S, Liu Z, Zheng X. The effect of traumatic-like stress exposure on alterations in the temporal social behavior of a rodent population. Stress 2020; 23:393-404. [PMID: 31814486 DOI: 10.1080/10253890.2019.1702642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Though the relationship between traumatic stress and social behavior, which has been explored for years, is dynamic and largely estimated between dyads, little is known about the causal effects of traumatic stress exposure on the time-dependent dynamic alterations in the social behaviors on a large-group level. We thus investigated the effect of a single prolonged stress (SPS) exposure, a classical animal model that recapitulates posttraumatic stress disorder (PTSD)-like symptoms in rodents, on the spatiotemporal, social behavior changes within a large group of cohabiting rats. One-half of thirty-two Sprague-Dawley rats were assigned to the experimental group and subjected to SPS treatment administered two weeks after baseline social behavior recording; the other half served as the controls. Each group of rats (n = 16) was housed in one of two large custom-made cylinders. We used an automatic tracking system to record the behavioral indices of social behavior of the rats before SPS exposure, on the SPS exposure day, during a 7-day-long quiescent period after SPS treatment, as well as during subsequent behavioral test days. In addition to SPS-induced PTSD-like behaviors, SPS induced a time-dependent, oscillating change in active/passive social behaviors that lasted for 3 weeks. SPS treatment decreased active social behaviors (especially affiliative behaviors) but increased passive social behaviors (e.g. huddling) immediately following stress exposure. Increased active social interactions were observed during the early phase after SPS treatment; while increased passive social behaviors were observed during the late phase after SPS treatment. These dynamic changes were repeatedly observed when the rats underwent subsequent stressful behavioral tests and challenges. SPS induced a long-term, time-dependent oscillating change in indices of the social behavior. These changes may serve as an adaptive mechanism, and their manifestations critically depended on the time course following the traumatic stress exposure.
Collapse
Affiliation(s)
- Mengfei Han
- School of Psychology, Beijing Sport University, Beijing, China
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Haoshuang Luo
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yunjing Bai
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shichun Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Fu
- College of Biological and Environmental Engineering, Binzhou University, Shandong, China
| | - Shaofei Jiang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengkui Liu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xigeng Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Kang W, Lu D, Yang X, Ma W, Chen X, Chen K, Xu X, Zhou X, Zhou L, Feng X. Sevoflurane Induces Hippocampal Neuronal Apoptosis by Altering the Level of Neuropeptide Y in Neonatal Rats. Neurochem Res 2020; 45:1986-1996. [PMID: 32378074 DOI: 10.1007/s11064-020-03028-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
Numerous studies have shown that the inhaled general anesthetic sevoflurane imposes toxicity on the central nervous system during the developmental period but the underlying mechanisms remain unclear. Neuropeptide Y (NPY) was reported to have important neuroprotective effects, which can attenuate neuronal loss under pathological conditions. However, the effects of NPY on sevoflurane-induced hippocampal neuronal apoptosis have not been investigated. In this study, postnatal day 7 (PND7) Sprague-Dawley rats and primary cultured cells separated from hippocampi were exposed to sevoflurane (2.4% for 4 h) and the NPY expression levels after treatment were analyzed. Furthermore, neuronal apoptosis assay was conducted via immunofluorescence staining of cleaved caspase-3 and flow cytometry after exogenous NPY administration to PND7 rats as well as cultured hippocampal neurons to elucidate the role of NPY in sevoflurane-induced neurotoxicity. Our results showed the level of NPY gradually decreased within 24 h after sevoflurane exposure in both the hippocampus of PND7 rats and cultured hippocampal neurons, but not in cultured astrocytes. In the exogenous NPY pretreatment study, the proportion of cleaved caspase-3 positive cells in the CA1 region of the hippocampus was increased significantly at 24 h after sevoflurane treatment, while NPY pretreatment could reduce it. Similarly, NPY could also reverse the apoptogenic effect of sevoflurane on cultured neurons. Herein, our results showed that sevoflurane caused a significant decrease in NPY expression, whereas exogenous NPY supplementation could reduce sevoflurane-induced hippocampal neuronal apoptosis both in vivo and in vitro.
Collapse
Affiliation(s)
- Wenbin Kang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Dihan Lu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaoyu Yang
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Wudi Ma
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, 300060, People's Republic of China
| | - Keyu Chen
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xuanxian Xu
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xue Zhou
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Lihua Zhou
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| | - Xia Feng
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
46
|
Eiden LE, Goosens KA, Jacobson KA, Leggio L, Zhang L. Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacol Transl Sci 2020; 3:190-202. [PMID: 32296762 DOI: 10.1021/acsptsci.0c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Peptide-liganded G protein-coupled receptors (GPCRs) are a growing fraction of GPCR drug targets, concentrated in two of the five major GPCR structural classes. The basic physiology and pharmacology of some within the rhodopsin class, for example, the enkephalin (μ opioid receptor, MOR) and angiotensin (ATR) receptors, and most in class B, all the members of which are peptide receptors, are well-known, whereas others are less so. Furthermore, with the notable exception of opioid peptide receptors, the ability to translate from peptide to "drug-like" (i.e., low-molecular-weight nonpeptide) molecules, with desirable oral absorption, brain penetrance, and serum stability, has met with limited success. Yet, peripheral peptide administration in patients with metabolic disorders is clinically effective, suggesting that "drug-like" molecules for peptide receptor targets may not always be required for disease intervention. Here, we consider recent developments in GPCR structure analysis, intracellular signaling, and genetic analysis of peptide and peptide receptor knockout phenotypes in animal models. These lines of research converge on a better understanding of how peptides facilitate adaptive behaviors in mammals. They suggest pathways to translate this burgeoning information into identified drug targets for neurological and psychiatric illnesses such as obesity, addiction, anxiety disorders, and neurodegenerative diseases. Advances centered on the peptide ligands oxytocin, vasopressin, GLP-1, ghrelin, PACAP, NPY, and their GPCRs are considered here. These represent the spectrum of progress across the "virtual pipeline", of peptide receptors associated with many established drugs, those of long-standing interest for which clinical application is still under development, and those just coming into focus through basic research.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Ki Ann Goosens
- Icahn School of Medicine, Mt. Sinai Hospital, New York, New York 10029, United States
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism/National Institute on Drug Abuse, Bethesda, Maryland 20892, United States
| | - Limei Zhang
- Department of Physiology, Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
47
|
Nwokafor C, Serova LI, Nahvi RJ, McCloskey J, Sabban EL. Activation of NPY receptor subtype 1 by [D-His 26]NPY is sufficient to prevent development of anxiety and depressive like effects in the single prolonged stress rodent model of PTSD. Neuropeptides 2020; 80:102001. [PMID: 31916978 DOI: 10.1016/j.npep.2019.102001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/17/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
The neuropeptide Y (NPY) system plays an important role in mediating resilience to the harmful effect of stress in post-traumatic stress disorder (PTSD). It can mediate its effects via several G-protein coupled receptors: Y1R, Y2R, Y4R and Y5R. To investigate the role of individual NPY receptors in the resilience effects of NPY to traumatic stress, intranasal infusion of either Y1R agonists [D-His26]NPY, [Leu31Pro34]NPY, Y2R agonist NPY (3-36) or NPY were administered to male Sprague-Dawley rats immediately following the last stressor of the single prolonged stress (SPS) protocol, a widely used PTSD animal model. After 7 or 14 days, effects of the treatments were measured on the elevated plus maze (EPM) for anxiety, in forced swim test (FST) for development of depressive-like or re-experiencing behavior, in social interaction (SI) test for impaired social behavior, and acoustic startle response (ASR) for hyperarousal. [D-His26]NPY, but not [Leu31Pro34]NPY nor NPY (3-36) Y2R, was effective in preventing the SPS-elicited development of anxiety. Y1R, but not Y2R agonists prevented development of depressive- feature on FST, with [D-His26]NPY superior to NPY. The results demonstrate that [D-His26]NPY was sufficient to prevent development of anxiety, social impairment and depressive symptoms, and has promise as an early intervention therapy following traumatic stress.
Collapse
Affiliation(s)
- Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Jaclyn McCloskey
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
48
|
The potential role of the HCN1 ion channel and BDNF-mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Transl Psychiatry 2020; 10:101. [PMID: 32198387 PMCID: PMC7083842 DOI: 10.1038/s41398-020-0782-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/22/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
The function of the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) and the expression of brain-derived neurotrophic factor (BDNF) may be involved in the pathogenesis of post-traumatic stress disorder (PTSD). This study aims to explore the role of the HCN1 channel, BDNF, and mTOR in the actions of PTSD and to examine whether synaptic transmission or plasticity is involved in the regulation of this disease. In the present study, rats were exposed to the single prolonged stress and electric foot shock (SPS&S) procedure, which can induce PTSD-like behaviors in rats. ZD7288 was administered by intracerebroventricular (i.c.v.) injection to one experimental group to inhibit the function of the HCN1 ion channel while 8-Br-cAMP was administered to another group to activate the function of the HCN1 ion channel. A series of behavioral tests and biochemical assessments of certain proteins (HCN1, BDNF, and pmTOR) and synaptic ultrastructure in the prefrontal cortex (PFC) and hippocampus (Hip) were then conducted. The SPS&S procedure induced apparent PTSD-like symptoms in rats. The administration of ZD7288 reduced the immobility time and escape latency time in the forced swim test (FST) and water maze test (WMT) with a decreased level of HCN1, upregulated BDNF-mTOR signaling pathways in the PFC and Hip, and synaptic ultrastructure changes in the PFC. In contrast, the administration of 8-Br-cAMP, which led to a higher level of HCN1 in PFC and Hip, resulted in a decreased number of entries to the open arms without significant change in total arm entries in the elevated plus maze test (EPMT) as well as a shorter center square distance and total distance in the open field test (OFT). Extended escape latency time was also observed in the WMT although there was no alteration of BDNF-mTOR signaling pathways and synaptic ultrastructure in the PFC and Hip. Overall, the inhibition of HCN1, which can alleviate PTSD-like behavior of rats by relieving depression and improving learning ability, may be related to the upregulated BDNF-mTOR signaling pathways and synaptic transmission.
Collapse
|
49
|
Tural U, Iosifescu DV. Neuropeptide Y in PTSD, MDD, and chronic stress: A systematic review and meta-analysis. J Neurosci Res 2020; 98:950-963. [PMID: 32048334 DOI: 10.1002/jnr.24589] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 01/23/2023]
Abstract
Previous studies have suggested that neuropeptide Y (NPY) levels may be altered in patients with major depressive disorder (MDD), post-traumatic stress disorder (PTSD) and chronic stress. We investigated, through systematic review and meta-analysis, whether the mean levels of NPY are significantly different in patients with MDD, PTSD or chronic stress, compared to controls. The main outcome was the pooled standardized mean difference (SMD) with 95% confidence intervals between cases and controls, using the random-effects model. Heterogeneity and publication bias were evaluated. Thirty-five studies met eligibility criteria. Meta-regression determined that medication and sex could explain 27% of the between-study variance. Females and participants currently prescribed psychotropic medications had significantly higher levels of NPY. NPY levels were significantly lower in plasma and cerebrospinal fluid (CSF) in PTSD patients versus controls. Patients with MDD had significantly lower levels of NPY in plasma compared to controls, but not in the CSF. The magnitudes of the decrease in plasma NPY levels were not significantly different between PTSD and MDD. However, chronic stress patients had significantly higher plasma NPY levels compared to controls, PTSD or MDD. Our findings may imply a shared role of NPY in trauma and depression: nevertheless, it is not clear that the association is specific to these disorders. Psychotropic medications may help restore NPY levels. Further controlled studies are needed to better delineate the contribution of confounding variables such as type of depression, body mass index, appetite or sleep architecture.
Collapse
Affiliation(s)
- Umit Tural
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Dan V Iosifescu
- Clinical Research Division, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Psychiatry Department, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
50
|
Corder KM, Li Q, Cortes MA, Bartley AF, Davis TR, Dobrunz LE. Overexpression of neuropeptide Y decreases responsiveness to neuropeptide Y. Neuropeptides 2020; 79:101979. [PMID: 31708112 PMCID: PMC6960342 DOI: 10.1016/j.npep.2019.101979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous neuropeptide that is abundantly expressed in the central nervous system. NPY is involved in various neurological processes and neuropsychiatric disorders, including fear learning and anxiety disorders. Reduced levels of NPY are reported in Post-Traumatic Stress Disorder (PTSD) patients, and NPY has been proposed as a potential therapeutic target for PTSD. It is therefore important to understand the effects of chronic enhancement of NPY on anxiety and fear learning. Previous studies have shown that acute elevation of NPY reduces anxiety, fear learning and locomotor activity. Models of chronic NPY overexpression have produced mixed results, possibly caused by ectopic NPY expression. NPY is expressed primarily by a subset of GABAergic interneurons, providing specific spatiotemporal release patterns. Administration of exogenous NPY throughout the brain, or overexpression in cells that do not normally release NPY, can have detrimental side effects, including memory impairment. In order to determine the effects of boosting NPY only in the cells that normally release it, we utilized a transgenic mouse line that overexpresses NPY only in NPY+ cells. We tested for effects on anxiety related behaviors in adolescent mice, an age with high incidence of anxiety disorders in humans. Surprisingly, we did not observe the expected reduction in anxiety-like behavior in NPY overexpression mice. There was no change in fear learning behavior, although there was a deficit in nest building. The effect of exogenous NPY on synaptic transmission in acute hippocampal slices was also diminished, indicating that the function of NPY receptors is impaired. Reduced NPY receptor function could contribute to the unexpected behavioral outcomes. We conclude that overexpression of NPY, even in cells that normally express it, can lead to reduced responsiveness of NPY receptors, potentially affecting the ability of NPY to function as a long-term therapeutic.
Collapse
Affiliation(s)
- Katelynn M Corder
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America; University of Alabama at Birmingham, Department of Biology, 1670 University Blvd., VH G133B, Birmingham, AL 35233, United States of America
| | - Qin Li
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Mariana A Cortes
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Aundrea F Bartley
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Taylor R Davis
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America
| | - Lynn E Dobrunz
- University of Alabama at Birmingham, Department of Neurobiology, 1825 University Blvd, SHEL 971, Birmingham, AL 35294, United States of America.
| |
Collapse
|