1
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Serra MP, Boi M, Lai Y, Trucas M, Fernández-Teruel A, Corda MG, Giorgi O, Quartu M. Acute stress induces different changes on the expression of CB1 receptors in the hippocampus of two lines of male rats differing in their response to stressors. Pharmacol Biochem Behav 2024; 245:173901. [PMID: 39477019 DOI: 10.1016/j.pbb.2024.173901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/07/2024]
Abstract
The stress-induced alterations in cognitive processes and psychiatric disorders can be accelerated when acute stressors challenge the hippocampal functions. To address this issue, we used Western Blot (WB) and immunohistochemistry assays to investigate the impact of acute forced swimming (FS) on the expression of the CB1 cannabinoid receptors (CB1R) in the hippocampus (HC) of the male outbred Roman High- (RHA) and Low-Avoidance (RLA) rat lines, one of the most validated genetic models for the study of behavior related to fear/anxiety and stress-induced depression. The distinct responses to FS confirmed the different behavioral strategies displayed by the two phenotypes when exposed to stressors, with RLA and RHA rats displaying reactive vs. proactive coping, respectively. In control rats, the WB analysis showed lower hippocampal CB1R relative levels in RLA rats than in their RHA counterparts. After FS, RLA rats showed increased CB1R levels in the dorsal HC (dHC) vs. no change in the ventral HC (vHC), while RHA rats displayed no change in the dHC vs. a decrease in the vHC. In the tissue sections from dHC, FS elicited an increment over the control level of CB1R-like immunoreactivity (LI) in the CA1 and CA3 sectors of the Ammon's horn of RLA rats, while in RHA rats the density of CB1R-LI increased only in the CA1 sector. In tissue sections from the vHC, FS caused an increase over the control values of CB1R-LI only in the CA1 sector of RLA rats and a decrement of the CB1R-LI in the CA1 sector and dentate gyrus of control RHA rats. This study shows for the first time that, in baseline conditions, the CB1Rs are present in the dHC and the vHC of the Roman rat lines with a different distribution along the septo-temporal extension of the HC and that the FS induces rapid and distinct changes in the hippocampal expression of CB1R of RLA vs. RLA rats, in keeping with the view that endocannabinoid signaling may contribute to the molecular mechanisms that regulate the different responses of the dHC vs. the vHC to aversive situations in male Roman rats. Our results also provide evidence supporting the involvement of CB1R in the molecular underpinnings of the susceptibility of RLA rats and the resistance of RHA rats to stress-induced depression-like behavior.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Ylenia Lai
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Legal Medicine, Institute of Neuroscience, School of Medicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy.
| |
Collapse
|
3
|
Harada H, Mori M, Murata Y, Kohno Y, Terada K, Ohe K, Enjoji M. Divergent effects of chronic continuous and intermittent social defeat stress on emotional behaviors: Impact on phosphorylated CREB and BDNF protein levels in the rat hippocampus. Neurosci Lett 2024; 835:137851. [PMID: 38838971 DOI: 10.1016/j.neulet.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Chronic psychosocial stress stands as a significant heterogeneous risk factor for psychiatric disorders. The brain's physiological response to such stress varies based on the frequency and intensity of stress episodes. However, whether stress episodes divergently could affect hippocampal cyclic AMP response element-binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling remains unclear, a key regulator of psychiatric symptoms. We aimed to assess how two distinct patterns of social defeat stress exposure impact anxiety- and depression-like behaviors, fear, and hippocampal CREB-BDNF signaling in adult male rats. To explore this, adult male Sprague-Dawley rats were subjected to psychosocial stress using a Resident/Intruder paradigm for ten consecutive days (continuous social defeat stress: [CS]) or ten social defeat stress over the course of 21 days (intermittent social defeat stress [IS]). Behavioral tests (including novelty-suppressed feeding test, forced swimming test, and contextually conditioned fear) were conducted. Protein expression levels of phosphorylated CREB and BDNF in the dorsal and ventral hippocampi were examined. CS led to heightened anxiety-like behavior, fear, and increased levels of phosphorylated CREB in both the dorsal and ventral hippocampi. Conversely, IS resulted in increased anxiety-like behavior and behavioral despair alongside decreased levels of phosphorylated CREB and BDNF, particularly in the dorsal hippocampus. These findings indicate that chronic psychosocial stress divergently affects hippocampal CREB-BDNF signaling and emotional regulation depending on the stress episode. Such insights could enhance our understanding of the molecular basis of the heterogeneity of psychiatric disorders and facilitate the development of innovative treatment approaches to patients with psychiatric disorders.
Collapse
Affiliation(s)
- Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Yuri Kohno
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Terada
- Department of Human Physiology and Pathology, Faculty of Pharma-Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
4
|
Murata Y, Yoshimitsu S, Senoura C, Araki T, Kanayama S, Mori M, Ohe K, Mine K, Enjoji M. Sleep rebound leads to marked recovery of prolonged sleep deprivation-induced adversities in the stress response and hippocampal neuroplasticity of male rats. J Affect Disord 2024; 355:478-486. [PMID: 38574868 DOI: 10.1016/j.jad.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Sleep disturbances are not only frequent symptoms, but also risk factors for major depressive disorder. We previously reported that depressed patients who experienced "Hypersomnia" showed a higher and more rapid response rate under paroxetine treatment, but the underlying mechanism remains unclear. The present study was conducted to clarify the beneficial effects of sleep rebound through an experimental "Hypersomnia" rat model on glucocorticoid and hippocampal neuroplasticity associated with antidepressive potency. METHODS Thirty-four male Sprague-Dawley rats were subjected to sham treatment, 72-h sleep deprivation, or sleep deprivation and subsequent follow-up for one week. Approximately half of the animals were sacrificed to evaluate adrenal weight, plasma corticosterone level, hippocampal content of mRNA isoforms, and protein of the brain-derived neurotrophic factor (Bdnf) gene. In the other half of the rats, Ki-67- and doublecortin (DCX)-positive cells in the hippocampus were counted via immunostaining to quantify adult neurogenesis. RESULTS Prolonged sleep deprivation led to adrenal hypertrophy and an increase in the plasma corticosterone level, which had returned to normal after one week follow-up. Of note, sleep deprivation-induced decreases in hippocampal Bdnf transcripts containing exons II, IV, VI, and IX and BDNF protein levels, Ki-67-(+)-proliferating cells, and DCX-(+)-newly-born neurons were not merely reversed, but overshot their normal levels with sleep rebound. LIMITATIONS The present study did not record electroencephalogram or assess behavioral changes of the sleep-deprived rats. CONCLUSIONS The present study demonstrated that prolonged sleep deprivation-induced adversities are reversed or recovered by sleep rebound, which supports "Hypersomnia" in depressed patients as having a beneficial pharmacological effect.
Collapse
Affiliation(s)
- Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Sakuya Yoshimitsu
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Chiyo Senoura
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Toshiki Araki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Saki Kanayama
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS CLINIC FUKUOKA, 6F Random Square Bldg., 6-18, Tenya-Machi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
5
|
Borroto-Escuela D, Serrano-Castro P, Sánchez-Pérez JA, Barbancho-Fernández MA, Fuxe K, Narváez M. Enhanced neuronal survival and BDNF elevation via long-term co-activation of galanin 2 (GALR2) and neuropeptide Y1 receptors (NPY1R): potential therapeutic targets for major depressive disorder. Expert Opin Ther Targets 2024; 28:295-308. [PMID: 38622072 DOI: 10.1080/14728222.2024.2342517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.
Collapse
MESH Headings
- Animals
- Male
- Rats
- Antidepressive Agents/pharmacology
- Antidepressive Agents/administration & dosage
- Brain-Derived Neurotrophic Factor/metabolism
- Cell Survival/drug effects
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/physiopathology
- Disease Models, Animal
- Neurons/drug effects
- Neurons/metabolism
- Peptides
- Rats, Sprague-Dawley
- Receptor, Galanin, Type 2/metabolism
- Receptors, G-Protein-Coupled
- Receptors, Neuropeptide
- Receptors, Neuropeptide Y/metabolism
- Receptors, Neuropeptide Y/antagonists & inhibitors
Collapse
Affiliation(s)
- Dasiel Borroto-Escuela
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pedro Serrano-Castro
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| | - Jose Andrés Sánchez-Pérez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Psychiatry, Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | | | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, NeuronLab, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga, Unit of Neurology, Hospital Regional Universitario de Málaga, Málaga, Spain
- Vithas Málaga, Vithas Málaga, Grupo Hospitalario Vithas, Málaga, Spain
| |
Collapse
|
6
|
Rodrigues RS, Moreira JB, Mateus JM, Barateiro A, Paulo SL, Vaz SH, Lourenço DM, Ribeiro FF, Soares R, Loureiro-Campos E, Bielefeld P, Sebastião AM, Fernandes A, Pinto L, Fitzsimons CP, Xapelli S. Cannabinoid type 2 receptor inhibition enhances the antidepressant and proneurogenic effects of physical exercise after chronic stress. Transl Psychiatry 2024; 14:170. [PMID: 38555299 PMCID: PMC10981758 DOI: 10.1038/s41398-024-02877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic stress is a major risk factor for neuropsychiatric conditions such as depression. Adult hippocampal neurogenesis (AHN) has emerged as a promising target to counteract stress-related disorders given the ability of newborn neurons to facilitate endogenous plasticity. Recent data sheds light on the interaction between cannabinoids and neurotrophic factors underlying the regulation of AHN, with important effects on cognitive plasticity and emotional flexibility. Since physical exercise (PE) is known to enhance neurotrophic factor levels, we hypothesised that PE could engage with cannabinoids to influence AHN and that this would result in beneficial effects under stressful conditions. We therefore investigated the actions of modulating cannabinoid type 2 receptors (CB2R), which are devoid of psychotropic effects, in combination with PE in chronically stressed animals. We found that CB2R inhibition, but not CB2R activation, in combination with PE significantly ameliorated stress-evoked emotional changes and cognitive deficits. Importantly, this combined strategy critically shaped stress-induced changes in AHN dynamics, leading to a significant increase in the rates of cell proliferation and differentiation of newborn neurons, overall reduction in neuroinflammation, and increased hippocampal levels of BDNF. Together, these results show that CB2Rs are crucial regulators of the beneficial effects of PE in countering the effects of chronic stress. Our work emphasises the importance of understanding the mechanisms behind the actions of cannabinoids and PE and provides a framework for future therapeutic strategies to treat stress-related disorders that capitalise on lifestyle interventions complemented with endocannabinoid pharmacomodulation.
Collapse
Affiliation(s)
- R S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Université de Bordeaux, INSERM, Neurocentre Magendie, Bordeaux, France
| | - J B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J M Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Barateiro
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - S L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - S H Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - D M Lourenço
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - F F Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - R Soares
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - E Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - P Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Fernandes
- Central Nervous System, blood and peripheral inflammation, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - L Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - C P Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - S Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
7
|
Won J, Callow DD, Purcell JJ, Smith JC. Hippocampal functional connectivity mediates the association between cardiorespiratory fitness and cognitive function in healthy young adults. J Int Neuropsychol Soc 2024; 30:199-208. [PMID: 37646336 DOI: 10.1017/s1355617723000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
OBJECTIVE Higher cardiorespiratory fitness (CRF) induces neuroprotective effects in the hippocampus, a key brain region for memory and learning. We investigated the association between CRF and functional connectivity (FC) of the hippocampus in healthy young adults. We also examined the association between hippocampal FC and neurocognitive function. Lastly, we tested whether hippocampal FC mediates the association between 2-Min Walk Test (2MWT) and neurocognitive function. METHODS 913 young adults (28.7 ± 3.7 years) from the Human Connectome Project were included in the analyses. The 2MWT performance result was used as a proxy for cardiovascular endurance. Fluid and crystalized composite neurocognitive scores were used to assess cognition. Resting-state functional MRI data were processed to measure hippocampal FC. Linear regression was used to examine the association between 2MWT, hippocampal FC, and neurocognitive outcomes after controlling for age, sex, years of education, body mass index, systolic blood pressure, and gait speed. RESULTS Better 2MWT performance was associated with greater FC between the anterior hippocampus and right posterior cingulate and left middle temporal gyrus. No associations between 2MWT and posterior hippocampal FC, whole hippocampal FC, and caudate FC (control region) were observed. Greater anterior hippocampal FC was associated with better crystalized cognition scores. Lastly, greater FC between the anterior hippocampus and right posterior cingulate mediated the association between better 2MWT scores and higher crystalized cognition scores. CONCLUSIONS Anterior hippocampal FC may be one underlying neurophysiological mechanism that promotes the association between 2MWT performance and crystalized composite cognitive function in healthy young adults.
Collapse
Affiliation(s)
- Junyeon Won
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Daniel D Callow
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Jeremy J Purcell
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD, USA
- Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| |
Collapse
|
8
|
Hurtado H, Hansen M, Strack J, Vainik U, Decker AL, Khundrakpam B, Duncan K, Finn AS, Mabbott DJ, Merz EC. Polygenic risk for depression and anterior and posterior hippocampal volume in children and adolescents. J Affect Disord 2024; 344:619-627. [PMID: 37858734 PMCID: PMC10842073 DOI: 10.1016/j.jad.2023.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Depression has frequently been associated with smaller hippocampal volume. The hippocampus varies in function along its anterior-posterior axis, with the anterior hippocampus more strongly associated with stress and emotion processing. The goals of this study were to examine the associations among parental history of anxiety/depression, polygenic risk scores for depression (PGS-DEP), and anterior and posterior hippocampal volumes in children and adolescents. To examine specificity to PGS-DEP, we examined associations of educational attainment polygenic scores (PGS-EA) with anterior and posterior hippocampal volume. METHODS Participants were 350 3- to 21-year-olds (46 % female). PGS-DEP and PGS-EA were computed based on recent, large-scale genome-wide association studies. High-resolution, T1-weighted magnetic resonance imaging (MRI) data were acquired, and a semi-automated approach was used to segment the hippocampus into anterior and posterior subregions. RESULTS Children and adolescents with higher polygenic risk for depression were more likely to have a parent with a history of anxiety/depression. Higher polygenic risk for depression was significantly associated with smaller anterior but not posterior hippocampal volume. PGS-EA was not associated with anterior or posterior hippocampal volumes. LIMITATIONS Participants in these analyses were all of European ancestry. CONCLUSIONS Polygenic risk for depression may lead to smaller anterior but not posterior hippocampal volume in children and adolescents, and there may be specificity of these effects to PGS-DEP rather than PGS-EA. These findings may inform the earlier identification of those in need of support and the design of more effective, personalized treatment strategies. DECLARATIONS OF INTEREST none. DECLARATIONS OF INTEREST None.
Collapse
Affiliation(s)
- Hailee Hurtado
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Uku Vainik
- University of Tartu, Tartu, Estonia; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexandra L Decker
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, ON, Canada.; Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
9
|
Chang WL, Hen R. Adult Neurogenesis, Context Encoding, and Pattern Separation: A Pathway for Treating Overgeneralization. ADVANCES IN NEUROBIOLOGY 2024; 38:163-193. [PMID: 39008016 DOI: 10.1007/978-3-031-62983-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In mammals, the subgranular zone of the dentate gyrus is one of two brain regions (with the subventricular zone of the olfactory bulb) that continues to generate new neurons throughout adulthood, a phenomenon known as adult hippocampal neurogenesis (AHN) (Eriksson et al., Nat Med 4:1313-1317, 1998; García-Verdugo et al., J Neurobiol 36:234-248, 1998). The integration of these new neurons into the dentate gyrus (DG) has implications for memory encoding, with unique firing and wiring properties of immature neurons that affect how the hippocampal network encodes and stores attributes of memory. In this chapter, we will describe the process of AHN and properties of adult-born cells as they integrate into the hippocampal circuit and mature. Then, we will discuss some methodological considerations before we review evidence for the role of AHN in two major processes supporting memory that are performed by the DG. First, we will discuss encoding of contextual information for episodic memories and how this is facilitated by AHN. Second, will discuss pattern separation, a major role of the DG that reduces interference for the formation of new memories. Finally, we will review clinical and translational considerations, suggesting that stimulation of AHN may help decrease overgeneralization-a common endophenotype of mood, anxiety, trauma-related, and age-related disorders.
Collapse
Affiliation(s)
- Wei-Li Chang
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Rene Hen
- Departments of Psychiatry and Neuroscience, Columbia University, New York, NY, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| |
Collapse
|
10
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
11
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
12
|
Murayama MA. The past and present of therapeutic strategy for Alzheimer's diseases: potential for stem cell therapy. Exp Anim 2023; 72:285-293. [PMID: 36878603 PMCID: PMC10435354 DOI: 10.1538/expanim.22-0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disease characterized by cognitive dysfunction and neuropsychiatric symptoms, is the most prevalent form of dementia among the elderly. Amyloid aggregation, tau hyperphosphorylation, and neural cell loss are the main pathological features. Various hypotheses have been proposed to explain the development of AD. Some therapeutic agents have shown clinical benefits in patients with AD; however, many of these agents have failed. The degree of neural cell loss is associated with the severity of AD. Adult neurogenesis, which governs cognitive and emotional behaviors, occurs in the hippocampus, and some research groups have reported that neural cell transplantation into the hippocampus improves cognitive dysfunction in AD model mice. Based on these clinical findings, stem cell therapy for patients with AD has recently attracted attention. This review provides past and present therapeutic strategies for the management and treatment of AD.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, Shinmachi 2-5-1, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
13
|
Dumontoy S, Ramadan B, Risold PY, Pedron S, Houdayer C, Etiévant A, Cabeza L, Haffen E, Peterschmitt Y, Van Waes V. Repeated Anodal Transcranial Direct Current Stimulation (RA-tDCS) over the Left Frontal Lobe Increases Bilateral Hippocampal Cell Proliferation in Young Adult but Not Middle-Aged Female Mice. Int J Mol Sci 2023; 24:ijms24108750. [PMID: 37240095 DOI: 10.3390/ijms24108750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Repeated anodal transcranial direct current stimulation (RA-tDCS) is a neuromodulatory technique consisting of stimulating the cerebral cortex with a weak electric anodal current in a non-invasive manner. RA-tDCS over the dorsolateral prefrontal cortex has antidepressant-like properties and improves memory both in humans and laboratory animals. However, the mechanisms of action of RA-tDCS remain poorly understood. Since adult hippocampal neurogenesis is thought to be involved in the pathophysiology of depression and memory functioning, the purpose of this work was to evaluate the impact of RA-tDCS on hippocampal neurogenesis levels in mice. RA-tDCS was applied for 20 min per day for five consecutive days over the left frontal cortex of young adult (2-month-old, high basal level of neurogenesis) and middle-aged (10-month-old, low basal level of neurogenesis) female mice. Mice received three intraperitoneal injections of bromodeoxyuridine (BrdU) on the final day of RA-tDCS. The brains were collected either 1 day or 3 weeks after the BrdU injections to quantify cell proliferation and cell survival, respectively. RA-tDCS increased hippocampal cell proliferation in young adult female mice, preferentially (but not exclusively) in the dorsal part of the dentate gyrus. However, the number of cells that survived after 3 weeks was the same in both the Sham and the tDCS groups. This was due to a lower survival rate in the tDCS group, which suppressed the beneficial effects of tDCS on cell proliferation. No modulation of cell proliferation or survival was observed in middle-aged animals. Our RA-tDCS protocol may, therefore, influence the behavior of naïve female mice, as we previously described, but its effect on the hippocampus is only transient in young adult animals. Future studies using animal models for depression in male and female mice should provide further insights into RA-tDCS detailed age- and sex-dependent effects on hippocampal neurogenesis.
Collapse
Affiliation(s)
- Stéphanie Dumontoy
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Bahrie Ramadan
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Pierre-Yves Risold
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | | | - Christophe Houdayer
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Adeline Etiévant
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Lidia Cabeza
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Emmanuel Haffen
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Yvan Peterschmitt
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| | - Vincent Van Waes
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, Université de Franche-Comté, F-25000 Besançon, France
| |
Collapse
|
14
|
Alvarez‐Contino JE, Díaz‐Sánchez E, Mirchandani‐Duque M, Sánchez‐Pérez JA, Barbancho MA, López‐Salas A, García‐Casares N, Fuxe K, Borroto‐Escuela DO, Narváez M. GALR2 and Y1R agonists intranasal infusion enhanced adult ventral hippocampal neurogenesis and antidepressant-like effects involving BDNF actions. J Cell Physiol 2023; 238:459-474. [PMID: 36599082 PMCID: PMC10952952 DOI: 10.1002/jcp.30944] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Dysregulation of adult hippocampal neurogenesis is linked to major depressive disorder (MDD), with more than 300 million people diagnosed and worsened by the COVID-19 pandemic. Accumulating evidence for neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the proliferating role of GAL2 receptor (GALR2) and Y1R agonists interaction upon intranasal infusion in the ventral hippocampus. We studied their hippocampal proliferating actions using the proliferating cell nuclear antigen (PCNA) on neuroblasts or stem cells and the expression of the brain-derived neurothrophic factor (BDNF). Moreover, we studied the formation of Y1R-GALR2 heteroreceptor complexes and analyzed morphological changes in hippocampal neuronal cells. Finally, the functional outcome of the NPY and GAL interaction on the ventral hippocampus was evaluated in the forced swimming test. We demonstrated that the intranasal infusion of GALR2 and the Y1R agonists promotes neuroblasts proliferation in the dentate gyrus of the ventral hippocampus and the induction of the neurotrophic factor BDNF. These effects were mediated by the increased formation of Y1R-GALR2 heteroreceptor complexes, which may mediate the neurites outgrowth observed on neuronal hippocampal cells. Importantly, BDNF action was found necessary for the antidepressant-like effects after GALR2 and the Y1R agonists intranasal administration. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the ventral hippocampus for the novel therapy of MDD or depressive-affecting diseases.
Collapse
Affiliation(s)
- Jose Erik Alvarez‐Contino
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Estela Díaz‐Sánchez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
| | - Marina Mirchandani‐Duque
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Jose Andrés Sánchez‐Pérez
- Unit of Psychiatry, Instituto de Investigación Biomédica de MálagaHospital Universitario Virgen de la VictoriaMálagaSpain
| | - Miguel A. Barbancho
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Alexander López‐Salas
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Natalia García‐Casares
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Kjell Fuxe
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Dasiel O. Borroto‐Escuela
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Department of Biomolecular Science, Section of PhysiologyUniversity of UrbinoUrbinoItaly
| | - Manuel Narváez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| |
Collapse
|
15
|
Sun D, Mei L, Xiong WC. Dorsal Dentate Gyrus, a Key Regulator for Mood and Psychiatric Disorders. Biol Psychiatry 2023:S0006-3223(23)00009-4. [PMID: 36894487 DOI: 10.1016/j.biopsych.2023.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/06/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
The dentate gyrus, a "gate" that controls the flow of information into the hippocampus, is critical for learning, memory, spatial navigation, and mood regulation. Several lines of evidence have demonstrated that deficits in dentate granule cells (DGCs) (e.g., loss of DGCs or genetic mutations in DGCs) contribute to the development of various psychiatric disorders, such as depression and anxiety disorders. Whereas ventral DGCs are believed to be critical for mood regulation, the functions of dorsal DGCs in this regard remain elusive. Here, we review the role of DGCs, in particular the dorsal DGCs, in the regulation of mood, their functional relationships with DGC development, and the contributions of dysfunctional DGCs to mental disorders.
Collapse
Affiliation(s)
- Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
16
|
Song B, Kim CH. Cell-autonomous PLCβ1 modulation of neural stem/progenitor cell proliferation during adult hippocampal neurogenesis. Neurosci Lett 2022; 791:136899. [DOI: 10.1016/j.neulet.2022.136899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 10/31/2022]
|
17
|
Leschik J, Gentile A, Cicek C, Péron S, Tevosian M, Beer A, Radyushkin K, Bludau A, Ebner K, Neumann I, Singewald N, Berninger B, Lessmann V, Lutz B. Brain-derived neurotrophic factor expression in serotonergic neurons improves stress resilience and promotes adult hippocampal neurogenesis. Prog Neurobiol 2022; 217:102333. [PMID: 35872219 DOI: 10.1016/j.pneurobio.2022.102333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/24/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) stimulates adult neurogenesis, but also influences structural plasticity and function of serotonergic neurons. Both, BDNF/TrkB signaling and the serotonergic system modulate behavioral responses to stress and can lead to pathological states when dysregulated. The two systems have been shown to mediate the therapeutic effect of antidepressant drugs and to regulate hippocampal neurogenesis. To elucidate the interplay of both systems at cellular and behavioral levels, we generated a transgenic mouse line that overexpresses BDNF in serotonergic neurons in an inducible manner. Besides displaying enhanced hippocampus-dependent contextual learning, transgenic mice were less affected by chronic social defeat stress (CSDS) compared to wild-type animals. In parallel, we observed enhanced serotonergic axonal sprouting in the dentate gyrus and increased neural stem/progenitor cell proliferation, which was uniformly distributed along the dorsoventral axis of the hippocampus. In the forced swim test, BDNF-overexpressing mice behaved similarly as wild-type mice treated with the antidepressant fluoxetine. Our data suggest that BDNF released from serotonergic projections exerts this effect partly by enhancing adult neurogenesis. Furthermore, independently of the genotype, enhanced neurogenesis positively correlated with the social interaction time after the CSDS, a measure for stress resilience.
Collapse
Affiliation(s)
- Julia Leschik
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany.
| | - Antonietta Gentile
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Department of Systems Medicine, Tor Vergata University, Rome 00183, Italy
| | - Cigdem Cicek
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Faculty of Medicine, Department of Medical Biochemistry, Hacettepe University, 06100 Ankara, Turkey; Faculty of Medicine, Department of Medical Biochemistry, Yuksek Ihtisas University, 06520 Ankara, Turkey
| | - Sophie Péron
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE11UL, United Kingdom
| | - Margaryta Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | - Annika Beer
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| | | | - Anna Bludau
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck 6020, Austria
| | - Inga Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg 93053, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, Leopold Franzens University Innsbruck, Innsbruck 6020, Austria
| | - Benedikt Berninger
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Institute of Psychiatry, Psychology & Neuroscience, Centre for Developmental Neurobiology, King's College London, London SE11UL, United Kingdom; Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE11UL, United Kingdom
| | - Volkmar Lessmann
- Institute of Physiology, Medical Faculty, Otto-von-Guericke-University, Magdeburg 39120, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg 39120, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55128, Germany; Leibniz Institute for Resilience Research (LIR), Mainz 55122, Germany
| |
Collapse
|
18
|
Mori M, Shizunaga H, Harada H, Tajiri Y, Murata Y, Terada K, Ohe K, Enjoji M. Oxytocin treatment improves dexamethasone‐induced depression‐like symptoms associated with enhancement of hippocampal
CREB‐BDNF
signaling in female mice. Neuropsychopharmacol Rep 2022; 42:356-361. [PMID: 35730145 PMCID: PMC9515699 DOI: 10.1002/npr2.12271] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/18/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022] Open
Abstract
Aims Chronic stress and glucocorticoid exposure are risk factors for depression. Oxytocin (OT) has been shown to have antistress and antidepressant‐like effects in male rodents. However, depression is twice as common in women than in men, and it remains unclear whether OT exerts antidepressant‐like effects in women with depression. Therefore, in this study, we investigated the therapeutic effect of chronic OT administration in a female mouse model of dexamethasone (DEX)‐induced depression. Methods Female C57BL/6J mice were administered saline (vehicle, s.c.), DEX (s.c.), or OT (i.p.) + DEX (s.c.) daily for 8 weeks, and then assessed for anxiety‐ and depression‐like behaviors. We also examined the hippocampal levels of phosphorylated cAMP response element‐binding protein (p‐CREB) and brain‐derived neurotrophic factor (BDNF), which are important mediators of the response to antidepressants. Results Simultaneous OT treatment blocked the adverse effects of DEX on emotional behaviors. Furthermore, it upregulated p‐CREB and BDNF in the hippocampus. Conclusion OT may exert antidepressant‐like effects by activating hippocampal CREB‐BDNF signaling in a female mouse model of depression.
Collapse
Affiliation(s)
- Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Hiromi Shizunaga
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Yuki Tajiri
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Kazuki Terada
- Division of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesHimeji Dokkyo UniversityHimejiJapan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical SciencesFukuoka UniversityFukuokaJapan
| |
Collapse
|
19
|
Mirchandani-Duque M, Barbancho MA, López-Salas A, Alvarez-Contino JE, García-Casares N, Fuxe K, Borroto-Escuela DO, Narváez M. Galanin and Neuropeptide Y Interaction Enhances Proliferation of Granule Precursor Cells and Expression of Neuroprotective Factors in the Rat Hippocampus with Consequent Augmented Spatial Memory. Biomedicines 2022; 10:1297. [PMID: 35740319 PMCID: PMC9219743 DOI: 10.3390/biomedicines10061297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Dysregulation of hippocampal neurogenesis is linked to several neurodegenereative diseases, where boosting hippocampal neurogenesis in these patients emerges as a potential therapeutic approach. Accumulating evidence for a neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the role of the NPY and GAL interaction in the neurogenic actions on the dorsal hippocampus. We studied the Y1R agonist and GAL effects on: hippocampal cell proliferation through the proliferating cell nuclear antigen (PCNA), the expression of neuroprotective and anti-apoptotic factors, and the survival of neurons and neurite outgrowth on hippocampal neuronal cells. The functional outcome was evaluated in the object-in-place task. We demonstrated that the Y1R agonist and GAL promote cell proliferation and the induction of neuroprotective factors. These effects were mediated by the interaction of NPYY1 (Y1R) and GAL2 (GALR2) receptors, which mediate the increased survival and neurites' outgrowth observed on neuronal hippocampal cells. These cellular effects are linked to the improved spatial-memory effects after the Y1R agonist and GAL co-injection at 24 h in the object-in-place task. Our results suggest the development of heterobivalent agonist pharmacophores, targeting Y1R-GALR2 heterocomplexes, therefore acting on the neuronal precursor cells of the DG in the dorsal hippocampus for the novel therapy of neurodegenerative cognitive-affecting diseases.
Collapse
Affiliation(s)
- Marina Mirchandani-Duque
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Alexander López-Salas
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Jose Erik Alvarez-Contino
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Natalia García-Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Dasiel O. Borroto-Escuela
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
- Department of Biomolecular Science, Section of Physiology, University of Urbino, 61029 Urbino, Italy
| | - Manuel Narváez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, 29071 Malaga, Spain; (M.M.-D.); (M.A.B.); (A.L.-S.); (J.E.A.-C.); (N.G.-C.)
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden;
| |
Collapse
|
20
|
Caradonna SG, Zhang TY, O’Toole N, Shen MJ, Khalil H, Einhorn NR, Wen X, Parent C, Lee FS, Akil H, Meaney MJ, McEwen BS, Marrocco J. Genomic modules and intramodular network concordance in susceptible and resilient male mice across models of stress. Neuropsychopharmacology 2022; 47:987-999. [PMID: 34848858 PMCID: PMC8938529 DOI: 10.1038/s41386-021-01219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/28/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
The multifactorial etiology of stress-related disorders necessitates a constant interrogation of the molecular convergences in preclinical models of stress that use disparate paradigms as stressors spanning from environmental challenges to genetic predisposition to hormonal signaling. Using RNA-sequencing, we investigated the genomic signatures in the ventral hippocampus common to mouse models of stress. Chronic oral corticosterone (CORT) induced increased anxiety- and depression-like behavior in wild-type male mice and male mice heterozygous for the gene coding for brain-derived neurotrophic factor Val66Met, a variant associated with genetic susceptibility to stress. In a separate set of male mice, chronic social defeat stress (CSDS) led to a susceptible or a resilient population, whose proportion was dependent on housing conditions, namely standard housing or enriched environment. Rank-rank-hypergeometric overlap (RRHO), a threshold-free approach that ranks genes by their p value and effect size direction, was used to identify genes from a continuous gradient of significancy that were concordant across groups. In mice treated with CORT and in standard-housed susceptible mice, differentially expressed genes (DEGs) were concordant for gene networks involved in neurotransmission, cytoskeleton function, and vascularization. Weighted gene co-expression analysis generated 54 gene hub modules and revealed two modules in which both CORT and CSDS-induced enrichment in DEGs, whose function was concordant with the RRHO predictions, and correlated with behavioral resilience or susceptibility. These data showed transcriptional concordance across models in which the stress coping depends upon hormonal, environmental, or genetic factors revealing common genomic drivers that embody the multifaceted nature of stress-related disorders.
Collapse
Affiliation(s)
- Salvatore G. Caradonna
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Tie-Yuan Zhang
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Nicholas O’Toole
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Mo-Jun Shen
- grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore
| | - Huzefa Khalil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Nathan R. Einhorn
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Xianglan Wen
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Carine Parent
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada
| | - Francis S. Lee
- grid.5386.8000000041936877XDepartment of Psychiatry, Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY USA
| | - Huda Akil
- grid.214458.e0000000086837370Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
| | - Michael J. Meaney
- grid.14709.3b0000 0004 1936 8649Douglas Mental Health University Institute, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Yong Loo Lin School of Medicine, Singapore, Singapore ,grid.14709.3b0000 0004 1936 8649Sackler Program for Epigenetics & Psychobiology, McGill University, Montreal, QC Canada
| | - Bruce S. McEwen
- grid.134907.80000 0001 2166 1519Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY USA
| | - Jordan Marrocco
- Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
21
|
Sun Z, Jia L, Shi D, He Y, Ren Y, Yang J, Ma X. Deep brain stimulation improved depressive-like behaviors and hippocampal synapse deficits by activating the BDNF/mTOR signaling pathway. Behav Brain Res 2022; 419:113709. [PMID: 34890598 DOI: 10.1016/j.bbr.2021.113709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022]
Abstract
Our previous study demonstrated that acute deep brain stimulation (DBS) in the ventromedial prefrontal cortex (vmPFC) remarkably improved the depressive-like behaviors in a rat model of chronic unpredictable mild stress (CUS rats). However, the mechanisms by which chronic DBS altered depressive-like behaviors and reversed cognitive impairment have not been clarified. Recent work has shown that deficits in brain-derived neurotrophic factor (BDNF) and its downstream proteins, including mammalian target of rapamycin (mTOR), might be involved in the pathogenesis of depression. Therefore, we hypothesized that the antidepressant-like and cognitive improvement effects of DBS were achieved by activating the BDNF/mTOR pathway. CUS rats received vmPFC DBS at 20 Hz for 1 h once a day for 28 days. After four weeks of stimulation, the rats were assessed for the presence of depressive-like behaviors and euthanized to detect BDNF/mTOR signaling using immunoblots. DBS at the vmPFC significantly ameliorated depressive-like behaviors and spatial learning and memory deficits in the CUS rats. Furthermore, DBS restored the reduced synaptic density in the hippocampus induced by CUS and increased the expression or activity of BDNF, Akt, and mTOR in the hippocampus. Thus, the antidepressant-like effects and cognitive improvement produced by vmPFC DBS might be mediated through increased activity of the BDNF/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zuoli Sun
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lina Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Dandan Shi
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yi He
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yanping Ren
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Xin Ma
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Nazir S, Farooq RK, Nasir S, Hanif R, Javed A. Therapeutic effect of Thymoquinone on behavioural response to UCMS and neuroinflammation in hippocampus and amygdala in BALB/c mice model. Psychopharmacology (Berl) 2022; 239:47-58. [PMID: 35029704 DOI: 10.1007/s00213-021-06038-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 11/26/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE Major depressive disorder is the leading cause of disability worldwide. The corticolimbic system plays a critical role in the emotional and cognitive aspects of major depressive disorder. Owing to the unsatisfactory efficacy of conventional antidepressants, there is a need to explore novel therapies. OBJECTIVES The current study aimed to explore the antidepressant potential of thymoquinone, a natural compound with anti-inflammatory activity, and propose its underlying mechanism of action in the unpredictable chronic mild stress (UCMS) mouse model. METHODS Coat state, forced swim test, elevated plus maze test, novelty suppressed feeding test and social interaction test were performed to quantify the behavioural shift induced by UCMS and the effect of thymoquinone and fluoxetine treatment. In addition, messenger RNA (mRNA) expression levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and BDNF and NeuN were analysed by a quantitative real-time polymerase chain reaction in the hippocampus and amygdala of experimental and control groups. RESULTS UCMS significantly deteriorated coat state. Thymoquinone reinstated the resignation behaviour and latency to feed affected by UCMS. UCMS induced an increase in inflammatory cytokines (IL-1β, IL-6 and TNF-α) in the hippocampus and amygdala, which was decreased by thymoquinone. UCMS caused an increase in BDNF and NeuN mRNA levels in the amygdala while a decrease in the hippocampus. This opposite effect on BDNF was also compensated by thymoquinone; however, thymoquinone did not significantly change Ki67 and NeuN mRNA levels in the hippocampus. CONCLUSIONS Thymoquinone restored the behavioural changes induced by UCMS. In addition, the antidepressant effect of thymoquinone is in line with changes in inflammatory parameters and changes in BDNF in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Sadia Nazir
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Rai Khalid Farooq
- Department of Neuroscience Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sadia Nasir
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Rumeza Hanif
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan
| | - Aneela Javed
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12 Campus, Islamabad, 44000, Pakistan.
| |
Collapse
|
23
|
Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry 2022; 27:4510-4525. [PMID: 36056172 PMCID: PMC9734063 DOI: 10.1038/s41380-022-01725-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/14/2022]
Abstract
Depression and anxiety are major global health burdens. Although SSRIs targeting the serotonergic system are prescribed over 200 million times annually, they have variable therapeutic efficacy and side effects, and mechanisms of action remain incompletely understood. Here, we comprehensively characterise the molecular landscape of gene regulatory changes associated with fluoxetine, a widely-used SSRI. We performed multimodal analysis of SSRI response in 27 mammalian brain regions using 310 bulk RNA-seq and H3K27ac ChIP-seq datasets, followed by in-depth characterisation of two hippocampal regions using single-cell RNA-seq (20 datasets). Remarkably, fluoxetine induced profound region-specific shifts in gene expression and chromatin state, including in the nucleus accumbens shell, locus coeruleus and septal areas, as well as in more well-studied regions such as the raphe and hippocampal dentate gyrus. Expression changes were strongly enriched at GWAS loci for depression and antidepressant drug response, stressing the relevance to human phenotypes. We observed differential expression at dozens of signalling receptors and pathways, many of which are previously unknown. Single-cell analysis revealed stark differences in fluoxetine response between the dorsal and ventral hippocampal dentate gyri, particularly in oligodendrocytes, mossy cells and inhibitory neurons. Across diverse brain regions, integrative omics analysis consistently suggested increased energy metabolism via oxidative phosphorylation and mitochondrial changes, which we corroborated in vitro; this may thus constitute a shared mechanism of action of fluoxetine. Similarly, we observed pervasive chromatin remodelling signatures across the brain. Our study reveals unexpected regional and cell type-specific heterogeneity in SSRI action, highlights under-studied brain regions that may play a major role in antidepressant response, and provides a rich resource of candidate cell types, genes, gene regulatory elements and pathways for mechanistic analysis and identifying new therapeutic targets for depression and anxiety.
Collapse
|
24
|
Nicolas S, McGovern AJ, Hueston CM, O'Mahony SM, Cryan JF, O'Leary OF, Nolan YM. Prior maternal separation stress alters the dendritic complexity of new hippocampal neurons and neuroinflammation in response to an inflammatory stressor in juvenile female rats. Brain Behav Immun 2022; 99:327-338. [PMID: 34732365 DOI: 10.1016/j.bbi.2021.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022] Open
Abstract
Stress during critical periods of neurodevelopment is associated with an increased risk of developing stress-related psychiatric disorders, which are more common in women than men. Hippocampal neurogenesis (the birth of new neurons) is vulnerable to maternal separation (MS) and inflammatory stressors, and emerging evidence suggests that hippocampal neurogenesis is more sensitive to stress in the ventral hippocampus (vHi) than in the dorsal hippocampus (dHi). Although research into the effects of MS stress on hippocampal neurogenesis is well documented in male rodents, the effect in females remains underexplored. Similarly, reports on the impact of inflammatory stressors on hippocampal neurogenesis in females are limited, especially when female bias in the prevalence of stress-related psychiatric disorders begins to emerge. Thus, in this study we investigated the effects of MS followed by an inflammatory stressor (lipopolysaccharide, LPS) in early adolescence on peripheral and hippocampal inflammatory responses and hippocampal neurogenesis in juvenile female rats. We show that MS enhanced an LPS-induced increase in the pro-inflammatory cytokine IL-1β in the vHi but not in the dHi. However, microglial activation was similar following LPS alone or MS alone in both hippocampal regions, while MS prior to LPS reduced microglial activation in both dHi and vHi. The production of new neurons was unaffected by MS and LPS. MS and LPS independently reduced the dendritic complexity of new neurons, and MS exacerbated LPS-induced reductions in the complexity of distal dendrites of new neurons in the vHi but not dHi. These data highlight that MS differentially primes the physiological response to LPS in the juvenile female rat hippocampus.
Collapse
Affiliation(s)
- Sarah Nicolas
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Cara M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
25
|
Harris EP, McGovern AJ, Melo TG, Barron A, Nola YM, O'Leary OF. Juvenile Stress Exerts Sex-independent Effects on Anxiety, Antidepressant-like Behaviours and Dopaminergic Innervation of the Prelimbic Cortex in Adulthood and Does Not Alter Hippocampal Neurogenesis. Behav Brain Res 2021; 421:113725. [PMID: 34929235 DOI: 10.1016/j.bbr.2021.113725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022]
Abstract
Stress, particularly during childhood, is a major risk factor for the development of depression. Depression is twice as prevalent in women compared to men, which suggests that that biological sex also contributes to depression susceptibility. However, the neurobiology underpinning sex differences in the long-term consequences of childhood stress remains unknown. Thus, the aim of this study was to determine whether stress applied during the prepubertal juvenile period (postnatal day 27-29) in rats induces sex-specific changes in anxiety-like behaviour, anhedonia, and antidepressant-like behaviour in adulthood in males and females. The impact of juvenile stress on two systems in the brain associated with these behaviours and that develop during the juvenile period, the mesocorticolimbic dopaminergic system and hippocampal neurogenesis, were also investigated. Juvenile stress altered escape-oriented behaviours in the forced swim test in both sexes, decreased latency to drink a palatable substance in a novel environment in the novelty-induced hypophagia test in both sexes, and decreased open field supported rearing behavior in females. These behavioural changes were accompanied by stress-induced increases in tyrosine hydroxylase immunoreactivity in the prefrontal cortex of both sexes, but not other regions of the mesocorticolimbic dopaminergic system. Juvenile stress did not impact anhedonia in adulthood as measured by the saccharin preference test and had no effect hippocampal neurogenesis across the longitudinal axis of the hippocampus. These results suggest that juvenile stress has long-lasting impacts on antidepressant-like and reward-seeking behaviour in adulthood and these changes may be due to alterations to catecholaminergic innervation of the medial prefrontal cortex.
Collapse
Affiliation(s)
- Erin P Harris
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Andrew J McGovern
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Thieza G Melo
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Aaron Barron
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Yvonne M Nola
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
26
|
Short high fat diet triggers reversible and region specific effects in DCX + hippocampal immature neurons of adolescent male mice. Sci Rep 2021; 11:21499. [PMID: 34728755 PMCID: PMC8563989 DOI: 10.1038/s41598-021-01059-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/18/2021] [Indexed: 11/26/2022] Open
Abstract
Adolescence represents a crucial period for maturation of brain structures involved in cognition. Early in life unhealthy dietary patterns are associated with inferior cognitive outcomes at later ages; conversely, healthy diet is associated with better cognitive results. In this study we analyzed the effects of a short period of hypercaloric diet on newborn hippocampal doublecortin+ (DCX) immature neurons in adolescent mice. Male mice received high fat diet (HFD) or control low fat diet (LFD) from the 5th week of age for 1 or 2 weeks, or 1 week HFD followed by 1 week LFD. After diet supply, mice were either perfused for immunohistochemical (IHC) analysis or their hippocampi were dissected for biochemical assays. Detailed morphometric analysis was performed in DCX+ cells that displayed features of immature neurons. We report that 1 week-HFD was sufficient to dramatically reduce dendritic tree complexity of DCX+ cells. This effect occurred specifically in dorsal and not ventral hippocampus and correlated with reduced BDNF expression levels in dorsal hippocampus. Both structural and biochemical changes were reversed by a return to LFD. Altogether these studies increase our current knowledge on potential consequences of hypercaloric diet on brain and in particular on dorsal hippocampal neuroplasticity.
Collapse
|
27
|
Patrício P, Mateus-Pinheiro A, Machado-Santos AR, Alves ND, Correia JS, Morais M, Bessa JM, Rodrigues AJ, Sousa N, Pinto L. Cell Cycle Regulation of Hippocampal Progenitor Cells in Experimental Models of Depression and after Treatment with Fluoxetine. Int J Mol Sci 2021; 22:ijms222111798. [PMID: 34769232 PMCID: PMC8584049 DOI: 10.3390/ijms222111798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Changes in adult hippocampal cell proliferation and genesis have been largely implicated in depression and antidepressant action, though surprisingly, the underlying cell cycle mechanisms are largely undisclosed. Using both an in vivo unpredictable chronic mild stress (uCMS) rat model of depression and in vitro rat hippocampal-derived neurosphere culture approaches, we aimed to unravel the cell cycle mechanisms regulating hippocampal cell proliferation and genesis in depression and after antidepressant treatment. We show that the hippocampal dentate gyrus (hDG) of uCMS animals have less proliferating cells and a decreased proportion of cells in the G2/M phase, suggesting a G1 phase arrest; this is accompanied by decreased levels of cyclin D1, E, and A expression. Chronic fluoxetine treatment reversed the G1 phase arrest and promoted an up-regulation of cyclin E. In vitro, dexamethasone (DEX) decreased cell proliferation, whereas the administration of serotonin (5-HT) reversed it. DEX also induced a G1-phase arrest and decreased cyclin D1 and D2 expression levels while increasing p27. Additionally, 5-HT treatment could partly reverse the G1-phase arrest and restored cyclin D1 expression. We suggest that the anti-proliferative actions of chronic stress in the hDG result from a glucocorticoid-mediated G1-phase arrest in the progenitor cells that is partly mediated by decreased cyclin D1 expression which may be overcome by antidepressant treatment.
Collapse
Affiliation(s)
- Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
- Correspondence: (P.P.); (L.P.)
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
| | - Ana Rita Machado-Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032, USA
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Mónica Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.M.-P.); (A.R.M.-S.); (N.D.A.); (J.S.C.); (M.M.); (J.M.B.); (A.J.R.); (N.S.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- B’nML—Behavioral &Molecular Lab, 4715-057 Braga, Portugal
- Correspondence: (P.P.); (L.P.)
| |
Collapse
|
28
|
Short Daily Exposure to Environmental Enrichment, Fluoxetine, or Their Combination Reverses Deterioration of the Coat and Anhedonia Behaviors with Differential Effects on Hippocampal Neurogenesis in Chronically Stressed Mice. Int J Mol Sci 2021; 22:ijms222010976. [PMID: 34681636 PMCID: PMC8535985 DOI: 10.3390/ijms222010976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/16/2022] Open
Abstract
Depression is a neuropsychiatric disorder with a high impact on the worldwide population. To overcome depression, antidepressant drugs are the first line of treatment. However, pre-clinical studies have pointed out that antidepressants are not entirely efficacious and that the quality of the living environment after stress cessation may play a relevant role in increasing their efficacy. As it is unknown whether a short daily exposure to environmental enrichment during chronic stress and antidepressant treatment will be more effective than just the pharmacological treatment, this study analyzed the effects of fluoxetine, environmental enrichment, and their combination on depressive-associated behavior. Additionally, we investigated hippocampal neurogenesis in mice exposed to chronic mild stress. Our results indicate that fluoxetine reversed anhedonia. Besides, fluoxetine reversed the decrement of some events of the hippocampal neurogenic process caused by chronic mild stress. Conversely, short daily exposure to environmental enrichment changed the deterioration of the coat and anhedonia. Although, this environmental intervention did not produce significant changes in the neurogenic process affected by chronic mild stress, fluoxetine plus environmental enrichment showed similar effects to those caused by environmental enrichment to reverse depressive-like behaviors. Like fluoxetine, the combination reversed the declining number of Ki67, doublecortin, calretinin cells and mature newborn neurons. Finally, this study suggests that short daily exposure to environmental enrichment improves the effects of fluoxetine to reverse the deterioration of the coat and anhedonia in chronically stressed mice. In addition, the combination of fluoxetine with environmental enrichment produces more significant effects than those caused by fluoxetine alone on some events of the neurogenic process. Thus, environmental enrichment improves the benefits of pharmacological treatment by mechanisms that need to be clarified.
Collapse
|
29
|
Connolly MG, Potter OV, Sexton AR, Kohman RA. Effects of Toll-like receptor 4 inhibition on spatial memory and cell proliferation in male and female adult and aged mice. Brain Behav Immun 2021; 97:383-393. [PMID: 34343615 PMCID: PMC8453097 DOI: 10.1016/j.bbi.2021.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 01/04/2023] Open
Abstract
Toll-like receptors (TLRs) participate in the response to infection, stress, and injury by initiating an innate immune response. In addition, these receptors are expressed in many neural cell types and under physiological conditions are implicated in modulating cognitive function and neural plasticity in the adult and aged brain. Knockout of the Toll-like receptor 4 (TLR4) subtype enhances spatial memory and adult hippocampal neurogenesis through increasing proliferation and neuronal differentiation. Currently unknown is whether pharmacological inhibition of TLR4 produces similar enhancements in cognitive function and cell proliferation. The present study evaluated water maze performance, cytokine expression, and cell proliferation in the hippocampus of young and aged male and female C57BL6/J mice following treatment with the TLR4 antagonist, TAK-242. Further, alterations in the response to an acute stressor were evaluated in TAK-242-treated mice. Results showed that TAK-242 selectively enhanced spatial learning and memory in young females. Additionally, TAK-242 treatment reduced thigmotaxis in the water maze and lowered corticosterone levels following acute stress in females. TAK-242 decreased hippocampal interleukin (IL)-1β expression but had no effect on IL-6 or tumor necrosis factor-α (TNFα). Aged mice showed decreased cell proliferation compared to young mice, but TAK-242 administration had minimal effects on estimated Ki67 positive cell numbers. Findings indicate that pharmacological inhibition of TLR4 improves cognitive function in young females likely through attenuating stress reactivity.
Collapse
Affiliation(s)
- Meghan G. Connolly
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Opal V. Potter
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Ashley R. Sexton
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| | - Rachel A. Kohman
- University of North Carolina Wilmington, Department of Psychology, Wilmington, NC, USA
| |
Collapse
|
30
|
Abstract
Epigenetic mechanisms such as DNA methylation (DNAm) have been associated with stress responses and increased vulnerability to depression. Abnormal DNAm is observed in stressed animals and depressed individuals. Antidepressant treatment modulates DNAm levels and regulates gene expression in diverse tissues, including the brain and the blood. Therefore, DNAm could be a potential therapeutic target in depression. Here, we reviewed the current knowledge about the involvement of DNAm in the behavioural and molecular changes associated with stress exposure and depression. We also evaluated the possible use of DNAm changes as biomarkers of depression. Finally, we discussed current knowledge limitations and future perspectives.
Collapse
|
31
|
Papp M, Gruca P, Lason M, Litwa E, Solecki W, Willner P. Insufficiency of ventral hippocampus to medial prefrontal cortex transmission explains antidepressant non-response. J Psychopharmacol 2021; 35:1253-1264. [PMID: 34617804 PMCID: PMC8521380 DOI: 10.1177/02698811211048281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND There is extensive evidence that antidepressant drugs restore normal brain function by repairing damage to ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC). While the damage is more extensive in hippocampus, the evidence of treatments, such as deep brain stimulation, suggests that functional changes in prefrontal cortex may be more critical. We hypothesized that antidepressant non-response may result from an insufficiency of transmission from vHPC to mPFC. METHOD Antidepressant non-responsive Wistar Kyoto (WKY) rats were subjected to chronic mild stress (CMS), then treated with chronic daily administration of the antidepressant drug venlafaxine (VEN) and/or repeated weekly optogenetic stimulation (OGS) of afferents to mPFC originating from vHPC or dorsal HPC (dHPC). RESULTS As in many previous studies, CMS decreased sucrose intake, open-arm entries on the elevated plus maze (EPM), and novel object recognition (NOR). Neither VEN nor vHPC-mPFC OGS alone was effective in reversing the effects of CMS, but the combination of chronic VEN and repeated OGS restored normal behaviour on all three measures. dHPC-mPFC OGS restored normal behaviour in the EPM and NOR test irrespective of concomitant VEN treatment, and had no effect on sucrose intake. CONCLUSIONS The synergism between VEN and vHPC-mPFC OGS supports the hypothesis that the antidepressant non-responsiveness of WKY rats results from a failure of antidepressant treatment fully to restore transmission in the vHPC-mPFC pathway.
Collapse
Affiliation(s)
- Mariusz Papp
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland,Mariusz Papp, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, Krakow 31-343, Poland.
| | - Piotr Gruca
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Lason
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Ewa Litwa
- Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Paul Willner
- Department of Psychology, Swansea University, Swansea, UK
| |
Collapse
|
32
|
Kale RP, Nguyen TTL, Price JB, Yates NJ, Walder K, Berk M, Sillitoe RV, Kouzani AZ, Tye SJ. Mood Regulatory Actions of Active and Sham Nucleus Accumbens Deep Brain Stimulation in Antidepressant Resistant Rats. Front Hum Neurosci 2021; 15:644921. [PMID: 34349629 PMCID: PMC8326323 DOI: 10.3389/fnhum.2021.644921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
The antidepressant actions of deep brain stimulation (DBS) are associated with progressive neuroadaptations within the mood network, modulated in part, by neurotrophic mechanisms. We investigated the antidepressant-like effects of chronic nucleus accumbens (NAc) DBS and its association with change in glycogen synthase kinase 3 (GSK3) and mammalian target of rapamycin (mTOR) expression in the infralimbic cortex (IL), and the dorsal (dHIP) and ventral (vHIP) subregions of the hippocampus of antidepressant resistant rats. Antidepressant resistance was induced via daily injection of adrenocorticotropic hormone (ACTH; 100 μg/day; 15 days) and confirmed by non-response to tricyclic antidepressant treatment (imipramine, 10 mg/kg). Portable microdevices provided continuous bilateral NAc DBS (130 Hz, 200 μA, 90 μs) for 7 days. A control sham electrode group was included, together with ACTH- and saline-treated control groups. Home cage monitoring, open field, sucrose preference, and, forced swim behavioral tests were performed. Post-mortem levels of GSK3 and mTOR, total and phosphorylated, were determined with Western blot. As previously reported, ACTH treatment blocked the immobility-reducing effects of imipramine in the forced swim test. In contrast, treatment with either active DBS or sham electrode placement in the NAc significantly reduced forced swim immobility time in ACTH-treated animals. This was associated with increased homecage activity in the DBS and sham groups relative to ACTH and saline groups, however, no differences in locomotor activity were observed in the open field test, nor were any group differences seen for sucrose consumption across groups. The antidepressant-like actions of NAc DBS and sham electrode placements were associated with an increase in levels of IL and vHIP phospho-GSK3β and phospho-mTOR, however, no differences in these protein levels were observed in the dHIP region. These data suggest that early response to electrode placement in the NAc, irrespective of whether active DBS or sham, has antidepressant-like effects in the ACTH-model of antidepressant resistance associated with distal upregulation of phospho-GSK3β and phospho-mTOR in the IL and vHIP regions of the mood network.
Collapse
Affiliation(s)
- Rajas P. Kale
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Thanh Thanh L. Nguyen
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Biology and Psychology, Green Mountain College, Poultney, VT, United States
| | - J. Blair Price
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Department of Neurosurgery Research, Mayo Clinic, Rochester, MN, United States
| | - Nathanael J. Yates
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Michael Berk
- IMPACT–The Institute for Mental and Physical Health and Clinical Translation, Barwon Health, Deakin University, Geelong, VIC, Australia
- Orygen Youth Health Research Centre, The Department of Psychiatry, University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Susannah J. Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
- Department of Psychiatry, University of Minnesota, Houston, TX, United States
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
33
|
Ayhan F, Kulkarni A, Berto S, Sivaprakasam K, Douglas C, Lega BC, Konopka G. Resolving cellular and molecular diversity along the hippocampal anterior-to-posterior axis in humans. Neuron 2021; 109:2091-2105.e6. [PMID: 34051145 PMCID: PMC8273123 DOI: 10.1016/j.neuron.2021.05.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/19/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The hippocampus supports many facets of cognition, including learning, memory, and emotional processing. Anatomically, the hippocampus runs along a longitudinal axis, posterior to anterior in primates. The structure, function, and connectivity of the hippocampus vary along this axis. In human hippocampus, longitudinal functional heterogeneity remains an active area of investigation, and structural heterogeneity has not been described. To understand the cellular and molecular diversity along the hippocampal long axis in human brain and define molecular signatures corresponding to functional domains, we performed single-nuclei RNA sequencing on surgically resected human anterior and posterior hippocampus from epilepsy patients, identifying differentially expressed genes at cellular resolution. We further identify axis- and cell-type-specific gene expression signatures that differentially intersect with human genetic signals, identifying cell-type-specific genes in the posterior hippocampus for cognitive function and the anterior hippocampus for mood and affect. These data are accessible as a public resource through an interactive website.
Collapse
Affiliation(s)
- Fatma Ayhan
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Connor Douglas
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bradley C Lega
- Department of Neurosurgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Genevieve Konopka
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
34
|
Levone BR, Codagnone MG, Moloney GM, Nolan YM, Cryan JF, O' Leary OF. Adult-born neurons from the dorsal, intermediate, and ventral regions of the longitudinal axis of the hippocampus exhibit differential sensitivity to glucocorticoids. Mol Psychiatry 2021; 26:3240-3252. [PMID: 32709996 DOI: 10.1038/s41380-020-0848-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 01/05/2023]
Abstract
Hippocampal neurogenesis has been shown to play roles in learning, memory, and stress responses. These diverse roles may be related to a functional segregation of the hippocampus along its longitudinal axis. Indeed, the dorsal hippocampus (dHi) plays a predominant role in spatial learning and memory, while the ventral hippocampus (vHi) is predominantly involved in the regulation of anxiety, a behaviour impacted by stress. Recent studies suggest that the area between them, the intermediate hippocampus (iHi) may also be functionally independent. In parallel, it has been reported that chronic stress reduces neurogenesis preferentially in the vHi rather the dHi. We thus aimed to determine whether such stress-induced changes in neurogenesis could be related to differential intrinsic sensitivity of neural progenitor cells (NPCs) from the dHi, iHi, or vHi to the stress hormone, corticosterone, or the glucocorticoid receptor (GR) agonist, dexamethasone. Long-term exposure of rat NPCs to corticosterone or dexamethasone decreased neuronal differentiation in the vHi but not the dHi, while iHi cultures showed an intermediate response. A similar gradient-like response on neuronal differentiation and maturation was observed with dexamethasone treatment. This gradient-like effect was also observed on GR nuclear translocation in response to corticosterone or dexamethasone. Long-term exposure to corticosterone or dexamethasone treatment also tended to induce a greater downregulation of GR-associated genes in vHi-derived neurons compared to those from the dHi and iHi. These data suggest that increased intrinsic sensitivity of vHi NPC-derived neurons to chronic glucocorticoid exposure may underlie the increased vulnerability of the vHi to chronic stress-induced reductions in neurogenesis.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Martin G Codagnone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O' Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
35
|
Brain immune cells characterization in UCMS exposed P2X7 knock-out mouse. Brain Behav Immun 2021; 94:159-174. [PMID: 33609652 DOI: 10.1016/j.bbi.2021.02.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several lines of evidence suggest that neuroinflammation might be a key neurobiological mechanism of depression. In particular, the P2X7 receptor (P2X7R), an ATP-gated ion channel involved in activation of the pro-inflammatory interleukin IL-1β, has been shown to be a potential new pharmacological target in depression. The aim of this study was to explore the impact of unpredictable chronic mild stress (UCMS) on behavioural changes, hippocampal neurogenesis, and cellular characterisation of brain immune cells, in P2X7R Knock-Out (KO) mice. METHODS P2X7R KO and wild-type (WT) mice were subjected to a 6-week UCMS protocol and received a conventional oral antidepressant (15 mg.kg-1 fluoxetine) or water per os. The mice then underwent behavioural tests consisting of the tail suspension test (TST), the elevated plus maze (EPM) test, the open field test, the splash test and the nest building test (week 7). Doublecortin immunostaining (DCX) of brain slices was used to assess neurogenesis in the dentate gyrus. Iba1 and TMEM119 immunostaining was used to characterise brain immune cells, Iba1 as a macrophage marker (including microglial cells) and TMEM119 as a potential specific resident microglial cells marker. RESULTS After a 6-week UCMS exposure, P2X7R KO mice exhibited less deterioration of their coat state, spent a significantly smaller amount of time immobile in the TST and spent a larger amount of time in the open arms of the EPM. As expected, adult ventral hippocampal neurogenesis was significantly decreased by UCMS in WT mice, while P2X7R KO mice maintained ventral hippocampal neurogenesis at similar levels in both control and UCMS conditions. In stress-related brain regions, P2X7R KO mice also exhibited less recruitment of Iba1+/TMEM119+ and Iba1+/TMEM119- cells in the brain. The ratio between these two staining patterns revealed that brain immune cells were mostly composed of Iba1+/TMEM119+ cells (87 to 99%), and this ratio was affected neither by P2X7R genetic depletion nor by antidepressant treatment. DISCUSSION Behavioural patterns, neurogenesis levels and density of brain immune cells in P2X7R KO mice after exposure to UCMS significantly differed from control conditions. Brain immune cells were mostly increased in brain regions known to be sensitive to UCMS exposure in WT but not in P2X7R KO mice. Considering Iba1+/TMEM119- staining might characterize peripheral immune cells, the ratio between Iba1+/TMEM119+ cells and IBA1+/TMEM119- cells, suggests that the rate of peripheral immune cells recruitment may not be modified neither by P2X7R gene expression nor by antidepressant treatment.
Collapse
|
36
|
Levone BR, Moloney GM, Cryan JF, O'Leary OF. Specific sub-regions along the longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects. Neurobiol Stress 2021; 14:100331. [PMID: 33997156 PMCID: PMC8100619 DOI: 10.1016/j.ynstr.2021.100331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 01/15/2023] Open
Abstract
Current antidepressants are suboptimal due incomplete understanding of the neurobiology underlying their behavioral effects. However, imaging studies suggest the hippocampus is a key brain region underpinning antidepressant action. There is increasing attention on the functional segregation of the hippocampus into a dorsal region (dHi) predominantly involved in spatial learning and memory, and a ventral region (vHi) which regulates anxiety, a symptom often co-morbid with depression. However, little is known about the roles of these hippocampal sub-regions in the antidepressant response. Moreover, the area between them, the intermediate hippocampus (iHi), has received little attention. Here, we investigated the impact of dHi, iHi or vHi lesions on anxiety- and depressive-like behaviors under baseline or antidepressant treatment conditions in male C57BL/6 mice (n = 8-10). We found that in the absence of fluoxetine, vHi lesions reduced anxiety-like behavior, while none of the lesions affected other antidepressant-sensitive behaviors. vHi lesions prevented the acute antidepressant-like behavioral effects of fluoxetine in the tail suspension test and its anxiolytic effects in the novelty-induced hypophagia test. Intriguingly, only iHi lesions prevented the antidepressant effects of chronic fluoxetine treatment in the forced swim test. dHi lesions did not impact any behaviors either in the absence or presence of fluoxetine. In summary, we found that vHi plays a key role in anxiety-like behavior and its modulation by fluoxetine, while both iHi and vHi play distinct roles in fluoxetine-induced antidepressant-like behaviors.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Borroto-Escuela DO, Pita-Rodriguez M, Fores-Pons R, Barbancho MA, Fuxe K, Narváez M. Galanin and neuropeptide Y interactions elicit antidepressant activity linked to neuronal precursor cells of the dentate gyrus in the ventral hippocampus. J Cell Physiol 2021; 236:3565-3578. [PMID: 33044017 DOI: 10.1002/jcp.30092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/18/2023]
Abstract
A need for new antidepressants is necessary since traditional antidepressants have several flaws. Neuropeptide Y(NPY) Y1 receptor (NPYY1R) and galanin (GAL) receptor 2 (GALR2) interact in several regions of the limbic system, including the hippocampus. The current study assesses the antidepressant effects induced by GALR2 and NPYY1R coactivation, together with the evaluation of cell proliferation through 5-Bromo-2'-deoxyuridine expression within the dentate gyrus of the ventral hippocampus (vDG). We employed in situ proximity ligation assay to manifest GALR2/NPYY1R heteroreceptor complexes. Additionally, the expression pattern of GALR2 and the activation of the extracellular-regulated kinases (ERK) pathway after GALR2 and NPYY1R costimulation in cell cultures were examined. GALR2 and NPYY1R coactivation resulted in sustained antidepressant behaviors in the FST after 24 h, linked to increased cell proliferation in the vDG. Moreover, an increased density of GALR2/NPYY1R heteroreceptor complexes was observed in vDG, on doublecortin-expressing neuroblasts. Recruitment of the GALR2 expression to the plasma membrane was observed upon the coactivation of GALR2 and NPYY1R in cell cultures, presumably associated to the enhanced effects on the activation of ERK pathway. GALR2 may promote the GALR2/NPYY1R heteroreceptor complexes formation in the ventral hippocampus. It may induce a transformation of cell proliferation toward a neuronal lineage by enhancement of ERK pathway. Thus, it may give the mechanism for the antidepressant behavior observed. These results may provide the basis for the development of heterobivalent agonist pharmacophores, targeting GALR2/NPYY1R heteromers, especially in the neuronal precursor cells of the dentate gyrus in the ventral hippocampus for the novel treatment of depression.
Collapse
Affiliation(s)
- Dasiel O Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Mariana Pita-Rodriguez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Departamento de Neurogenética, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Ramón Fores-Pons
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel A Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Manuel Narváez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
38
|
Prathap S, Nagel BJ, Herting MM. Understanding the role of aerobic fitness, spatial learning, and hippocampal subfields in adolescent males. Sci Rep 2021; 11:9311. [PMID: 33927247 PMCID: PMC8084987 DOI: 10.1038/s41598-021-88452-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Physical exercise during adolescence, a critical developmental window, can facilitate neurogenesis in the dentate gyrus and astrogliogenesis in Cornu Ammonis (CA) hippocampal subfields of rats, and which have been associated with improved hippocampal dependent memory performance. Recent translational studies in humans also suggest that aerobic fitness is associated with hippocampal volume and better spatial memory during adolescence. However, associations between fitness, hippocampal subfield morphology, and learning capabilities in human adolescents remain largely unknown. Employing a translational study design in 34 adolescent males, we explored the relationship between aerobic fitness, hippocampal subfield volumes, and both spatial and verbal memory. Aerobic fitness, assessed by peak oxygen utilization on a high-intensity exercise test (VO2 peak), was positively associated with the volumetric enlargement of the hippocampal head, and the CA1 head region specifically. Larger CA1 volumes were also associated with spatial learning on a Virtual Morris Water Maze task and verbal learning on the Rey Auditory Verbal Learning Test, but not recall memory. In line with previous animal work, the current findings lend support for the long-axis specialization of the hippocampus in the areas of exercise and learning during adolescence.
Collapse
Affiliation(s)
- Sandhya Prathap
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90023, USA
| | - Bonnie J Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, 90023, USA.
| |
Collapse
|
39
|
Murayama MA, Arimitsu N, Shimizu J, Fujiwara N, Takai K, Okada Y, Hirotsu C, Takada E, Suzuki T, Suzuki N. Dementia model mice exhibited improvements of neuropsychiatric symptoms as well as cognitive dysfunction with neural cell transplantation. Exp Anim 2021; 70:387-397. [PMID: 33828024 PMCID: PMC8390309 DOI: 10.1538/expanim.21-0008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Elderly patients with dementia suffer from cognitive dysfunctions and neuropsychiatric symptoms (NPS) such as anxiety and depression. Alzheimer’s disease (AD)
is a form of age-related dementia, and loss of cholinergic neurons is intimately associated with development of AD symptoms. We and others have reported that
neural cell transplantation ameliorated cognitive dysfunction in AD model mice. It remains largely unclear whether neural cell transplantation ameliorates the
NPS of AD. It would be interesting to determine whether NPS correlates with cognitive dysfunctions before and after neural cell transplantation in AD model
mice. Based on the revalidation of our previous data from a Morris water maze test, we found that neural cell transplantation improved anxiety and depression
significantly and marginally affected locomotion activity in AD mice. A correlation analysis revealed that the spatial learning function of AD mice was
correlated with their NPS scores both before and after cell transplantation in a similar manner. In contrast, in the mice subjected to cell transplantation,
spatial reference memory function was not correlated with NPS scores. These results suggested the neural cell transplantation in the AD model mice significantly
improved NPS to the same degree as cognitive dysfunctions, possibly via distinct mechanisms, such as the cholinergic and GABAergic systems.
Collapse
Affiliation(s)
- Masanori A Murayama
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.,Present address: Department of Animal Models for Human Diseases, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, Osaka 573-1010, Japan
| | - Nagisa Arimitsu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Jun Shimizu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Naruyoshi Fujiwara
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Kenji Takai
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Yoko Okada
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Chieko Hirotsu
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Erika Takada
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Tomoko Suzuki
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| | - Noboru Suzuki
- Department of Immunology and Medicine, St. Marianna University of School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
40
|
Bondi H, Bortolotto V, Canonico PL, Grilli M. Complex and regional-specific changes in the morphological complexity of GFAP + astrocytes in middle-aged mice. Neurobiol Aging 2021; 100:59-71. [PMID: 33493951 DOI: 10.1016/j.neurobiolaging.2020.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
During aging, alterations in astrocyte phenotype occur in areas associated with age-related cognitive decline, including hippocampus. Previous work reported subregion-specific changes in surface, volume, and soma size of hippocampal astrocytes during physiological aging. Herein we extensively analyzed, by morphometric analysis, fine morphological features of GFAP+ astrocytes in young (6-month-old) and middle-aged (14-month-old) male mice. We observed remarkable heterogeneity in the astrocytic response to aging in distinct subfields and along the dorsoventral axis of hippocampus and in entorhinal cortex. In middle-aged mice dorsal granule cell and molecular layers, but not hilus, astrocytes underwent remarkable increase in their morphological complexity. These changes were absent in ventral Dentate Gyrus (DG). In addition, in entorhinal cortex, the major input to dorsal DG, astrocytes underwent remarkable atrophic changes in middle-aged mice. Since dorsal DG, and not ventral DG, is involved in cognitive functions, these findings appear worth of further evaluation. Our findings also suggest an additional level of complexity in the structural changes associated with brain aging.
Collapse
Affiliation(s)
- Heather Bondi
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy; Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
41
|
Pike NA, Roy B, Moye S, Cabrera-Mino C, Woo MA, Halnon NJ, Lewis AB, Kumar R. Reduced hippocampal volumes and memory deficits in adolescents with single ventricle heart disease. Brain Behav 2021; 11:e01977. [PMID: 33410605 PMCID: PMC7882179 DOI: 10.1002/brb3.1977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/17/2020] [Accepted: 11/14/2020] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Adolescents with single ventricle congenital heart disease (SVHD) show functional deficits, particularly in memory and mood regulation. Hippocampi are key brain structures that regulate mood and memory; however, their tissue integrity in SVHD is unclear. Our study aim is to evaluate hippocampal volumes and their associations with memory, anxiety, and mood scores in adolescents with SVHD compared to healthy controls. METHODS We collected brain magnetic resonance imaging data from 25 SVHD (age 15.9 ± 1.2 years; 15 male) and 38 controls (16.0 ± 1.1 years; 19 male) and assessed memory (Wide Range Assessment of Memory and Learning 2, WRAML2), anxiety (Beck Anxiety Inventory, BAI), and mood (Patient Health Questionnaire 9, PHQ-9) functions. Both left and right hippocampi were outlined and global volumes, as well as three-dimensional surfaces were compared between groups using ANCOVA and associations with cognitive and behavioral scores with partial correlations (covariates: age and total brain volume). RESULTS The SVHD group showed significantly higher BAI (p = .001) and PHQ-9 (p < .001) scores, indicating anxiety and depression symptoms and significantly reduced WRAML2 scores (p < .001), suggesting memory deficits compared with controls. SVHD group had significantly reduced right global hippocampal volumes (p = .036) compared with controls, but not the left (p = .114). Right hippocampal volume reductions were localized in the CA1, CA4, subiculum, and dentate gyrus. Positive correlations emerged between WRAML2 scores and left (r = 0.32, p = .01) and right (r = 0.28, p = .03) hippocampal volumes, but BAI and PHQ-9 did not show significant correlations. CONCLUSION Adolescents with SVHD show reduced hippocampal volumes, localized in several sites (CA1, CA4, subiculum, and dentate gyrus), which are associated with memory deficits. The findings indicate the need to explore ways to improve memory to optimize academic achievement and ability for self-care in the condition.
Collapse
Affiliation(s)
- Nancy A Pike
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Bhaswati Roy
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Stefanie Moye
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Mary A Woo
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Nancy J Halnon
- Division of Pediatric Cardiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Alan B Lewis
- Division of Pediatric Cardiology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Rajesh Kumar
- Departments of Anesthesiology, University of California Los Angeles, Los Angeles, CA, USA.,Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA.,Bioengineering, University of California Los Angeles, Los Angeles, CA, USA.,Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
42
|
Lu C, Li M, Sun X, Li N, Wang W, Tong P, Dai J. Comparing the hippocampal miRNA expression profiles of wild and domesticated Chinese tree shrews (Tupaia belangeri chinensis). BMC Ecol Evol 2021; 21:12. [PMID: 33514308 PMCID: PMC7853310 DOI: 10.1186/s12862-020-01740-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background The domestication of tree shrews represents an important advance in the development of standardized laboratory animals. Little is known regarding the miRNA changes that accompany the transformation of wild tree shrews into domestic tree shrews. Results By performing miRNA-seq analysis on wild and domestic tree shrews, we identified 2410 miRNAs and 30 differentially expressed miRNAs in the hippocampus during tree shrew domestication. A KEGG analysis of the differentially expressed genes showed that the differentially expressed miRNAs were associated with ECM-receptor interaction, the phosphatidylinositol signaling system, protein digestion and absorption, inositol phosphate metabolism, lysine degradation, fatty acid degradation and focal adhesion. Most of these pathways could be classified under environmental information processing, organismal systems and metabolism. The miRNAs exclusively expressed in wild and tame tree shrews GO enriched in terms of divergent functions. The miRNA-mRNA networks suggested that novel-m1388-5p and novel-m0746-5p might play regulatory roles in domestication of tree shrews. Real–time RT-PCR analysis was employed to verify the presence of these miRNAs. Conclusion We identified a number of candidate miRNA-regulated domestication genes that may represent targets for selection during the domestication of tree shrews.
Collapse
Affiliation(s)
- Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China. .,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China.
| | - Mingxue Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China. .,Yunnan Key Laboratory of Vaccine Research and Development On Severe Infectious Diseases, Kunming, China.
| |
Collapse
|
43
|
Clark LR, Yun S, Acquah NK, Kumar PL, Metheny HE, Paixao RCC, Cohen AS, Eisch AJ. Mild Traumatic Brain Injury Induces Transient, Sequential Increases in Proliferation, Neuroblasts/Immature Neurons, and Cell Survival: A Time Course Study in the Male Mouse Dentate Gyrus. Front Neurosci 2021; 14:612749. [PMID: 33488351 PMCID: PMC7817782 DOI: 10.3389/fnins.2020.612749] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/02/2020] [Indexed: 12/17/2022] Open
Abstract
Mild traumatic brain injuries (mTBIs) are prevalent worldwide. mTBIs can impair hippocampal-based functions such as memory and cause network hyperexcitability of the dentate gyrus (DG), a key entry point to hippocampal circuitry. One candidate for mediating mTBI-induced hippocampal cognitive and physiological dysfunction is injury-induced changes in the process of DG neurogenesis. There are conflicting results on how TBI impacts the process of DG neurogenesis; this is not surprising given that both the neurogenesis process and the post-injury period are dynamic, and that the quantification of neurogenesis varies widely in the literature. Even within the minority of TBI studies focusing specifically on mild injuries, there is disagreement about if and how mTBI changes the process of DG neurogenesis. Here we utilized a clinically relevant rodent model of mTBI (lateral fluid percussion injury, LFPI), gold-standard markers and quantification of the neurogenesis process, and three time points post-injury to generate a comprehensive picture of how mTBI affects adult hippocampal DG neurogenesis. Male C57BL/6J mice (6-8 weeks old) received either sham surgery or mTBI via LFPI. Proliferating cells, neuroblasts/immature neurons, and surviving cells were quantified via stereology in DG subregions (subgranular zone [SGZ], outer granule cell layer [oGCL], molecular layer, and hilus) at short-term (3 days post-injury, dpi), intermediate (7 dpi), and long-term (31 dpi) time points. The data show this model of mTBI induces transient, sequential increases in ipsilateral SGZ/GCL proliferating cells, neuroblasts/immature neurons, and surviving cells which is suggestive of mTBI-induced neurogenesis. In contrast to these ipsilateral hemisphere findings, measures in the contralateral hemisphere were not increased in key neurogenic DG subregions after LFPI. Our work in this mTBI model is in line with most literature on other and more severe models of TBI in showing TBI stimulates the process of DG neurogenesis. However, as our DG data in mTBI provide temporal, subregional, and neurogenesis-stage resolution, these data are important to consider in regard to the functional importance of TBI-induction of the neurogenesis process and future work assessing the potential of replacing and/or repairing DG neurons in the brain after TBI.
Collapse
Affiliation(s)
- Lyles R. Clark
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Nana K. Acquah
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biological Basis of Behavior Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Priya L. Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Biomechanical Engineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Hannah E. Metheny
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Rikley C. C. Paixao
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
| | - Akivas S. Cohen
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| | - Amelia J. Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia (CHOP) Research Institute, Philadelphia, PA, United States
- Mahoney Institute for Neurosciences, Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
44
|
De Guzman RM, Medina J, Saulsbery AI, Workman JL. Rotated nursing environment with underfeeding: A form of early-life adversity with sex- and age-dependent effects on coping behavior and hippocampal neurogenesis. Physiol Behav 2020; 225:113106. [PMID: 32717197 DOI: 10.1016/j.physbeh.2020.113106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/24/2020] [Indexed: 01/06/2023]
Abstract
We investigated how a unique form of early-life adversity (ELA), caused by rotated nursing environment to induce underfeeding, alters anxiety-like and stress-coping behaviors in male and female Sprague Dawley rats in adolescence and adulthood. Adult female rats underwent either thelectomy (thel; surgical removal of teats), sham surgery, or no surgery (control) before mating. Following parturition, litters were rotated between sham and thel rats every 12 h to generate a group of rats that experienced ELA (rotated housing, rotated mother, and 50% food restriction) from postnatal day 0 to 26. Control litters remained with their natal, nursing dams. Regardless of age and sex, ELA reduced activity in the periphery of the open field. ELA increased immobility in the forced swim test, particularly in adults. We used doublecortin immunohistochemistry to identify immature neurons in the hippocampus. ELA increased the number and density of immature neurons in the dentate gyrus of adolescent males (but not females) and reduced the density of immature neurons in adult males (but not females). This research indicates that a unique form of ELA alters stress-related passive coping and hippocampal neurogenesis in an age- and sex-dependent manner.
Collapse
Affiliation(s)
- Rose M De Guzman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States
| | - Joanna Medina
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States
| | - Angela I Saulsbery
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States
| | - Joanna L Workman
- Department of Psychology, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222 United States; Center for Neuroscience Research, University at Albany, State University of New York, 1400 Washington Ave. Albany, NY 12222, United States.
| |
Collapse
|
45
|
Zhao X, van Praag H. Steps towards standardized quantification of adult neurogenesis. Nat Commun 2020; 11:4275. [PMID: 32848155 PMCID: PMC7450090 DOI: 10.1038/s41467-020-18046-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
New neurons are generated in adult mammals. Adult hippocampal neurogenesis is considered to play an important role in cognition and mental health. The number and properties of newly born neurons are regulatable by a broad range of physiological and pathological conditions. To begin to understand the underlying cellular mechanisms and functional relevance of adult neurogenesis, many studies rely on quantification of adult-born neurons. However, lack of standardized methods to quantify new neurons is impeding research reproducibility across laboratories. Here, we review the importance of stereology, and propose why and how it should be applied to the study of adult neurogenesis.
Collapse
Affiliation(s)
- Xinyu Zhao
- Waisman Center and University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Henriette van Praag
- Brain Institute and Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL, 33458, USA.
| |
Collapse
|
46
|
Mori M, Murata Y, Tsuchihashi M, Hanakita N, Terasaki F, Harada H, Kawanabe S, Terada K, Matsumoto T, Ohe K, Mine K, Enjoji M. Continuous psychosocial stress stimulates BMP signaling in dorsal hippocampus concomitant with anxiety-like behavior associated with differential modulation of cell proliferation and neurogenesis. Behav Brain Res 2020; 392:112711. [PMID: 32461130 DOI: 10.1016/j.bbr.2020.112711] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/19/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
Bone morphogenetic protein (BMP) signaling in the hippocampus regulates psychiatric behaviors and hippocampal neurogenesis in non-stress conditions; however, stress-induced changes in hippocampal BMP signaling have not yet been reported. Therefore, we sought to examine whether psychosocial stress, which induces psychiatric symptoms, affects hippocampal BMP signaling. A total of 32 male Sprague-Dawley rats were exposed to a psychosocial stress using a Resident/Intruder paradigm for ten consecutive days. Subsequently, rats were subjected to a battery of behavioral tests (novelty-suppressed feeding test, sucrose preference test, and forced swimming test) for the evaluation of adult neurogenesis and activity of BMP signaling in the dorsal and ventral hippocampus. Repeated social defeat promoted anxiety-like behaviors, but neither anhedonia nor behavioral despair. Socially defeated rats exhibited an increase in the number of Ki-67-positive cells, decrease in the number of doublecortin (DCX)-positive cells, and decrease only in the dorsal hippocampus of the ratio of DCX-positive to Ki-67-positive cells, a proxy for newly-born cell maturation speed and survival. In contrast, no differences were observed in the number of 5-Bromo-2'-deoxyuridine (BrdU)-positive cells, indicating survival of newly-born cells both in the dorsal and ventral hippocampus. Furthermore, psychosocial stress significantly increased the BMP-4 and phosphorylated Smad1/5/9 expression levels specifically in the dorsal hippocampus. Our findings suggest that repeated psychosocial stress activates BMP signaling and differently affects cell proliferation and neurogenesis exclusively in the dorsal hippocampus, potentially exacerbating anxiety-related symptoms. Targeting BMP signaling is a potential therapeutic strategy for psychiatric disorders.
Collapse
Affiliation(s)
- Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Mariko Tsuchihashi
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Naoko Hanakita
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Fumie Terasaki
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Hiroyoshi Harada
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Shunsuke Kawanabe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Terada
- Laboratory of Drug Design and Drug Delivery, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Taichi Matsumoto
- Department of Drug Informatics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS CLINIC FUKUOKA, 6F Random Square Bldg., 6-18, Tenya-Machi, Hakata-ku, Fukuoka 812-0025, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1, Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
47
|
Decker AL, Duncan K, Finn AS, Mabbott DJ. Children's family income is associated with cognitive function and volume of anterior not posterior hippocampus. Nat Commun 2020; 11:4040. [PMID: 32788583 PMCID: PMC7423938 DOI: 10.1038/s41467-020-17854-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Children from lower income backgrounds tend to have poorer memory and language abilities than their wealthier peers. It has been proposed that these cognitive gaps reflect the effects of income-related stress on hippocampal structure, but the empirical evidence for this relationship has not been clear. Here, we examine how family income gaps in cognition relate to the anterior hippocampus, given its high sensitivity to stress, versus the posterior hippocampus. We find that anterior (but not posterior) hippocampal volumes positively correlate with family income up to an annual income of ~$75,000. Income-related differences in the anterior (but not posterior) hippocampus also predicted the strength of the gaps in memory and language. These findings add anatomical specificity to current theories by suggesting a stronger relationship between family income and anterior than posterior hippocampal volumes and offer a potential mechanism through which children from different income homes differ cognitively.
Collapse
Affiliation(s)
| | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
48
|
Patrício P, Mateus-Pinheiro A, Alves ND, Morais M, Rodrigues AJ, Bessa JM, Sousa N, Pinto L. miR-409 and miR-411 Modulation in the Adult Brain of a Rat Model of Depression and After Fluoxetine Treatment. Front Behav Neurosci 2020; 14:136. [PMID: 32848656 PMCID: PMC7427047 DOI: 10.3389/fnbeh.2020.00136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is a chronic debilitating disorder predicted to affect around 20% of the world population. Both brain and peripheral changes, including neuroplastic changes have been shown to occur in the brains of depressed individuals and animal models of depression. Over the past few decades, growing evidence has supported the role of miRNAs as regulators of critical aspects of brain plasticity and function, namely in the context of depression. These molecules are not only highly expressed in the brain, but are also relatively stable in bodily fluids, including blood. Previous microarray analysis from our group has disclosed molecular players in the hippocampal dentate gyrus (DG), in the context of depression and antidepressant treatment. Two miRNAs in particular-miR-409-5p and miR-411-5p-were significantly up-regulated in the DG of an unpredictable chronic mild stress (CMS) rat model of depression and reversed by antidepressant treatment. Here, we further analyzed the levels of these miRNAs along the DG longitudinal axis and in other brain regions involved in the pathophysiology of depression, as well as in peripheral blood of CMS-exposed rats and after fluoxetine treatment. The effects of CMS and fluoxetine treatment on miR-409-5p and miR-411-5p levels varied across brain regions, and miR-411-5p was significantly decreased in the blood of fluoxetine-treated rats. Additional bioinformatic analyses revealed target genes and pathways of these miRNAs related to neurotransmitter signaling and neuroplasticity functions; an implication of the two miRNAs in the regulation of the cellular and molecular changes observed in these brain regions in depression is worth further examination.
Collapse
Affiliation(s)
- Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - Nuno Dinis Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - Mónica Morais
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - João Miguel Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory (AL), Braga/Guimarães, Portugal
| |
Collapse
|
49
|
Hagar M, Roman G, Eitan O, Noam BY, Abrham Z, Benjamin S. A Tellurium-Based Small Immunomodulatory Molecule Ameliorates Depression-Like Behavior in Two Distinct Rat Models. Neuromolecular Med 2020; 22:437-446. [PMID: 32638207 DOI: 10.1007/s12017-020-08603-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023]
Abstract
Major depressive disorder (MDD) is a leading cause of morbidity, and the fourth leading cause of disease burden worldwide. While MDD is a treatable condition for many individuals, others suffer from treatment-resistant depression (TRD). Here, we suggest the immunomodulatory compound AS101 as novel therapeutic alternative. We previously showed in animal models that AS101 reduces anxiety-like behavior and elevates levels of the brain-derived neurotrophic factor (BDNF), a protein that has a key role in the pathophysiology of depression. To explore the potential antidepressant properties of AS101, we used the extensively characterized chronic mild stress (CMS) model, and the depressive rat line (DRL Finally, in Exp. 3 to attain insight into the mechanism we knocked down BDNF in the hippocampus, and demonstrated that the beneficial effect of AS101 was abrogated. Together with the previously established safety profile of AS101 in humans, these results may represent the first step towards the development of a novel treatment option for MDD and TRD.
Collapse
Affiliation(s)
- Moshe Hagar
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Bar-Ilan University, Ramat Gan, Israel.,Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Gersner Roman
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Okun Eitan
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, 5290002, Ramat Gan, Israel.,The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 5290002, Ramat Gan, Israel
| | - Barnea-Ygael Noam
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Zangen Abrham
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Sredni Benjamin
- The Mina & Everard Goodman Faculty of Life Sciences, The Safdiè AIDS and Immunology Research Center, C.A.I.R. Institute, Bar-Ilan University, Ramat Gan, Israel.
| |
Collapse
|
50
|
Volume increase in the dentate gyrus after electroconvulsive therapy in depressed patients as measured with 7T. Mol Psychiatry 2020; 25:1559-1568. [PMID: 30867562 DOI: 10.1038/s41380-019-0392-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/03/2023]
Abstract
Electroconvulsive therapy (ECT) is the most effective treatment for depression, yet its working mechanism remains unclear. In the animal analog of ECT, neurogenesis in the dentate gyrus (DG) of the hippocampus is observed. In humans, volume increase of the hippocampus has been reported, but accurately measuring the volume of subfields is limited with common MRI protocols. If the volume increase of the hippocampus in humans is attributable to neurogenesis, it is expected to be exclusively present in the DG, whereas other processes (angiogenesis, synaptogenesis) also affect other subfields. Therefore, we acquired an optimized MRI scan at 7-tesla field strength allowing sensitive investigation of hippocampal subfields. A further increase in sensitivity of the within-subjects measurements is gained by automatic placement of the field of view. Patients receive two MRI scans: at baseline and after ten bilateral ECT sessions (corresponding to a 5-week interval). Matched controls are also scanned twice, with a similar 5-week interval. A total of 31 participants (23 patients, 8 controls) completed the study. A large and significant increase in DG volume was observed after ECT (M = 75.44 mm3, std error = 9.65, p < 0.001), while other hippocampal subfields were unaffected. We note that possible type II errors may be present due to the small sample size. In controls no changes in volume were found. Furthermore, an increase in DG volume was related to a decrease in depression scores, and baseline DG volume predicted clinical response. These findings suggest that the volume change of the DG is related to the antidepressant properties of ECT, and may reflect neurogenesis.
Collapse
|