1
|
Niedowicz DM, Wang W, Prajapati P, Zhong Y, Fister S, Rogers CB, Sompol P, Powell DK, Patel I, Norris CM, Saatman KE, Nelson PT. Nicorandil treatment improves survival and spatial learning in aged granulin knockout mice. Brain Pathol 2025; 35:e13312. [PMID: 39438022 PMCID: PMC11961209 DOI: 10.1111/bpa.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Mutations in the human granulin (GRN) gene are associated with multiple diseases, including dementia disorders such as frontotemporal dementia (FTD) and limbic-predominant age-related TDP-43 encephalopathy (LATE). We studied a Grn knockout (Grn-KO) mouse model in order to evaluate a potential therapeutic strategy for these diseases using nicorandil, a commercially available agonist for the ABCC9/Abcc9-encoded regulatory subunit of the "K+ATP" channel that is well-tolerated in humans. Aged (13 months) Grn-KO and wild-type (WT) mice were treated as controls or with nicorandil (15 mg/kg/day) in drinking water for 7 months, then tested for neurobehavioral performance, neuropathology, and gene expression. Mortality was significantly higher for aged Grn-KO mice (particularly females), but there was a conspicuous improvement in survival for both sexes treated with nicorandil. Grn-KO mice performed worse on some cognitive tests than WT mice, but Morris Water Maze performance was improved with nicorandil treatment. Neuropathologically, Grn-KO mice had significantly increased levels of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytosis but not ionized calcium binding adaptor molecule 1 (IBA-1)-immunoreactive microgliosis, indicating cell-specific inflammation in the brain. Expression of several astrocyte-enriched genes, including Gfap, were also elevated in the Grn-KO brain. Nicorandil treatment was associated with a subtle shift in a subset of detected brain transcript levels, mostly related to attenuated inflammatory markers. Nicorandil treatment improved survival outcomes, cognition, and inflammation in aged Grn-KO mice.
Collapse
Affiliation(s)
- Dana M. Niedowicz
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Wang‐Xia Wang
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Paresh Prajapati
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Yu Zhong
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Shuling Fister
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Colin B. Rogers
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Pradoldej Sompol
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - David K. Powell
- Department of NeuroscienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Indumati Patel
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
| | - Christopher M. Norris
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Peter T. Nelson
- Sanders Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- Department of PathologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
2
|
Wallings RL, Gillett DA, Staley HA, Mahn S, Mark J, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knock-down of GPNMB in mutant-GRN and in Grn-deficient peripheral myeloid cells disrupts lysosomal function and immune responses. Mol Neurodegener 2025; 20:41. [PMID: 40200337 PMCID: PMC11980231 DOI: 10.1186/s13024-025-00829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 03/14/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND GPNMB has been discussed as a potential therapeutic target in GRN-mediated neurodegeneration, based on the observed reproducible upregulation in FTD-GRN cerebrospinal fluid (CSF) and post-mortem brain. However, the functional impacts of up-regulated GPNMB are currently unknown, and it is currently unclear if targeting GPNMB will be protective or deleterious. Increases in GPNMB seen in FTD-GRN are reproduced in brains of aged Grn-deficient mice. Importantly, although brains of young Grn-deficient mice do not exhibit upregulated Gpnmb expression, peripheral immune cells of these mice exhibit increased Gpnmb expression as young as 5-to-6 months, suggesting the effects of Grn-deficiency in the periphery proceed those in the brain. Grn-deficiency is known to alter peripheral immune cell function, including impaired autophagy and altered cytokine secretion. GPNMB has potential effects on these processes, but has never been studied in peripheral immune cells of patients or preclinical models. Informing the functional significance of GPNMB upregulation in Grn-deficient states in myeloid cells has potential to inform GPNMB as a therapeutic candidate. METHODS The effects of GPNMB knock-down via antisense oligonucleotide (ASO) were assessed in peripheral blood mononuclear cells (PBMCs) from 25 neurologically healthy controls (NHCs) and age- and sex-matched FTD-GRN patients, as well as peritoneal macrophages (pMacs) from progranulin-deficient (Grn -/-) and B6 mice. Lysosomal function, antigen presentation and MHC-II processing and recycling were assessed, as well as cytokine release and transcription. RESULTS ASO-mediated knock-down of GPNMB increased lysosomal burden and IL1β cytokine secretion in FTD-GRN carriers and NHCs monocytes. ASO-mediated knock-down of Gpnmb in Grn-deficient macrophages decreased lysosomal pan-cathepsin activity and protein degradation. In addition, ASO-mediated knock-down of Gpnmb increased MHC-II surface expression, which was driven by decreased MHC-II uptake and recycling, in macrophages from Grn-deficient females. Finally, ASO-mediated knock-down of Gpnmb dysregulated IFN γ -stimulated IL6 cytokine transcription and secretion by mouse macrophages due to the absence of regulatory actions of the Gpnmb extracellular fragment (ECF). CONCLUSIONS Our data herein reveal that GPNMB has a regulatory effect on multiple immune effector functions, including capping inflammation and immune responses in myeloid cells, potentially via secretion of its ECF. Therefore, in progranulin-deficient states, the marked upregulation in GPNMB transcript and protein may represent a compensatory mechanism to preserve lysosomal function in myeloid cells. These novel findings indicate that targeted depletion of GPNMB in FTD-GRN would not be a rational therapeutic strategy because it is likely to dysregulate important immune cell effector functions mediated by GPNMB. Specifically, our data indicate that therapeutic strategies inhibiting GPNMB levels and/or activity may worsen the effects of GRN deficiency.
Collapse
Affiliation(s)
- Rebecca L Wallings
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA.
- Current address: Department of Neurology, School of Medicine, Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| | - Drew A Gillett
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Savanna Mahn
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Julian Mark
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Noelle Neighbarger
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA
| | - Holly Kordasiewicz
- Neurology, Ionis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, 92010, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, 115 Broadway, Cambridge, MA, 02142, USA
- Current address: DaCapo Brainscience, 700 Main Street, Cambridge, MA, 02139, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, McKnight Brain Institute, Gainesville, FL, 32610, USA.
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
- Current address: Department of Neurology, School of Medicine, Stark Neurosciences Research Institute, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, Biomarker, and Behavioral Characterization of the Grn R493X Mouse Model of Frontotemporal Dementia. Mol Neurobiol 2024; 61:9708-9722. [PMID: 38696065 PMCID: PMC11496013 DOI: 10.1007/s12035-024-04190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/17/2024] [Indexed: 05/14/2024]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M Smith
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Michael L Niehoff
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Spencer A Jones
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Subhashis Banerjee
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
| | - Susan A Farr
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA
- Veterans Affairs Medical Center, St. Louis, USA
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, USA.
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, USA.
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, USA.
| |
Collapse
|
4
|
Wallings RL, Gillett DA, Staley HA, Mahn S, Mark J, Neighbarger N, Kordasiewicz H, Hirst WD, Tansey MG. ASO-mediated knockdown of GPNMB in mutant- GRN and Grn -deficient peripheral myeloid cells disrupts lysosomal function and immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604676. [PMID: 39211224 PMCID: PMC11361193 DOI: 10.1101/2024.07.22.604676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Increases in GPNMB are detectable in FTD- GRN cerebrospinal fluid (CSF) and post-mortem brain, and brains of aged Grn -deficient mice. Although no upregulation of GPNMB is observed in the brains of young Grn -deficient mice, peripheral immune cells of these mice do exhibit this increase in GPNMB. Importantly, the functional significance of GPNMB upregulation in progranulin-deficient states is currently unknown. Given that GPNMB has been discussed as a potential therapeutic target in GRN -mediated neurodegeneration, it is vital for the field to determine what the normal function of GPNMB is in the immune system, and whether targeting GPNMB will elicit beneficial or deleterious effects. Methods The effects of GPNMB knock-down via antisense oligonucleotide (ASO) were assessed in peripheral blood mononuclear cells (PBMCs) from 25 neurologically healthy controls (NHCs) and age- and sex-matched FTD- GRN patients, as well as peritoneal macrophages (pMacs) from progranulin-deficient ( Grn -/- ) and B6 mice. Lysosomal function, antigen presentation and MHC-II processing and recycling were assessed, as well as cytokine release and transcription. Results We demonstrate here that ASO-mediated knockdown of GPNMB increases lysosomal burden and cytokine secretion in FTD-GRN carrier and neurologically healthy controls (NHCs) monocytes. ASO-mediated knockdown of GPNMB in Grn -deficient macrophages decreased lysosomal pan-cathepsin activity and protein degradation. In addition, ASO-mediated knockdown of GPNMB increased MHC-II surface expression, which was driven by decreased MHC-II uptake and recycling, in macrophages from Grn -deficient females. Finally, ASO-mediated knockdown of GPNMB dysregulated IFNγ-stimulated cytokine transcription and secretion by mouse macrophages due to the absence of regulatory actions of the GPNMB extracellular fragment (ECF). Conclusions Our data herein reveals that GPNMB has a regulatory effect on multiple immune effector functions, including capping inflammation and immune responses in myeloid cells via secretion of its ECF. Therefore, in progranulin-deficient states, the drastic upregulation in GPNMB transcript and protein may represent a compensatory mechanism to preserve lysosomal function in myeloid cells. These novel findings indicate that targeted depletion in FTD- GRN would not be a rational therapeutic strategy because it is likely to dysregulate important immune cell effector functions.
Collapse
|
5
|
Cook AK, Greathouse KM, Manuel PN, Cooper NH, Eberhardt JM, Freeman CD, Weber AJ, Herskowitz JH, Arrant AE. Dendritic spine head diameter is reduced in the prefrontal cortex of progranulin haploinsufficient mice. Mol Brain 2024; 17:33. [PMID: 38840181 PMCID: PMC11155153 DOI: 10.1186/s13041-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 06/07/2024] Open
Abstract
Loss-of-function mutations in the progranulin (GRN) gene are an autosomal dominant cause of Frontotemporal Dementia (FTD). These mutations typically result in haploinsufficiency of the progranulin protein. Grn+/- mice provide a model for progranulin haploinsufficiency and develop FTD-like behavioral abnormalities by 9-10 months of age. In previous work, we demonstrated that Grn+/- mice develop a low dominance phenotype in the tube test that is associated with reduced dendritic arborization of layer II/III pyramidal neurons in the prelimbic region of the medial prefrontal cortex (mPFC), a region key for social dominance behavior in the tube test assay. In this study, we investigated whether progranulin haploinsufficiency induced changes in dendritic spine density and morphology. Individual layer II/III pyramidal neurons in the prelimbic mPFC of 9-10 month old wild-type or Grn+/- mice were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and 3D reconstruction for morphometry analysis. Dendritic spine density in Grn+/- mice was comparable to wild-type littermates, but the apical dendrites in Grn+/- mice had a shift in the proportion of spine types, with fewer stubby spines and more thin spines. Additionally, apical dendrites of Grn+/- mice had longer spines and smaller thin spine head diameter in comparison to wild-type littermates. These changes in spine morphology may contribute to altered circuit-level activity and social dominance deficits in Grn+/- mice.
Collapse
Affiliation(s)
- Anna K Cook
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phaedra N Manuel
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Noelle H Cooper
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Juliana M Eberhardt
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Audrey J Weber
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Arrant
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Smith DM, Aggarwal G, Niehoff ML, Jones SA, Banerjee S, Farr SA, Nguyen AD. Biochemical, biomarker, and behavioral characterization of the GrnR493X mouse model of frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.27.542495. [PMID: 37398305 PMCID: PMC10312473 DOI: 10.1101/2023.05.27.542495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.
Collapse
Affiliation(s)
- Denise M. Smith
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Geetika Aggarwal
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Michael L. Niehoff
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Spencer A. Jones
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Subhashis Banerjee
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| | - Susan A. Farr
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
- Veterans Affairs Medical Center, United States of America
| | - Andrew D. Nguyen
- Saint Louis University School of Medicine, Department of Internal Medicine, Division of Geriatric Medicine, United States of America
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, United States of America
- Saint Louis University, Institute for Translational Neuroscience, United States of America
| |
Collapse
|
7
|
Gillett DA, Wallings RL, Uriarte Huarte O, Tansey MG. Progranulin and GPNMB: interactions in endo-lysosome function and inflammation in neurodegenerative disease. J Neuroinflammation 2023; 20:286. [PMID: 38037070 PMCID: PMC10688479 DOI: 10.1186/s12974-023-02965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Alterations in progranulin (PGRN) expression are associated with multiple neurodegenerative diseases (NDs), including frontotemporal dementia (FTD), Alzheimer's disease (AD), Parkinson's disease (PD), and lysosomal storage disorders (LSDs). Recently, the loss of PGRN was shown to result in endo-lysosomal system dysfunction and an age-dependent increase in the expression of another protein associated with NDs, glycoprotein non-metastatic B (GPNMB). MAIN BODY It is unclear what role GPNMB plays in the context of PGRN insufficiency and how they interact and contribute to the development or progression of NDs. This review focuses on the interplay between these two critical proteins within the context of endo-lysosomal health, immune function, and inflammation in their contribution to NDs. SHORT CONCLUSION PGRN and GPNMB are interrelated proteins that regulate disease-relevant processes and may have value as therapeutic targets to delay disease progression or extend therapeutic windows.
Collapse
Affiliation(s)
- Drew A Gillett
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Oihane Uriarte Huarte
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Center for Translational Research in Neurodegenerative Disease (CTRND), University of Florida, Gainesville, FL, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
8
|
Life B, Petkau TL, Cruz GNF, Navarro-Delgado EI, Shen N, Korthauer K, Leavitt BR. FTD-associated behavioural and transcriptomic abnormalities in 'humanized' progranulin-deficient mice: A novel model for progranulin-associated FTD. Neurobiol Dis 2023; 182:106138. [PMID: 37105261 DOI: 10.1016/j.nbd.2023.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is an early onset dementia characterized by neuropathology and behavioural changes. A common genetic cause of FTD is haploinsufficiency of the gene progranulin (GRN). Mouse models of progranulin deficiency have provided insight into progranulin neurobiology, but the description of phenotypes with preclinical relevance has been limited in the currently available heterozygous progranulin-null mice. The identification of robust and reproducible FTD-associated behavioural, neuropathological, and biochemical phenotypes in progranulin deficient mice is a critical step in the preclinical development of therapies for FTD. In this work, we report the generation of a novel, 'humanized' mouse model of progranulin deficiency that expresses a single, targeted copy of human GRN in the absence of mouse progranulin. We also report the in-depth, longitudinal characterization of humanized progranulin-deficient mice and heterozygous progranulin-null mice over 18 months. Our analysis yielded several novel progranulin-dependent physiological and behavioural phenotypes, including increased marble burying, open field hyperactivity, and thalamic microgliosis in both models. RNAseq analysis of cortical tissue revealed an overlapping profile of transcriptomic dysfunction. Further transcriptomic analysis offers new insights into progranulin neurobiology. In sum, we have identified several consistent phenotypes in two independent mouse models of progranulin deficiency that are expected to be useful endpoints in the development of therapies for progranulin-deficient FTD. Furthermore, the presence of the human progranulin gene in the humanized progranulin-deficient mice will expedite the development of clinically translatable gene therapy strategies.
Collapse
Affiliation(s)
- Benjamin Life
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Giuliano N F Cruz
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Erick I Navarro-Delgado
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ning Shen
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Keegan Korthauer
- BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Department of Statistics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 0B3, Canada; BC Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver, BC V6T 2B5, Canada; Center for Brain Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Gnörich J, Reifschneider A, Wind K, Zatcepin A, Kunte ST, Beumers P, Bartos LM, Wiedemann T, Grosch M, Xiang X, Fard MK, Ruch F, Werner G, Koehler M, Slemann L, Hummel S, Briel N, Blume T, Shi Y, Biechele G, Beyer L, Eckenweber F, Scheifele M, Bartenstein P, Albert NL, Herms J, Tahirovic S, Haass C, Capell A, Ziegler S, Brendel M. Depletion and activation of microglia impact metabolic connectivity of the mouse brain. J Neuroinflammation 2023; 20:47. [PMID: 36829182 PMCID: PMC9951492 DOI: 10.1186/s12974-023-02735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/13/2023] [Indexed: 02/26/2023] Open
Abstract
AIM We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.
Collapse
Affiliation(s)
- Johannes Gnörich
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Anika Reifschneider
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wind
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Artem Zatcepin
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian T. Kunte
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Philipp Beumers
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Laura M. Bartos
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Thomas Wiedemann
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Grosch
- grid.5252.00000 0004 1936 973XGerman Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xianyuan Xiang
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.9227.e0000000119573309CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Maryam K. Fard
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Francois Ruch
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Georg Werner
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mara Koehler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Luna Slemann
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Selina Hummel
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Nils Briel
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Blume
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Yuan Shi
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gloria Biechele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Leonie Beyer
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Florian Eckenweber
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Maximilian Scheifele
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Peter Bartenstein
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nathalie L. Albert
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany
| | - Jochen Herms
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XCenter for Neuropathology and Prion Research, Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Christian Haass
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany ,grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anja Capell
- grid.5252.00000 0004 1936 973XMetabolic Biochemistry, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sibylle Ziegler
- grid.5252.00000 0004 1936 973XDepartment of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Marchioninistrasse 15, 81377, Munich, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
10
|
Wang J, Lai S, Zhou T, Xia Z, Li W, Sha W, Liu J, Chen Y. Progranulin from different gliocytes in the nucleus accumbens exerts distinct roles in FTD- and neuroinflammation-induced depression-like behaviors. J Neuroinflammation 2022; 19:318. [PMID: 36581897 PMCID: PMC9798954 DOI: 10.1186/s12974-022-02684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Neuroinflammation in the nucleus accumbens (NAc) is well known to influence the progression of depression. However, the molecular mechanisms triggering NAc neuroinflammation in depression have not been fully elucidated. Progranulin (PGRN) is a multifunctional growth factor that is linked to the innate immune response and inflammation, and PGRN plays a key role in neurodegenerative diseases such as frontotemporal dementia (FTD). Here, the purpose of this study was to validate whether PGRN was involved in the NAc neuroinflammation-promoted depressive-like phenotype. METHODS A NAc neuroinflammation-relevant depression-like model was established using wild-type (WT) and PGRN-knockout (KO) mice after NAc injection with lipopolysaccharide (LPS), and various behavioral tests related to cognition, social recognition, depression and anxiety were performed with WT and PGRNKO mice with or without NAc immune challenge. RT‒PCR, ELISA, western blotting and immunofluorescence staining were used to determine the expression and function of PGRN in the neuroinflammatory reaction in the NAc after LPS challenge. The morphology of neurons in the NAc from WT and PGRNKO mice under conditions of NAc neuroinflammation was analyzed using Golgi-Cox staining, followed by Sholl analyses. The potential signaling pathways involved in NAc neuroinflammation in PGRNKO mice were investigated by western blotting. RESULTS Under normal conditions, PGRN deficiency induced FTD-like behaviors in mice and astrocyte activation in the NAc, promoted the release of the inflammatory cytokines interleukin (IL)-6 and IL-10 and increased dendritic complexity and synaptic protein BDNF levels in the NAc. However, NAc neuroinflammation enhanced PGRN expression, which was located in astrocytes and microglia within the NAc, and PGRN deficiency in mice alleviated NAc neuroinflammation-elicited depression-like behaviors, seemingly inhibiting astrocyte- and microglia-related inflammatory reactions and neuroplasticity complexity in the NAc via the p38 and nuclear factor of kappa (NF-κB) signaling pathways present in the NAc after neuroinflammation. CONCLUSIONS Our results suggest that PGRN exerts distinct function on different behaviors, showing protective roles in the FTD-like behavior and detrimental effects on the neuroinflammation-related depression-like behavior, resulting from mediating astrocyte and microglial functions from the NAc in different status.
Collapse
Affiliation(s)
- Jing Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Simin Lai
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Ting Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Zhihao Xia
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Weina Li
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Wenqi Sha
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China
| | - Jingjie Liu
- Department of Neurology, The Second Affiliated Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
11
|
Zheng X, Mi T, Wang R, Zhang Z, Li W, Zhao J, Yang P, Xia H, Mao Q. Progranulin deficiency promotes persistent neuroinflammation and causes regional pathology in the hippocampus following traumatic brain injury. Glia 2022; 70:1317-1336. [PMID: 35362178 DOI: 10.1002/glia.24175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/07/2022]
Abstract
Traumatic brain injury (TBI) can be progressive and can lead to the development of a long-term complication termed chronic traumatic encephalopathy. The mechanisms underlying the progressive changes are still unknown; however, studies have suggested that microglia-mediated neuroinflammation in response to TBI may play a fundamental role. This study aimed to determine whether progranulin (PGRN), a major modulator of microglial activity, plays a role in the progressive damage following TBI. PGRN-deficient and wild-type mice were subjected to controlled cortical impact and were observed neuropathologically after 3 days, 7 days, and 5 months. Compared to sham and wild-type mice, the PGRN-deficient mice showed overall stronger microgliosis and astrocytosis. The astrocytosis involved broader areas than the microgliosis and was more prominent in the basal ganglia, hippocampus, and internal capsule in PGRN-deficient mice. Ongoing neuronal death was uniquely observed in the hippocampal CA3 region of PGRN-deficient mice at 5 months after TBI, accompanying the regional chronic microgliosis and astrocytosis involving the CA3 commissural pathway. In addition, there was M1 microglial polarization in the pericontusional area with activated TLR4/MyD88/NF-κB signaling; however, the hippocampus showed only mild M1 polarization 7 days after TBI. Lastly, Morris water maze tests showed PGRN-deficient mice had poorer spatial learning and memory 5 months after TBI than wild-type or sham mice. The data indicated the PGRN deficiency caused TBI progression by promoting persistent microgliosis with microglial polarization and astrocytosis, as well as regional pathology in the hippocampus. The study suggests that PGRN should be evaluated as a potential therapy for TBI.
Collapse
Affiliation(s)
- Xiaojing Zheng
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Tiantian Mi
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Rong Wang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zihan Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Wenyan Li
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Junli Zhao
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Peiyan Yang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
12
|
Rhinn H, Tatton N, McCaughey S, Kurnellas M, Rosenthal A. Progranulin as a therapeutic target in neurodegenerative diseases. Trends Pharmacol Sci 2022; 43:641-652. [PMID: 35039149 DOI: 10.1016/j.tips.2021.11.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023]
Abstract
Progranulin (PGRN, encoded by the GRN gene) plays a key role in the development, survival, function, and maintenance of neurons and microglia in the mammalian brain. It regulates lysosomal biogenesis, inflammation, repair, stress response, and aging. GRN loss-of-function mutations cause neuronal ceroid lipofuscinosis or frontotemporal dementia-GRN (FTD-GRN) in a gene dosage-dependent manner. Mutations that reduce PGRN levels increase the risk for developing Alzheimer's disease, Parkinson's disease, and limbic-predominant age-related transactivation response DNA-binding protein 43 encephalopathy, as well as exacerbate the progression of amyotrophic lateral sclerosis (ALS) and FTD caused by the hexanucleotide repeat expansion in the C9orf72 gene. Elevating and/or restoring PGRN levels is an attractive therapeutic strategy and is being investigated for neurodegenerative diseases through multiple mechanisms of action.
Collapse
Affiliation(s)
- Herve Rhinn
- Alector, Inc., South San Francisco, CA 94080, USA
| | | | | | | | | |
Collapse
|
13
|
Wang XM, Zeng P, Fang YY, Zhang T, Tian Q. Progranulin in neurodegenerative dementia. J Neurochem 2021; 158:119-137. [PMID: 33930186 DOI: 10.1111/jnc.15378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023]
Abstract
Long-term or severe lack of protective factors is important in the pathogenesis of neurodegenerative dementia. Progranulin (PGRN), a neurotrophic factor expressed mainly in neurons and microglia, has various neuroprotective effects such as anti-inflammatory effects, promoting neuron survival and neurite growth, and participating in normal lysosomal function. Mutations in the PGRN gene (GRN) have been found in several neurodegenerative dementias, including frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Herein, PGRN deficiency and PGRN hydrolytic products (GRNs) in the pathological changes related to dementia, including aggregation of tau and TAR DNA-binding protein 43 (TDP-43), amyloid-β (Aβ) overproduction, neuroinflammation, lysosomal dysfunction, neuronal death, and synaptic deficit have been summarized. Furthermore, as some therapeutic strategies targeting PGRN have been developed in various models, we highlighted PGRN as a potential anti-neurodegeneration target in dementia.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Yan Fang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, China
| | - Teng Zhang
- Department of Neurology, Shanxian Central Hospital, The Affiliated Huxi Hospital of Jining Medical College, Heze, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Disease of National Education Ministry, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis 2021; 153:105314. [PMID: 33636385 DOI: 10.1016/j.nbd.2021.105314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
The granulin protein (also known as, and hereafter referred to as, progranulin) is a secreted glycoprotein that contributes to overall brain health. Heterozygous loss-of-function mutations in the gene encoding the progranulin protein (Granulin Precursor, GRN) are a common cause of familial frontotemporal dementia (FTD). Gene therapy approaches that aim to increase progranulin expression from a single wild-type allele, an area of active investigation for the potential treatment of GRN-dependent FTD, will benefit from the availability of a mouse model that expresses a genomic copy of the human GRN gene. Here we report the development and characterization of a novel mouse model that expresses the entire human GRN gene in its native genomic context as a single copy inserted into a defined locus (Hprt) in the mouse genome. We show that human and mouse progranulin are expressed in a similar tissue-specific pattern, suggesting that the two genes are regulated by similar mechanisms. Human progranulin rescues a phenotype characteristic of progranulin-null mice, the exaggerated and early deposition of the aging pigment lipofuscin in the brain, indicating that the two proteins are functionally similar. Longitudinal behavioural and neuropathological analyses revealed no significant differences between wild-type and human progranulin-overexpressing mice up to 18 months of age, providing evidence that long-term increase of progranulin levels is well tolerated in mice. Finally, we demonstrate that human progranulin expression can be increased in the brain using an antisense oligonucleotide that inhibits a known GRN-regulating micro-RNA, demonstrating that the transgene is responsive to potential gene therapy drugs. Human progranulin-expressing mice represent a novel and valuable tool to expedite the development of progranulin-modulating therapeutics.
Collapse
|
15
|
Moore SJ, Murphy GG, Cazares VA. Turning strains into strengths for understanding psychiatric disorders. Mol Psychiatry 2020; 25:3164-3177. [PMID: 32404949 PMCID: PMC7666068 DOI: 10.1038/s41380-020-0772-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022]
Abstract
There is a paucity in the development of new mechanistic insights and therapeutic approaches for treating psychiatric disease. One of the major challenges is reflected in the growing consensus that risk for these diseases is not determined by a single gene, but rather is polygenic, arising from the action and interaction of multiple genes. Canonically, experimental models in mice have been designed to ascertain the relative contribution of a single gene to a disease by systematic manipulation (e.g., mutation or deletion) of a known candidate gene. Because these studies have been largely carried out using inbred isogenic mouse strains, in which there is no (or very little) genetic diversity among subjects, it is difficult to identify unique allelic variants, gene modifiers, and epigenetic factors that strongly affect the nature and severity of these diseases. Here, we review various methods that take advantage of existing genetic diversity or that increase genetic variance in mouse models to (1) strengthen conclusions of single-gene function; (2) model diversity among human populations; and (3) dissect complex phenotypes that arise from the actions of multiple genes.
Collapse
Affiliation(s)
- Shannon J Moore
- Michigan Neuroscience Institute & Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Geoffrey G Murphy
- Michigan Neuroscience Institute & Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| | - Victor A Cazares
- Michigan Neuroscience Institute & Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Werner G, Damme M, Schludi M, Gnörich J, Wind K, Fellerer K, Wefers B, Wurst W, Edbauer D, Brendel M, Haass C, Capell A. Loss of TMEM106B potentiates lysosomal and FTLD-like pathology in progranulin-deficient mice. EMBO Rep 2020; 21:e50241. [PMID: 32929860 PMCID: PMC7534633 DOI: 10.15252/embr.202050241] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in TMEM106B encoding the lysosomal type II transmembrane protein 106B increase the risk for frontotemporal lobar degeneration (FTLD) of GRN (progranulin gene) mutation carriers. Currently, it is unclear if progranulin (PGRN) and TMEM106B are synergistically linked and if a gain or a loss of function of TMEM106B is responsible for the increased disease risk of patients with GRN haploinsufficiency. We therefore compare behavioral abnormalities, gene expression patterns, lysosomal activity, and TDP‐43 pathology in single and double knockout animals. Grn−/−/Tmem106b−/− mice show a strongly reduced life span and massive motor deficits. Gene expression analysis reveals an upregulation of molecular signature characteristic for disease‐associated microglia and autophagy. Dysregulation of maturation of lysosomal proteins as well as an accumulation of ubiquitinated proteins and widespread p62 deposition suggest that proteostasis is impaired. Moreover, while single Grn−/− knockouts only occasionally show TDP‐43 pathology, the double knockout mice exhibit deposition of phosphorylated TDP‐43. Thus, a loss of function of TMEM106B may enhance the risk for GRN‐associated FTLD by reduced protein turnover in the lysosomal/autophagic system.
Collapse
Affiliation(s)
- Georg Werner
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Martin Schludi
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin Fellerer
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Wefers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Wolfgang Wurst
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Anja Capell
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
17
|
Zhou X, Brooks M, Jiang P, Koga S, Zuberi AR, Baker MC, Parsons TM, Castanedes-Casey M, Phillips V, Librero AL, Kurti A, Fryer JD, Bu G, Lutz C, Dickson DW, Rademakers R. Loss of Tmem106b exacerbates FTLD pathologies and causes motor deficits in progranulin-deficient mice. EMBO Rep 2020; 21:e50197. [PMID: 32761777 DOI: 10.15252/embr.202050197] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 11/09/2022] Open
Abstract
Progranulin (PGRN) and transmembrane protein 106B (TMEM106B) are important lysosomal proteins implicated in frontotemporal lobar degeneration (FTLD) and other neurodegenerative disorders. Loss-of-function mutations in progranulin (GRN) are a common cause of FTLD, while TMEM106B variants have been shown to act as disease modifiers in FTLD. Overexpression of TMEM106B leads to lysosomal dysfunction, while loss of Tmem106b ameliorates lysosomal and FTLD-related pathologies in young Grn-/- mice, suggesting that lowering TMEM106B might be an attractive strategy for therapeutic treatment of FTLD-GRN. Here, we generate and characterize older Tmem106b-/- Grn-/- double knockout mice, which unexpectedly show severe motor deficits and spinal cord motor neuron and myelin loss, leading to paralysis and premature death at 11-12 months. Compared to Grn-/- , Tmem106b-/- Grn-/- mice have exacerbated FTLD-related pathologies, including microgliosis, astrogliosis, ubiquitin, and phospho-Tdp43 inclusions, as well as worsening of lysosomal and autophagic deficits. Our findings confirm a functional interaction between Tmem106b and Pgrn and underscore the need to rethink whether modulating TMEM106B levels is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mieu Brooks
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Peizhou Jiang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Aamir R Zuberi
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, Bar Harbor, ME, USA
| | - Matthew C Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - John D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Cathleen Lutz
- The Rare and Orphan Disease Center, JAX Center for Precision Genetics, Bar Harbor, ME, USA
| | | | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Applied and Translational Neurogenomics, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
18
|
Growth hormone rescue cerebellar degeneration in SCA3 transgenic mice. Biochem Biophys Res Commun 2020; 529:467-473. [PMID: 32703453 DOI: 10.1016/j.bbrc.2020.05.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a fatal neurodegenerative disease for which no identified effective treatment or prevention methods exist. However, low-dose growth hormone (GH) therapy, as a potential off-label use, may deter the progress of SCA3. SCA3 15Q and SCA3 84Q transgenic mice harboring a YAC transgene that expresses the human ATXN3 gene with a pathogenic expanded 15 CAG repeat and 84 CAG repeat motif, respectively, were recruited. SCA3 15Q transgenic mice were considered as the healthy control group, whereas low-dose GH- and PBS-treated SCA3 84Q transgenic mice were considered as the study and sham groups, respectively. The SCA3 84Q transgenic mice were administered intraperitoneal injections of GH or PBS weekly from the postnatal age of 9 months-18 months. After 9 months of GH treatment in the SCA3 84Q transgenic mice, all locomotor functions including rotarod test, behavior box analysis were restored. The GH-treated SCA3 84Q transgenic mice revealed more preserved Purkinje cells/cerebellar cortex and less ataxin-3 aggregation, DNA oxidative, cell apoptosis compared with the PBS-treated SCA3 84Q transgenic mice. GH therapy may be one of the potential off-labeled using in the alleviation of SCA3 progression.
Collapse
|
19
|
Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M, Cash DM, Thomas D, Greaves CV, Woollacott IO, Shafei R, Van Swieten JC, Moreno F, Sanchez-Valle R, Borroni B, Laforce R, Masellis M, Tartaglia MC, Graff C, Galimberti D, Rowe JB, Finger E, Synofzik M, Vandenberghe R, de Mendonca A, Tagliavini F, Santana I, Ducharme S, Butler CR, Gerhard A, Levin J, Danek A, Frisoni G, Sorbi S, Otto M, Heslegrave AJ, Zetterberg H, Rohrer JD. Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry 2020; 91:263-270. [PMID: 31937580 DOI: 10.1136/jnnp-2019-321954] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. METHODS Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. RESULTS Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. CONCLUSIONS Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.
Collapse
Affiliation(s)
- Carolin Heller
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Martha S Foiani
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Katrina Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Mollie Neason
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK.,Centre for Medical Image Computing, University College London, London, UK
| | - David Thomas
- Neuradiological Academic Unit, UCL Queen Square Institute of Neurology, London, UK
| | - Caroline V Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Ione Oc Woollacott
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - Rachelle Shafei
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | - John C Van Swieten
- Department of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, País Vasco, Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Barcelona, Spain
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire du CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Québec, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Graff
- Department of Geriatric Medicine, Karolinska University Hospital-Huddinge, Stockholm, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Fabrizio Tagliavini
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Simon Ducharme
- Department of Neurology and Neurosurgery, McGill University, Montreal, Québec, Canada
| | | | - Alex Gerhard
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| | | | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health, University of Florence, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Amanda J Heslegrave
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
| | | |
Collapse
|
20
|
Elia LP, Reisine T, Alijagic A, Finkbeiner S. Approaches to develop therapeutics to treat frontotemporal dementia. Neuropharmacology 2020; 166:107948. [PMID: 31962288 DOI: 10.1016/j.neuropharm.2020.107948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Lisa P Elia
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| | - Terry Reisine
- Independent Scientific Consultant, Santa Cruz, CA, USA
| | - Amela Alijagic
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics and Taube/Koret Center for Neurodegenerative Disease Research, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Departments of Neurology and Physiology, UCSF, San Francisco, CA, USA.
| |
Collapse
|
21
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
22
|
Gómez-Tortosa E, Baradaran-Heravi Y, González Alvarez V, Sainz MJ, Prieto-Jurczynska C, Guerrero-López R, Agüero Rabes P, Van Broeckhoven C, van der Zee J, Rábano Gutiérrez A. Presence of tau astrogliopathy in frontotemporal dementia caused by a novel Grn nonsense (Trp2*) mutation. Neurobiol Aging 2018; 76:214.e11-214.e15. [PMID: 30545478 DOI: 10.1016/j.neurobiolaging.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/13/2018] [Accepted: 11/12/2018] [Indexed: 01/25/2023]
Abstract
Frontotemporal lobar degeneration caused by GRN mutations is mainly associated with a TDP-43 type A proteinopathy. We present a family with autosomal dominant frontotemporal lobar degeneration caused by a novel GRN nonsense mutation (c.5G>A: p.Trp2*) in which the proband's brain also showed prominent glial tauopathy consistent with an aging-related tau astrogliopathy. Astrocytic tauopathy, 4R(+) and 3R(-) immunoreactive, was characterized by thorn-shaped astrocytes present in subpial, subependymal, and perivascular areas, and in gray matter; plus granular or fuzzy tau immunoreactivity in astrocytic processes in gray matter, either solitary or clustered in different regions. Some neurofibrillary tangles and pretangles, both 3R and 4R(+), were present in the medial temporal lobe but did not exhibit the characteristic distribution of Alzheimer's type pathology. This 4R-tau aging-related tau astrogliopathy is likely a co-occurring pathology, although an interaction between progranulin and tau proteins within the neurodegenerative process should not be ruled out.
Collapse
Affiliation(s)
| | - Yalda Baradaran-Heravi
- Neurodegenerative Brain Diseases group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Rosa Guerrero-López
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD) and CIBERER Madrid, Spain
| | | | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Julie van der Zee
- Neurodegenerative Brain Diseases group, Center for Molecular Neurology, VIB, Antwerp, Belgium; Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | | | | |
Collapse
|
23
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
24
|
Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis. J Neurosci 2018; 38:2341-2358. [PMID: 29378861 DOI: 10.1523/jneurosci.3081-17.2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/27/2017] [Accepted: 01/20/2018] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV-Grn) to deliver progranulin in Grn-/- mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV-Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV-Grn reduced lipofuscinosis in several brain regions of Grn-/- mice. AAV-Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV-Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV-Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn-/- mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations.SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin (GRN) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal ceroid lipofuscinosis (NCL). Here, we address several mechanistic questions about the potential of progranulin gene therapy for these disorders. GRN mutation carriers with NCL or FTD exhibit lipofuscinosis and Grn-/- mouse models develop a similar pathology. AAV-mediated progranulin delivery reduced lipofuscinosis in Grn-/- mice even after the onset of pathology. AAV delivered progranulin only to neurons, not microglia, but improved microgliosis in several brain regions, indicating cross talk between neuronal and microglial pathology. Its beneficial effects were sortilin independent. AAV-derived progranulin was delivered to lysosomes and corrected lysosomal abnormalities. These data provide in vivo support for the efficacy of progranulin-boosting therapies for FTD and NCL.
Collapse
|
25
|
Petkau TL, Kosior N, de Asis K, Connolly C, Leavitt BR. Selective depletion of microglial progranulin in mice is not sufficient to cause neuronal ceroid lipofuscinosis or neuroinflammation. J Neuroinflammation 2017; 14:225. [PMID: 29149899 PMCID: PMC5693502 DOI: 10.1186/s12974-017-1000-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
Background Progranulin deficiency due to heterozygous null mutations in the GRN gene are a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations are thought to be a rare cause of neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout (Grn-null) mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. In the brain, progranulin is predominantly expressed in neurons and microglia, and previously, we demonstrated that neuronal-specific depletion of progranulin does not recapitulate the neuropathological phenotype of Grn-null mice. In this study, we evaluated whether selective depletion of progranulin expression in myeloid-lineage cells, including microglia, causes NCL-like neuropathology or neuroinflammation in mice. Methods We generated mice with progranulin depleted in myeloid-lineage cells by crossing mice homozygous for a floxed progranulin allele to mice expressing Cre recombinase under control of the LyzM promotor (Lyz-cKO). Results Progranulin expression was reduced by approximately 50–70% in isolated microglia compared to WT levels. Lyz-cKO mice aged to 12 months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for many of these measures in Grn-null animals. To evaluate the functional effect of reduced progranulin expression in isolated microglia, primary cultures were stimulated with controlled standard endotoxin and cytokine release was measured. While Grn-null microglia display a hyper-inflammatory phenotype, Lyz-cKO and WT microglia secreted similar levels of inflammatory cytokines. Conclusion We conclude that progranulin expression from either microglia or neurons is sufficient to prevent the development of NCL-like neuropathology in mice. Furthermore, microglia that are deficient for progranulin expression but isolated from a progranulin-rich environment have a normal inflammatory profile. Our results suggest that progranulin acts, at least partly, in a non-cell autonomous manner in the brain. Electronic supplementary material The online version of this article (10.1186/s12974-017-1000-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Terri L Petkau
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Natalia Kosior
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Kathleen de Asis
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Colúm Connolly
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, and Children's and Women's Hospital, 980 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Division of Neurology, Department of Medicine, University of British Columbia Hospital, S 192 - 2211 Wesbrook Mall, Vancouver, BC, V6T 2B5, Canada. .,Brain Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
26
|
Longhena F, Zaltieri M, Grigoletto J, Faustini G, La Via L, Ghidoni R, Benussi L, Missale C, Spano P, Bellucci A. Depletion of Progranulin Reduces GluN2B-Containing NMDA Receptor Density, Tau Phosphorylation, and Dendritic Arborization in Mouse Primary Cortical Neurons. J Pharmacol Exp Ther 2017; 363:164-175. [PMID: 28899992 DOI: 10.1124/jpet.117.242164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Loss-of-function mutations in the progranulin (PGRN) gene are a common cause of familial frontotemporal lobar degeneration (FTLD). This age-related neurodegenerative disorder, characterized by brain atrophy in the frontal and temporal lobes and such typical symptoms as cognitive and memory impairment, profound behavioral abnormalities, and personality changes is thought to be related to connectome dysfunctions. Recently, PGRN reduction has been found to induce a behavioral phenotype reminiscent of FTLD symptoms in mice by affecting neuron spine density and morphology, suggesting that the protein can influence neuronal structural plasticity. Here, we evaluated whether a partial haploinsufficiency-like PGRN depletion, achieved by using RNA interference in primary mouse cortical neurons, could modulate GluN2B-containing N-methyl-d-aspartate (NMDA) receptors and tau phosphorylation, which are crucially involved in the regulation of the structural plasticity of these cells. In addition, we studied the effect of PGRN decrease on neuronal cell arborization both in the presence and absence of GluN2B-containing NMDA receptor stimulation. We found that PGRN decline diminished GluN2B-containing NMDA receptor levels and density as well as NMDA-dependent tau phosphorylation. These alterations were accompanied by a marked drop in neuronal arborization that was prevented by an acute GluN2B-containing NMDA receptor stimulation. Our findings support that PGRN decrease, resulting from pathogenic mutations, might compromise the trophism of cortical neurons by affecting GluN2B-contaning NMDA receptors. These mechanisms might be implicated in the pathogenesis of FTLD.
Collapse
Affiliation(s)
- Francesca Longhena
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Michela Zaltieri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Jessica Grigoletto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Roberta Ghidoni
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Luisa Benussi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - PierFranco Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (F.L, M.Z., J.G., G.F., L.L.V., C.M., P.S., A.B.) and Molecular Markers Laboratory, IRCCS Instituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy (R.G., L.B.)
| |
Collapse
|
27
|
Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice. Neurobiol Dis 2017. [DOI: 10.1016/j.nbd.2017.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
28
|
Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, Schmitz K, Tegeder I, Schäfer MKE. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia 2016; 65:278-292. [DOI: 10.1002/glia.23091] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Lutz Menzel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Lisa Kleber
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Carina Friedrich
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Regina Hummel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Larissa Dangel
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| | - Katja Schmitz
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Irmgard Tegeder
- Clinical Pharmacology; Goethe-University Hospital; Frankfurt Germany
| | - Michael K. E. Schäfer
- Department of Anesthesiology; University Medical Center, Johannes Gutenberg-University, Mainz; Germany
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University, Mainz; Germany
| |
Collapse
|