1
|
Muneeb M, Abdallah DM, El-Abhar HS, Wadie W, Ahmed KA, Abul Fadl YS. Antiplatelet therapy as a novel approach in Parkinson's disease: Repositioning Ticagrelor to alleviate rotenone-induced parkinsonism via modulation of ER stress, apoptosis, and autophagy. Neuropharmacology 2025; 269:110346. [PMID: 39914616 DOI: 10.1016/j.neuropharm.2025.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025]
Abstract
Cardiovascular diseases, such as myocardial infarction, ischemic stroke, and coronary heart ailments have been closely associated with Parkinson's disease (PD). Despite this established link, the potential neuroprotective impact of the potent antiplatelet agent ticagrelor (Tica) remains unexplored against PD. Thus, we hypothesized that Tica could be repurposed as a therapeutic agent against PD. Rotenone experimental model was adopted in Wistar male rats by administering rotenone subcutaneously on alternate days during a 21-day experimental period and treating a subset of rats with Tica orally for the last 11 consecutive days. The administration of Tica improved motor function (open field test, hanging wire test) and restored striatal histological features. Additionally, Tica opposed the rotenone effect and markedly obliterated the striatal α-synuclein content but enhanced the protein expression of tyrosine hydroxylase and dopamine content. On the molecular level, Tica inhibited striatal endoplasmic reticulum stress (ERS) as evidenced by the downregulation of the ER-resident transmembrane sensor inositol-requiring enzyme 1 alpha and its downstream molecular targets, TNF receptor-associated factor 2 and c-Jun N-terminal kinase, along with a reduction in caspase-3 activity. On the other hand, Tica augmented the autophagy machinery by upregulating the autophagosome markers Beclin-1 and light chain 3-II, while inhibiting the content of cathepsin D. Therefore, the current study is the first to accentuate the neuroprotective potential of Tica in a rat model of PD via modulating the crosstalk between ERS, apoptosis, and autophagy to represent a potential novel therapeutic candidate for managing PD, particularly in patients with or prone to cardiovascular diseases.
Collapse
Affiliation(s)
- Muhammad Muneeb
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 90th Str., 11835, Cairo, Egypt
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562 Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 90th Str., 11835, Cairo, Egypt.
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Κasr El-Aini Str., 11562 Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yasmine S Abul Fadl
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt (FUE), 90th Str., 11835, Cairo, Egypt
| |
Collapse
|
2
|
Anandan A, Ak MU, Saika S, Shibu MA, Viswanadha VP. Shikonin Ameliorates Rotenone-Induced Neurotoxicity Through Inhibition of Apoptosis via IGF-1R/PI3K/AKT Pathway in a Parkinson's Disease-Associated SH-SY5Y Cell Model. Mol Neurobiol 2025:10.1007/s12035-025-04810-y. [PMID: 40056341 DOI: 10.1007/s12035-025-04810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Parkinson's disease (PD) is the second most common multifactorial neurodegenerative disorder caused by several genetics and environmental factors. Rotenone a pesticide with mitotoxicity causes cytosolic proteopathy resulting in PD-associated apoptosis and modulations in cell survival pathways. Shikonin, a naphthoquinone compound extracted from the Lithospermum erythrorhizon herb, was investigated in this study for its neuroprotective properties and underlying molecular mechanisms against rotenone-induced cellular apoptosis and survival in SH-SY5Y cells. The molecular docking analysis of apoptotic proteins against Shikonin revealed that they showed a binding affinity with BAD. Shikonin effectively countered the loss of cell viability induced by rotenone, rescued annexin-positive apoptotic cells, and dose-dependently suppressed the generation of reactive oxygen species. Pre-treatment with Shikonin prevented the morphological aberrations like shrining of neurites leading to decreased LDH leakage and NO release caused due to the rotenone treatment. The α-synucleinopathy is a prime hallmark of PD, Shikonin mitigated the rotenone-induced aggregation of α-synuclein as seen from confocal imaging. Furthermore, Shikonin treatment reversed the rotenone-induced excessive production of reactive oxygen species, activation of caspases (-8 and -3), and mitochondrial dysfunction, as evidenced by the restoration of mitochondrial membrane potential and cellular ATP levels. Western blot and qPCR analysis revealed that Shikonin heightened the IGF1R/PI3K/AKT signaling associated with cell survival while concurrently downregulating rotenone-induced intrinsic apoptotic pathways. These findings underscore Shikonin as a promising candidate to prevent the onset of pesticide-induced Parkinson's disease and potentially other oxidative stress-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Aparna Anandan
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Mohammed Unais Ak
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Surovi Saika
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Marthandam Asokan Shibu
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India
| | - Vijaya Padma Viswanadha
- Translational Research Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, 641046, India.
| |
Collapse
|
3
|
Hasanabadi AJ, Beirami E, Kamaei M, Esfahani DE. Effect of imipramine on memory, adult neurogenesis, neuroinflammation, and mitochondrial biogenesis in a rat model of alzheimer's disease. Exp Gerontol 2024; 194:112517. [PMID: 38986856 DOI: 10.1016/j.exger.2024.112517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/04/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline and memory loss. Imipramine, a tricyclic antidepressant, has potent anti-inflammatory and antioxidant properties in the central nervous system. The aim of this study was to investigate the neuroprotective effects of imipramine on streptozotocin (STZ)-induced memory impairment. Male Wistar rats received an intracerebroventricular injection of STZ (3 mg/kg, 3 μl/ventricle) using the stereotaxic apparatus. The Morris water maze and passive avoidance tests were used to evaluate cognitive functions. 24 h after the STZ injection, imipramine was administered intraperitoneally at doses of 10 or 20 mg/kg for 14 consecutive days. The mRNA and protein levels of neurotrophic factors (BDNF and GDNF) and pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) were measured in the hippocampus using real-time PCR and ELISA techniques, respectively. In addition, real-time PCR was used to evaluate the mRNA levels of markers associated with neurogenesis (Nestin, DCX, and Ki67) and mitochondrial biogenesis (PGC-1α, NRF-1, and TFAM). The results showed that imipramine, especially at a dose of 20 mg/kg, effectively improved STZ-induced memory impairment. This improvement was associated with an increase in neurogenesis and neurotrophic factors and a decrease in neuroinflammation and mitochondrial biogenesis dysfunction. Based on these results, imipramine appears to be a promising therapeutic option for improving cognitive functions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
| | - Elmira Beirami
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Mehdi Kamaei
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Delaram Eslimi Esfahani
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| |
Collapse
|
4
|
Ali NH, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, AlAseeri AA, Alruwaili M, Saad HM, Batiha GE. BDNF/TrkB activators in Parkinson's disease: A new therapeutic strategy. J Cell Mol Med 2024; 28:e18368. [PMID: 38752280 PMCID: PMC11096816 DOI: 10.1111/jcmm.18368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.
Collapse
Affiliation(s)
- Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineMustansiriyah UniversityBaghdadIraq
| | | | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh UniversityMohaliPunjabIndia
- Department of Research and DevelopmentFunogenAthensGreece
- Department of Research and DevelopmentAFNP MedWienAustria
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Ali Abdullah AlAseeri
- Department of Internal MedicineCollege of Medicine, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
5
|
Khidr HY, Hassan NF, Abdelrahman SS, El-Ansary MR, El-Yamany MF, Rabie MA. Formoterol attenuated mitochondrial dysfunction in rotenone-induced Parkinson's disease in a rat model: Role of PINK-1/PARKIN and PI3K/Akt/CREB/BDNF/TrKB axis. Int Immunopharmacol 2023; 125:111207. [PMID: 37956489 DOI: 10.1016/j.intimp.2023.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
β2-adrenoreceptors (β2AR have been identified recently as regulators of the α-synuclein gene (SNCA), one of the key milieus endorsed in injury of dopamine neurons in Parkinson's disease (PD). Accumulation of α-synuclein leads to mitochondrial dysfunction via downregulation of mitophagy proteins (PINK-1 and PARKIN) and inhibition of mitochondria biogenesis (PGC-1α) along with an increase in the master inflammatory regulator NF-κB p65 production that provokes neurodegeneration and diminishes neuroprotective signaling pathway (PI3k/Akt/CREB/BDNF). Recently, formoterol exhibited a promising neuroprotective effect against neurodegenerative conditions associated with brain inflammation. Therefore, the present investigation aims to unveil the possible neuroprotective activity of formoterol, β2AR agonist, against rotenone-induced PD in rats. Rats received rotenone (1.5 mg/kg; s.c.) every other day for 3 weeks and cured with formoterol (25 μg/kg/day; i.p.) 1 hr. after rotenone administration, starting from day 11. Formoterol treatment succeeded in upregulating β2-adrenoreceptor expression in PD rats and preserving the function and integrity of dopaminergic neurons as witnessed by enhancement of muscular performance in tests, open field, grip strength-meter, and Rotarod, besides the increment in substantia nigra and striatal tyrosine hydroxylase immunoexpression. In parallel, formoterol boosted mitophagy by activation of PINK1 and PARKIN and preserved mitochondrial membrane potential. Additionally, formoterol stimulated the neuro-survival signaling axis via stimulation of PI3k/pS473-Akt/pS133-CREB/BDNF cascade to attenuate neuronal loss. Noteworthy formoterol reduces neuro-inflammatory status by decreasing NFκBp65 immunoexpression and TNF-α content. Finally, formoterol's potential as a stimulant therapy of mitophagy via the PINK1/PARKIN axis and regulation of mitochondrial biogenesis by increasing PGC-1α to maintain mitochondrial homeostasis along with stimulation of PI3k/Akt/CREB/BDNF axis.
Collapse
Affiliation(s)
- Haneen Y Khidr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - S S Abdelrahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt.
| |
Collapse
|
6
|
Khalaf MM, El-Sayed MM, Kandeil MA, Ahmed S. A novel protective modality against rotenone-induced Parkinson's disease: A pre-clinical study with dulaglutide. Int Immunopharmacol 2023; 119:110170. [PMID: 37075673 DOI: 10.1016/j.intimp.2023.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Parkinson's disease (PD) drugs treat symptoms without inhibiting progression. In recent years, finding novel therapeutic medications that can halt disease progression has become crucial. Research on antidiabetic medicines is valuable in these investigations because of the parallels between the two disorders. Using Rotenone (ROT), a frequently used PD model, the possible neuroprotective benefits of Dulaglutide (DUL), an extended-acting glucagon-like peptide-1 agonist, were considered. Twenty-four rats were randomly assigned to 4 groups to complete this experiment (n = 6). 0.2 ml of the vehicle (1 ml of dimethyl sulfoxide (DMSO) diluted in sunflower oil) was administered to the standard control group subcutaneously with a 48-hour pause. The second group was administered ROT 2.5 mg/kg SC every 48 h for 20 days as a positive control group. The third and fourth groups were administered one dose of DUL each week (0.05 and 0.1 mg/kg SC, respectively) to their regimens. The mice received ROT (2.5 mg/kg SC) every 48 h for 20 days after receiving DUL for the initial dose (96 h later). The current study focused on the DUL's ability to preserve usual behavioral function, enhance antioxidant and anti-inflammatory pathways, inhibit alpha-synuclein (α-syn), and increase parkin levels. It is concluded that DUL acts as an antioxidant and an anti-inflammatory to protect against ROT-induced PD. However, more studies are required to support this finding.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mahmoud M El-Sayed
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Mohamed A Kandeil
- Biochemistry Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Sanaa Ahmed
- Pharmacology Department, Faculty of Medicine, Sohag University, Sohag 82524, Egypt.
| |
Collapse
|
7
|
Essam RM, Kandil EA. p-CREB and p-DARPP-32 orchestrating the modulatory role of cAMP/PKA signaling pathway enhanced by Roflumilast in rotenone-induced Parkinson's disease in rats. Chem Biol Interact 2023; 372:110366. [PMID: 36706892 DOI: 10.1016/j.cbi.2023.110366] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Recently, phosphodiesterases (PDEs) have gained great attention due to their implication in Parkinson's disease (PD) pathogenesis. Noteworthy, the PDE4 enzyme is highly expressed in the striatum and selectively degrades cyclic adenosine monophosphate (cAMP). The cAMP was shown to play a vital role in dopamine (DA) signaling besides maintaining the plasticity of dopaminergic neurons as well as protecting them from inflammation and oxidative stress-mediated death. Thus, PDE4 inhibition could be a promising strategy for treating PD. Accordingly, the present study investigated the neuroprotective efficacy of roflumilast, a PDE4 inhibitor, in abolishing neurodegeneration in the rotenone-induced PD model. Rotenone (1.5 mg/kg, s.c) was delivered via 11 injections on matching days. Roflumilast treatment (0.5 mg/kg, p.o) was given daily after the fifth rotenone injection. Roflumilast significantly reversed rotenone's adverse effects, as it enhanced trophic factors expression and abrogated inflammation as well as oxidative stress. Thus, promoting dopaminergic neuronal plasticity and survival, as well as restoring striatal DA level and function, which resulted in enhanced motor performance. The beneficial effect of roflumilast was mediated through inhibition of striatal PDE4 with consequent activation of cAMP-dependent protein kinase A (PKA) signaling pathways, including the cAMP response element-binding protein (CREB) pathway and dopamine and cAMP-regulated phosphoprotein 32,000 (DARPP-32) pathway that is essential for maintaining dopaminergic function. Therefore, the present work sheds light on the substantial neuroprotective potential of roflumilast in treating PD through the activation of the cAMP/PKA cascade.
Collapse
Affiliation(s)
- Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Biology, School of Pharmacy, Newgiza University, First 6th of October, Giza, 3296121, Egypt.
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
8
|
Motawi TK, Al-Kady RH, Senousy MA, Abdelraouf SM. Repaglinide Elicits a Neuroprotective Effect in Rotenone-Induced Parkinson's Disease in Rats: Emphasis on Targeting the DREAM-ER Stress BiP/ATF6/CHOP Trajectory and Activation of Mitophagy. ACS Chem Neurosci 2023; 14:180-194. [PMID: 36538285 DOI: 10.1021/acschemneuro.2c00656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Repaglinide, a meglitinide insulinotropic antidiabetic, was unraveled as a promising therapeutic agent for Huntington's disease by targeting the neuronal calcium sensor downstream regulatory element antagonist modulator (DREAM). However, its mechanistic profile in Parkinson's disease (PD) especially its impact on endoplasmic reticulum (ER) stress, mitophagy, and their interconnections is poorly elucidated. This study is the first to examine the neuroprotective potential of repaglinide in rotenone-induced PD in rats by exploring its effects on DREAM, BiP/ATF6/CHOP ER stress pathway, apoptosis, mitophagy/autophagy, oxidative stress, astrogliosis/microgliosis, and neuroinflammation. Male Wistar rats were randomly assigned to four groups: groups 1 and 2 received the vehicle or repaglinide (0.5 mg/kg/day p.o). Groups 3 and 4 received rotenone (1.5 mg/kg/48 h s.c) for 21 days; meanwhile, group 4 additionally received repaglinide (0.5 mg/kg/day p.o) for 15 days starting from day 11. Interestingly, repaglinide lessened striatal ER stress and apoptosis as evidenced by reduced BiP/ATF6/CHOP and caspase-3 levels; however, it augmented striatal DREAM mRNA expression. Repaglinide triggered the expression of the mitophagy marker PINK1 and the autophagy protein beclin1 and alleviated striatal oxidative stress through escalating catalase activity. In addition, repaglinide halted astrocyte/microglial activation and neuroinflammation in the striatum as expressed by reducing glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor protein 1 (Iba1) immunostaining and decreasing interleukin (IL)-6 and IL-1β levels. Repaglinide restored striatum morphological alterations, intact neuron count, and neurobehavioral motor performance in rats examined by an open field, grip strength, and footprint gait analysis. Conclusively, repaglinide modulates the DREAM-ER stress BiP/ATF6/CHOP cascade, increases mitophagy/autophagy, inhibits apoptosis, and lessens oxidative stress, astrocyte/microglial activation, and neuroinflammation in PD.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Biochemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo 44971, Egypt
| |
Collapse
|
9
|
Chaperone-Dependent Mechanisms as a Pharmacological Target for Neuroprotection. Int J Mol Sci 2023; 24:ijms24010823. [PMID: 36614266 PMCID: PMC9820882 DOI: 10.3390/ijms24010823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Modern pharmacotherapy of neurodegenerative diseases is predominantly symptomatic and does not allow vicious circles causing disease development to break. Protein misfolding is considered the most important pathogenetic factor of neurodegenerative diseases. Physiological mechanisms related to the function of chaperones, which contribute to the restoration of native conformation of functionally important proteins, evolved evolutionarily. These mechanisms can be considered promising for pharmacological regulation. Therefore, the aim of this review was to analyze the mechanisms of endoplasmic reticulum stress (ER stress) and unfolded protein response (UPR) in the pathogenesis of neurodegenerative diseases. Data on BiP and Sigma1R chaperones in clinical and experimental studies of Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease are presented. The possibility of neuroprotective effect dependent on Sigma1R ligand activation in these diseases is also demonstrated. The interaction between Sigma1R and BiP-associated signaling in the neuroprotection is discussed. The performed analysis suggests the feasibility of pharmacological regulation of chaperone function, possibility of ligand activation of Sigma1R in order to achieve a neuroprotective effect, and the need for further studies of the conjugation of cellular mechanisms controlled by Sigma1R and BiP chaperones.
Collapse
|
10
|
Altharawi A, Alharthy KM, Althurwi HN, Albaqami FF, Alzarea SI, Al-Abbasi FA, Nadeem MS, Kazmi I. Europinidin Inhibits Rotenone-Activated Parkinson's Disease in Rodents by Decreasing Lipid Peroxidation and Inflammatory Cytokines Pathways. Molecules 2022; 27:molecules27217159. [PMID: 36363986 PMCID: PMC9658735 DOI: 10.3390/molecules27217159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson’s disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson’s paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1β and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| | - Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan N. Althurwi
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faisal F. Albaqami
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.A.); (I.K.); Tel.: +966-543-970-731 (I.K.)
| |
Collapse
|
11
|
Russo M, De Rosa MA, Calisi D, Consoli S, Evangelista G, Dono F, Santilli M, Granzotto A, Onofrj M, Sensi SL. Migraine Pharmacological Treatment and Cognitive Impairment: Risks and Benefits. Int J Mol Sci 2022; 23:11418. [PMID: 36232720 PMCID: PMC9569564 DOI: 10.3390/ijms231911418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Migraine is a common neurological disorder impairing the quality of life of patients. The condition requires, as an acute or prophylactic line of intervention, the frequent use of drugs acting on the central nervous system (CNS). The long-term impact of these medications on cognition and neurodegeneration has never been consistently assessed. The paper reviews pharmacological migraine treatments and discusses their biological and clinical effects on the CNS. The different anti-migraine drugs show distinct profiles concerning neurodegeneration and the risk of cognitive deficits. These features should be carefully evaluated when prescribing a pharmacological treatment as many migraineurs are of scholar or working age and their performances may be affected by drug misuse. Thus, a reconsideration of therapy guidelines is warranted. Furthermore, since conflicting results have emerged in the relationship between migraine and dementia, future studies must consider present and past pharmacological regimens as potential confounding factors.
Collapse
Affiliation(s)
- Mirella Russo
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo A. De Rosa
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Dario Calisi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano Consoli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giacomo Evangelista
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fedele Dono
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Matteo Santilli
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Alberto Granzotto
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Onofrj
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefano L. Sensi
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- CAST—Center for Advanced Studies and Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Institute for Mind Impairments and Neurological Disorders-iMIND, University of California, Irvine, Irvine, CA 92697, USA
- ITAB—Institute of Advanced Biomedical Technology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
Asfour HZ, Alhakamy NA, Ahmed OAA, Fahmy UA, El-moselhy MA, Rizg WY, Alghaith AF, Eid BG, Abdel-Naim AB. Amitriptyline-Based Biodegradable PEG-PLGA Self-Assembled Nanoparticles Accelerate Cutaneous Wound Healing in Diabetic Rats. Pharmaceutics 2022; 14:1792. [PMID: 36145540 PMCID: PMC9503070 DOI: 10.3390/pharmaceutics14091792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the healing activity of amitriptyline (Amitrip) in rat diabetic wounds. A nanoformula of the drug was prepared as Amitrip-based biodegradable PEG-PLGA self-assembled nanoparticles (Amitrip-NPs) with a mean particle size of 67.4 nm. An in vivo investigation was conducted to evaluate the wound-healing process of Amitrip-NPs in streptozotocin-induced diabetic rats. Wound contraction was accelerated in rats treated with Amitrip-NPs. Histological examinations confirmed these findings, with expedited remodeling and collagen deposition in the NPs-treated animals. The formula showed anti-inflammatory activities as demonstrated by inhibition of interleukin-6 (IL-6) expression and tumor necrosis factor-α (TNF-α) expression, as well as enhanced expression of interleukin-10 (IL-10). In addition, Amitrip-NPs protected against malondialdehyde (MDA) buildup and superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic exhaustion. The pro-collagen activity of Amitrip-NPs was confirmed by the observed enhancement of hydroxyproline wounded skin content, upregulation of Col 1A1 mRNA expression and immune expression of collagen type IV expression. Further, Amitrip-NPs significantly increased expression transforming growth factor-β1 (TGF-β1), vascular endothelial growth factor-A (VEGF-A), platelet-derived growth factor-B (PDGF-B) and cluster of differentiation 31 (CD31). In conclusion, the developed Amitrip-NPs expedited wound healing in diabetic rats. This involves anti-inflammatory, antioxidant, pro-collagen and angiogenic activities of the prepared NPs. This opens the gate for evaluating the usefulness of other structurally related tricyclic antidepressants in diabetic wounds.
Collapse
Affiliation(s)
- Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed A. El-moselhy
- Department of Clinical Pharmacy and Pharmacology, Ibn Sina National College for Medical Studies, Jeddah 22413, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adel F. Alghaith
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Lin CL, Zheng TL, Tsou SH, Chang HM, Tseng LH, Yu CH, Hung CS, Ho YJ. Amitriptyline Improves Cognitive and Neuronal Function in a Rat Model that Mimics Dementia with Lewy Bodies. Behav Brain Res 2022; 435:114035. [PMID: 35926562 DOI: 10.1016/j.bbr.2022.114035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Dementia with Lewy bodies (DLB), a highly prevalent neurodegenerative disorder, causes motor and cognitive deficits. The main pathophysiologies of DLB are glutamate excitotoxicity and accumulation of Lewy bodies comprising α-synuclein (α-syn) and β-amyloid (Aβ). Amitriptyline (AMI) promotes expression of glutamate transporter-1 and glutamate reuptake. In this study, we measured the effects of AMI on behavioral and neuronal function in a DLB rat model. We used rivastigmine (RIVA) as a positive control. To establish the DLB rat model, male Wistar rats were stereotaxically injected with recombinant adenoassociated viral vector with the SNCA gene (10μg/10μL) and Aβ (5μg/2.5μL) into the left ventricle and prefrontal cortex, respectively. AMI (10mg/kg/day, i.p.), RIVA (2mg/kg/day, i.p.), or saline was injected intraperitoneally after surgery. From the 29th day, behavioral tests were performed to evaluate the motor and cognitive functions of the rats. Immunohistochemical staining was used to assess neuronal changes. We measured the α-syn level, number of newborn cells, and neuronal density in the hippocampus and in the nigrostriatal dopaminergic system. The DLB group exhibited deficit in object recognition. Both the AMI and RIVA treatments reversed these deficits. Histologically, the DLB rats exhibited cell loss in the substantia nigra pars compacta and in the hippocampal CA1 area. AMI reduced this cell loss, but RIVA did not. In addition, the DLB rats exhibited a lower number of newborn cells and higher α-syn levels in the dentate gyrus (DG). AMI did not affect α-syn accumulation but recovered neurogenesis in the DG of the rats, whereas RIVA reversed the α-syn accumulation but did not affect neurogenesis in the rats. We suggest that AMI may have potential for use in the treatment of DLB.
Collapse
Affiliation(s)
- Chih-Li Lin
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Ting-Lin Zheng
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Sing-Hua Tsou
- Institute of Medicine, Department of Medical Research, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC
| | - Hung-Ming Chang
- Department of Anantomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Li-Ho Tseng
- Graduate School of Environmental Management, Tajen University, Pingtung 907, Taiwan, ROC
| | - Ching-Han Yu
- Department of Pysiology, School of Medicine, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| | - Ching-Sui Hung
- Occupational Safety and Health Office, Taipei City Hospital, Taipei 10581, Taiwan, ROC.
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University Hospital, Chung Shan Medical University, Taichung 40201, Taiwan, ROC.
| |
Collapse
|
14
|
Motawi TK, Al-Kady RH, Abdelraouf SM, Senousy MA. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chem Biol Interact 2022; 362:110002. [PMID: 35654124 DOI: 10.1016/j.cbi.2022.110002] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022]
Abstract
Empagliflozin, a selective sodium-glucose co-transporter-2 inhibitor, has been demonstrated to provide additional non-glycemic benefits, including neuroprotection. Endoplasmic reticulum (ER) stress is a key player in neurodegeneration and occurs at the crossroads of other pathologic mechanisms; however, its role in the pathogenesis of Parkinson's disease (PD) is still elusive. miR-211-5p regulates neuronal differentiation and viability and was predicted to target CHOP, a downstream effector in the ER stress pathway. For the first time, this study investigated the possible neuroprotective effect of empagliflozin in a rotenone-induced rat model of PD from the perspective of ER stress. Rotenone (1.5 mg/kg) was administered subcutaneously every other day for 3 weeks. Meanwhile, the treated group received empagliflozin 10 mg/kg/day orally for 15 consecutive days post-PD induction. On the molecular level, the ER stress pathway components; GRP78, total and phosphorylated PERK, eIF2α and CHOP, along with miR-211-5p expression were upregulated in the striatum of rotenone-injected rats. Concurrently, the untreated rats showed elevated striatal α-synuclein levels along with diminished autophagy and the proteasome system as evidenced by reduced beclin-1 protein and ELF2/NERF mRNA expression levels. The rotenone-induced striatal oxidative stress and neuroinflammation were expressed by reduced catalase activity and elevated interleukin (IL)-1β levels. miR-211-5p was positively correlated with PERK/eIF2α/CHOP, IL-1β and α-synuclein, while negatively correlated with ELF2/NERF, beclin-1 and catalase activity. Empagliflozin treatment showed a restorative effect on all biochemical alterations and improved the motor function of rats tested by open field, grip strength and footprint gait analysis. In the histopathological examination, empagliflozin increased the intact neuron count and attenuated astrogliosis and microgliosis by reducing the glial fibrillary protein and ionized calcium-binding adaptor protein 1 immunostaining. Conclusively, these results emphasize the neurotherapeutic impact of empagliflozin in PD by moderating the GRP78/PERK/eIF2α/CHOP ER stress pathway, downregulating miR-211-5p, resolving oxidative stress, lessening astrocyte/microglial activation and neuroinflammation, along with augmenting autophagy.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
15
|
Nemutlu Samur D, Akçay G, Yıldırım S, Özkan A, Çeker T, Derin N, Tanrıöver G, Aslan M, Ağar A, Özbey G. Vortioxetine ameliorates motor and cognitive impairments in the rotenone-induced Parkinson's disease via targeting TLR-2 mediated neuroinflammation. Neuropharmacology 2022; 208:108977. [PMID: 35092748 DOI: 10.1016/j.neuropharm.2022.108977] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is characterized by motor and non-motor symptoms associated with dopaminergic and non-dopaminergic injury. Vortioxetine is a multimodal serotonergic antidepressant with potential procognitive effects. This study aimed to explore the effects of vortioxetine on motor functions, spatial learning and memory, and depression-like behavior in the rotenone-induced rat model of PD. Male Sprague-Dawley rats were daily administered with the rotenone (2 mg·kg-1, s.c.) and/or vortioxetine (10 mg·kg-1, s.c.) for 28 days. Motor functions (rotarod, catalepsy, open-field), depression-like behaviors (sucrose preference test), anxiety (elevated plus maze), and spatial learning and memory abilities (novel object recognition and Morris water maze) were evaluated in behavioral tests. Then immunohistochemical, neurochemical, and biochemical analysis on specific brain areas were performed. Vortioxetine treatment markedly reduced rotenone-induced neurodegeneration, improved motor and cognitive dysfunction, decreased depression-like behaviors without affecting anxiety-like parameters. Vortioxetine also restored the impaired inflammatory response and affected neurotransmitter levels in brain tissues. Interestingly, vortioxetine was thought to trigger a sort of dysfunction in basal ganglia as evidenced by increased Toll-like receptor-2 (TLR-2) and decreased TH immunoreactivity only in substantia nigra tissue of PD rats compared to the control group. The present study indicates that vortioxetine has beneficial effects on motor dysfunction as well as cognitive impairment associated with neurodegeneration in the rotenone-induced PD model. Possible mechanisms underlying these beneficial effects cover TLR-2 inhibition and neurochemical restoration of vortioxetine.
Collapse
Affiliation(s)
- Dilara Nemutlu Samur
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| | - Güven Akçay
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Sendegül Yıldırım
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Ayşe Özkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Tuğçe Çeker
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Narin Derin
- Akdeniz University, Faculty of Medicine, Department of Biophysics, 07058, Antalya, Turkey
| | - Gamze Tanrıöver
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, 07058, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07058, Antalya, Turkey
| | - Aysel Ağar
- Akdeniz University, Faculty of Medicine, Department of Physiology, 07058, Antalya, Turkey
| | - Gül Özbey
- Akdeniz University, Faculty of Medicine, Department of Pharmacology, 07058, Antalya, Turkey.
| |
Collapse
|
16
|
Wang QQ, Cheng L, Wu BY, Xu P, Qiu HY, Wang B, Yan XJ, Chen SL. Short-course antidepressant therapy reduces discontinuation syndrome while maintaining treatment efficacy in patients with refractory functional dyspepsia: A randomized controlled trial. Front Psychiatry 2022; 13:1063722. [PMID: 36569610 PMCID: PMC9772443 DOI: 10.3389/fpsyt.2022.1063722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Long-course (LC) antidepressants for the treatment of disorders of gut-brain interaction, such as refractory functional dyspepsia (rFD), pose patients at risk of antidepressant discontinuation syndrome (ADS). Short-course (SC) therapy of rapid-acting antidepressant may reduce discontinuation syndromes while maintaining efficacy for dyspeptic symptoms. However, the evidence-based research is lacking. This study aims to determine whether SC therapy with antidepressants could decrease the risk of ADS with comparable treatment efficacy to LC therapy in rFD. METHODS This randomized clinical trial with rFD patients was conducted at a tertiary hospital in China. Participants (N = 240) were randomly allocated to receive flupentixol-melitracen (FM) plus omeprazole therapy for 2 (SC group) or 4 (LC group) weeks, respectively. Scores for Leeds Dyspepsia Questionnaire (LDQ), Generalized Anxiety Disorder-7 (GAD-7) and Patient Health Questionnaire-9 for Depression (PHQ-9) were assessed at baseline and every 2 weeks, ending at 4 weeks after treatment. ADS was assessed after drug cessation. Medication possession ratio (MPR) for FM was calculated. RESULTS The severity and incidence of ADS of patients in SC group were significantly lower than those in LC group (0.60 ± 0.62 vs. 1.71 ± 1.58 and 3.64 vs. 39.45%; both P < 0.0001). The MPR values for FM were significantly higher in patients of SC group than in LC group (P < 0.0001). Scores for LDQ, GAD-7 and PHQ-9 decreased in patients of both groups, and the symptom improvement in SC group was comparable to that in LC group after treatment. CONCLUSIONS Compared to 4-week FM therapy, the 2-week FM therapy reduces the risk of ADS with non-inferior treatment efficacy in patients with rFD. CLINICAL TRIAL REGISTRATION Clinical trials.gov, identifier NCT05099913.
Collapse
Affiliation(s)
- Qian-Qian Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Cheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bi-Yu Wu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Yi Qiu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiu-Juan Yan
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Liang Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Abdelkader NF, Ibrahim SM, Moustafa PE, Elbaset MA. Inosine mitigated diabetic peripheral neuropathy via modulating GLO1/AGEs/RAGE/NF-κB/Nrf2 and TGF-β/PKC/TRPV1 signaling pathways. Biomed Pharmacother 2021; 145:112395. [PMID: 34775239 DOI: 10.1016/j.biopha.2021.112395] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Inosine is a dietary supplement that is widely used for managing numerous central neurological disorders. Interestingly, recent experimental investigation of inosine revealed its potential to promote peripheral neuroprotection after sciatic nerve injury. Such investigation has guided the focus of the current study to expose the potential of inosine in mitigating diabetic peripheral neuropathy (DPN) in rats and to study the possible underlying signaling pathways. Adult male Wistar rats were arbitrarily distributed into four groups. In the first group, animals received saline daily for 15 days whereas rats of the remaining groups received a single injection of both nicotinamide (50 mg/Kg/i.p.) and streptozotocin (52.5 mg/Kg/i.p.) for DPN induction. Afterward, inosine (10 mg/Kg/p.o.) was administered to two groups, either alone or in combination with caffeine (3.75 mg/Kg/p.o.), an adenosine receptor antagonist. As a result, inosine showed a hypoglycemic effect, restored the sciatic nerve histological structure, enhanced myelination, modulated conduction velocities and maintained behavioral responses. Furthermore, inosine increased GLO1, reduced AGE/RAGE axis and oxidative stress which in turn, downregulated NF-κB p65 and its phosphorylated form in the sciatic nerves. Inosine enhanced Nrf2 expression and its downstream molecule HO-1, resulting in increased CAT and SOD along with lowered MDA. Moreover, pain was relieved due to suppression of PKC and TRPV1 expression, which ultimately lead to reduced SP and TGF-β. The potential effects of inosine were nearly blocked by caffeine administration; this emphasizes the role of adenosine receptors in inosine-mediated neuroprotective effects. In conclusion, inosine alleviated hyperglycemia-induced DPN via modulating GLO1/AGE/RAGE/NF-κB p65/Nrf2 and TGF-β/PKC/TRPV1/SP pathways.
Collapse
Affiliation(s)
- Noha F Abdelkader
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt.
| | - Sherehan M Ibrahim
- Cairo University, Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo, Egypt
| | - Passant E Moustafa
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| | - Marawan A Elbaset
- National Research center, Medical Division, Department of Pharmacology, Cairo, Egypt
| |
Collapse
|
18
|
Osca-Verdegal R, Beltrán-García J, Pallardó FV, García-Giménez JL. Role of microRNAs As Biomarkers in Sepsis-Associated Encephalopathy. Mol Neurobiol 2021; 58:4682-4693. [PMID: 34160774 PMCID: PMC8220114 DOI: 10.1007/s12035-021-02445-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a neurological complication of sepsis, characterized by brain dysfunction without any direct central nervous system infection. The diagnosis of SAE is currently a challenge. In fact, problems in making a diagnosis of SAE cause a great variability of incidence that can reach up to 70% of all septic patients. Even more, despite SAE is the most frequent type of encephalopathy occurring in critically ill patients, the molecular mechanisms that guide its progression have not been completely elucidated. On the other hand, miRNAs have proven to be excellent biomarkers for both diagnosis and prognosis, especially in brain pathologies because of their small size they can cross the blood–brain barrier easier than other biomolecules. The identification of new miRNAs as biomarkers may help to improve SAE diagnosis and prognosis and also to design new therapies for this clinical manifestation that produces diffuse cerebral dysfunction. This review is focused on SAE physiopathology and the need to have clear criteria for its diagnosis; thus, this work postulates some miRNA candidates to be used for SAE biomarkers because of their role in both, neurological damage and sepsis.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
| | - Jesús Beltrán-García
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Federico V. Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| |
Collapse
|
19
|
Javadpour P, Askari S, Rashidi FS, Dargahi L, Ahmadiani A, Ghasemi R. Imipramine alleviates memory impairment and hippocampal apoptosis in STZ-induced sporadic Alzheimer's rat model: Possible contribution of MAPKs and insulin signaling. Behav Brain Res 2021; 408:113260. [PMID: 33775777 DOI: 10.1016/j.bbr.2021.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease, associated with several pathophysiological complaints. Impaired insulin signaling in the brain, is one of the important characteristic features of AD which is accompanied by cognitive deficits. According to the multifactorial and complicated pathology of AD, no modifying therapy has been approved yet. Imipramine is a kind of tricyclic antidepressant with reported anti-inflammatory and anti-oxidant effects in the brain. There are controversial studies about the effect of this drug on spatial memory. This study investigates the effect of imipramine on streptozotocin (STZ) induced memory impairment in rats. Pursuing this objective, rats were treated with imipramine 10 or 20 mg/kg i.p. once a day for 14 days. 24 h after the last injection, memory function was evaluated by the Morris water maze (MWM) test in 4 consecutive days. Then, hippocampi were removed and the activity of caspase-3, mitogen activated protein kinases (MAPKs) family and inhibitory phosphorylation of insulin receptor substrate-1 (IRS-1ser307) were analyzed using Western blotting. Results showed that imipramine prevents memory impairment in STZ induced rats and this improvement was accompanied with an increase in ERK activity, reduction of caspase-3 and JNK activity, as well as partial restoration of P38 and IRS-1 activity. In conclusion, our study demonstrated that at least some members of the MAPK family are involved in the neuroprotective effect of imipramine.
Collapse
Affiliation(s)
- Pegah Javadpour
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Askari
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Isolongifolene mitigates rotenone-induced dopamine depletion and motor deficits through anti-oxidative and anti-apoptotic effects in a rat model of Parkinson's disease. J Chem Neuroanat 2020; 112:101890. [PMID: 33220427 DOI: 10.1016/j.jchemneu.2020.101890] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/04/2020] [Accepted: 11/14/2020] [Indexed: 11/23/2022]
Abstract
Isolongifolene (ILF), a novel tricyclic sesquiterpene compound isolated from the Indian herb Murraya koenigii (M. koenigii), has been previously demonstrated to have a neuroprotective effect against rotenone-induced oxidative stress, mitochondrial dysfunction, and apoptosis in in vitro model. However, these neuroprotective and anti-apoptotic effects of ILF are not well understood and must be further investigated to elucidate the underlying molecular mechanism of ILF in animal experiments. The objective of this study was to evaluate the neuroprotective effect of ILF on motor impediments, neurochemical variables, anti-oxidative indices, and apoptotic protein expression in a rotenone-induced rat model of Parkinson's disease (PD). PD was induced in male albino Wistar rats via injection of 2.5 mg/kg rotenone for 4 weeks. Rotenone produces PD-like effects by promoting mitochondrial complex I inhibition and microglial activation properties. The protective effect of three different doses of ILF 5, 10 and 20 mg/kg were evaluated for spontaneous locomotion, rotarod performance, and striatal dopamine (DA) content. The results showed that ILF dose-dependently ameliorated the rotenone-induced striatal DA loss and motor impairment from 10 mg/kg. Therefore, we selected 10 mg/kg as the ILF dose for further investigation. Chronic administration of rotenone caused PD-related pathological processes like oxidative stress, and produced a significant decrease in tyrosine hydroxylase (TH), DA transporter (DAT), Vesicular monoamine transporter 2 (VMAT2), and a significant upregulated in α-synuclein and apoptotic protein expression of Bax, Cyt-C and caspases -3, -8 and -9 as well as by decreasing Bcl2 expression. Treatment with ILF 10 mg/kg mitigated oxidative stress in rotenone-treated rats. Furthermore, ILF dramatically alleviated rotenone-induced toxicity and cell death by increasing TH, DAT and VMAT2 expression and reducing the upregulation of α-synuclein, Bax, Cyt-C, caspases -3, -8 and -9. Together, our results confirm that ILF's protective effect against rotenone-induced PD is mediated through anti-oxidant and anti-apoptotic properties. However, further in-depth investigations on ILF's anti-inflammatory and mitochondrial protective abilities are needed to establish ILF as a potential drug candidate for the treatment of Parkinson's disease.
Collapse
|
21
|
Zhang H, Chen X, Zheng T, Lin M, Chen P, Liao Y, Gong C, Gao F, Zheng X. Amitriptyline Protects Against Lidocaine-induced Neurotoxicity in SH-SY5Y Cells via Inhibition of BDNF-mediated Autophagy. Neurotox Res 2020; 39:133-145. [PMID: 33156513 DOI: 10.1007/s12640-020-00299-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Amitriptyline (AMI) is a traditional tricyclic antidepressant that has been proven to exhibit neuroprotective effects in various neurological disorders. However, the underlying mechanism by which AMI attenuates lidocaine-induced neurotoxicity remains poorly understood. Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin to neuronal development and survival in the brain, and recent studies have suggested that BDNF plays an important role in mediating lidocaine-induced neurotoxicity. The present study was performed to evaluate the protective effect of AMI against the neurotoxicity induced by lidocaine and to explore the role of BDNF-dependent autophagy in this process. The data showed that AMI pretreatment alleviated lidocaine-induced neurotoxicity, as evidenced by the restoration of cell viability, normalization of cell morphology, and reduction in the cell apoptosis index. In addition, autophagy inhibitor 3-methyladenine (3-MA) had a protective effect similar to that of AMI, but autophagy activator rapamycin eliminated the protective effect of AMI by suppressing mTOR activation. Moreover, at the molecular level, we found that AMI-mediated autophagy was involved in the expression of BDNF. The overexpression of BDNF or application of exogenous recombinant BDNF significantly suppressed autophagy and protected SH-SY5Y cells from apoptosis induced by Lido, whereas the neuroprotection of AMI was abolished by either knockdown of BDNF or use of a tropomyosin-related kinase B (TrkB) inhibitor ANA-12 in SH-SY5Y cells. Overall, our findings demonstrated that the protective effect of AMI against lidocaine-induced neurotoxicity correlated with inhibition of autophagy activity through upregulation of BDNF expression.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Ting Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Mingxue Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Cansheng Gong
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China. .,Fujian Provincial Institute of Emergency Medicine, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, People's Republic of China.
| |
Collapse
|
22
|
Amitriptyline interferes with autophagy-mediated clearance of protein aggregates via inhibiting autophagosome maturation in neuronal cells. Cell Death Dis 2020; 11:874. [PMID: 33070168 PMCID: PMC7568721 DOI: 10.1038/s41419-020-03085-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Amitriptyline is a tricyclic antidepressant commonly prescribed for major depressive disorders, as well as depressive symptoms associated with various neurological disorders. A possible correlation between the use of tricyclic antidepressants and the occurrence of Parkinson's disease has been reported, but its underlying mechanism remains unknown. The accumulation of misfolded protein aggregates has been suggested to cause cellular toxicity and has been implicated in the common pathogenesis of neurodegenerative diseases. Here, we examined the effect of amitriptyline on protein clearance and its relevant mechanisms in neuronal cells. Amitriptyline exacerbated the accumulation of abnormal aggregates in both in vitro neuronal cells and in vivo mice brain by interfering with the (1) formation of aggresome-like aggregates and (2) autophagy-mediated clearance of aggregates. Amitriptyline upregulated LC3B-II, but LC3B-II levels did not increase further in the presence of NH4Cl, which suggests that amitriptyline inhibited autophagic flux rather than autophagy induction. Amitriptyline interfered with the fusion of autophagosome and lysosome through the activation of PI3K/Akt/mTOR pathway and Beclin 1 acetylation, and regulated lysosome positioning by increasing the interaction between proteins Arl8, SKIP, and kinesin. To the best of our knowledge, we are the first to demonstrate that amitriptyline interferes with autophagic flux by regulating the autophagosome maturation during autophagy in neuronal cells. The present study could provide neurobiological clue for the possible correlation between the amitriptyline use and the risk of developing neurodegenerative diseases.
Collapse
|
23
|
Amitriptyline Downregulates Chronic Inflammatory Response to Biomaterial in Mice. Inflammation 2020; 44:580-591. [PMID: 33034827 DOI: 10.1007/s10753-020-01356-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Recent data has signaled that in addition to its therapeutic indications as antidepressant and analgesic, amitriptyline (AM) exerts anti-inflammatory effects in humans and experimental animal models of acute inflammation. We tested the hypothesis that this compound could also modulate the chronic inflammatory process induced by synthetic matrix in mice. Polyether-polyurethane sponge disks were implanted subcutaneously in 9-week-old male C57BL/6 mice. The animals received by oral gavage 5.0 mg/kg of amitriptyline for seven consecutive days in two treatment regimens. In the first series, the treatment was initiated on the day of surgery and the implants removed at day 7 post-implantation. For the assessment of the effect of amitriptyline on chronic inflammation, the treatment was initiated 7 days post-implantation and the sponge discs removed 14 after implantation. The inflammatory markers evaluated, myeloperoxidase - MPO, nitrite content, IL-6, IFN-γ, TNF-α, CXCL1 and CCL2 levels, and NF-κB transcription factor activation were reduced in implants when the treatment began 7 days post-implantation (chronic inflammation). In contrast, only mast cell number, MPO activity and activation of NF-κB pathway decreased when the treatment began soon after implantation (sub-acute inflammation) in 7-day old implants. The anti-inflammatory effects of amitriptyline described here, extend its range of actions as a potential agent able to attenuate long-term inflammatory processes.
Collapse
|
24
|
The role of KATP channel blockade and activation in the protection against neurodegeneration in the rotenone model of Parkinson's disease. Life Sci 2020; 257:118070. [DOI: 10.1016/j.lfs.2020.118070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023]
|
25
|
Gilvary C, Elkhader J, Madhukar N, Henchcliffe C, Goncalves MD, Elemento O. A machine learning and network framework to discover new indications for small molecules. PLoS Comput Biol 2020; 16:e1008098. [PMID: 32764756 PMCID: PMC7437923 DOI: 10.1371/journal.pcbi.1008098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 08/19/2020] [Accepted: 06/27/2020] [Indexed: 12/25/2022] Open
Abstract
Drug repurposing, identifying novel indications for drugs, bypasses common drug development pitfalls to ultimately deliver therapies to patients faster. However, most repurposing discoveries have been led by anecdotal observations (e.g. Viagra) or experimental-based repurposing screens, which are costly, time-consuming, and imprecise. Recently, more systematic computational approaches have been proposed, however these rely on utilizing the information from the diseases a drug is already approved to treat. This inherently limits the algorithms, making them unusable for investigational molecules. Here, we present a computational approach to drug repurposing, CATNIP, that requires only biological and chemical information of a molecule. CATNIP is trained with 2,576 diverse small molecules and uses 16 different drug similarity features, such as structural, target, or pathway based similarity. This model obtains significant predictive power (AUC = 0.841). Using our model, we created a repurposing network to identify broad scale repurposing opportunities between drug types. By exploiting this network, we identified literature-supported repurposing candidates, such as the use of systemic hormonal preparations for the treatment of respiratory illnesses. Furthermore, we demonstrated that we can use our approach to identify novel uses for defined drug classes. We found that adrenergic uptake inhibitors, specifically amitriptyline and trimipramine, could be potential therapies for Parkinson's disease. Additionally, using CATNIP, we predicted the kinase inhibitor, vandetanib, as a possible treatment for Type 2 Diabetes. Overall, this systematic approach to drug repurposing lays the groundwork to streamline future drug development efforts.
Collapse
Affiliation(s)
- Coryandar Gilvary
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
| | - Jamal Elkhader
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
| | - Neel Madhukar
- OneThree Biotech, New York, New York, United States of America
| | - Claire Henchcliffe
- Department of Neurology, Weill Cornell Medicine, New York, New York, United States of America
| | - Marcus D. Goncalves
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - Olivier Elemento
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Dept. of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, United States of America
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York, United States of America
- Tri-Institutional Training Program in Computational Biology and Medicine, New York, New York, United States of America
- OneThree Biotech, New York, New York, United States of America
- WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Zhang L, Peng X, Ai Y, Li L, Zhao S, Liu Z, Peng Q, Deng S, Huang Y, Mo Y, Huang L. Amitriptyline Reduces Sepsis-Induced Brain Damage Through TrkA Signaling Pathway. J Mol Neurosci 2020; 70:2049-2057. [PMID: 32468218 DOI: 10.1007/s12031-020-01611-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Sepsis can induce acute and chronic changes in the central nervous system termed sepsis-associated encephalopathy (SAE). Not only cognitive deficits but also anxiety, depression, and post-traumatic stress disorder are common in severe sepsis survivors. In this study, we demonstrated that amitriptyline, a classic tricyclic antidepressant, reduced sepsis-induced brain damage through the tropomyosin receptor kinase A (TrkA) signaling pathway. Amitriptyline ameliorated neuronal loss assessed by Nissl staining in a mouse cecal ligation and puncture (CLP)-induced sepsis model. Furthermore, amitriptyline reduced early gliosis assessed by immunofluorescence and late cognitive deficits assessed by the Morris water maze (MWM) test. Moreover, amitriptyline treatment attenuated oxidative stress indicated by less superoxide dismutase (SOD) and catalase (CAT) activity consumption and malondialdehyde (MDA) accumulation. Interestingly, those protective effects of amitriptyline could be abolished by GW441756, a TrkA signaling pathway inhibitor. Immunoblot directly showed that TrkA signaling pathway-associated proteins, such as Akt and GSK3β, were involved in the neuroprotective effects of amitriptyline. Thus, amitriptyline appears to be an encouraging candidate to treat cognitive deficits and depression after severe sepsis.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xiaobei Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuangpin Zhao
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhiyong Liu
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Li Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
27
|
Fahimirad B, Asghari A. The simple design of a new recyclable magnetic carbon graphite adsorbent based on 2-amino-5-mercapto-1,3,4-thiadiazole for the fast extraction of two anti-depressant drugs. NEW J CHEM 2020. [DOI: 10.1039/d0nj00053a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, an efficient magnetic nanoadsorbent, cubic SnFe2O4/graphitic carbon nitride (g-C3N4) modified by 2-amino-5-mercapto-1,3,4-thiadiazole (AMT), was synthesized.
Collapse
Affiliation(s)
| | - Alireza Asghari
- Department of Chemistry
- Semnan University
- Semnan 35195-363
- Iran
| |
Collapse
|
28
|
Tseng HC, Wang MH, Chang KC, Soung HS, Fang CH, Lin YW, Li KY, Yang CC, Tsai CC. Protective Effect of (-)Epigallocatechin-3-gallate on Rotenone-Induced Parkinsonism-like Symptoms in Rats. Neurotox Res 2019; 37:669-682. [PMID: 31811588 DOI: 10.1007/s12640-019-00143-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/29/2023]
Abstract
Rotenone (ROT)-induced neurotoxicity has been used for decades as an animal model of Parkinson's disease (PD) in humans. This model exhibits pathophysiological features similar to those reported in patients with PD, namely, striatal nitrosative and oxidative stress, mitochondrial dysfunction, and neural cytoarchitecture alteration. (-)Epigallocatechin-3-gallate (EGCG), the most abundant and potent green tea catechin, has notable anti-oxidative, anti-inflammatory, and neuroprotective effects. The objective of the present study was to investigate the potential protective effects of EGCG on ROT-induced motor and neurochemical dysfunctions in rats. Furthermore, we also aimed to study the neuroprotective mechanisms underlying these effects. ROT treatment (0.5 mg/kg s.c., 21 days) reduced body weight and induced significant motor impairments as assessed using an open-field test, rotarod test, grip strength measurement, and beam-crossing task. EGCG treatment (100 or 300 mg/kg i.p., 60 min prior to ROT administration, 21 days) prevented most of the ROT-induced motor impairments. Moreover, EGCG treatment reduced ROT-induced nitric oxide (NO) level and lipid peroxidation (LPO) production; increased the activity of succinate dehydrogenase (SDH), ATPase, and ETC enzymes and the levels of catecholamines in the striatum; and reduced the levels of neuroinflammatory and apoptotic markers. These results demonstrate the possible neuroprotective effects of EGCG against ROT-induced motor impairments, including anti-oxidatory effect, prevention of mitochondrial dysfunction, prevention of neurochemical deficiency, anti-neuroinflammatory effect, and anti-apoptotic effect. This is the first report about the neuroprotective effect of EGCG against ROT-induced motor impairments, and the above evidence provides a potential clinically relevant role for EGCG in delaying or treating human PD.
Collapse
Affiliation(s)
- Hsiang-Chien Tseng
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 11101, Taiwan, Republic of China.,School of Medicine, Fu Jen Catholic University, New Taipei City, 24205, Taiwan, Republic of China
| | - Mao-Hsien Wang
- Department of Anesthesia, En Chu Kon Hospital, Sanshia District, New Taipei City, 23702, Taiwan, Republic of China
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, 10608, Taiwan, Republic of China
| | - Hung-Sheng Soung
- Department of Psychiatry, Yuan-Shan Br. of Taipei Veteran General Hospital, Yilan County, 26604, Taiwan, Republic of China.,Department of Biomedical Engineering, National Defense Medical Center, Taipei, 11490, Taiwan, Republic of China
| | - Chih-Hsiang Fang
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan, Republic of China
| | - Yi-Wen Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan, Republic of China
| | - Keng-Yuan Li
- Institute of Biomedical Engineering, National Taiwan University, Taipei, 10051, Taiwan, Republic of China
| | - Chih-Chuan Yang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, 10449, Taiwan, Republic of China.,Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan, Republic of China
| | - Cheng-Chia Tsai
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, 10449, Taiwan, Republic of China. .,Department of Medicine, Mackay Medical College, New Taipei City, 252, Taiwan, Republic of China.
| |
Collapse
|
29
|
Zaafan MA, Abdelhamid AM, Ibrahim SM. The Protective Effect of Korean Red Ginseng Against Rotenone-Induced Parkinson's Disease in Rat Model: Modulation of Nuclear Factor-κβ and Caspase-3. Curr Pharm Biotechnol 2019; 20:588-594. [PMID: 31198107 DOI: 10.2174/1389201020666190611122747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Korean red ginseng was reported to have many biological effects like the antioxidant and the anti-inflammatory activities. Oxidative stress and neuro-inflammation play major roles in the pathogenesis of Parkinson's disease (PD). The current study aimed to investigate the protective effects of ginseng on rotenone-induced PD in rats. METHODS Rats were randomly allocated into 4 groups: normal rats, rotenone control, ginseng+rotenone and ginseng only treated rats. The severity of PD was evaluated through locomotor activity perceived in the open field test, histological examination and immunohistochemical detection of amyloid-β in brain tissues, in addition to the biochemical assessment of tyrosine hydroxylase activity in brain tissues. Moreover, the following parameters were investigated for studying the possible mechanisms of ginseng neuroprotective effect: nuclear factor-κβ (NF-κβ), tumor necrosis factor-alpha (TNF-α), caspase- 3, lipid peroxides and reduced glutathione (GSH). RESULTS Ginseng exhibited potent neuroprotective effect that was reflected upon the histopathological examination, marked improvement in the locomotor activity and through its ability to suppress the amyloid- β deposition in the cortex and striatum along with significant increase in the tyrosine hydroxylase activity. Ginseng successfully inhibited the NF-κβ inflammatory pathway in brain tissues beside the inhibition of other oxidative stress and inflammatory mediators. Furthermore, it exhibited antiapoptotic effect via the inhibition of caspase-3 expression. CONCLUSION Ginseng could be a promising treatment in PD. It can suppress dopaminergic neuron degeneration through variable mechanisms mainly via inhibition of NF-κβ pathway in addition to inhibition of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Mai A Zaafan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, MSA University, 6th of October, Egypt
| | - Amr M Abdelhamid
- Biochemistry Department, Faculty of Pharmacy, MSA University, 6th of October, Egypt
| | - Sherine M Ibrahim
- Biochemistry Department, Faculty of Pharmacy, MSA University, 6th of October, Egypt
| |
Collapse
|
30
|
Yang H, Zhuang R, Li Y, Li T, Yuan X, Lei B, Xie Y, Wang M. Cold-inducible protein RBM3 mediates hypothermic neuroprotection against neurotoxin rotenone via inhibition on MAPK signalling. J Cell Mol Med 2019; 23:7010-7020. [PMID: 31436914 PMCID: PMC6787511 DOI: 10.1111/jcmm.14588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/11/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Mild hypothermia and its key product, cold-inducible protein RBM3, possess robust neuroprotective effects against various neurotoxins. However, we previously showed that mild hypothermia fails to attenuate the neurotoxicity from MPP+ , one of typical neurotoxins related to the increasing risk of Parkinson disease (PD). To better understand the role of mild hypothermia and RBM3 in PD progression, another known PD-related neurotoxin, rotenone (ROT) was utilized in this study. Using immunoblotting, cell viability assays and TUNEL staining, we revealed that mild hypothermia (32°C) significantly reduced the apoptosis induced by ROT in human neuroblastoma SH-SY5Y cells, when compared to normothermia (37°C). Meanwhile, the overexpression of RBM3 in SH-SY5Y cells mimicked the neuroprotective effects of mild hypothermia on ROT-induced cytotoxicity. Upon ROT stimulation, MAPK signalling like p38, JNK and ERK, and AMPK and GSK-3β signalling were activated. When RBM3 was overexpressed, only the activation of p38, JNK and ERK signalling was inhibited, leaving AMPK and GSK-3β signalling unaffected. Similarly, mild hypothermia also inhibited the activation of MAPKs induced by ROT. Lastly, it was demonstrated that the MAPK (especially p38 and ERK) inhibition by their individual inhibitors significantly decreased the neurotoxicity of ROT in SH-SY5Y cells. In conclusion, these data demonstrate that RBM3 mediates mild hypothermia-related neuroprotection against ROT by inhibiting the MAPK signalling of p38, JNK and ERK.
Collapse
Affiliation(s)
- Hai‐Jie Yang
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
- Henan Key Lab of Biological PsychiatrySecond Affiliated Hospital of Xinxiang Medical UniversityXinxiangChina
| | - Rui‐Juan Zhuang
- School of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Yuan‐Bo Li
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Tian Li
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Xin Yuan
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Bing‐Bing Lei
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Yun‐Fei Xie
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| | - Mian Wang
- School of Life Science and TechnologyXinxiang Medical UniversityXinxiangChina
| |
Collapse
|
31
|
Kandil EA, Sayed RH, Ahmed LA, Abd El Fattah MA, El-Sayeh BM. Hypoxia-inducible factor 1 alpha and nuclear-related receptor 1 as targets for neuroprotection by albendazole in a rat rotenone model of Parkinson's disease. Clin Exp Pharmacol Physiol 2019; 46:1141-1150. [PMID: 31408200 DOI: 10.1111/1440-1681.13162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/30/2022]
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) and nuclear receptor related-1 (Nurr1) play pivotal roles in the development and survival of dopaminergic neurons, and deficiencies in these genes may be involved in Parkinson's disease (PD) pathogenesis. Recently, anthelminthic benzimidazoles were shown to promote HIF-1α transcription in vitro and were proposed to activate Nurr1 via their benzimidazole group. Therefore, the aim of this study was to explore the neuroprotective effects of albendazole (ABZ), an anthelminthic benzimidazole, in a rotenone model of Parkinson's disease (PD). Rotenone (1.5 mg/kg) was subcutaneously injected into rats every other day for a period of 21 days, resulting in the development of the essential features of PD. In addition to rotenone, ABZ (10 mg/kg) was administered orally starting from the 11th day. Treatment of rats with ABZ markedly mitigated rotenone-induced histological alterations in substantia nigra (SN), restored striatal dopamine (DA) level and motor functions and decreased the expression of α-synuclein (a disease marker protein). ABZ also enhanced expression of Hypoxia-inducible factor-1 alpha (HIF-1α) in the SN along with its downstream target, vascular endothelial growth factor, promoting neuronal survival. Similarly, ABZ augmented nuclear receptor related-1 (Nurr1) expression in the SN and increased transcriptional activation of Nurr1-controlled genes, which are essential for regulation of DA synthesis; additionally, expression of neurotoxic proinflammatory cytokines that induce neuronal death was suppressed. In conclusion, the present study suggests that ABZ exerts a neuroprotective effect in a rotenone-induced PD model associated with HIF-1α and Nurr1 activation and thus may be a viable candidate for treating PD.
Collapse
Affiliation(s)
- Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mai A Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bahia M El-Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Tosato M, Di Marco V. Metal Chelation Therapy and Parkinson's Disease: A Critical Review on the Thermodynamics of Complex Formation between Relevant Metal Ions and Promising or Established Drugs. Biomolecules 2019; 9:E269. [PMID: 31324037 PMCID: PMC6681387 DOI: 10.3390/biom9070269] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
The present review reports a list of approximately 800 compounds which have been used, tested or proposed for Parkinson's disease (PD) therapy in the year range 2014-2019 (April): name(s), chemical structure and references are given. Among these compounds, approximately 250 have possible or established metal-chelating properties towards Cu(II), Cu(I), Fe(III), Fe(II), Mn(II), and Zn(II), which are considered to be involved in metal dyshomeostasis during PD. Speciation information regarding the complexes formed by these ions and the 250 compounds has been collected or, if not experimentally available, has been estimated from similar molecules. Stoichiometries and stability constants of the complexes have been reported; values of the cologarithm of the concentration of free metal ion at equilibrium (pM), and of the dissociation constant Kd (both computed at pH = 7.4 and at total metal and ligand concentrations of 10-6 and 10-5 mol/L, respectively), charge and stoichiometry of the most abundant metal-ligand complexes existing at physiological conditions, have been obtained. A rigorous definition of the reported amounts is given, the possible usefulness of this data is described, and the need to characterize the metal-ligand speciation of PD drugs is underlined.
Collapse
Affiliation(s)
- Marianna Tosato
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Valerio Di Marco
- Analytical Chemistry Research Group, Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
33
|
Villamizar-Sarmiento MG, Molina-Soto EF, Guerrero J, Shibue T, Nishide H, Moreno-Villoslada I, Oyarzun-Ampuero FA. A New Methodology to Create Polymeric Nanocarriers Containing Hydrophilic Low Molecular-Weight Drugs: A Green Strategy Providing a Very High Drug Loading. Mol Pharm 2019; 16:2892-2901. [DOI: 10.1021/acs.molpharmaceut.9b00097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- María Gabriela Villamizar-Sarmiento
- Department of Sciences and Pharmaceutical Technology, University of Chile, Santiago de Chile 8380494, Chile
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110033, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
| | - Elton F. Molina-Soto
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110033, Chile
| | - Juan Guerrero
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Santiago 9170124, Chile
| | - Toshimichi Shibue
- Materials Characterization Central Laboratory; School of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiroyuki Nishide
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 165-8555, Japan
| | - Ignacio Moreno-Villoslada
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia 5110033, Chile
| | - Felipe A. Oyarzun-Ampuero
- Department of Sciences and Pharmaceutical Technology, University of Chile, Santiago de Chile 8380494, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago 8380494, Chile
| |
Collapse
|
34
|
Hedya SA, Safar MM, Bahgat AK. Hydroxychloroquine antiparkinsonian potential: Nurr1 modulation versus autophagy inhibition. Behav Brain Res 2019; 365:82-88. [PMID: 30797853 DOI: 10.1016/j.bbr.2019.02.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
The nuclear orphan receptor (Nurr1) has recently received a perceivable solicitude as a target for the therapeutic intervention against PD. Meanwhile, the dysregulation of autophagy, along with other processes is believed to contribute massively to PD pathophysiology. Hydroxychloroquine, a hydroxy derivative of chloroquine, is an antimalarial agent which is also used as an anti-rheumatic drug. The neuroprotective potential of hydroxychloroquine and chloroquine remained controversial until recently a study showed that chloroquine exhibited an antiparkinsonian activity through Nurr1 modulation. The aim of this work is to identify whether the less toxic derivative, hydroxychloroquine, could show a similar pattern. In rat rotenone model, hydroxychloroquine effectively boosted Nurr-1 expression, exhibited an anti-inflammatory effect as verified by hindering certain pro-inflammatory cytokines and successfully reduced GSK-3β activity. Consequently, an increase in the striatal tyrosine hydroxylase content, as well as improved locomotion and muscle coordination was shown. However, this improvement was opposed by hydroxychloroquine induced autophagic inhibition as manifested by enhancing both LC3-II and P62 levels possibly through the prominent decline in sirtuin 1 level and elevated apoptotic biomarkers. In conclusion, hydroxychloroquine successfully ameliorated PD motor dysfunction in spite of the fact that both autophagy and apoptosis were deregulated through Nurr1 modulation.
Collapse
Affiliation(s)
- Shireen A Hedya
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| | - Marwa M Safar
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Egypt.
| | - Ashraf K Bahgat
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
35
|
Mansour RM, Ahmed MAE, El-Sahar AE, El Sayed NS. Montelukast attenuates rotenone-induced microglial activation/p38 MAPK expression in rats: Possible role of its antioxidant, anti-inflammatory and antiapoptotic effects. Toxicol Appl Pharmacol 2018; 358:76-85. [PMID: 30222980 DOI: 10.1016/j.taap.2018.09.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Montelukast (MK),a cysteinyl leukotriene (CysLT1) receptor antagonist, latterly exhibited a remarkable neuroprotective activity in various neurodegenerative disorders. This study aims to elucidate the neuroprotective effect of MK in rotenone-induced Parkinson's disease(PD) model in rats. Ninety six male rats were split into four groups: vehicle control (0.2 ml/kg/48 h, sc), MK (10 mg/kg/day, ip), rotenone (1.5 mg/kg/48 h, sc.) and rotenone pretreated with MK. Rotenone treatment led to significant reduction in motor functioning and elevation in oxidative stress markers. Additionally, upregulation of p38 mitogen-activated protein kinase (p38 MAPK) and CysLT1 receptor expressions were anchored with enhanced striatal microglial activation generating a severe neuro-inflammatory milieu. Furthermore, an augmentation in p53 expression and cleaved caspases-3 activity increased apoptotic neurodegeneration synchronized with reduction of striatal tyrosine hydroxylase (TH) content. Changes in neuronal morphology was also noted. MK administration significantly mitigated motor impairment and rise in oxidative stress mediators. As well, the anti-inflammatory activity of MK was manifested by hindering the principal controller of inflammatory pathway, nuclear factor-kappa B, followed by its downstream pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-1 beta), by attenuating striatal microglial activation and hampering the expression of both p38 MAPK and CysLT1. Moreover, MK revealed a decline in p53 expression with its downstream cleaved caspases-3 which resulted in preservation of striatal TH terminals as verified by increased striatal TH content and improvement in the histopathological changes incited by rotenone. In conclusion, MK endowed neuroprotective effects in rotenone-induced PD animal model via attenuation of microglial cell activation and p38 MAPK expression.
Collapse
Affiliation(s)
- Riham M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th October City, Giza, Egypt
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
36
|
Zaitone SA, Ahmed E, Elsherbiny NM, Mehanna ET, El-Kherbetawy MK, ElSayed MH, Alshareef DM, Moustafa YM. Caffeic acid improves locomotor activity and lessens inflammatory burden in a mouse model of rotenone-induced nigral neurodegeneration: Relevance to Parkinson's disease therapy. Pharmacol Rep 2018; 71:32-41. [PMID: 30368226 DOI: 10.1016/j.pharep.2018.08.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/02/2018] [Accepted: 08/10/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Caffeic acid phenethyl ester is found in honey bee propolis. It has immunomodulatory, anti-inflammatory and anti-cancer properties. Rotenone is a pesticide commonly used for inducing experimental Parkinson's disease (PD) due to complex I inhibition and microglia activating properties. The current study examined neuroprotective effect of caffeic acid against rotenone-induced neurodegeneration in groups of seven mice. METHODS Mice received protective doses of caffeic acid (2.5, 5 or 10 mg/kg) daily and nine injections of rotenone (1 mg kg, subcutaneously) - every 48 h. Behavioral evaluation of motor function was done by a battery of tests including open-field test, cylinder test, pole test and rotarod test; all these tests showed motor impairment. RESULTS Assay of striatal dopamine highlighted a significant decrease and increases in inflammatory markers. In addition, histopathological assessment of substantia nigra neurons demonstrated low immunostaining for tyrosine hydroxylase (TH) in rotenone treated mice. PCR analysis highlighted upregulation for genes encoding CD11b (a microglia surface antigen), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS) and nuclear factor-κB (NFκB). Treatment with caffeic acid (5 or 10 mg/kg) amended most of rotenone-induced motor deficits, lessened microglia expression and inflammatory mediators and improved the nigral TH immunostaining. CONCLUSION These results confirmed the anti-inflammatory activity of caffeic acid and highlighted its neuroprotective activity against rotenone-induced neurodegeneration in mice.
Collapse
Affiliation(s)
- Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Eman Ahmed
- Clinical Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman T Mehanna
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed H ElSayed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Duha M Alshareef
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Yasser M Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
37
|
Azmy MS, Menze ET, El-Naga RN, Tadros MG. Neuroprotective Effects of Filgrastim in Rotenone-Induced Parkinson's Disease in Rats: Insights into its Anti-Inflammatory, Neurotrophic, and Antiapoptotic Effects. Mol Neurobiol 2018; 55:6572-6588. [PMID: 29327204 DOI: 10.1007/s12035-017-0855-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
All current treatments of Parkinson's disease (PD) focus on enhancing the dopaminergic effects and providing symptomatic relief; however, they cannot delay the disease progression. Filgrastim, a recombinant methionyl granulocyte colony-stimulating factor, demonstrated neuroprotection in many neurodegenerative and neurological diseases. This study aimed to assess the neuroprotective effects of filgrastim in rotenone-induced rat model of PD and investigate the potential underlying mechanisms of filgrastim actions. The effects of two doses of filgrastim (20 and 40 μg/kg) on spontaneous locomotion, catalepsy, body weight, histology, and striatal dopamine (DA) content, as well as tyrosine hydroxylase (TH) and α-synuclein expression, were evaluated. Then, the effective dose was further tested for its potential anti-inflammatory, neurotrophic, and antiapoptotic effects. Filgrastim (40 μg/kg) prevented rotenone-induced motor deficits, weight reduction, striatal DA depletion, and histological damage. Besides, it significantly inhibited rotenone-induced decrease in TH expression and increase in α-synuclein immunoreactivity in the midbrains and striata of the rats. These effects were associated with reduction of rotenone-induced neuroinflammation, apoptosis, and brain-derived neurotrophic factor depletion. Collectively, these results suggest that filgrastim might be a good candidate for management of PD.
Collapse
Affiliation(s)
- Mariama S Azmy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Esther T Menze
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Reem N El-Naga
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Zabegalov KN, Kolesnikova TO, Khatsko SL, Volgin AD, Yakovlev OA, Amstislavskaya TG, Alekseeva PA, Meshalkina DA, Friend AJ, Bao W, Demin KA, Gainetdinov RR, Kalueff AV. Understanding antidepressant discontinuation syndrome (ADS) through preclinical experimental models. Eur J Pharmacol 2018; 829:129-140. [DOI: 10.1016/j.ejphar.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
|
39
|
Meshalkina DA, Kysil EV, Antonova KA, Demin KA, Kolesnikova TO, Khatsko SL, Gainetdinov RR, Alekseeva PA, Kalueff AV. The Effects of Chronic Amitriptyline on Zebrafish Behavior and Monoamine Neurochemistry. Neurochem Res 2018; 43:1191-1199. [DOI: 10.1007/s11064-018-2536-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/28/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022]
|
40
|
Ferroni P, Barbanti P, Della-Morte D, Palmirotta R, Jirillo E, Guadagni F. Redox Mechanisms in Migraine: Novel Therapeutics and Dietary Interventions. Antioxid Redox Signal 2018; 28:1144-1183. [PMID: 28990418 DOI: 10.1089/ars.2017.7260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Migraine represents the third most prevalent and the seventh most disabling human disorder. Approximately 30% of migraine patients experience transient, fully reversible, focal neurological symptoms (aura) preceding the attack. Recent Advances: Awareness of the hypothesis that migraine actually embodies a spectrum of illnesses-ranging from episodic to chronic forms-is progressively increasing and poses novel challenges for clarifying the underlying pathophysiological mechanisms of migraine as well as for the development of novel therapeutic interventions. Several theories have evolved to the current concept that a combination of genetic, epigenetic, and environmental factors may play a role in migraine pathogenesis, although their relative importance is still being debated. CRITICAL ISSUES One critical issue that deserves a particular attention is the role of oxidative stress in migraine. Indeed, potentially harmful oxidative events occur during the migraine attack and long-lasting or frequent migraine episodes may increase brain exposure to oxidative events that can lead to chronic transformation. Moreover, a wide variety of dietary, environmental, physiological, behavioral, and pharmacological migraine triggers may act through oxidative stress, with clear implications for migraine treatment and prophylaxis. Interestingly, almost all current prophylactic migraine agents exert antioxidant effects. FUTURE DIRECTIONS Increasing awareness of the role of oxidative stress and/or decreased antioxidant defenses in migraine pathogenesis and progression to a chronic condition lays the foundations for the design of novel prophylactic approaches, which, by reducing brain oxidative phenomena, could favorably modify the clinical course of migraine. Antioxid. Redox Signal. 28, 1144-1183.
Collapse
Affiliation(s)
- Patrizia Ferroni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| | - Piero Barbanti
- 3 Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana , Rome, Italy
| | - David Della-Morte
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
- 4 Department of Systems Medicine, University of Rome "Tor Vergata ," Rome, Italy
| | - Raffaele Palmirotta
- 5 Department of Biomedical Sciences and Human Oncology, "A. Moro" University , Bari, Italy
| | - Emilio Jirillo
- 6 Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "A. Moro" University , Bari, Italy
| | - Fiorella Guadagni
- 1 Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University , Rome, Italy
- 2 IRCCS San Raffaele Pisana , Rome, Italy
| |
Collapse
|
41
|
Hedya SA, Safar MM, Bahgat AK. Cilostazol Mediated Nurr1 and Autophagy Enhancement: Neuroprotective Activity in Rat Rotenone PD Model. Mol Neurobiol 2018; 55:7579-7587. [DOI: 10.1007/s12035-018-0923-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
42
|
Modulatory Role of Nurr1 Activation and Thrombin Inhibition in the Neuroprotective Effects of Dabigatran Etexilate in Rotenone-Induced Parkinson's Disease in Rats. Mol Neurobiol 2017; 55:4078-4089. [PMID: 28585189 DOI: 10.1007/s12035-017-0636-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/23/2017] [Indexed: 12/14/2022]
Abstract
Recently, it has been shown that both decreased nuclear receptor-related 1 (Nurr1) expression and thrombin accumulation are involved in the degeneration of dopaminergic neurons in Parkinson's disease (PD). The new anticoagulant dabigatran etexilate (DE) is a direct thrombin inhibitor that owns benzimidazole group, which has been proposed to activate Nurr1. In the present study, we examined the neuroprotective effects of DE in rotenone model of PD. Rotenone was injected subcutaneously at a dose of 1.5 mg/kg every other day for 21 days. An oral regimen of DE (15 mg/kg) was started after the 5th rotenone injection following the manifestations of PD. Treatment of PD rats with DE mitigated rotenone-induced neuronal degeneration and restored striatal dopamine level with motor recovery. As well, DE enhanced Nurr1 expression in substantia nigra along with increasing transcriptional activation of Nurr1-controlled genes namely tyrosine hydroxylase, vascular monoamine transporter, glial cell line-derived neurotrophic factor, and its receptor gene c-Ret, which are critical for development and maintenance of dopaminergic neurons. DE also suppressed thrombin accumulation in substantia nigra. Both effects probably contributed to repressing neurotoxic proinflammatory cytokines, which was manifested by decreased level of nuclear factor kappa beta and tumor necrosis factor alpha. In conclusion, the present results suggest that DE could possess significant neuroprotective and regenerative effects in a rotenone-induced PD animal model as consequence of Nurr1 activation and thrombin inhibition.
Collapse
|
43
|
Tran NQV, Nguyen AN, Takabe K, Yamagata Z, Miyake K. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells. Neurotoxicol Teratol 2017; 62:1-12. [PMID: 28511916 DOI: 10.1016/j.ntt.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Antidepressants, such as imipramine and fluoxetine, are known to alter gene expression patterns by inducing changes in the epigenetic status of neuronal cells. There is also some evidence for the anti-apoptotic effect of various groups of antidepressants; however, this effect is complicated and cell-type dependent. Antidepressants of the tricyclic group, in particular amitriptyline, have been suggested to be beneficial in the treatment of neurodegenerative disorders. We examined whether amitriptyline exerts an anti-apoptotic effect via epigenetic mechanisms. Using DNA microarray, we analyzed global gene expression in mouse primary cultured neocortical neurons after treatment with amitriptyline and imipramine. The neuroprotection-associated genes, activating transcription factor 3 (Atf3) and heme oxygenase 1 (Hmox1), were up-regulated at both mRNA and protein levels by treatment with amitriptyline. Quantitative chromatin immunoprecipitation assay revealed that amitriptyline increased enrichments of trimethylation of histone H3 lysine 4 in the promoter regions of Atf3 and Hmox1 and acetylation of histone H3 lysine 9 in the promoter regions of Atf3, which indicate an active epigenetic status. Amitriptyline pre-treatment attenuated 1-methyl-4-phenylpyridinium ion (MPP+)- or amyloid β peptide 1-42 (Aβ1-42)-induced neuronal cell death and inhibited the activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2). We found that Atf3 and Hmox1 were also up-regulated after Aβ1-42 treatment, and were further increased when pre-treated with amitriptyline. Interestingly, the highest up-regulation of Atf3 and Hmox1, at least at mRNA level, was observed after co-treatment with Aβ1-42 and amitriptyline, together with the loss of the neuroprotective effect. These findings suggest preconditioning and neuroprotective effects of amitriptyline; however, further investigations are needed for clarifying the contribution of epigenetic up-regulation of Atf3 and Hmox1 genes.
Collapse
Affiliation(s)
- Nguyen Quoc Vuong Tran
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - An Nghia Nguyen
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kyoko Takabe
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Miyake
- Department of Health Sciences, Graduate School of Interdisciplinary Research, University of Yamanashi, 1110, Shimokato, Chuo, Yamanashi 409-3898, Japan.
| |
Collapse
|
44
|
Ameen AM, Elkazaz AY, Mohammad HMF, Barakat BM. Anti-inflammatory and neuroprotective activity of boswellic acids in rotenone parkinsonian rats. Can J Physiol Pharmacol 2017; 95:819-829. [PMID: 28249117 DOI: 10.1139/cjpp-2016-0158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is evidence that inflammation and oxidative stress contribute to the neurodegenerative changes observed in Parkinson's disease. Unfortunately, there is a lack of curative treatment for this debilitating movement disorder. Boswellic acids (BAs) are pentacyclic triterpene molecules of plant origin that have been utilized for treating many inflammatory conditions. The current study was conducted to explore the protective role of BAs against rotenone-induced experimental parkinsonism. Twenty-four rats were assigned to one of four treatment groups. The first two groups were a vehicle group (no rotenone) and a rotenone control group in which rats received rotenone (1 mg/kg) every 48 h. The next 2 groups received rotenone (1 mg/kg every 48 h) plus protective oral doses of BAs (125 or 250 mg/kg daily). Rats in the rotenone group showed motor dysfunction when tested in the open-field arena and cylinder and rotarod tests. Moreover, inflammatory markers increased, whereas the dopamine level was lower in the striata of rats in the rotenone group versus those in the vehicle group. BAs taken by rats with rotenone-induced parkinsonism showed enhanced general motor performance, reduced inflammatory markers, and increased striatal dopamine level and nigral tyrosine hydroxylase immunostaining. In conclusion, BAs are promising agents in slowing the progression of Parkinson's disease if appropriate data become available about their safety and efficacy in humans.
Collapse
Affiliation(s)
- Angie M Ameen
- a Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amany Y Elkazaz
- b Medical Biochemistry Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hala M F Mohammad
- c Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Bassant M Barakat
- d Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|