1
|
Yonatan E, Shukha ON, Golani I, Abu-Ata S, Awad-Igbaria Y, Khatib N, Ginsberg Y, Palzur E, Beloosesky R, Shamir A. Maternal N-acetylcysteine supplementation in lactation ameliorates metabolic and cognitive deficits in adult offspring exposed to maternal obesity. Neuropharmacology 2025; 271:110390. [PMID: 40023441 DOI: 10.1016/j.neuropharm.2025.110390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Maternal obesity in pregnancy and lactation is linked to metabolic disturbances and neurodevelopmental problems in offspring, increasing the risk of psychiatric disorders in adulthood. We proposed that maternal N-acetyl cysteine (NAC) supplementation during lactation, a critical period for neurodevelopment, potentially protects offspring from developing cognitive impairment in adulthood. Fifteen young female ICR mice were randomly allocated to different experimental groups: high-fat diet (HFD; 60.3% fat before mating, during pregnancy and lactation), HFD-NAC of 300 mg/kg/day during lactation, CD (high-fat diet before mating, during pregnancy, and regular chow control diet of 8.2% fat during lactation), CD-NAC of 300 mg/kg/day during lactation and control group consuming regular chow diet. The serum inflammatory markers of the offspring were evaluated post-weaning, while metabolic markers, microglial density, and cognitive performance were assessed in adulthood using the novel Object Recognition and Morris Water Maze tests. Our results demonstrate maternal obesity during gestation and lactation increased body weight, hepatic steatosis, and microglial cell density in the dentate gyrus (DG) and cortex. Furthermore, these offspring exhibited reduced spatial learning abilities in adulthood, regardless of sex. However, maternal NAC administration during lactation and maternal diet intervention significantly reduced brain microglial density and improved both male and female offspring metabolic profiles. More importantly, NAC supplementation during lactation, regardless of maternal diet, enhanced male offspring's learning ability in adulthood. Our findings indicate that administering NAC to obese mothers during the critical lactation period may offer protection against metabolic disturbances and cognitive deficits in adult offspring previously exposed to maternal obesity.
Collapse
Affiliation(s)
- Eden Yonatan
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Orya Noa Shukha
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Idit Golani
- Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Saher Abu-Ata
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Yaseen Awad-Igbaria
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Nizar Khatib
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Yuval Ginsberg
- Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel
| | - Eilam Palzur
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel; Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Ron Beloosesky
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel; Department of Obstetrics and Gynecology, Rambam Medical Center, Haifa, Israel.
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Xu Z, Li L, Cheng L, Gu Z, Hong Y. Maternal obesity and offspring metabolism: revisiting dietary interventions. Food Funct 2025; 16:3751-3773. [PMID: 40289678 DOI: 10.1039/d4fo06233g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Maternal obesity increases the risk of metabolic disorders in offspring. Understanding the mechanisms underlying the transgenerational transmission of metabolic diseases is important for the metabolic health of future generations. More research is needed to elucidate the mechanisms underlying the associated risks and their clinical implications because of the inherently complex nature of transgenerational metabolic disease transmission. Diet is a well-recognized risk factor for the development of obesity and other metabolic diseases, and rational dietary interventions are potential therapeutic strategies for their prevention. Despite extensive research on the physiological effects of diet on health and its associated mechanisms, little work has been devoted to understanding the effects of early-life dietary interventions on the metabolic health of offspring. In addition, existing dietary interventions are insufficient to meet clinical needs. Here, we discuss the literature on the effects of maternal obesity on the metabolic health of offspring, focusing on the mechanisms underlying the transgenerational transmission of metabolic diseases. We revisit current dietary interventions and describe their strengths and weaknesses in ameliorating maternal obesity-induced metabolism-related disorders in offspring. We also propose innovative strategies, such as the use of precision nutrition and fecal microbiota transplantation, which may limit the vicious cycle of intergenerational metabolic disease transmission.
Collapse
Affiliation(s)
- Zhiqiang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lingjin Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi, 214122, China
| | - Li Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi, 214122, China
| | - Zhengbiao Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi, 214122, China
| | - Yan Hong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Jiaxing Institute of Future Food, Jiaxing 314050, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi, 214122, China
| |
Collapse
|
3
|
Esaki H, Imai K, Nishikawa K, Nishitani N, Deyama S, Kaneda K. Nicotine enhances object recognition memory through activation of the medial prefrontal cortex to the perirhinal cortex pathway. Neurochem Int 2025; 185:105963. [PMID: 40073977 DOI: 10.1016/j.neuint.2025.105963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Nicotine enhances recognition memory across species; however, the underlying neuronal mechanisms remain incompletely understood. Our previous study using a novel object recognition (NOR) test and electrophysiological recordings of mouse brain slices demonstrated that nicotine enhanced object recognition memory by stimulating nicotinic acetylcholine receptors in the medial prefrontal cortex (mPFC). To elucidate this further, we conducted the NOR test combined with pharmacology, chemogenetics, optogenetics, and ex vivo electrophysiology in male C57BL/6J mice. Chemogenetic inhibition of mPFC excitatory neurons suppressed nicotine-induced enhancement of object recognition memory, whereas their activation alone was sufficient to enhance memory. Anatomical studies indicate that the mPFC sends projections to the perirhinal cortex (PRH), a brain region involved in object recognition memory. Therefore, we focused on mPFC-PRH projections. Whole-cell patch-clamp recordings with optogenetic stimulation revealed that PRH pyramidal neurons received monosynaptic and glutamatergic inputs from the mPFC. Chemogenetic suppression of mPFC neurons projecting to the PRH blocked the nicotine-induced enhancement of object recognition memory, whereas activation of these neurons alone was sufficient to enhance memory. To achieve precise temporal control, optogenetic inhibition of the mPFC-PRH pathway during the training session blocked the effects of nicotine, and its activation alone enhanced memory. Furthermore, unilateral intra-mPFC nicotine infusion enhanced object recognition memory, and this effect was suppressed by ipsilateral intra-PRH infusion of an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist. These findings indicate that nicotine enhances object recognition memory by activating glutamatergic projections from the mPFC to PRH.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kanta Imai
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
4
|
Ding L, Liu J, Zhou L, Zhang Q, Liu J, Xiao X. Maternal high-fat diet alters the transcriptional rhythm in white adipose tissue of adult offspring. J Nutr Biochem 2025; 138:109843. [PMID: 39826765 DOI: 10.1016/j.jnutbio.2025.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/11/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
A maternal high-fat diet (HFD) deteriorates the long-term metabolic health of offspring. Circadian rhythms are crucial for regulating metabolism. However, the impact of maternal HFD on the circadian clock in white adipose tissue (WAT) remains unexplored. This study aimed to identify transcriptional rhythmic alterations in inguinal WAT of adult male offspring induced by maternal HFD. To this end, female mice were fed an HFD and their male offspring were raised on a standard chow diet until 16 weeks of age. Transcriptome was performed and the data was analyzed using CircaCompare. The results showed that maternal HFD before and throughout pregnancy significantly altered the circadian rhythm of inguinal WAT while slightly modifying the WAT clock in adult male offspring. Specifically, maternal HFD contributed to gaining rhythmicity of Cry2, resulted in the elevated amplitude of Nr1d2, and led to increased midline estimating statistic of rhythm (MESOR) of Clock and Nr1d2. Furthermore, maternal HFD changed the rhythmic pattern of metabolic genes, such as Pparγ, Hacd2, and Acsl1, which are significantly enriched in metabolic regulation pathways. In conclusion, a maternal HFD before and throughout pregnancy altered the circadian rhythm of inguinal WAT in adult offspring. These alterations may play a significant role in disturbing metabolic homeostasis, potentially leading to metabolic dysfunction in adult male offspring.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Center for Biomarker Discovery and Validation, National Infrastructures for Translational Medicine (PUMCH), Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Gomes Dutra LM, Ferreira Alves ME, Oliveira de Lima E Silva TD, Dantas de Araújo JM, Alves Silva MDC, Elias Pereira D, de Araújo Bidô RDC, Carlo Rufino Freitas J, Viera VB, Aquino de Souza J, Barbosa Soares JK. Maternal consumption of nut oil (Bertholletia excelsa): Evidence of anxiolytic-like behavior and reduction in brain lipid peroxidation on the progeny of rats. Brain Res 2025; 1851:149501. [PMID: 39922410 DOI: 10.1016/j.brainres.2025.149501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/19/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
INTRODUCTION Maternal nutrition plays a crucial role in the development of offspring, influencing both biochemical and behavioral parameters. Brazil nut oil, rich in essential fatty acids and antioxidant bioactive compounds, may provide metabolic, neuroprotective, and anxiolytic benefits to the offspring when offered during the critical period of development. OBJECTIVE Investigate the impact of maternal consumption of crude or refined Brazil nut oil during pregnancy and lactation on anxiety-like behavior and brain lipid peroxidation in rat offspring. METHODOLOGY Each group were compound by male (M) and female (F) puppies. The groups formed were: Controls (CG-M and CG-F) -treated with distilled water; Crude oil (CO-M and CO-F) receiving 3000 mg/kg of body weight of Brazil nut crude oil, and Refined oil (RO-M and RO-F) - treated with 3000 mg/kg of body weight of refined Brazil oil. The dams were treated during pregnancy and lactation. Anxiety-like behavior was observed in the offspring during adolescence using: elevated plus maze (EPM), open field (OF) and light-dark box (LDB). Malondialdehyde (MDA) levels were measured in the pups' brain tissue. RESULTS RO-M/RO-F entered and spent more into the open arms and realized more head dipping CO-M/CO-F and CO-F/RO-F presented increased locomotion and less grooming in the OF; RO-M and RO-F realized more rearing compared to controls groups and CO-M and CO-F compared to all groups. All groups treated with crude and refinated oil spent more time in the light area and realized more transitions in the LDB. Cerebral MDA were decreased in all experimental groups compared to controls groups. CONCLUSION Maternal comsuption of Brazil nut oil induced anxiolitic-like behavior and reduced brain lipid peroxidation of the male and female offspring in rats.
Collapse
Affiliation(s)
- Larissa Maria Gomes Dutra
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | | | | | - Januse Míllia Dantas de Araújo
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Maciel da Costa Alves Silva
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Diego Elias Pereira
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Rita de Cássia de Araújo Bidô
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| | - Juliano Carlo Rufino Freitas
- Education and Health Center, Academic Unit of Biology and Chemistry, Federal University of Campina Grande, Cuité, CG, Brazil.
| | - Vanessa Bordin Viera
- Laboratory of Bromatology, Department of Nutrition, Universidade Federal de Campina Grande, Cuité, Brazil.
| | - Jailane Aquino de Souza
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil.
| | - Juliana Késsia Barbosa Soares
- Post Graduate Program of Food Science and Technology, Federal University of Paraíba (UFPB), João Pessoa, Brazil; Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Campina Grande (UFCG), Cuité, Brazil.
| |
Collapse
|
6
|
Ionescu MI, Zahiu CDM, Vlad A, Galos F, Gradisteanu Pircalabioru G, Zagrean AM, O'Mahony SM. Nurturing development: how a mother's nutrition shapes offspring's brain through the gut. Nutr Neurosci 2025; 28:50-72. [PMID: 38781488 DOI: 10.1080/1028415x.2024.2349336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Pregnancy is a transformative period marked by profound physical and emotional changes, with far-reaching consequences for both mother and child. Emerging research has illustrated the pivotal role of a mother's diet during pregnancy in influencing the prenatal gut microbiome and subsequently shaping the neurodevelopment of her offspring. The intricate interplay between maternal gut health, nutrition, and neurodevelopmental outcomes has emerged as a captivating field of investigation within developmental science. Acting as a dynamic bridge between mother and fetus, the maternal gut microbiome, directly and indirectly, impacts the offspring's neurodevelopment through diverse pathways. This comprehensive review delves into a spectrum of studies, clarifying putative mechanisms through which maternal nutrition, by modulating the gut microbiota, orchestrates the early stages of brain development. Drawing insights from animal models and human cohorts, this work underscores the profound implications of maternal gut health for neurodevelopmental trajectories and offers a glimpse into the formulation of targeted interventions able to optimize the health of both mother and offspring. The prospect of tailored dietary recommendations for expectant mothers emerges as a promising and accessible intervention to foster the growth of beneficial gut bacteria, potentially leading to enhanced cognitive outcomes and reduced risks of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Mara Ioana Ionescu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
| | - Carmen Denise Mihaela Zahiu
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Adelina Vlad
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Felicia Galos
- Department of Pediatrics, Marie Curie Emergency Children's Hospital, Bucharest, Romania
- Department of Pediatrics, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest, Section Earth, Environmental and Life Sciences, Section-ICUB, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Ana-Maria Zagrean
- Department of Functional Sciences, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Siobhain M O'Mahony
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
8
|
Li Y, Yang Y, Ye B, Lin Y. Maternal high fat diet programs spatial learning and central leptin signaling in mouse offspring in a sex-specific manner. Physiol Behav 2024; 281:114580. [PMID: 38714271 DOI: 10.1016/j.physbeh.2024.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/09/2024]
Abstract
Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.
Collapse
Affiliation(s)
- YiQuan Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ya Yang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - BoWei Ye
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - YuanShao Lin
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Martins MG, Woodside B, Kiss ACI. Effects of maternal mild hyperglycemia associated with snack intake on offspring metabolism and behavior across the lifespan. Physiol Behav 2024; 276:114483. [PMID: 38331375 DOI: 10.1016/j.physbeh.2024.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
The increasing prevalence of diabetes is of particular concern in women of childbearing age because of the short and long-term consequences of maternal diabetes for the health of the offspring, such as a greater risk of developing metabolic impairments and cognitive deficits. In addition, maternal diet during pregnancy and lactation might contribute to preventing or ameliorating adverse offspring outcomes. Recently, we described that access to snacks exacerbates glucose intolerance in mildly hyperglycemic pregnant dams. Therefore, we hypothesized that these offspring would show greater impairment in metabolic and behavioral outcomes across the lifespan. Neonatal STZ treatment was employed to induce maternal mild hyperglycemia in females. After mating, normo- and hyperglycemic dams were given access either to standard chow or standard show plus snacks. Male and female offspring were evaluated on postnatal days (PND) 30, 90, and 360. Offspring behavior was assessed in the marble burying task, the open-field test, the elevated-plus maze, and sucrose preference. Glucose tolerance and morphometric analyses were also carried out. Maternal hyperglycemia increased body weight and fat deposition only on PND 30, while retroperitoneal fat deposition was reduced in the offspring of snack-fed dams. However, maternal snack intake reduced offspring body weight and length on PND 90. Fasting glucose was increased in females born to hyperglycemic, snack-fed dams on PND 90. Glucose clearance was altered by both maternal conditions in male offspring on PND 30, however, this sex difference was reversed on PND 90, with maternal hyperglycemia impairing glucose clearance only in females. In addition, maternal hyperglycemia reduced anxiety-like behavior in female offspring on PND 30, especially in the offspring of snack-fed dams, while maternal snack intake reduced sucrose preference in both males and females in adulthood. These results suggest that the effects of maternal hyperglycemia during pregnancy and lactation on offspring outcomes were not exacerbated by snack intake. Although additive effects of the two maternal conditions were hypothesized, the absence of such effects could be related to the mild maternal hyperglycemia induced by STZ treatment even when combined with snack intake. While maternal hyperglycemia alone impaired some offspring outcomes, its association with snack intake did not aggravate those impairments but rather resulted in outcomes more similar to those of offspring born to normoglycemic dams. Finally, females were found to be more susceptible to both the effects of maternal hyperglycemia and snack intake on metabolism and behavior.
Collapse
Affiliation(s)
- Marina Galleazzo Martins
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil.
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Psychology Department, Concordia University, 7141 Sherbrooke St. W., Montreal, Quebec H4B 1R6, Canada
| | - Ana Carolina Inhasz Kiss
- Department of Physiology, Institute of Biosciences of the University of São Paulo (IB/USP), Rua do Matão, trav. 14, 321, Cidade Universitária, São Paulo, 05508-090, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Department of Structural and Functional Biology, Rua Prof. Dr. Antonio Celso Wagner Zanin, s/n, Botucatu, São Paulo, 18618-689, Brazil
| |
Collapse
|
10
|
Mezo-González CE, García-Santillán JA, Kaeffer B, Gourdel M, Croyal M, Bolaños-Jiménez F. Adult rats sired by obese fathers present learning deficits associated with epigenetic and neurochemical alterations linked to impaired brain glutamatergic signaling. Acta Physiol (Oxf) 2024; 240:e14090. [PMID: 38230587 DOI: 10.1111/apha.14090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
AIM Offspring of obese mothers are at high risk of developing metabolic syndrome and cognitive disabilities. Impaired metabolism has also been reported in the offspring of obese fathers. However, whether brain function can also be affected by paternal obesity has barely been examined. This study aimed to characterize the learning deficits resulting from paternal obesity versus those induced by maternal obesity and to identify the underlying mechanisms. METHODS Founder control and obese female and male Wistar rats were mated to constitute three first-generation (F1) experimental groups: control mother/control father, obese mother/control father, and obese father/control mother. All F1 animals were weaned onto standard chow and underwent a learning test at 4 months of age, after which several markers of glutamate-mediated synaptic plasticity together with the expression of miRNAs targeting glutamate receptors and the concentration of kynurenic and quinolinic acids were quantified in the hippocampus and frontal cortex. RESULTS Maternal obesity induced a severe learning deficit by impairing memory encoding and memory consolidation. The offspring of obese fathers also showed reduced memory encoding but not impaired long-term memory formation. Memory deficits in offspring of obese fathers and obese mothers were associated with a down-regulation of genes encoding NMDA glutamate receptors subunits and several learning-related genes along with impaired expression of miR-296 and miR-146b and increased concentration of kynurenic acid. CONCLUSION Paternal and maternal obesity impair offspring's learning abilities by affecting different processes of memory formation. These cognitive deficits are associated with epigenetic and neurochemical alterations leading to impaired glutamate-mediated synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Bertrad Kaeffer
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Nantes Université, Nantes, France
| | - Mathilde Gourdel
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Université de Nantes, Nantes, France
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Université de Nantes, Nantes, France
| | | |
Collapse
|
11
|
Trujillo-Villarreal LA, Cruz-Carrillo G, Angeles-Valdez D, Garza-Villarreal EA, Camacho-Morales A. Paternal Prenatal and Lactation Exposure to a High-Calorie Diet Shapes Transgenerational Brain Macro- and Microstructure Defects, Impacting Anxiety-Like Behavior in Male Offspring Rats. eNeuro 2024; 11:ENEURO.0194-23.2023. [PMID: 38212114 PMCID: PMC10863632 DOI: 10.1523/eneuro.0194-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Prenatal exposure to high-energy diets (HED) increases the susceptibility to behavioral alterations in the male offspring. We addressed whether prenatal HED primes the transgenerational inheritance of structural brain changes impacting anxiety/depression-like behavior in the offspring. For this, we used female Wistar rats exposed to a HED [cafeteria (CAF) diet, n = 6] or chow [control (CON) n = 6] during development. Anxiety and depression-like behavior were evaluated in filial 1 (F1), filial 2 (F2), and filial 3 (F3) male offspring using the open field (OFT), elevated plus maze, novelty suppressed feeding (NSFT), tail suspension (TST), and forced swimming tests. Structural brain changes were identified by deformation-based morphometry (DBM) and diffusion tensor imaging using ex vivo MRI. We found that the F1, F2, and F3 offspring exposed to CAF diet displayed higher anxious scores including longer feeding latency during the NSFT, and in the closed arms, only F1 offspring showed longer stay on edges during the OFT versus control offspring. DBM analysis revealed that CAF offspring exhibited altered volume in the cerebellum, hypothalamus, amygdala, and hippocampus preserved up to the F3 generation of anxious individuals. Also, F3 CAF anxious exhibited greater fractional anisotropy and axial diffusivity (AD) in the amygdala, greater apparent diffusion coefficient in the corpus callosum, and greater AD in the hippocampus with respect to the control. Our results suggest that prenatal and lactation exposure to HED programs the transgenerational inheritance of structural brain changes related to anxiety-like behavior in the male offspring.
Collapse
Affiliation(s)
- Luis A Trujillo-Villarreal
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 64460, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 64460, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Queretaro 76230, Mexico
| | - Gabriela Cruz-Carrillo
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 64460, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 64460, Mexico
| | - Diego Angeles-Valdez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Queretaro 76230, Mexico
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Queretaro 76230, Mexico
| | - Alberto Camacho-Morales
- Department of Biochemistry, College of Medicine, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 64460, Mexico
- Neurometabolism Unit, Center for Research and Development in Health Sciences, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo Leon 64460, Mexico
| |
Collapse
|
12
|
Esaki H, Deyama S, Izumi S, Katsura A, Nishikawa K, Nishitani N, Kaneda K. Varenicline enhances recognition memory via α7 nicotinic acetylcholine receptors in the medial prefrontal cortex in male mice. Neuropharmacology 2023; 239:109672. [PMID: 37506875 DOI: 10.1016/j.neuropharm.2023.109672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Previous studies postulated that chronic administration of varenicline, a partial and full agonist at α4β2 and α7 nicotinic acetylcholine receptors (nAChRs), respectively, enhances recognition memory. However, whether its acute administration is effective, on which brain region(s) it acts, and in what signaling it is involved, remain unknown. To address these issues, we conducted a novel object recognition test using male C57BL/6J mice, focusing on the medial prefrontal cortex (mPFC), a brain region associated with nicotine-induced enhancement of recognition memory. Systemic administration of varenicline before the training dose-dependently enhanced recognition memory. Intra-mPFC varenicline infusion also enhanced recognition memory, and this enhancement was blocked by intra-mPFC co-infusion of a selective α7, but not α4β2, nAChR antagonist. Consistent with this, intra-mPFC infusion of a selective α7 nAChR agonist augmented object recognition memory. Furthermore, intra-mPFC co-infusion of U-73122, a phospholipase C (PLC) inhibitor, or 2-aminoethoxydiphenylborane (2-APB), an inositol trisphosphate (IP3) receptor inhibitor, suppressed the varenicline-induced memory enhancement, suggesting that α7 nAChRs may also act as Gq-coupled metabotropic receptors. Additionally, whole-cell recordings from mPFC layer V pyramidal neurons in vitro revealed that varenicline significantly increased the summation of evoked excitatory postsynaptic potentials, and this effect was suppressed by U-73122 or 2-APB. These findings suggest that varenicline might acutely enhance recognition memory via mPFC α7 nAChR stimulation, followed by mPFC neuronal excitation, which is mediated by the activation of PLC and IP3 receptor signaling. Our study provides evidence supporting the potential repositioning of varenicline as a treatment for cognitive impairment.
Collapse
Affiliation(s)
- Hirohito Esaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Shoma Izumi
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ayano Katsura
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Keisuke Nishikawa
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
13
|
Gauvrit T, Benderradji H, Pelletier A, Aboulouard S, Faivre E, Carvalho K, Deleau A, Vallez E, Launay A, Bogdanova A, Besegher M, Le Gras S, Tailleux A, Salzet M, Buée L, Delahaye F, Blum D, Vieau D. Multi-Omics Data Integration Reveals Sex-Dependent Hippocampal Programming by Maternal High-Fat Diet during Lactation in Adult Mouse Offspring. Nutrients 2023; 15:4691. [PMID: 37960344 PMCID: PMC10649590 DOI: 10.3390/nu15214691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Early-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice. To identify early-programming mechanisms in the hippocampus, we developed a multi-omics strategy in male and female offspring. Maternal HF induced a transient increased body weight at weaning, and a mild glucose intolerance only in 3-month-old male mice with no change in plasma metabolic parameters in adult male and female offspring. Behavioral alterations revealed by a Barnes maze test were observed both in 6-month-old male and female mice. The multi-omics strategy unveiled sex-specific transcriptomic and proteomic modifications in the hippocampus of adult offspring. These studies that were confirmed by regulon analysis show that, although genes whose expression was modified by maternal HF were different between sexes, the main pathways affected were similar with mitochondria and synapses as main hippocampal targets of maternal HF. The effects of maternal HF reported here may help to better characterize sex-dependent molecular pathways involved in cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Hamza Benderradji
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Alexandre Pelletier
- The Department of Pharmacology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA 02118, USA;
| | - Soulaimane Aboulouard
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Emilie Faivre
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Kévin Carvalho
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Aude Deleau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Emmanuelle Vallez
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Agathe Launay
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Anna Bogdanova
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Mélanie Besegher
- US 41-UMS 2014-PLBS, Animal Facility, University of Lille, CNRS, INSERM, CHU Lille, 59000 Lille, France;
| | - Stéphanie Le Gras
- CNRS U7104, INSERM U1258, GenomEast Platform, IGBMC, University of Strasbourg, 67412 Illkirch, France;
| | - Anne Tailleux
- Institut Pasteur de Lille, U1011-EGID, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (E.V.); (A.T.)
| | - Michel Salzet
- U1192—Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse (PRISM), University of Lille, INSERM, 59000 Lille, France; (S.A.); (M.S.)
| | - Luc Buée
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Fabien Delahaye
- Sanofi Precision Medicine and Computational Biology, 94081 Vitry-sur-Seine, France;
| | - David Blum
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| | - Didier Vieau
- UMR-S1172, Lille Neurosciences & Cognition, University of Lille, INSERM, CHU Lille, 59000 Lille, France; (T.G.); (H.B.); (E.F.); (K.C.); (A.D.); (A.L.); (A.B.); (L.B.); (D.B.)
- Alzheimer & Tauopathies, LabEX DISTALZ, 59045 Lille, France
| |
Collapse
|
14
|
Bettag J, Goldenberg D, Carter J, Morfin S, Borsotti A, Fox J, ReVeal M, Natrop D, Gosser D, Kolli S, Jain AK. Gut Microbiota to Microglia: Microbiome Influences Neurodevelopment in the CNS. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1767. [PMID: 38002858 PMCID: PMC10670365 DOI: 10.3390/children10111767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
The brain is traditionally viewed as an immunologically privileged site; however, there are known to be multiple resident immune cells that influence the CNS environment and are reactive to extra-CNS signaling. Microglia are an important component of this system, which influences early neurodevelopment in addition to modulating inflammation and regenerative responses to injury and infection. Microglia are influenced by gut microbiome-derived metabolites, both as part of their normal function and potentially in pathological patterns that may induce neurodevelopmental disabilities or behavioral changes. This review aims to summarize the mounting evidence indicating that, not only is the Gut-Brain axis mediated by metabolites and microglia throughout an organism's lifetime, but it is also influenced prenatally by maternal microbiome and diet, which holds implications for both early neuropathology and neurodevelopment.
Collapse
Affiliation(s)
- Jeffery Bettag
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Daniel Goldenberg
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Jasmine Carter
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Sylvia Morfin
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Alison Borsotti
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - James Fox
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Matthew ReVeal
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Dylan Natrop
- Medical College of Wisconsin-Green Bay, De Pere, WI 54115, USA;
| | - David Gosser
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Sree Kolli
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| | - Ajay K. Jain
- Department of Pediatrics, Saint Louis University School of Medicine, Saint Louis, MO 63103, USA; (D.G.); (J.C.); (S.M.); (A.B.); (J.F.); (M.R.); (D.G.); (S.K.); (A.K.J.)
| |
Collapse
|
15
|
Herrera K, Maldonado-Ruiz R, Camacho-Morales A, de la Garza AL, Castro H. Maternal methyl donor supplementation regulates the effects of cafeteria diet on behavioral changes and nutritional status in male offspring. Food Nutr Res 2023; 67:9828. [PMID: 37920679 PMCID: PMC10619398 DOI: 10.29219/fnr.v67.9828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023] Open
Abstract
Background Nutritional status and maternal feeding during the perinatal and postnatal periods can program the offspring to develop long-term health alterations. Epidemiologic studies have demonstrated an association between maternal obesity and intellectual disability/cognitive deficits like autism spectrum disorders (ASDs) in offspring. Experimental findings have consistently been indicating that maternal supplementation with methyl donors, attenuated the social alterations and repetitive behavior in offspring. Objective This study aims to analyze the effect of maternal cafeteria diet and methyl donor-supplemented diets on social, anxiety-like, and repetitive behavior in male offspring, besides evaluating weight gain and food intake in both dams and male offspring. Design C57BL/6 female mice were randomized into four dietary formulas: control Chow (CT), cafeteria (CAF), control + methyl donor (CT+M), and cafeteria + methyl donor (CAF+M) during the pre-gestational, gestational, and lactation period. Behavioral phenotyping in the offspring was performed by 2-month-old using Three-Chamber Test, Open Field Test, and Marble Burying Test. Results We found that offspring prenatally exposed to CAF diet displayed less social interaction index when compared with subjects exposed to Chow diet (CT group). Notably, offspring exposed to CAF+M diet recovered social interaction when compared to the CAF group. Discussion These findings suggest that maternal CAF diet is efficient in promoting reduced social interaction in murine models. In our study, we hypothesized that a maternal methyl donor supplementation could improve the behavioral alterations expected in maternal CAF diet offspring. Conclusions The CAF diet also contributed to a social deficit and anxiety-like behavior in the offspring. On the other hand, a maternal methyl donor-supplemented CAF diet normalized the social interaction in the offspring although it led to an increase in anxiety-like behaviors. These findings suggest that a methyl donor supplementation could protect against aberrant social behavior probably targeting key genes related to neurotransmitter pathways.
Collapse
Affiliation(s)
- Katya Herrera
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
| | - Roger Maldonado-Ruiz
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública. Monterrey, Nuevo León, México
- Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud. Monterrey, Nuevo León, México
| |
Collapse
|
16
|
Farber C, Renteria K, Ritter J, Muraida JD, Rivers C, McKenzie A, Zhu J, Koh GY, Lane MA. Comparison of maternal versus postweaning ingestion of a high fat, high sucrose diet on depression-related behavior, novelty reactivity, and corticosterone levels in young, adult rat offspring. Behav Brain Res 2023; 455:114677. [PMID: 37734488 DOI: 10.1016/j.bbr.2023.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Consumption of a Western-type diet, high in fat and sugar, by mothers as well as maternal weight gain and obesity during gestation and lactation may impact offspring risk for mood and cognitive disorders. The objective of this study was to determine if ingestion of a high fat, high sucrose (HFS) diet by rat dams during gestation and lactation or by their pups after weaning impacted these behaviors and stress responsivity in young, adult offspring. To accomplish this, dams consumed either a 45% fat/high sucrose (HFS) diet or the AIN93G control diet during gestation and lactation. At weaning, pups from dams that consumed the HFS diet were weaned to the control diet. Pups from dams assigned to the control diet were weaned to either the control or HFS diet. Pup behavioral testing began at 10 weeks of age. Pups whose dams consumed the HFS diet during gestation and lactation exhibited increased depression-related behavior and baseline serum corticosterone levels, but no difference in peak levels in response to stress. Male pups of these dams displayed increased working memory during acquisition of the holeboard task and tended to exhibit more anxiety-related behavior in the elevated O-maze test. Regardless of when consumed, the HFS diet increased novelty reactivity in the open field test. These data indicate that diet but not maternal weight gain during gestation impacts offspring behavior and elevates stress hormone levels. Also, regardless of when consumed, the HFS diet increases novelty reactivity, a risk factor for depression and addiction.
Collapse
Affiliation(s)
- Christopher Farber
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Karisa Renteria
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Jordan Ritter
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - J D Muraida
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Carley Rivers
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Avery McKenzie
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Jie Zhu
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Gar Yee Koh
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States
| | - Michelle A Lane
- Nutrition and Foods Program, School of Family and Consumer Sciences, Texas State University, 601 University Dr., San Marcos, TX 78666, United States.
| |
Collapse
|
17
|
Fan P, Wang Y, Lu K, Hong Y, Xu M, Han X, Liu Y. Modeling maternal cholesterol exposure reveals a reduction of neural progenitor proliferation using human cerebral organoids. LIFE MEDICINE 2023; 2:lnac034. [PMID: 39872117 PMCID: PMC11749704 DOI: 10.1093/lifemedi/lnac034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/22/2022] [Indexed: 01/29/2025]
Abstract
Maternal obesity raises the risk of high-cholesterol exposure for their offspring. Studies in cohorts and animal models report that maternal obesity could increase the risk of neurodevelopmental disorders in offspring including intellectual disabilities and autism spectrum disorders (ASDs). However, whether exposure to high cholesterol is responsible for brain developmental defects, as well as its underlying mechanism, is still unclear. Here, we constructed a cholesterol exposure model utilizing human pluripotent stem cell (hPSC)-derived cerebral organoids by exogenously adding cholesterol into the culture system. We observed enlargement of endosomes, decreased neural progenitor proliferation, and premature neural differentiation in brain organoids with the treatment of cholesterol. Moreover, in comparison with published transcriptome data, we found that our single-cell sequencing results showed a high correlation with ASD, indicating that high cholesterol during maternal might mediate the increased risk of ASD in the offspring. Our results reveal a reduction of neural progenitor proliferation in a cholesterol exposure model, which might be a promising indicator for prenatal diagnosis and offer a dynamic human model for maternal environment exposure.
Collapse
Affiliation(s)
- Pan Fan
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuanhao Wang
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Kaiqin Lu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuan Hong
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Min Xu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Han
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
18
|
Tüfekci KK, Bakirhan EG, Terzi F. A Maternal High-Fat Diet Causes Anxiety-Related Behaviors by Altering Neuropeptide Y1 Receptor and Hippocampal Volumes in Rat Offspring: the Potential Effect of N-Acetylcysteine. Mol Neurobiol 2023; 60:1499-1514. [PMID: 36502431 DOI: 10.1007/s12035-022-03158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
The children of obese mothers are known to have a high risk of obesity and metabolic disease and are prone to developing cognitive deficits, although the underlying mechanism is not yet fully understood. This study investigated the relationship between neuropeptide Y1 receptor (NPY1R) and anxiety-like behaviors in the hippocampi of male rat offspring exposed to maternal obesity and the potential neuroprotective effects of N-acetylcysteine (NAC). A maternal obesity model was created using a high-fat (60% k/cal) diet. NAC (150 mg/kg) was administered by intragastric gavage for 25 days in both the NAC and obesity + NAC (ObNAC) groups. All male rat offspring were subjected to behavioral testing on postnatal day 28, the end of the experiment. Stereological analysis was performed on hippocampal sections, while NPY1R expression was determined using immunohistochemical methods. Stereological data indicated significant decreases in the total volume of the hippocampus and CA1 and dentate gyrus (DG) regions in the obese (Ob) group (p < 0.01). Decreased NPY1R expression was observed in the Ob group hippocampus (p < 0.01). At behavioral assessments, the Ob group rats exhibited increased anxiety and less social interaction, although the ObNAC group rats exhibited stronger responses than the Ob group (p < 0.01). The study results show that NAC attenuated anxiety-like behaviors and NPY1R expression and also protected hippocampal volume against maternal obesity. The findings indicate that a decrease in NPY1R-positive neurons in the hippocampus of male rats due to maternal conditions may be associated with increased levels of anxiety and a lower hippocampal volume. Additionally, although there is no direct evidence, maintenance of NPY1R expression by NAC may be critical for regulating maternal obesity-induced anxiety-related behaviors and hippocampal structure.
Collapse
Affiliation(s)
- Kıymet Kübra Tüfekci
- Department of Histology and Embryology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey.
| | - Elfide Gizem Bakirhan
- Department of Histology and Embryology, Faculty of Medicine, Adıyaman University, Adıyaman, Turkey
| | - Funda Terzi
- Department of Pathology, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
19
|
Camacho-Morales A, Montalvo-Martínez L, Cruz-Carrillo G, Maldonado-Ruiz R, Trujillo-Villarreal L, Garza-Villarreal E. Prenatal programing of motivated behaviors: can innate immunity prime behavior? Neural Regen Res 2023; 18:280-283. [PMID: 35900403 PMCID: PMC9396490 DOI: 10.4103/1673-5374.346475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Prenatal programming during pregnancy sets physiological outcomes in the offspring by integrating external or internal stimuli. Accordingly, pregnancy is an important stage of physiological adaptations to the environment where the fetus becomes exposed and adapted to the maternal milieu. Maternal exposure to high-energy dense diets can affect motivated behavior in the offspring leading to addiction and impaired sociability. A high-energy dense exposure also increases the pro-inflammatory cytokines profile in plasma and brain and favors microglia activation in the offspring. While still under investigation, prenatal exposure to high-energy dense diets promotes structural abnormalities in selective brain regions regulating motivation and social behavior in the offspring. The current review addresses the role of energy-dense foods programming central and peripheral inflammatory profiles during embryonic development and its effect on motivated behavior in the offspring. We provide preclinical and clinical evidence that supports the contribution of prenatal programming in shaping immune profiles that favor structural and brain circuit disruption leading to aberrant motivated behaviors after birth. We hope this minireview encourages future research on novel insights into the mechanisms underlying maternal programming of motivated behavior by central immune networks.
Collapse
|
20
|
López-Taboada I, Sal-Sarria S, Vallejo G, Coto-Montes A, Conejo NM, González-Pardo H. Sexual dimorphism in spatial learning and brain metabolism after exposure to a western diet and early life stress in rats. Physiol Behav 2022; 257:113969. [PMID: 36181786 DOI: 10.1016/j.physbeh.2022.113969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 01/06/2023]
Abstract
Prolonged daily intake of Western-type diet rich in saturated fats and sugars, and exposure to early life stress have been independently linked to impaired neurodevelopment and behaviour in animal models. However, sex-specific effects of both environmental factors combined on spatial learning and memory, behavioural flexibility, and brain oxidative capacity have still not been addressed. The current study aimed to evaluate the impact of maternal and postnatal exposure to a high-fat and high-sugar diet (HFS), and exposure to early life stress by maternal separation in adult male and female Wistar rats. For this purpose, spatial learning and memory and behavioural flexibility were evaluated in the Morris water maze, and regional brain oxidative capacity and oxidative stress levels were measured in the hippocampus and medial prefrontal cortex. Spatial memory, regional brain oxidative metabolism, and levels of oxidative stress differed between females and males, suggesting sexual dimorphism in the effects of a HFS diet and early life stress. Males fed the HFS diet performed better than all other experimental groups independently of early life stress exposure. However, behavioural flexibility evaluated in the spatial reversal leaning task was impaired in males fed the HFS diet. In addition, exposure to maternal separation or the HFS diet increased the metabolic capacity of the prefrontal cortex and dorsal hippocampus in males and females. Levels of oxidative stress measured in the latter brain regions were also increased in groups fed the HFS diet, but maternal separation seemed to dampen regional brain oxidative stress levels. Therefore, these results suggest a compensatory effect resulting from the interaction between prolonged exposure to a HFS diet and early life stress.
Collapse
Affiliation(s)
- Isabel López-Taboada
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Saúl Sal-Sarria
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain
| | - Guillermo Vallejo
- Methodology area, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003 Oviedo, Spain
| | - Ana Coto-Montes
- Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain; Department of Morphology and Cell Biology, Faculty of Medicine, University of Oviedo, Julián Clavería s/n, 33006 Oviedo, Spain
| | - Nélida M Conejo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain.
| | - Héctor González-Pardo
- Laboratory of Neuroscience, Department of Psychology, Faculty of Psychology, University of Oviedo, Plaza Feijoo s/n, 33003, Oviedo, Spain; Institute of Neurosciences of the Principality of Asturias (INEUROPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Av. del Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
21
|
Eisha S, Joarder I, Wijenayake S, McGowan PO. Non-nutritive bioactive components in maternal milk and offspring development: a scoping review. J Dev Orig Health Dis 2022; 13:665-673. [PMID: 35387707 DOI: 10.1017/s2040174422000149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lactation is a critical time in mammalian development, where maternal factors shape offspring outcomes. In this scoping review, we discuss current literature concerning maternal factors that influence lactation biology and highlight important associations between changes in milk composition and offspring outcomes. Specifically, we explore maternal nutritional, psychosocial, and environmental exposures that influence non-nutritive bioactive components in milk and their links to offspring growth, development, metabolic, and behavioral outcomes. A comprehensive literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. Predetermined eligibility criteria were used to analyze 3,275 papers, and the final review included 40 primary research articles. Outcomes of this review identify maternal obesity to be a leading maternal factor influencing the non-nutritive bioactive composition of milk with notable links to offspring outcomes. Offspring growth and development are the most common modes of programming associated with changes in non-nutritive milk composition due to maternal factors in early life. In addition to discussing studies investigating these key associations, we also identify knowledge gaps in the current literature and suggest opportunities and considerations for future studies.
Collapse
Affiliation(s)
- Shafinaz Eisha
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Ishraq Joarder
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
| | - Sanoji Wijenayake
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Biology, Richardson College for the Environment and Science Complex, The University of Winnipeg, Winnipeg, MB, Canada
| | - Patrick O McGowan
- Department of Biological Sciences, Center for Environmental Epigenetics and Development, University of Toronto Scarborough, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Sarkisova K, van Luijtelaar G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci Rep 2022; 13:436-468. [PMID: 36386598 PMCID: PMC9649966 DOI: 10.1016/j.ibneur.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
This review discusses the long-term effects of early-life environment on epileptogenesis, epilepsy, and neuropsychiatric comorbidities with an emphasis on the absence epilepsy. The WAG/Rij rat strain is a well-validated genetic model of absence epilepsy with mild depression-like (dysthymia) comorbidity. Although pathologic phenotype in WAG/Rij rats is genetically determined, convincing evidence presented in this review suggests that the absence epilepsy and depression-like comorbidity in WAG/Rij rats may be governed by early-life events, such as prenatal drug exposure, early-life stress, neonatal maternal separation, neonatal handling, maternal care, environmental enrichment, neonatal sensory impairments, neonatal tactile stimulation, and maternal diet. The data, as presented here, indicate that some early environmental events can promote and accelerate the development of absence seizures and their neuropsychiatric comorbidities, while others may exert anti-epileptogenic and disease-modifying effects. The early environment can lead to phenotypic alterations in offspring due to epigenetic modifications of gene expression, which may have maladaptive consequences or represent a therapeutic value. Targeting DNA methylation with a maternal methyl-enriched diet during the perinatal period appears to be a new preventive epigenetic anti-absence therapy. A number of caveats related to the maternal methyl-enriched diet and prospects for future research are discussed.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova str. 5a, Moscow 117485, Russia
| | - Gilles van Luijtelaar
- Donders Institute for Brain, Cognition, and Behavior, Donders Center for Cognition, Radboud University, Nijmegen, PO Box 9104, 6500 HE Nijmegen, the Netherlands
| |
Collapse
|
23
|
Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol 2022; 12:940937. [PMID: 36189369 PMCID: PMC9523142 DOI: 10.3389/fcimb.2022.940937] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of obesity is increasingly common in the United States, with ~25% of women of reproductive age being overweight or obese. Metaflammation, a chronic low grade inflammatory state caused by altered metabolism, is often present in pregnancies complicated by obesity. As a result, the fetuses of mothers who are obese are exposed to an in-utero environment that has altered nutrients and cytokines. Notably, both human and preclinical studies have shown that children born to mothers with obesity have higher risks of developing chronic illnesses affecting various organ systems. In this review, the authors sought to present the role of cytokines and inflammation during healthy pregnancy and determine how maternal obesity changes the inflammatory landscape of the mother, leading to fetal reprogramming. Next, the negative long-term impact on offspring’s health in numerous disease contexts, including offspring’s risk of developing neuropsychiatric disorders (autism, attention deficit and hyperactive disorder), metabolic diseases (obesity, type 2 diabetes), atopy, and malignancies will be discussed along with the potential of altered immune/inflammatory status in offspring as a contributor of these diseases. Finally, the authors will list critical knowledge gaps in the field of developmental programming of health and diseases in the context of offspring of mothers with obesity, particularly the understudied role of hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Merve Denizli
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis IN, United States
| | - Maegan L. Capitano
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis IN, United States
| | - Kok Lim Kua
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis IN, United States
- *Correspondence: Kok Lim Kua,
| |
Collapse
|
24
|
Motoki N, Inaba Y, Shibazaki T, Misawa Y, Ohira S, Kanai M, Kurita H, Tsukahara T, Nomiyama T. Impact of maternal dyslipidemia on infant neurodevelopment: The Japan Environment and Children's Study. Brain Dev 2022; 44:520-530. [PMID: 35643833 DOI: 10.1016/j.braindev.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Various genetic and environmental influences have been studied for developmental disorders; however, the precise cause remains unknown. This study assessed the impact of maternal serum total cholesterol (TC) level in early pregnancy on early childhood neurodevelopment. METHODS The fixed data of 31,797 singleton births from a large national birth cohort study that commenced in 2011 were used to identify developmental disorders as estimated by Ages and Stages Questionnaire, third edition (ASQ-3) scores of less than -2 standard deviations at 12 months of age. Multiple logistic regression analysis was employed to search for correlations between possibility of developmental disorders and maternal TC levels in early pregnancy classified into 4 groups based on quartile (Q1-Q4) values. RESULTS After controlling for potential confounding factors in 27,836 participants who ultimately underwent multivariate analysis, we observed that elevated TC levels were significantly associated with a higher risk of screen positive status for communication (Q4: adjusted odds ratio [aOR] 1.20, 95% confidence interval [CI] 1.05-1.37) and gross motor (aOR 1.13, 95% CI 1.03-1.25) ASQ-3 domain scores. CONCLUSION This large nationwide survey revealed a possible deleterious effect of hypercholesterolemia in early pregnancy on infant neurodevelopment and age-appropriate skill acquisition at 12 months age.
Collapse
Affiliation(s)
- Noriko Motoki
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yuji Inaba
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; Department of Neurology, Nagano Children's Hospital, Azumino, Nagano, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Nagano, Japan.
| | - Takumi Shibazaki
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yuka Misawa
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; Department of Rehabilitation, Nagano Children's Hospital, Azumino, Nagano, Japan
| | - Satoshi Ohira
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Makoto Kanai
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Hiroshi Kurita
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Teruomi Tsukahara
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Tetsuo Nomiyama
- Center for Perinatal, Pediatric, and Environmental Epidemiology, Shinshu University School of Medicine, Matsumoto, Nagano, Japan; Department of Preventive Medicine and Public Health, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | | |
Collapse
|
25
|
The Modification of Offspring Stress-Related Behavior and the Expression of Drd1, Drd2, and Nr3c1 by a Western-Pattern Diet in Mus Musculus. Int J Mol Sci 2022; 23:ijms23169245. [PMID: 36012509 PMCID: PMC9409213 DOI: 10.3390/ijms23169245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of early developmental experience on neurobiological pathways that may contribute to the association between diet and behavior have not yet been elucidated. The focus of the current study was to determine whether the impact of prenatal stress (PS) could be mitigated by a diet that stimulates the same neuroendocrine systems influenced by early stress, using a mouse model. Behavioral and genetic approaches were used to assess how a Western-pattern diet (WPD) interacts with PS and sex to impact the expression of anxiety-like behavior in an open-field arena, as well as the expression of the glucocorticoid receptor in the hippocampus, D1 dopamine receptors in the nucleus accumbens, and D2 dopamine receptors in the ventral tegmental area. Overall, the results demonstrated that a prenatal WPD mitigates the effects of maternal stress in dams and offspring. These results help to elucidate the relationship between pre- and post-natal nutrition, gene expression, and behaviors that lead to long-term health effects.
Collapse
|
26
|
Becegato M, Silva RH. Object recognition tasks in rats: Does sex matter? Front Behav Neurosci 2022; 16:970452. [PMID: 36035023 PMCID: PMC9412164 DOI: 10.3389/fnbeh.2022.970452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Novelty recognition tasks based on object exploration are frequently used for the evaluation of cognitive abilities and investigation of neurobiological and molecular aspects of memory in rodents. This is an interesting approach because variations of the object recognition tasks focus on different aspects of the memory events such as novelty, location, context, and combinations of these elements. Nevertheless, as in most animal neuroscience research, female subjects are underrepresented in object recognition studies. When studies include females, the particularities of this sex are not always considered. For example, appropriate controls for manipulations conducted exclusively in females (such as estrous cycle verification) are not included. In addition, interpretation of data is often based on standardizations conducted with male subjects. Despite that, females are frequently reported as deficient and unable to adequately perform some memory tests. Thus, our study aims to review studies that describe similarities and differences between male and female performances in the different variations of object recognition tasks. In summary, although females are commonly described with deficits and the articles emphasize sex differences, most published data reveal similar performances when sexes are compared.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H. Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
- MaternaCiência, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Regina H. Silva,
| |
Collapse
|
27
|
Cirulli F, De Simone R, Musillo C, Ajmone-Cat MA, Berry A. Inflammatory Signatures of Maternal Obesity as Risk Factors for Neurodevelopmental Disorders: Role of Maternal Microbiota and Nutritional Intervention Strategies. Nutrients 2022; 14:nu14153150. [PMID: 35956326 PMCID: PMC9370669 DOI: 10.3390/nu14153150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/18/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is a main risk factor for the onset and the precipitation of many non-communicable diseases. This condition, which is associated with low-grade chronic systemic inflammation, is of main concern during pregnancy leading to very serious consequences for the new generations. In addition to the prominent role played by the adipose tissue, dysbiosis of the maternal gut may also sustain the obesity-related inflammatory milieu contributing to create an overall suboptimal intrauterine environment. Such a condition here generically defined as “inflamed womb” may hold long-term detrimental effects on fetal brain development, increasing the vulnerability to mental disorders. In this review, we will examine the hypothesis that maternal obesity-related gut dysbiosis and the associated inflammation might specifically target fetal brain microglia, the resident brain immune macrophages, altering neurodevelopmental trajectories in a sex-dependent fashion. We will also review some of the most promising nutritional strategies capable to prevent or counteract the effects of maternal obesity through the modulation of inflammation and oxidative stress or by targeting the maternal microbiota.
Collapse
Affiliation(s)
- Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| | - Roberta De Simone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Antonietta Ajmone-Cat
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (R.D.S.); (M.A.A.-C.)
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; or
- Correspondence: (F.C.); (A.B.)
| |
Collapse
|
28
|
Mizera J, Kazek G, Pomierny B, Bystrowska B, Niedzielska-Andres E, Pomierny-Chamiolo L. Maternal High-Fat diet During Pregnancy and Lactation Disrupts NMDA Receptor Expression and Spatial Memory in the Offspring. Mol Neurobiol 2022; 59:5695-5721. [PMID: 35773600 DOI: 10.1007/s12035-022-02908-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/30/2022] [Indexed: 10/17/2022]
Abstract
The problem of an unbalanced diet, overly rich in fats, affects a significant proportion of the population, including women of childbearing age. Negative metabolic and endocrine outcomes for offspring associated with maternal high-fat diet during pregnancy and/or lactation are well documented in the literature. In this paper, we present our findings on the little-studied effects of this diet on NMDA receptors and cognitive functions in offspring. The subject of the study was the rat offspring born from dams fed a high-fat diet before mating and throughout pregnancy and lactation. Using a novel object location test, spatial memory impairment was detected in adolescent offspring as well as in young adult female offspring. The recognition memory of the adolescent and young adult offspring remained unaltered. We also found multiple alterations in the expression of the NMDA receptor subunits, NMDA receptor-associated scaffolding proteins, and selected microRNAs that regulate the activity of the NMDA receptor in the medial prefrontal cortex and the hippocampus of the offspring. Sex-dependent changes in glutamate levels were identified in extracellular fluid obtained from the medial prefrontal cortex and the hippocampus of the offspring. The obtained results indicate that a maternal high-fat diet during pregnancy and lactation can induce in the offspring memory disturbances accompanied by alterations in NMDA receptor expression.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland
| | - Ewa Niedzielska-Andres
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland.
| | - Lucyna Pomierny-Chamiolo
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, PL, Poland.
| |
Collapse
|
29
|
Mizera J, Pomierny B, Sadakierska-Chudy A, Bystrowska B, Pomierny-Chamiolo L. Disruption of Glutamate Homeostasis in the Brain of Rat Offspring Induced by Prenatal and Early Postnatal Exposure to Maternal High-Sugar Diet. Nutrients 2022; 14:nu14112184. [PMID: 35683984 PMCID: PMC9182612 DOI: 10.3390/nu14112184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
A high-calorie diet has contributed greatly to the prevalence of overweight and obesity worldwide for decades. These conditions also affect pregnant women and have a negative impact on the health of both the woman and the fetus. Numerous studies indicate that an unbalanced maternal diet, rich in sugars and fats, can influence the in utero environment and, therefore, the future health of the child. It has also been shown that prenatal exposure to an unbalanced diet might permanently alter neurotransmission in offspring. In this study, using a rat model, we evaluated the effects of a maternal high-sugar diet on the level of extracellular glutamate and the expression of key transporters crucial for maintaining glutamate homeostasis in offspring. Glutamate concentration was assessed in extracellular fluid samples collected from the medial prefrontal cortex and hippocampus of male and female offspring. Analysis showed significantly increased glutamate levels in both brain structures analyzed, regardless of the sex of the offspring. These changes were accompanied by altered expression of the EAAT1, VGLUT1, and xc− proteins in these brain structures. This animal study further confirms our previous findings that a maternal high-sugar diet has a detrimental effect on the glutamatergic system.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Bartosz Pomierny
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (B.P.); (B.B.)
| | - Anna Sadakierska-Chudy
- Department of Genetics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzinskiego 1, 30-705 Krakow, Poland;
| | - Beata Bystrowska
- Department of Biochemical Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (B.P.); (B.B.)
| | - Lucyna Pomierny-Chamiolo
- Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
- Correspondence: ; Tel.: +48-(12)-620-56-30
| |
Collapse
|
30
|
Musillo C, Berry A, Cirulli F. Prenatal psychological or metabolic stress increases the risk for psychiatric disorders: the "funnel effect" model. Neurosci Biobehav Rev 2022; 136:104624. [PMID: 35304226 DOI: 10.1016/j.neubiorev.2022.104624] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Adverse stressful experiences in utero can redirect fetal brain development, ultimately leading to increased risk for psychiatric disorders. Obesity during pregnancy can have similar effects as maternal stress, affecting mental health in the offspring. In order to explain how similar outcomes may originate from different prenatal conditions, we propose a "funnel effect" model whereby maternal psychological or metabolic stress triggers the same evolutionarily conserved response pathways, increasing vulnerability for psychopathology. In this context, the placenta, which is the main mother-fetus interface, appears to facilitate such convergence, re-directing "stress" signals to the fetus. Characterizing converging pathways activated by different adverse environmental conditions is fundamental to assess the emergence of risk signatures of major psychiatric disorders, which might enable preventive measures in risk populations, and open up new diagnostics, and potentially therapeutic approaches for disease prevention and health promotion already during pregnancy.
Collapse
Affiliation(s)
- Chiara Musillo
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
31
|
Rocha-Gomes A, Teixeira AE, Santiago CMO, Oliveira DGD, Silva AAD, Lacerda ACR, Riul TR, Mendonça VA, Rocha-Vieira E, Leite HR. Prenatal LPS exposure increases hippocampus IL-10 and prevents short-term memory loss in the male adolescent offspring of high-fat diet fed dams. Physiol Behav 2022; 243:113628. [PMID: 34695488 DOI: 10.1016/j.physbeh.2021.113628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/25/2022]
Abstract
Lipopolysaccharide (LPS) tolerance can reduce the neuroinflammation caused by high fat maternal diets; however, there are no reports that have evaluated the effects of prenatal LPS exposure on the memories of the offspring of high-fat diet fed dams. This study evaluated the effects of prenatal LPS exposure on the inflammatory parameters and redox status in the brain, as well as the object recognition memory of adolescent offspring of Wistar rat dams that were treated with a high-fat diet during gestation and lactation. Female pregnant Wistar rats randomly received a standard diet (17.5% fat) or a high-fat diet (45.0% fat) during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitoneally treated with LPS (0.1 mg.kg-1). After weaning, the male offspring were placed in cages in standard conditions, and at 6 weeks old, animals underwent the novel object recognition test (for short- and long-term memory). The offspring of the high-fat diet fed dams showed increased hippocampus IL-6 levels (21-days-old) and impaired short-term memories. These effects were avoided in the offspring of high-fat diet fed dams submitted to prenatal LPS exposure, which showed greater hippocampus IL-10 levels (at 21- and 50-days-old), increased antioxidant activity (50-days-old) in the hippocampus and prefrontal cortex, without memory impairments (short- and long-term memory). IL-6 has been consistently implicated in memory deficits and as an endogenous mechanism for limiting plasticity, while IL-10 regulates glial activation and has a strong association with improvements in cognitive function. Prenatal LPS exposure preventing the increase of IL-6 in the hippocampus and the impairment to short-term object recognition memory caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil.
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição. Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brasil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, 39100-000 Brasil; Departamento de Fisioterapia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901 Brasil.
| |
Collapse
|
32
|
Monteiro S, Nejad YS, Aucoin M. Perinatal diet and offspring anxiety: A scoping review. Transl Neurosci 2022; 13:275-290. [PMID: 36128579 PMCID: PMC9449687 DOI: 10.1515/tnsci-2022-0242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
Health behaviors during pregnancy have an impact on the developing offspring. Dietary factors play a role in the development of mental illness: however, less is known about the impact of diet factors during pre-conception, gestation, and lactation on anxiety levels in offspring. This scoping review sought to systematically map the available research involving human and animal subjects to identify nutritional interventions which may have a harmful or protective effect, as well as identify gaps. Studies investigating an association between any perinatal diet pattern or diet constituent and offspring anxiety were included. The number of studies reporting an association with increased or decreased levels of anxiety were counted and presented in figures. A total of 55,914 results were identified as part of a larger scoping review, and 120 articles met the criteria for inclusion. A greater intake of phytochemicals and vitamins were associated with decreased offspring anxiety whereas maternal caloric restriction, protein restriction, reduced omega-3 consumption, and exposure to a high fat diet were associated with higher levels of offspring anxiety. Results were limited by a very large proportion of animal studies. High quality intervention studies involving human subjects are warranted to elucidate the precise dietary factors or constituents that modulate the risk of anxiety in offspring.
Collapse
Affiliation(s)
- Sasha Monteiro
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Yousef Sadat Nejad
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| | - Monique Aucoin
- Department of Research and Clinical Epidemiology, Canadian College of Naturopathic Medicine, 1255 Sheppard Ave E, Toronto, ON, M2K 1E2, Canada
| |
Collapse
|
33
|
HUA Q, CHEN H, DAI A, WU Q, MU Y, BIAN S, WANG L, LU Y. Effects of high-fat diet on growth and depression-like behavior of prenatal stress offspring rats. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.36420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | - Qi WU
- Heze Medical College, China
| | | | | | - Liang WANG
- Qingdao Women’s and Children’s Hospital, China
| | | |
Collapse
|
34
|
Bodden C, Pang TY, Feng Y, Mridha F, Kong G, Li S, Watt MJ, Reichelt AC, Hannan AJ. Intergenerational effects of a paternal Western diet during adolescence on offspring gut microbiota, stress reactivity, and social behavior. FASEB J 2021; 36:e21981. [PMID: 34907601 DOI: 10.1096/fj.202100920rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022]
Abstract
The global consumption of highly processed, calorie-dense foods has contributed to an epidemic of overweight and obesity, along with negative consequences for metabolic dysfunction and disease susceptibility. As it becomes apparent that overweight and obesity have ripple effects through generations, understanding of the processes involved is required, in both maternal and paternal epigenetic inheritance. We focused on the patrilineal effects of a Western-style high-fat (21%) and high-sugar (34%) diet (WD) compared to control diet (CD) during adolescence and investigated F0 and F1 mice for physiological and behavioral changes. F0 males (fathers) showed increased body weight, impaired glycemic control, and decreased attractiveness to females. Paternal WD caused significant phenotypic changes in F1 offspring, including higher body weights of pups, increased Actinobacteria abundance in the gut microbiota (ascertained using 16S microbiome profiling), a food preference for WD pellets, increased male dominance and attractiveness to females, as well as decreased behavioral despair. These results collectively demonstrate the long-term intergenerational effects of a Western-style diet during paternal adolescence. The behavioral and physiological alterations in F1 offspring provide evidence of adaptive paternal programming via epigenetic inheritance. These findings have important implications for understanding paternally mediated intergenerational inheritance, and its relevance to offspring health and disease susceptibility.
Collapse
Affiliation(s)
- Carina Bodden
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yingshi Feng
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Faria Mridha
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geraldine Kong
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Shanshan Li
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew J Watt
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Amy C Reichelt
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anthony J Hannan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia.,Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
35
|
Zambrano E, Rodríguez-González GL, Reyes-Castro LA, Bautista CJ, Castro-Rodríguez DC, Juárez-Pilares G, Ibáñez CA, Hernández-Rojas A, Nathanielsz PW, Montaño S, Arredondo A, Huang F, Bolaños-Jiménez F. DHA Supplementation of Obese Rats throughout Pregnancy and Lactation Modifies Milk Composition and Anxiety Behavior of Offspring. Nutrients 2021; 13:nu13124243. [PMID: 34959795 PMCID: PMC8706754 DOI: 10.3390/nu13124243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/07/2023] Open
Abstract
We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg−1 d−1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups’ milk nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA) concentrations, and less DHA content. MO male and female offspring had higher ω-6/ ω-3 milk consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations, and enhanced milk DHA. MO+DHA offspring had a lower ω-6/ω-3 milk intake ratio and reduced anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers with DHA improves milk composition, especially LCPUFA content and ω-6/ω-3 ratio reducing offspring anxiety in a sex-dependent manner.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- Correspondence: ; Tel.: +52-55-5487-0900 (ext. 2417)
| | - Guadalupe L. Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Luis A. Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Claudia J. Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Diana C. Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gimena Juárez-Pilares
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Carlos A. Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Alejandra Hernández-Rojas
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | | | - Sara Montaño
- Department of Animal Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Armando Arredondo
- Center for Health Systems Research, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Fengyang Huang
- Laboratory of Pharmacology and Toxicology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Francisco Bolaños-Jiménez
- INRAE, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096 Nantes, France;
| |
Collapse
|
36
|
Rocha-Gomes A, Teixeira AE, de Oliveira DG, Santiago CMO, da Silva AA, Riul TR, Lacerda ACR, Mendonça VA, Rocha-Vieira E, Leite HR. LPS tolerance prevents anxiety-like behavior and amygdala inflammation of high-fat-fed dams' adolescent offspring. Behav Brain Res 2021; 411:113371. [PMID: 34019914 DOI: 10.1016/j.bbr.2021.113371] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/15/2021] [Accepted: 05/15/2021] [Indexed: 02/04/2023]
Abstract
Maternal high-fat diets (HFD) can generate inflammation in the offspring's amygdala, which can lead to anxiety-like behaviors. Conversely, lipopolysaccharide (LPS) tolerance can reduce neuroinflammation in the offspring caused by maternal high-fat diets. This study evaluated the combination of LPS tolerance and high-fat maternal diet on amygdala's inflammatory parameters and the anxiety-like behavior in adolescent offspring. Female pregnant Wistar rats received randomly a standard diet or a high-fat diet during gestation and lactation. On gestation days 8, 10, and 12, half of the females in each group were intraperitonially injected with LPS (0.1 mg.kg-1). After weaning, the male offspring (n = 96) were placed in individual boxes in standard conditions, and when 6 weeks-old, the animals underwent: Open-Field, Light/Dark Box, Elevated Plus-Maze, and Rotarod tests. When 50 days-old the offspring were euthanized and the amygdala removed for cytokine and redox status analysis. The offspring in the HFD group showed lower amygdala IL-10 levels, high IL-6/IL-10 ratio, and anxiety-like behaviors. These effects were attenuated in the HFD offspring submitted to LPS tolerance, which showed an anti-inflammatory compensatory response in the amygdala. Also, this group showed a higher activity of the enzyme catalase in the amygdala. In addition, receiving the combination of LPS tolerance and maternal HFD did not lead to anxiety-like behavior in the offspring. The results suggest that LPS tolerance attenuated amygdala inflammation through an anti-inflammatory compensatory response besides preventing anxiety-like behavior caused by the high-fat maternal diet.
Collapse
Affiliation(s)
- Arthur Rocha-Gomes
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Amanda Escobar Teixeira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Dalila Gomes de Oliveira
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Camilla Mainy Oliveira Santiago
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Alexandre Alves da Silva
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Tania Regina Riul
- Laboratório de Nutrição Experimental - LabNutrex - Departamento de Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós-Graduação em Ciências da Nutrição, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Vanessa Amaral Mendonça
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Faculdade de Medicina do Campus JK, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Hércules Ribeiro Leite
- Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil; Programa de Pós Graduação em Ciências da Reabilitação, Universidade Federal de Minas Gerais, Diamantina, MG, Brazil.
| |
Collapse
|
37
|
Mizera J, Kazek G, Niedzielska-Andres E, Pomierny-Chamiolo L. Maternal high-sugar diet results in NMDA receptors abnormalities and cognitive impairment in rat offspring. FASEB J 2021; 35:e21547. [PMID: 33855764 DOI: 10.1096/fj.202002691r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 01/11/2023]
Abstract
Cognitive impairment affects patients suffering from various neuropsychiatric diseases, which are often accompanied by changes in the glutamatergic system. Epidemiological studies indicate that predispositions to the development of neuropsychiatric diseases may be programmed prenatally. Mother's improper diet during pregnancy and lactation may cause fetal abnormalities and, consequently, predispose to diseases in childhood and even adulthood. Considering the prevalence of obesity in developed countries, it seems important to examine the effects of diet on the behavior and physiology of future generations. We hypothesized that exposure to sugar excess in a maternal diet during pregnancy and lactation would affect memory as the NMDA receptor-related processes. Through the manipulation of the sugar amount in the maternal diet in rats, we assessed its effect on offspring's memory. Then, we evaluated if memory alterations were paralleled by molecular changes in NMDA receptors and related modulatory pathways in the prefrontal cortex and the hippocampus of adolescent and young adult female and male offspring. Behavioral studies have shown sex-related changes like impaired recognition memory in adolescent males and spatial memory in females. Molecular results confirmed an NMDA receptor hypofunction along with subunit composition abnormalities in the medial prefrontal cortex of adolescent offspring. In young adults, GluN2A-containing receptors were dominant in the medial prefrontal cortex, while in the hippocampus the GluN2B subunit contribution was elevated. In conclusion, we demonstrated that a maternal high-sugar diet can affect the memory processes in the offspring by disrupting the NMDA receptor composition and regulation in the medial prefrontal cortex and the hippocampus.
Collapse
Affiliation(s)
- Jozef Mizera
- Department of Toxicology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Jagiellonian University Medical College, Kraków, Poland
| | | | | |
Collapse
|
38
|
Ortiz-Valladares M, Pedraza-Medina R, Pinto-González MF, Muñiz JG, Gonzalez-Perez O, Moy-López NA. Neurobiological approaches of high-fat diet intake in early development and their impact on mood disorders in adulthood: A systematic review. Neurosci Biobehav Rev 2021; 129:218-230. [PMID: 34324919 DOI: 10.1016/j.neubiorev.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 07/25/2021] [Indexed: 01/21/2023]
Abstract
The early stage of development is a vulnerable period for progeny neurodevelopment, altering cytogenetic and correct cerebral functionality. The exposure High-Fat Diet (HFD) is a factor that impacts the future mental health of individuals. This review analyzes possible mechanisms involved in the development of mood disorders in adulthood because of maternal HFD intake during gestation and lactation, considering previously reported findings in the last five years, both in humans and animal models. Maternal HFD could induce alterations in mood regulation, reported as increased stress response, anxiety-like behavior, and depressive-like behavior. These changes were mostly related to HPA axis dysregulations and neuroinflammatory responses. In conclusion, there could be a relationship between HFD consumption during the early stages of life and the development of psychopathologies during adulthood. These findings provide guidelines for the understanding of possible mechanisms involved in mood disorders, however, there is still a need for more human clinical studies that provide evidence to improve the understanding of maternal nutrition and future mental health outcomes in the offspring.
Collapse
Affiliation(s)
| | - Ricardo Pedraza-Medina
- Medical Science Postgraduate Program, School of Medicine, University of Colima, Colima, Mexico
| | | | - Jorge Guzmán Muñiz
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | | |
Collapse
|
39
|
da Silva LO, da Silva Aragão R, Duarte Barros MDL, Nogueira Ferraz-Pereira K, Lins Pinheiro I, Galindo LCM. Maternal exposure to high-fat diet modifies anxiety-like/depression-like behaviors and compounds of Serotonergic System in offspring: A preclinical systematic review. Int J Dev Neurosci 2021; 81:371-385. [PMID: 33788300 DOI: 10.1002/jdn.10110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal nutrition affects offspring physiology and behavior including susceptibility to mental health-related states. Perinatal high-fat diet (HFD) consumption has been associated with lower levels of serotonin as well as the development of anxiety-like and depression-like behaviors in offspring. The aim of this systematic review was to investigate the effects of maternal HFD during pregnancy and/or lactation on these behaviors and on some aspects of the serotonergic system. Criteria for eligibility included studies of offspring of rodents and non-human primates exposed to HFD at least during pregnancy and/or lactation, offspring that showed outcomes related to anxiety-like and depression-like behaviors and to the serotonergic system. The searches were realized in the LILACS, Web of Science, Scopus, and PubMed databases. The systematic review protocol was registered on the CAMARADES website. The internal validity was assessed by the SYRCLE risk of bias tool. The Kappa index was used for analyzing agreement among the reviewers. In addition, the PRISMA statement was used to report this systematic review. Sixteen articles were included in this review. Most of which studied HFD prior to mating and during pregnancy and lactation. All studies analyzed outcomes related to emotional behavior; three analyzed outcomes related to serotonin system compounds. Maternal consumption of HFD was found to be associated with an inconsistent pattern of the expression of TPH2 as well as reduced the immunoreactivity of 5-HT in the prefrontal cortex and increased 5-HT1A receptor expression in the dorsal raphe of offspring. An association between an HFD and alterations in emotional behavior was found in most of the studies selected.
Collapse
Affiliation(s)
- Luana Olegário da Silva
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil
| | - Raquel da Silva Aragão
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Graduate Program in Nutrition, Universidade Federal de Pernambuco, Recife, Brazil.,Physical Education and Sport Sciences Nucleus, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Kelli Nogueira Ferraz-Pereira
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil
| | - Isabeli Lins Pinheiro
- Physical Education and Sport Sciences Nucleus, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil
| | - Lígia Cristina Monteiro Galindo
- Graduate Program in Nutrition, Physical Activity and Phenotypic Plasticity, Universidade Federal de Pernambuco, Vitória de Santo Antão, Brazil.,Unity of Studies in Nutrition and Phenotypic Plasticity, Department of Nutrition, Universidade Federal de Pernambuco, Recife, Brazil.,Departament of Anatomy, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
40
|
The impact of maternal obesity on childhood neurodevelopment. J Perinatol 2021; 41:928-939. [PMID: 33249428 DOI: 10.1038/s41372-020-00871-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 02/08/2023]
Abstract
There is growing clinical and experimental evidence to suggest that maternal obesity increases children's susceptibility to neurodevelopmental and neuropsychiatric disorders. Given the worldwide obesity epidemic, it is crucial that we acquire a thorough understanding of the available evidence, identify gaps in knowledge, and develop an agenda for intervention. This review synthesizes human and animal studies investigating the association between maternal obesity and offspring brain health. It also highlights key mechanisms underlying these effects, including maternal and fetal inflammation, alterations to the microbiome, epigenetic modifications of neurotrophic genes, and impaired dopaminergic and serotonergic signaling. Lastly, this review highlights several proposed interventions and priorities for future investigation.
Collapse
|
41
|
Sex differences in the elevated plus-maze test and large open field test in adult Wistar rats. Pharmacol Biochem Behav 2021; 204:173168. [PMID: 33684454 DOI: 10.1016/j.pbb.2021.173168] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
There is a growing need for a better understanding of sex differences in animal models of psychiatric disorders. The elevated plus-maze (EPM) test and large open field (LOF) test are widely used to study anxiety-like behavior in rodents. Our studies explored sex differences in anxiety and activity parameters in the LOF and EPM and determined whether these parameters correlate within and between tests. Drug naïve adult male and female Wistar rats (n = 47/sex) were used for the studies, and the rats were tested for 5 min in the EPM and 10 min in the LOF. The females spent more time on the open arms of the EPM and made more open arms entries than the males. The females also spent more time in the center zone of the LOF and made more center zone entries. The females traveled a greater distance in the LOF and EPM. There was a moderate positive correlation between time on the open arms of the EPM and time in the center zone of the LOF. There was also a moderate positive correlation between open arms entries in the EPM and center zone entries in the LOF. A hierarchical cluster analysis revealed one cluster with LOF parameters, one cluster with EPM parameters, and one cluster with parameters related to the avoidance of open spaces. In conclusion, these findings indicate that female rats display less anxiety-like behavior in the EPM and LOF. Furthermore, there are sex differences for almost all behavioral parameters in these anxiety tests.
Collapse
|
42
|
Romero-Delgado B, Cárdenas-Tueme M, Herrera-de la Rosa JDJ, Camacho-Morales A, Castro H, de la Garza AL. Maternal Sweeteners Intake During Gestation and Lactation Affects Learning and Memory in Rat Female Offspring. J Med Food 2021; 24:833-840. [PMID: 33570459 DOI: 10.1089/jmf.2020.0134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Maternal high-sweetener diet, such as sucrose, has been associated with an increased risk of metabolic and cognitive-related diseases in the offspring. This study was performed to determine the effect of maternal sweetener intake during gestation and lactation on learning and memory in adult female offspring rats. Twenty-eight female pups from dams fed standard diet (Control-C, n = 10), high-sucrose diet (HS-C, n = 6), and high-honey diet (Ho-C, n = 12) were fed standard diet after weaning and body weight and food intake were recorded once a week for 19 weeks. Learning and memory tests were conducted at week 14 (Y-maze) and 18 (Barnes maze). We found that birth weight of Control-C group was greater than the Ho-C (P < .001). Blood glucose levels of the HS-C group were significantly higher than the Control-C and Ho-C groups. Control-C pups recognized the novel arm of the Y-maze compared with HS-C and Ho-C groups (P < .01). Also, offspring of the HS-C group showed deficient performance in the Barnes test when compared with the Control-C and Ho-C groups (P < .05). These results suggest that dams fed a high-sucrose diet during gestation and lactation favor high-glucose levels and deficient long-term memory performance in adult female offspring rats.
Collapse
Affiliation(s)
- Bianca Romero-Delgado
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México
| | - Marcela Cárdenas-Tueme
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Departamento de Biología Celular y Genética, Monterrey, Nuevo León, México
| | - José de Jesús Herrera-de la Rosa
- Universidad Autonoma de Nuevo Leon, Unidad de Modelos Biológicos, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Alberto Camacho-Morales
- Universidad Autonoma de Nuevo Leon, Facultad de Medicina, Departamento de Bioquímica. Monterrey, Nuevo León, México.,Universidad Autonoma de Nuevo Leon, Unidad de Neurometabolismo, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Heriberto Castro
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México.,Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| | - Ana Laura de la Garza
- Universidad Autonoma de Nuevo Leon, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey, Nuevo León, México.,Universidad Autonoma de Nuevo Leon, Unidad de Nutrición, Centro de Investigación y Desarrollo en Ciencias de la Salud, Monterrey, Nuevo León, México
| |
Collapse
|
43
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
44
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|
45
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
46
|
Risal S, Manti M, Lu H, Fornes R, Larsson H, Benrick A, Deng Q, Cesta CE, Rosenqvist MA, Stener-Victorin E. Prenatal androgen exposure causes a sexually dimorphic transgenerational increase in offspring susceptibility to anxiety disorders. Transl Psychiatry 2021; 11:45. [PMID: 33441551 PMCID: PMC7806675 DOI: 10.1038/s41398-020-01183-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
If and how obesity and elevated androgens in women with polycystic ovary syndrome (PCOS) affect their offspring's psychiatric health is unclear. Using data from Swedish population health registers, we showed that daughters of mothers with PCOS have a 78% increased risk of being diagnosed with anxiety disorders. We next generated a PCOS-like mouse (F0) model induced by androgen exposure during late gestation, with or without diet-induced maternal obesity, and showed that the first generation (F1) female offspring develop anxiety-like behavior, which is transgenerationally transmitted through the female germline into the third generation of female offspring (F3) in the androgenized lineage. In contrast, following the male germline, F3 male offspring (mF3) displayed anxiety-like behavior in the androgenized and the obese lineages. Using a targeted approach to search for molecular targets within the amygdala, we identified five differentially expressed genes involved in anxiety-like behavior in F3 females in the androgenized lineage and eight genes in the obese lineage. In mF3 male offspring, three genes were dysregulated in the obese lineage but none in the androgenized lineage. Finally, we performed in vitro fertilization (IVF) using a PCOS mouse model of continuous androgen exposure. We showed that the IVF generated F1 and F2 offspring in the female germline did not develop anxiety-like behavior, while the F2 male offspring (mF2) in the male germline did. Our findings provide evidence that elevated maternal androgens in PCOS and maternal obesity may underlie the risk of a transgenerational transmission of anxiety disorders in children of women with PCOS.
Collapse
Affiliation(s)
- Sanjiv Risal
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Manti
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Haojiang Lu
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Romina Fornes
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- grid.4714.60000 0004 1937 0626Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden ,grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Anna Benrick
- grid.8761.80000 0000 9919 9582Department of Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.412798.10000 0001 2254 0954School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Qiaolin Deng
- grid.4714.60000 0004 1937 0626Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Carolyn E. Cesta
- grid.4714.60000 0004 1937 0626Department of Medicine, Solna, Centre for Pharmacoepidemiology, Karolinska Institutet, Stockholm, Sweden
| | - Mina A. Rosenqvist
- grid.15895.300000 0001 0738 8966School of Medical Sciences, Örebro University, Örebro, Sweden
| | | |
Collapse
|
47
|
Gawlińska K, Gawliński D, Korostyński M, Borczyk M, Frankowska M, Piechota M, Filip M, Przegaliński E. Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring. Dev Cogn Neurosci 2020; 47:100879. [PMID: 33232913 PMCID: PMC7691544 DOI: 10.1016/j.dcn.2020.100879] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Modified maternal diet influences offspring behavior and the brain transcriptome. Maternal HFD provokes depressive-like behavior in male and female offspring. In utero exposure to HFD leads to transcriptomics alterations within the offspring’s frontal cortex. Maternal HFD changes expression of markers specific to excitatory and inhibitory cortical neurons.
Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring’s life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.
Collapse
Affiliation(s)
- Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Dawid Gawliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Michał Korostyński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Borczyk
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, 31-343, Kraków, Smętna Street 12, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland.
| | - Edmund Przegaliński
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, 31-343, Kraków, Smętna Street 12, Poland
| |
Collapse
|
48
|
Page KC, Anday EK. Dietary Exposure to Excess Saturated Fat During Early Life Alters Hippocampal Gene Expression and Increases Risk for Behavioral Disorders in Adulthood. Front Neurosci 2020; 14:527258. [PMID: 33013310 PMCID: PMC7516040 DOI: 10.3389/fnins.2020.527258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Maternal and postnatal diets result in long-term changes in offspring brain and behavior; however, the key mediators of these developmental changes are not well-defined. In this study, we investigated the impact of maternal and post-weaning high-fat diets on gene expression of key components mediating hippocampal synaptic efficacy. In addition, we evaluated the risk for impaired stress-coping and anxiety-like behaviors in adult offspring exposed to obesogenic diets during early life. Methods Dams were fed a control (C) or high-fat (HF) diet prior to mating, pregnancy, and lactation. Male offspring from control chow and high-fat fed dams were weaned to control chow or HF diets. The forced swim test (FST) and the elevated-plus maze (EPM) were used to detect stress-coping and anxiety-like behavior, respectively. Real-time RT-PCR and ELISA were used to analyze hippocampal expression of genes mediating synaptic function. Results Animals fed a HF diet post-weaning spent more time immobile in the FST. Swimming time was reduced in response to both maternal and post-weaning HF diets. Both maternal and post-weaning HF diets contributed to anxiety-like behavior in animals exposed to the EPM. Maternal and post-weaning HF diets were associated with a significant decrease in mRNA and protein expression for hippocampal GDNF, MAP2, SNAP25, and synaptophysin. Hippocampal mRNA expression of key serotonergic and glutamatergic receptors also exhibited differential responses to maternal and post-weaning HF diets. Hippocampal serotonergic receptor 5HT1A mRNA was reduced in response to both the maternal and post-weaning diet, whereas, 5HT2A receptor mRNA expression was increased in response to the maternal HF diet. The glutamate AMPA receptor subunit, GluA1, mRNA expression was significantly reduced in response to both diets, whereas no change was detected in GluA2 subunit mRNA expression. Conclusion These data demonstrate that the expression of genes mediating synaptic function are differentially affected by maternal and post-weaning high-fat diets. The post-weaning high-fat diet clearly disturbs both behavior and gene expression. In addition, although the transition to control diet at weaning partially compensates for the adverse effects of the maternal HF diet, the negative consequence of the maternal HF diet is exacerbated by continuing the high-fat diet post-weaning. We present evidence to support the claim that these dietary influences increase the risk for anxiety and impaired stress-coping abilities in adulthood.
Collapse
Affiliation(s)
- Kathleen C Page
- Department of Biology, Bucknell University, Lewisburg, PA, United States
| | - Endla K Anday
- College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
49
|
Bordeleau M, Lacabanne C, Fernández de Cossío L, Vernoux N, Savage JC, González-Ibáñez F, Tremblay MÈ. Microglial and peripheral immune priming is partially sexually dimorphic in adolescent mouse offspring exposed to maternal high-fat diet. J Neuroinflammation 2020; 17:264. [PMID: 32891154 PMCID: PMC7487673 DOI: 10.1186/s12974-020-01914-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Maternal nutrition is critical for proper fetal development. While increased nutrient intake is essential during pregnancy, an excessive consumption of certain nutrients, like fat, can lead to long-lasting detrimental consequences on the offspring. Animal work investigating the consequences of maternal high-fat diet (mHFD) revealed in the offspring a maternal immune activation (MIA) phenotype associated with increased inflammatory signals. This inflammation was proposed as one of the mechanisms causing neuronal circuit dysfunction, notably in the hippocampus, by altering the brain-resident macrophages—microglia. However, the understanding of mechanisms linking inflammation and microglial activities to pathological brain development remains limited. We hypothesized that mHFD-induced inflammation could prime microglia by altering their specific gene expression signature, population density, and/or functions. Methods We used an integrative approach combining molecular (i.e., multiplex-ELISA, rt-qPCR) and cellular (i.e., histochemistry, electron microscopy) techniques to investigate the effects of mHFD (saturated and unsaturated fats) vs control diet on inflammatory priming, as well as microglial transcriptomic signature, density, distribution, morphology, and ultrastructure in mice. These analyses were performed on the mothers and/or their adolescent offspring at postnatal day 30. Results Our study revealed that mHFD results in MIA defined by increased circulating levels of interleukin (IL)-6 in the mothers. This phenotype was associated with an exacerbated inflammatory response to peripheral lipopolysaccharide in mHFD-exposed offspring of both sexes. Microglial morphology was also altered, and there were increased microglial interactions with astrocytes in the hippocampus CA1 of mHFD-exposed male offspring, as well as decreased microglia-associated extracellular space pockets in the same region of mHFD-exposed offspring of the two sexes. A decreased mRNA expression of the inflammatory-regulating cytokine Tgfb1 and microglial receptors Tmem119, Trem2, and Cx3cr1 was additionally measured in the hippocampus of mHFD-exposed offspring, especially in males. Conclusions Here, we described how dietary habits during pregnancy and nurturing, particularly the consumption of an enriched fat diet, can influence peripheral immune priming in the offspring. We also found that microglia are affected in terms of gene expression signature, morphology, and interactions with the hippocampal parenchyma, in a partially sexually dimorphic manner, which may contribute to the adverse neurodevelopmental outcomes on the offspring.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Chloé Lacabanne
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | | | - Nathalie Vernoux
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Julie C Savage
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Fernando González-Ibáñez
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine moléculaire, Université Laval, Québec, QC, Canada
| | - Marie-Ève Tremblay
- Axe neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada. .,Département de médecine moléculaire, Université Laval, Québec, QC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
50
|
de Sousa Neto IV, Tibana RA, da Silva LGDO, de Lira EM, do Prado GPG, de Almeida JA, Franco OL, Durigan JLQ, Adesida AB, de Sousa MV, Ricart CAO, Damascena HL, Castro MS, Fontes W, Prestes J, Marqueti RDC. Paternal Resistance Training Modulates Calcaneal Tendon Proteome in the Offspring Exposed to High-Fat Diet. Front Cell Dev Biol 2020; 8:380. [PMID: 32656202 PMCID: PMC7325979 DOI: 10.3389/fcell.2020.00380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/27/2020] [Indexed: 12/27/2022] Open
Abstract
The increase in high-energy dietary intakes is a well-known risk factor for many diseases, and can also negatively impact the tendon. Ancestral lifestyle can mitigate the metabolic harmful effects of offspring exposed to high-fat diet (HF). However, the influence of paternal exercise on molecular pathways associated to offspring tendon remodeling remains to be determined. We investigated the effects of 8 weeks of paternal resistance training (RT) on offspring tendon proteome exposed to standard diet or HF diet. Wistar rats were randomly divided into two groups: sedentary fathers and trained fathers (8 weeks, three times per week, with 8–12 dynamic movements per climb in a stair climbing apparatus). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups (five animals per group): offspring from sedentary fathers were exposed either to control diet (SFO-C), or to high-fat diet (SFO-HF); offspring from trained fathers were exposed to control diet (TFO-C) or to a high-fat diet (TFO-HF). The Nano-LC-MS/MS analysis revealed 383 regulated proteins among offspring groups. HF diet induced a decrease of abundance in tendon proteins related to extracellular matrix organization, transport, immune response and translation. On the other hand, the changes in the offspring tendon proteome in response to paternal RT were more pronounced when the offspring were exposed to HF diet, resulting in positive regulation of proteins essential for the maintenance of tendon integrity. Most of the modulated proteins are associated to biological pathways related to tendon protection and damage recovery, such as extracellular matrix organization and transport. The present study demonstrated that the father’s lifestyle could be crucial for tendon homeostasis in the first generation. Our results provide important insights into the molecular mechanisms involved in paternal intergenerational effects and potential protective outcomes of paternal RT.
Collapse
Affiliation(s)
- Ivo Vieira de Sousa Neto
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Ramires Alsamir Tibana
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil.,Graduate Program in Health Sciences, Universidade Federal do Mato Grosso, Cuiabá, Brazil
| | | | - Eliene Martins de Lira
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Gleyce Pires Gonçalves do Prado
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Jeeser Alves de Almeida
- Graduate Program in Health and Development in the Midwest Region, Faculty of Medicine, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil.,Research in Exercise and Nutrition in Health and Sports Performance-PENSARE, Graduate Program in Movement Sciences, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Octavio Luiz Franco
- Center for Proteomic and Biochemical Analyses, Graduate Program in Genomic Sciences and Biotechnology, Universidade Católicade Brasília, Distrito Federal, Brazil.,S-Inova Biotech, Graduate Program in Biotechnology, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - João Luiz Quaglioti Durigan
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| | - Adetola B Adesida
- University of Alberta, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, AB, Canada
| | - Marcelo Valle de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Carlos André Ornelas Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Hylane Luiz Damascena
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biological Sciences, Universidade de Brasília, Distrito Federal, Brazil
| | - Jonato Prestes
- Graduate Program of Physical Education, Universidade Católica de Brasília, Distrito Federal, Brazil
| | - Rita de Cassia Marqueti
- Laboratory of Molecular Analysis, Graduate Program of Sciences and Technology of Health, Universidade de Brasília, Distrito Federal, Brazil
| |
Collapse
|