1
|
Boyle AK, Tetorou K, Suff N, Beecroft L, Mazzaschi M, Karda R, Hristova M, Waddington SN, Peebles D. Ascending Vaginal Infection in Mice Induces Preterm Birth and Neonatal Morbidity. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:891-906. [PMID: 39892780 DOI: 10.1016/j.ajpath.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 12/06/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Preterm birth (PTB; delivery before 37 weeks), the main cause of neonatal death worldwide, can lead to adverse neurodevelopmental outcomes, as well as lung and gut pathology. PTB can be associated with ascending vaginal infection. Ascending Escherichia coli infection in pregnant mice induces PTB and reduces pup survival. The current study demonstrated that this model recapitulates the pathology observed in human preterm neonates (namely, neuroinflammation, lung injury, and gut inflammation). In neonatal brains, there is widespread cell death, microglial activation, astrogliosis, and reduced neuronal density. The utility of this model was validated by assessing the efficacy of maternal cervical gene therapy with an adeno-associated viral vector containing human β defensin 3. This improved pup survival and reduced tumor necrosis factor alpha mRNA expression in perinatal pup brains exposed to E. coli. This model provides a unique opportunity to evaluate the therapeutic benefit of preterm labor interventions on perinatal pathology.
Collapse
Affiliation(s)
- Ashley K Boyle
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom.
| | - Konstantina Tetorou
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, United Kingdom
| | - Laura Beecroft
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Margherita Mazzaschi
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Karda
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Mariya Hristova
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| | - Simon N Waddington
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom; Faculty of Health Sciences, Wits/South African Medical Research Council Antiviral Gene Therapy Research Unit, Johannesburg, South Africa
| | - Donald Peebles
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
2
|
Peterson BS, Delavari S, Sadik J, Ersland L, Elgen IB, Sawardekar S, Bansal R, Aukland SM. Brain tissue microstructure in a prospective, longitudinal, population-based cohort of preterm and term-born young adults. J Child Psychol Psychiatry 2025; 66:635-649. [PMID: 39561978 PMCID: PMC12018296 DOI: 10.1111/jcpp.14069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Fifteen million infants annually are born prematurely, placing them at high risk for life-long adverse neurodevelopmental outcomes. Whether brain tissue abnormalities that accompany preterm birth persist into young adulthood and are associated with long-term cognitive or psychiatric outcomes is not known. METHODS From infancy into young adulthood, we followed a population-based sample of consecutively identified preterm infants and their matched term controls. The preterm group was born at an average gestational age of 31.5 ± 2.6 weeks. We obtained Diffusion Tensor Imaging scans and assessed cognitive and psychiatric outcomes in young adulthood, at a mean age of 19 (range 17.6-20.8) years. Usable data were acquired from 180 participants (89 preterm, 91 term). RESULTS Preterm birth was associated with lower fractional anisotropy (FA) and higher average diffusion coefficient (ADC) values in deep white matter tracts of the internal capsule, cerebral peduncles, inferior frontal-occipital fasciculus, sagittal stratum and splenium of the corpus callosum, as well as in grey matter of the caudate, putamen and thalamus. A younger gestational age at birth accentuated these tissue abnormalities. Perinatal characteristics, including lower 5-min APGAR score, history of bronchopulmonary dysplasia, more days of oxygen supplementation and multiple births all increased ADC values in deep white matter tracts and grey matter throughout the brain. Preterm individuals had significantly lower full-scale IQ and more frequent lifetime psychiatric disorders. Those with psychiatric illnesses had significantly higher ADC and lower FA values throughout the deep posterior white matter. CONCLUSIONS Abnormalities in brain tissue microstructure associated with preterm birth persist into young adulthood and likely represent disordered myelination and accompanying axonal pathology. These disturbances are associated with a higher likelihood of developing a psychiatric disorder by young adulthood. Brain tissue disturbances were accentuated in those born at younger gestational ages and in those with a history of perinatal complications associated with infection and inflammation.
Collapse
Affiliation(s)
- Bradley S. Peterson
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Sahar Delavari
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Jonathan Sadik
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Lars Ersland
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
- Department of Clinical EngineeringHaukeland University HospitalBergenNorway
| | - Irene B. Elgen
- Division of Psychiatry, Department of Child and Adolescent PsychiatryHaukeland University HospitalBergenNorway
| | - Siddhant Sawardekar
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
| | - Ravi Bansal
- Institute for the Developing MindChildren's Hospital Los AngelesLos AngelesCAUSA
- Department of PsychiatryKeck School of Medicine at the University of Southern CaliforniaLos AngelesCAUSA
| | - Stein Magnus Aukland
- Department of RadiologyHaukeland University HospitalBergenNorway
- Department of Clinical MedicineUniversity of BergenBergenNorway
| |
Collapse
|
3
|
Luotonen S, Railo H, Acosta H, Huotilainen M, Lavonius M, Karlsson L, Karlsson H, Tuulari JJ. Gestational Duration and Postnatal Age-Related Changes in Aperiodic and Periodic Parameters in Neonatal and Toddler Electroencephalogram (EEG). Hum Brain Mapp 2025; 46:e70130. [PMID: 39764646 PMCID: PMC11705402 DOI: 10.1002/hbm.70130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
The brain develops most rapidly during pregnancy and early neonatal months. While prior electrophysiological studies have shown that aperiodic brain activity undergoes changes across infancy to adulthood, the role of gestational duration in aperiodic and periodic activity remains unknown. In this study, we aimed to bridge this gap by examining the associations between gestational duration and aperiodic and periodic activity in the EEG power spectrum in both neonates and toddlers. This cross-sectional study involved EEG data from 73 neonates (postnatal age 1-5 days, 40 females) and 56 toddlers (postnatal age of 2.9-3.2 years, 28 females) from the FinnBrain Birth Cohort Study. EEG power spectra were parameterized to aperiodic and periodic components using the SpecParam tool. We tested the associations between gestational duration as well as postnatal age and SpecParam parameters in neonates and toddlers while including birth weight and child sex as covariates. For neonates, multilevel models were employed, considering different data acquisitions (sleep and auditory paradigm + sleep), while in toddlers, regression models were used as only data from the auditory paradigm was available. We found that longer gestational duration was associated with a steeper power spectrum across EEG frequencies both in neonates and toddlers. Effect was especially strong in toddlers (β = 0.45, p = 0.004), while in neonates, it remained nearly statistically significant (p = 0.061). In neonates, a quadratic association between gestational duration and beta center frequency (12.5-30 Hz) was found. In toddlers, beta center frequencies were overall higher in females compared to males. Offset (calculated as the power of the aperiodic curve at 2.5 Hz) and theta center frequency had negative associations with postnatal age in neonates, but not in toddlers. Our results suggest that gestational duration may have significant and relatively long-lasting effects on brain physiology. The possible behavioral and cognitive consequences of these changes are enticing topics for future research.
Collapse
Affiliation(s)
- Silja Luotonen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of Pediatric NeurologyTurku University HospitalTurkuFinland
| | - Henry Railo
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of Clinical NeurophysiologyUniversity of TurkuTurkuFinland
| | - Henriette Acosta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Department of Psychiatry and PsychotherapyPhilipps University of MarburgMarburgGermany
| | - Minna Huotilainen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre of Excellence in Music, Mind, Body, and Brain, Faculty of Educational SciencesUniversity of HelsinkiHelsinkiFinland
- Cognitive Brain Research Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Maria Lavonius
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of Clinical Medicine, Unit of Public HealthUniversity of TurkuTurkuFinland
- Department of Child PsychiatryTurku University HospitalTurkuFinland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
| | - Jetro J. Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical MedicineUniversity of TurkuTurkuFinland
- Centre for Population Health ResearchTurku University Hospital and University of TurkuTurkuFinland
- Department of PsychiatryTurku University Hospital and University of TurkuTurkuFinland
- Turku Collegium for Science, Medicine and TechnologyUniversity of TurkuTurkuFinland
| |
Collapse
|
4
|
Liong S. Detecting the early warning signs of neonatal brain injury. Brain Behav Immun 2025; 123:948-949. [PMID: 39505050 DOI: 10.1016/j.bbi.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
- Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
5
|
White P, Ranasinghe S, Chen J, Van de Looij Y, Sizonenko S, Prasad J, Berry M, Bennet L, Gunn A, Dean J. Comparative utility of MRI and EEG for early detection of cortical dysmaturation after postnatal systemic inflammation in the neonatal rat. Brain Behav Immun 2024; 121:104-118. [PMID: 39043347 DOI: 10.1016/j.bbi.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Exposure to postnatal systemic inflammation is associated with increased risk of brain injury in preterm infants, leading to impaired maturation of the cerebral cortex and adverse neurodevelopmental outcomes. However, the optimal method for identifying cortical dysmaturation is unclear. Herein, we compared the utility of electroencephalography (EEG), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) at different recovery times after systemic inflammation in newborn rats. METHODS Sprague Dawley rat pups of both sexes received single-daily lipopolysaccharide (LPS; 0.3 mg/kg i.p.; n = 51) or saline (n = 55) injections on postnatal days (P)1, 2, and 3. A subset of these animals were implanted with EEG electrodes. Cortical EEG was recorded for 30 min from unanesthetized, unrestrained pups at P7, P14, and P21, and in separate groups, brain tissues were collected at these ages for ex-vivo MRI analysis (9.4 T) and Golgi-Cox staining (to assess neuronal morphology) in the motor cortex. RESULTS Postnatal inflammation was associated with reduced cortical pyramidal neuron arborization from P7, P14, and P21. These changes were associated with dysmature EEG features (e.g., persistence of delta waveforms, higher EEG amplitude, reduced spectral edge frequency) at P7 and P14, and higher EEG power in the theta and alpha ranges at P21. By contrast, there were no changes in cortical DTI or NODDI in LPS rats at P7 or P14, while there was an increase in cortical fractional anisotropy (FA) and decrease in orientation dispersion index (ODI) at P21. CONCLUSIONS EEG may be useful for identifying the early evolution of impaired cortical development after early life postnatal systemic inflammation, while DTI and NODDI seem to be more suited to assessing established cortical changes.
Collapse
Affiliation(s)
- Petra White
- University of Auckland, Auckland, New Zealand
| | | | - Joseph Chen
- University of Auckland, Auckland, New Zealand
| | - Yohan Van de Looij
- University of Geneva, Geneva, Switzerland; Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | | | - Jaya Prasad
- University of Auckland, Auckland, New Zealand
| | - Mary Berry
- University of Otago, Wellington, New Zealand
| | | | | | - Justin Dean
- University of Auckland, Auckland, New Zealand.
| |
Collapse
|
6
|
DiPiero MA, Rodrigues PG, Justman M, Roche S, Bond E, Gonzalez JG, Davidson RJ, Planalp EM, Dean DC. Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy. Brain Struct Funct 2024:10.1007/s00429-024-02853-w. [PMID: 39313671 DOI: 10.1007/s00429-024-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - McKaylie Justman
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Sophia Roche
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Elizabeth Bond
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jose Guerrero Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Drissi H, Mosquera J, Plaisant F, Vuillerot C, Gonzalez-Monge S, Pisella L. Visuospatial Perception in Prematurely Born Children Without Cerebral Palsy or Retinopathy but With Scholar Complaints. Dev Neuropsychol 2024; 49:207-224. [PMID: 38904205 DOI: 10.1080/87565641.2024.2366217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
In the absence of any complaints in early childhood, preterm children remain more at risk of encountering academic difficulties, but their clinical picture remains not well characterized. We screened visuospatial perception in 70 children born preterm consulting for scholar complaints. Developmental Coordination Disorder (with or without comorbidities) was associated with high prevalence (27%) of impaired perception of spatial relationship. Prematurely born children who obtained no diagnosis of Neuro-Developmental Disorder exhibited a high prevalence (31%) of impaired perception of object magnitude. Regression revealed that low gestational age and fetal growth restriction significantly predicted the magnitude but not the spatial relationship perception.
Collapse
Affiliation(s)
- Hind Drissi
- Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR 5292, Université de Lyon, Bron, France
| | - Jessica Mosquera
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Rééducation Pédiatrique, Bron, France
| | - Frank Plaisant
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Rééducation Pédiatrique, Bron, France
| | - Carole Vuillerot
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Rééducation Pédiatrique, Bron, France
| | - Sibylle Gonzalez-Monge
- Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR 5292, Université de Lyon, Bron, France
- Hospices Civils de Lyon, Hôpital Femme-Mère-Enfant, Service de Rééducation Pédiatrique, Bron, France
| | - Laure Pisella
- Centre de Recherche en Neurosciences de Lyon (CRNL), Inserm U1028, CNRS UMR 5292, Université de Lyon, Bron, France
| |
Collapse
|
8
|
Solis-Urra P, Rodriguez-Ayllon M, Verdejo-Román J, Erickson KI, Verdejo-García A, Catena A, Ortega FB, Esteban-Cornejo I. Early life factors and structural brain network in children with overweight/obesity: The ActiveBrains project. Pediatr Res 2024; 95:1812-1817. [PMID: 38066249 DOI: 10.1038/s41390-023-02923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 07/14/2024]
Abstract
BACKGROUND The aims of this study were to investigate the association of early life factors, including birth weight, birth length, and breastfeeding practices, with structural brain networks; and to test whether structural brain networks associated with early life factors were also associated with academic performance in children with overweight/obesity (OW/OB). METHOD 96 children with OW/OB aged 8-11 years (10.03 ± 1.16) from the ActiveBrains project were included. Early life factors were collected from birth records and reported by parents as weight, height, and months of breastfeeding. T1-weighted images were used to identify structural networks using a non-negative matrix factorization (NNMF) approach. Academic performance was evaluated by the Woodcock-Muñoz standardized test battery. RESULTS Birth weight and birth length were associated with seven networks involving the cerebellum, cingulate gyrus, occipital pole, and subcortical structures including hippocampus, caudate nucleus, putamen, pallidum, nucleus accumbens, and amygdala. No associations were found for breastfeeding practices. None of the networks linked to birth weight and birth length were linked to academic performance. CONCLUSIONS Birth weight and birth length, but not breastfeeding, were associated with brain structural networks in children with OW/OB. Thus, early life factors are related to brain networks, yet a link with academic performance was not observed. IMPACT Birth weight and birth length, but not breastfeeding, were associated with several structural brain networks involving the cerebellum, cingulate gyrus, occipital pole, and subcortical structures including hippocampus, caudate, putamen, pallidum, accumbens and amygdala in children with overweight/obesity, playing a role for a normal brain development. Despite no academic consequences, other behavioral consequences should be investigated. Interventions aimed at improving optimal intrauterine growth and development may be of importance to achieve a healthy brain later in life.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
- Servicio de Medicina Nuclear, Hospital Universitario Virgen de las Nieves, 18014, Granada, España.
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar, 2531015, Chile.
| | - Maria Rodriguez-Ayllon
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Juan Verdejo-Román
- Department of Personality, Assessment & Psychological Treatment, University of Granada, Granada, Spain
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- AdventHealth Research Institute, Neuroscience, Orlando, FL, USA
| | - Antonio Verdejo-García
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Andrés Catena
- School of Psychology, University of Granada, Campus de Cartuja s/n, 18071, Granada, Spain
| | - Francisco B Ortega
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Esteban-Cornejo
- Department of Physical Education and Sports, Faculty of Sport Sciences, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| |
Collapse
|
9
|
Agakidou E, Chatziioannidis I, Kontou A, Stathopoulou T, Chotas W, Sarafidis K. An Update on Pharmacologic Management of Neonatal Hypotension: When, Why, and Which Medication. CHILDREN (BASEL, SWITZERLAND) 2024; 11:490. [PMID: 38671707 PMCID: PMC11049273 DOI: 10.3390/children11040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Anti-hypotensive treatment, which includes dopamine, dobutamine, epinephrine, norepinephrine, milrinone, vasopressin, terlipressin, levosimendan, and glucocorticoids, is a long-established intervention in neonates with arterial hypotension (AH). However, there are still gaps in knowledge and issues that need clarification. The main questions and challenges that neonatologists face relate to the reference ranges of arterial blood pressure in presumably healthy neonates in relation to gestational and postnatal age; the arterial blood pressure level that potentially affects perfusion of critical organs; the incorporation of targeted echocardiography and near-infrared spectroscopy for assessing heart function and cerebral perfusion in clinical practice; the indication, timing, and choice of medication for each individual patient; the limited randomized clinical trials in neonates with sometimes conflicting results; and the sparse data regarding the potential effect of early hypotension or anti-hypotensive medications on long-term neurodevelopment. In this review, after a short review of AH definitions used in neonates and existing data on pathophysiology of AH, we discuss currently available data on pharmacokinetic and hemodynamic effects, as well as the effectiveness and safety of anti-hypotensive medications in neonates. In addition, data on the comparisons between anti-hypotensive medications and current suggestions for the main indications of each medication are discussed.
Collapse
Affiliation(s)
- Eleni Agakidou
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - Ilias Chatziioannidis
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - Angeliki Kontou
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - Theodora Stathopoulou
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| | - William Chotas
- Department of Neonatology, University of Vermont, Burlington, VT 05405, USA
| | - Kosmas Sarafidis
- 1st Department of Neonatology and Neonatal Intensive Care, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Ippokrateion General Hospital, 54642 Thessaloniki, Greece; (I.C.); (A.K.); (T.S.); (K.S.)
| |
Collapse
|
10
|
Galdi P, Cabez MB, Farrugia C, Vaher K, Williams LZJ, Sullivan G, Stoye DQ, Quigley AJ, Makropoulos A, Thrippleton MJ, Bastin ME, Richardson H, Whalley H, Edwards AD, Bajada CJ, Robinson EC, Boardman JP. Feature similarity gradients detect alterations in the neonatal cortex associated with preterm birth. Hum Brain Mapp 2024; 45:e26660. [PMID: 38488444 PMCID: PMC10941526 DOI: 10.1002/hbm.26660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/18/2024] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
The early life environment programmes cortical architecture and cognition across the life course. A measure of cortical organisation that integrates information from multimodal MRI and is unbound by arbitrary parcellations has proven elusive, which hampers efforts to uncover the perinatal origins of cortical health. Here, we use the Vogt-Bailey index to provide a fine-grained description of regional homogeneities and sharp variations in cortical microstructure based on feature gradients, and we investigate the impact of being born preterm on cortical development at term-equivalent age. Compared with term-born controls, preterm infants have a homogeneous microstructure in temporal and occipital lobes, and the medial parietal, cingulate, and frontal cortices, compared with term infants. These observations replicated across two independent datasets and were robust to differences that remain in the data after matching samples and alignment of processing and quality control strategies. We conclude that cortical microstructural architecture is altered in preterm infants in a spatially distributed rather than localised fashion.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- School of InformaticsUniversity of EdinburghEdinburghUK
| | | | - Christine Farrugia
- Faculty of EngineeringUniversity of MaltaVallettaMalta
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
| | - Kadi Vaher
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | - Logan Z. J. Williams
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - Gemma Sullivan
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - David Q. Stoye
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
| | | | | | | | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Hilary Richardson
- School of Philosophy, Psychology and Language SciencesUniversity of EdinburghEdinburghUK
| | - Heather Whalley
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
- Centre for Genomic and Experimental MedicineUniversity of EdinburghEdinburghUK
| | - A. David Edwards
- Centre for the Developing BrainKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Claude J. Bajada
- University of Malta Magnetic Resonance Imaging Platform (UMRI)VallettaMalta
- Department of Physiology and Biochemistry, Faculty of Medicine and SurgeryUniversity of MaltaVallettaMalta
| | - Emma C. Robinson
- Centre for the Developing BrainKing's College LondonLondonUK
- School of Biomedical Engineering and Imaging ScienceKing's College LondonLondonUK
| | - James P. Boardman
- MRC Centre for Reproductive HealthUniversity of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
11
|
Sun H, Jiang R, Dai W, Dufford AJ, Noble S, Spann MN, Gu S, Scheinost D. Network controllability of structural connectomes in the neonatal brain. Nat Commun 2023; 14:5820. [PMID: 37726267 PMCID: PMC10509217 DOI: 10.1038/s41467-023-41499-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023] Open
Abstract
White matter connectivity supports diverse cognitive demands by efficiently constraining dynamic brain activity. This efficiency can be inferred from network controllability, which represents the ease with which the brain moves between distinct mental states based on white matter connectivity. However, it remains unclear how brain networks support diverse functions at birth, a time of rapid changes in connectivity. Here, we investigate the development of network controllability during the perinatal period and the effect of preterm birth in 521 neonates. We provide evidence that elements of controllability are exhibited in the infant's brain as early as the third trimester and develop rapidly across the perinatal period. Preterm birth disrupts the development of brain networks and altered the energy required to drive state transitions at different levels. In addition, controllability at birth is associated with cognitive ability at 18 months. Our results suggest network controllability develops rapidly during the perinatal period to support cognitive demands but could be altered by environmental impacts like preterm birth.
Collapse
Affiliation(s)
- Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Wei Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
| | - Alexander J Dufford
- Department of Psychiatry and Center for Mental Health Innovation, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Stephanie Noble
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Center for Cognitive and Brain Health, Northeastern University, Boston, USA
| | - Marisa N Spann
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, China
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA.
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA.
- Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
12
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. Front Integr Neurosci 2023; 17:1149159. [PMID: 37255843 PMCID: PMC10225509 DOI: 10.3389/fnint.2023.1149159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N = 29) and term (N = 28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm (N = 6) and term (N = 9) mice and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA, United States
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
13
|
Witteveen IF, McCoy E, Holsworth TD, Shen CZ, Chang W, Nance MG, Belkowitz AR, Dougald A, Puglia MH, Ribic A. Preterm birth accelerates the maturation of spontaneous and resting activity in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524993. [PMID: 36711801 PMCID: PMC9882279 DOI: 10.1101/2023.01.20.524993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prematurity is among the leading risks for poor neurocognitive outcomes. The brains of preterm infants show alterations in structure and electrical activity, but the underlying circuit mechanisms are unclear. To address this, we performed a cross-species study of the electrophysiological activity in the visual cortices of prematurely born infants and mice. Using electroencephalography (EEG) in a sample of healthy preterm (N=29) and term (N=28) infants, we found that the maturation of the aperiodic EEG component was accelerated in the preterm cohort, with a significantly flatter 1/f slope when compared to the term infants. The flatter slope was a result of decreased spectral power in the theta and alpha bands and was correlated with the degree of prematurity. To determine the circuit and cellular changes that potentially mediate the changes in 1/f slope after preterm birth, we used in vivo electrophysiology in preterm mice and found that, similar to infants, preterm birth results in a flattened 1/f slope. We analyzed neuronal activity in the visual cortex of preterm mice (N=6 preterm and 9 term mice) and found suppressed spontaneous firing of neurons. Using immunohistochemistry, we further found an accelerated maturation of inhibitory circuits. In both preterm mice and infants, the functional maturation of the cortex was accelerated, underscoring birth as a critical checkpoint in cortical maturation. Our study points to a potential mechanism of preterm birth-related changes in resting neural activity, highlighting the utility of a cross-species approach in studying the neural circuit mechanisms of preterm birth-related neurodevelopmental conditions.
Collapse
Affiliation(s)
- Isabelle F. Witteveen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Emily McCoy
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| | - Troy D. Holsworth
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Catherine Z. Shen
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
| | - Winnie Chang
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Madelyn G. Nance
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Allison R. Belkowitz
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Avery Dougald
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Meghan H. Puglia
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22903
| | - Adema Ribic
- Department of Psychology, College and Graduate School of Arts and Sciences, University of Virginia, Charlottesville, VA 22904
- Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA 22903
| |
Collapse
|
14
|
Tseng WL, Chen CH, Chang JH, Peng CC, Jim WT, Lin CY, Hsu CH, Liu TY, Chang HY. Risk Factors of Language Delay at Two Years of Corrected Age among Very-Low-Birth-Weight Preterm Infants: A Population-Based Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020189. [PMID: 36832318 PMCID: PMC9955016 DOI: 10.3390/children10020189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
Language delays are often underestimated in very-low-birth-weight (VLBW) preterm infants. We aimed to identify the risk factors of language delay at two years of corrected age in this vulnerable population. VLBW infants, who were assessed at two years of corrected age using the Bayley Scale of Infant Development, third edition, were included using a population-based cohort database. Language delay was defined as mild to moderate if the composite score was between 70 and 85 and severe if the score was < 70. Multivariable logistic regression analysis was used to identify the perinatal risk factors associated with language delay. The study comprised 3797 VLBW preterm infants; 678 (18%) had a mild to moderate delay and 235 (6%) had a severe delay. After adjusting for confounding factors, low maternal education level, low maternal socioeconomic status, extremely low birth weight, male sex, and severe intraventricular hemorrhage (IVH) and/or cystic periventricular leukomalacia (PVL) were found to be significantly associated with both mild to moderate and severe delays. Resuscitation at delivery, necrotizing enterocolitis, and patent ductus arteriosus requiring ligation showed significant associations with severe delay. The strongest factors predicting both mild to moderate and severe language delays were the male sex and severe IVH and/or cystic PVL; thus, early targeted intervention is warranted in these populations.
Collapse
Affiliation(s)
- Wei-Lun Tseng
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
| | - Chia-Huei Chen
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 251020, Taiwan
| | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 251020, Taiwan
| | - Chun-Chih Peng
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 251020, Taiwan
| | - Wai-Tim Jim
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 251020, Taiwan
| | - Chia-Ying Lin
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
| | - Tzu-Yu Liu
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu City 30046, Taiwan
| | - Hung-Yang Chang
- Department of Pediatrics, MacKay Children’s Hospital, Taipei 104217, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 251020, Taiwan
- Correspondence: ; Tel.: +886-2543-3535; Fax: +886-2523-2448
| | | |
Collapse
|
15
|
Wang W, Yu Q, Liang W, Xu F, Li Z, Tang Y, Liu S. Altered cortical microstructure in preterm infants at term-equivalent age relative to term-born neonates. Cereb Cortex 2023; 33:651-662. [PMID: 35259759 DOI: 10.1093/cercor/bhac091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 02/03/2023] Open
Abstract
Preterm (PT) birth is a potential factor for abnormal brain development. Although various alterations of cortical structure and functional connectivity in preterm infants have been reported, the underlying microstructural foundation is still undetected thoroughly in PT infants relative to full-term (FT) neonates. To detect the very early cortical microstructural alteration noninvasively with advanced neurite orientation dispersion and density imaging (NODDI) on a whole-brain basis, we used multi-shell diffusion MRI of healthy newborns selected from the Developing Human Connectome Project. 73 PT infants and 69 FT neonates scanned at term-equivalent age were included in this study. By extracting the core voxels of gray matter (GM) using GM-based spatial statistics (GBSS), we found that comparing to FT neonates, infants born preterm showed extensive lower neurite density in both primary and higher-order association cortices (FWE corrected, P < 0.025). Higher orientation dispersion was only found in very preterm subgroup in the orbitofrontal cortex, fronto-insular cortex, entorhinal cortex, a portion of posterior cingular gyrus, and medial parieto-occipital cortex. This study provided new insights into exploring structural MR for functional and behavioral variations in preterm population, and these findings may have marked clinical importance, particularly in the guidance of ameliorating the development of premature brain.
Collapse
Affiliation(s)
- Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Zhuoran Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Key Laboratory of Mental Disorders, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
16
|
Neubauer A, Menegaux A, Wendt J, Li HB, Schmitz-Koep B, Ruzok T, Thalhammer M, Schinz D, Bartmann P, Wolke D, Priller J, Zimmer C, Rueckert D, Hedderich DM, Sorg C. Aberrant claustrum structure in preterm-born neonates: an MRI study. Neuroimage Clin 2023; 37:103286. [PMID: 36516730 PMCID: PMC9755238 DOI: 10.1016/j.nicl.2022.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The human claustrum is a gray matter structure in the white matter between insula and striatum. Previous analysis found altered claustrum microstructure in very preterm-born adults associated with lower cognitive performance. As the claustrum development is related to hypoxia-ischemia sensitive transient cell populations being at-risk in premature birth, we hypothesized that claustrum structure is already altered in preterm-born neonates. We studied anatomical and diffusion-weighted MRIs of 83 preterm- and 83 term-born neonates at term-equivalent age. Additionally, claustrum development was analyzed both in a spectrum of 377 term-born neonates and longitudinally in 53 preterm-born subjects. Data was provided by the developing Human Connectome Project. Claustrum development showed increasing volume, increasing fractional anisotropy (FA), and decreasing mean diffusivity (MD) around term both across term- and preterm-born neonates. Relative to term-born ones, preterm-born neonates had (i) increased absolute and relative claustrum volumes, both indicating increased cellular and/or extracellular matter and being in contrast to other subcortical gray matter regions of decreased volumes such as thalamus; (ii) lower claustrum FA and higher claustrum MD, pointing at increased extracellular matrix and impaired axonal integrity; and (iii) aberrant covariance between claustrum FA and MD, respectively, and that of distributed gray matter regions, hinting at relatively altered claustrum microstructure. Results together demonstrate specifically aberrant claustrum structure in preterm-born neonates, suggesting altered claustrum development in prematurity, potentially relevant for later cognitive performance.
Collapse
Affiliation(s)
- Antonia Neubauer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany.
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jil Wendt
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Germany; Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Tobias Ruzok
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Melissa Thalhammer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - David Schinz
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany; Neuropsychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Informatics, Technical University of Munich, Germany; Department of Computing, Imperial College London, UK
| | - Dennis M Hedderich
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
17
|
Tabernero Rico PM. Time to pregnancy and perinatal outcomes in a cohort of spontaneous pregnancies. SEXUAL & REPRODUCTIVE HEALTHCARE 2022; 34:100793. [PMID: 36402127 DOI: 10.1016/j.srhc.2022.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/04/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Obstetric and perinatal outcomes depend not only on care during pregnancy, as there is an increasing evidence of their relationship with preexisting conditions. Woman's age and time to pregnancy (TTP) have been related to the prognosis in reproductive success, but TTP could influence fetal well-being and newborn. According to the World Health Organization, 48 million couples have subfertility globally. METHODS We analyzed the relationship between TTP and obstetric (premature labor, preeclampsia…), labor (type of delivery, postpartum hemorrhage…), and neonatal outcomes (low birth weight…) in a cohort of 190 spontaneous gestations. Subfertility is a disease defined by the failure to achieve a pregnancy after 12 months of regular unprotected sexual intercourse. RESULTS TTP was >12 months in 23.1 % (95 % CI = 17.57-29.55), however, no correlation was found with the perinatal outcomes (p = 0.24). We observed that 45.2 % of subfertile women had obstetric complications, 13.2 % labor complications, and 34.2 % neonatal complications, whereas non-subfertile women had 29.4 %, 21.0 %, and 21.0 %, respectively. Half of pregnancies have at least one adverse outcome, and obstetric complications were the most frequent. CONCLUSION Subfertility condition may appear in up to a fifth of our couples. Subfertility may behave as a mild risk factor for adverse perinatal outcomes. Obstetric or perinatal complication may be expected in up to half of the cases. Subfertile women ≥ 35 years of age have a 3-fold increase in their risk of having an obstetric complication when compared to non-subfertile women of the same age.
Collapse
Affiliation(s)
- Pedro-Manuel Tabernero Rico
- Obstetrics and Gynecology Department, University Hospital of Fuenlabrada, Madrid, Camino del Molino, 2, 28942, Fuenlabrada, Madrid, Spain.
| |
Collapse
|
18
|
Vulnerability of the Neonatal Connectome following Postnatal Stress. J Neurosci 2022; 42:8948-8959. [PMID: 36376077 PMCID: PMC9732827 DOI: 10.1523/jneurosci.0176-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.
Collapse
|
19
|
Zhang S, Wang R, Wang J, He Z, Wu J, Kang Y, Zhang Y, Gao H, Hu X, Zhang T. Differentiate preterm and term infant brains and characterize the corresponding biomarkers via DICCCOL-based multi-modality graph neural networks. Front Neurosci 2022; 16:951508. [PMID: 36312010 PMCID: PMC9614033 DOI: 10.3389/fnins.2022.951508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Preterm birth is a worldwide problem that affects infants throughout their lives significantly. Therefore, differentiating brain disorders, and further identifying and characterizing the corresponding biomarkers are key issues to investigate the effects of preterm birth, which facilitates the interventions for neuroprotection and improves outcomes of prematurity. Until now, many efforts have been made to study the effects of preterm birth; however, most of the studies merely focus on either functional or structural perspective. In addition, an effective framework not only jointly studies the brain function and structure at a group-level, but also retains the individual differences among the subjects. In this study, a novel dense individualized and common connectivity-based cortical landmarks (DICCCOL)-based multi-modality graph neural networks (DM-GNN) framework is proposed to differentiate preterm and term infant brains and characterize the corresponding biomarkers. This framework adopts the DICCCOL system as the initialized graph node of GNN for each subject, utilizing both functional and structural profiles and effectively retaining the individual differences. To be specific, functional magnetic resonance imaging (fMRI) of the brain provides the features for the graph nodes, and brain fiber connectivity is utilized as the structural representation of the graph edges. Self-attention graph pooling (SAGPOOL)-based GNN is then applied to jointly study the function and structure of the brain and identify the biomarkers. Our results successfully demonstrate that the proposed framework can effectively differentiate the preterm and term infant brains. Furthermore, the self-attention-based mechanism can accurately calculate the attention score and recognize the most significant biomarkers. In this study, not only 87.6% classification accuracy is observed for the developing Human Connectome Project (dHCP) dataset, but also distinguishing features are explored and extracted. Our study provides a novel and uniform framework to differentiate brain disorders and characterize the corresponding biomarkers.
Collapse
Affiliation(s)
- Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
- *Correspondence: Shu Zhang
| | - Ruoyang Wang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Junxin Wang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Jinru Wu
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Yanqing Kang
- Center for Brain and Brain-Inspired Computing Research, School of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Yin Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Huan Gao
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Xintao Hu
- School of Automation, Northwestern Polytechnical University, Xi'an, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an, China
- Tuo Zhang
| |
Collapse
|
20
|
Lammertink F, van den Heuvel MP, Hermans EJ, Dudink J, Tataranno ML, Benders MJNL, Vinkers CH. Early-life stress exposure and large-scale covariance brain networks in extremely preterm-born infants. Transl Psychiatry 2022; 12:256. [PMID: 35717524 PMCID: PMC9206645 DOI: 10.1038/s41398-022-02019-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
The stressful extrauterine environment following premature birth likely has far-reaching and persistent adverse consequences. The effects of early "third-trimester" ex utero stress on large-scale brain networks' covariance patterns may provide a potential avenue to understand how early-life stress following premature birth increases risk or resilience. We evaluated the impact of early-life stress exposure (e.g., quantification of invasive procedures) on maturational covariance networks (MCNs) between 30 and 40 weeks of gestational age in 180 extremely preterm-born infants (<28 weeks of gestation; 43.3% female). We constructed MCNs using covariance of gray matter volumes between key nodes of three large-scale brain networks: the default mode network (DMN), executive control network (ECN), and salience network (SN). Maturational coupling was quantified by summating the number of within- and between-network connections. Infants exposed to high stress showed significantly higher SN but lower DMN maturational coupling, accompanied by DMN-SN decoupling. Within the SN, the insula, amygdala, and subthalamic nucleus all showed higher maturational covariance at the nodal level. In contrast, within the DMN, the hippocampus, parahippocampal gyrus, and fusiform showed lower coupling following stress. The decoupling between DMN-SN was observed between the insula/anterior cingulate cortex and posterior parahippocampal gyrus. Early-life stress showed longitudinal network-specific maturational covariance patterns, leading to a reprioritization of developmental trajectories of the SN at the cost of the DMN. These alterations may enhance the ability to cope with adverse stimuli in the short term but simultaneously render preterm-born individuals at a higher risk for stress-related psychopathology later in life.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Martijn P van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University Amsterdam, Amsterdam, The Netherlands
- Department of Child Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erno J Hermans
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen Dudink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria L Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon J N L Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| | - Christiaan H Vinkers
- Department of Anatomy & Neurosciences, Amsterdam UMC (location Vrije University Amsterdam), Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC (location Vrije University Amsterdam), Amsterdam, The Netherlands
| |
Collapse
|
21
|
Kelly C, Dhollander T, Harding IH, Khan W, Beare R, Cheong JL, Doyle LW, Seal M, Thompson DK, Inder TE, Anderson PJ. Brain tissue microstructural and free-water composition 13 years after very preterm birth. Neuroimage 2022; 254:119168. [PMID: 35367651 DOI: 10.1016/j.neuroimage.2022.119168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/27/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022] Open
Abstract
There have been many studies demonstrating children born very preterm exhibit brain white matter microstructural alterations, which have been related to neurodevelopmental difficulties. These prior studies have often been based on diffusion MRI modelling and analysis techniques, which commonly focussed on white matter microstructural properties in very preterm-born children. However, there have been relatively fewer studies investigating the free-water content of the white matter, and also the microstructure and free-water content of the cortical grey matter, in very preterm-born children. These biophysical properties of the brain change rapidly during fetal and neonatal brain development, and therefore such properties are likely also adversely affected by very preterm birth. In this study, we investigated the relationship of very preterm birth (<30 weeks' gestation) to both white matter and cortical grey matter microstructure and free-water content in childhood using advanced diffusion MRI analyses. A total of 130 very preterm participants and 45 full-term control participants underwent diffusion MRI at age 13 years. Diffusion tissue signal fractions derived by Single-Shell 3-Tissue Constrained Spherical Deconvolution were used to investigate brain tissue microstructural and free-water composition. The tissue microstructural and free-water composition metrics were analysed using a bespoke voxel-based analysis and cortical region-of-interest analysis approach. Very preterm 13-year-olds exhibited reduced white matter microstructural density and increased free-water content across widespread regions of the white matter compared with controls. Additionally, very preterm 13-year-olds exhibited reduced microstructural density and increased free-water content in specific temporal, sensorimotor, occipital and cingulate cortical regions. These brain tissue composition alterations were strongly associated with cerebral white matter abnormalities identified in the neonatal period, and concurrent adverse cognitive and motor outcomes in very preterm children. The findings demonstrate brain microstructural and free-water alterations up to thirteen years from neonatal brain abnormalities in very preterm children that relate to adverse neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Claire Kelly
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia.
| | - Thijs Dhollander
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Wasim Khan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Richard Beare
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| | - Jeanie Ly Cheong
- Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; The Royal Women's Hospital, Melbourne, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Marc Seal
- Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter J Anderson
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Australia; Victorian Infant Brain Studies (VIBeS), Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia
| |
Collapse
|
22
|
Hu H, Cusack R, Naci L. OUP accepted manuscript. Brain Commun 2022; 4:fcac071. [PMID: 35425900 PMCID: PMC9006044 DOI: 10.1093/braincomms/fcac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
One of the great frontiers of consciousness science is understanding how early consciousness arises in the development of the human infant. The reciprocal relationship between the default mode network and fronto-parietal networks—the dorsal attention and executive control network—is thought to facilitate integration of information across the brain and its availability for a wide set of conscious mental operations. It remains unknown whether the brain mechanism of conscious awareness is instantiated in infants from birth. To address this gap, we investigated the development of the default mode and fronto-parietal networks and of their reciprocal relationship in neonates. To understand the effect of early neonate age on these networks, we also assessed neonates born prematurely or before term-equivalent age. We used the Developing Human Connectome Project, a unique Open Science dataset which provides a large sample of neonatal functional MRI data with high temporal and spatial resolution. Resting state functional MRI data for full-term neonates (n = 282, age 41.2 weeks ± 12 days) and preterm neonates scanned at term-equivalent age (n = 73, 40.9 weeks ± 14.5 days), or before term-equivalent age (n = 73, 34.6 weeks ± 13.4 days), were obtained from the Developing Human Connectome Project, and for a reference adult group (n = 176, 22–36 years), from the Human Connectome Project. For the first time, we show that the reciprocal relationship between the default mode and dorsal attention network was present at full-term birth or term-equivalent age. Although different from the adult networks, the default mode, dorsal attention and executive control networks were present as distinct networks at full-term birth or term-equivalent age, but premature birth was associated with network disruption. By contrast, neonates before term-equivalent age showed dramatic underdevelopment of high-order networks. Only the dorsal attention network was present as a distinct network and the reciprocal network relationship was not yet formed. Our results suggest that, at full-term birth or by term-equivalent age, infants possess key features of the neural circuitry that enables integration of information across diverse sensory and high-order functional modules, giving rise to conscious awareness. Conversely, they suggest that this brain infrastructure is not present before infants reach term-equivalent age. These findings improve understanding of the ontogeny of high-order network dynamics that support conscious awareness and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Correspondence to: Lorina Naci School of Psychology Trinity College Institute of Neuroscience Global Brain Health Institute Trinity College Dublin Dublin, Ireland E-mail:
| |
Collapse
|
23
|
Sacchi C, O'Muircheartaigh J, Batalle D, Counsell SJ, Simonelli A, Cesano M, Falconer S, Chew A, Kennea N, Nongena P, Rutherford MA, Edwards AD, Nosarti C. Neurodevelopmental Outcomes following Intrauterine Growth Restriction and Very Preterm Birth. J Pediatr 2021; 238:135-144.e10. [PMID: 34245768 DOI: 10.1016/j.jpeds.2021.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To evaluate whether intrauterine growth restriction (IUGR) adds further neurodevelopmental risk to that posed by very preterm birth alone in terms of alterations in brain growth and poorer toddlerhood outcomes. STUDY DESIGN Participants were 314 infants of very preterm birth enrolled in the Evaluation of Preterm Imaging Study (e-Prime) who were subsequently followed up in toddlerhood. IUGR was identified postnatally from discharge records (n = 49) and defined according to prenatal evaluation of growth restriction confirmed by birth weight <10th percentile for gestational age and/or alterations in fetal Doppler. Appropriate for gestational age (AGA; n = 265) was defined as birth weight >10th percentile for gestational age at delivery. Infants underwent magnetic resonance imaging at term-equivalent age (median = 42 weeks); T2-weighted images were obtained for voxelwise gray matter volumes. Follow-up assessments were conducted at corrected median age of 22 months using the Bayley Scales of Infant and Toddler Development III and the Modified-Checklist for Autism in Toddlers. RESULTS Infants of very preterm birth with IUGR displayed a relative volumetric decrease in gray matter in limbic regions and a relative increase in frontoinsular, temporal-parietal, and frontal areas compared with peers of very preterm birth who were AGA. At follow-up, toddlers born very preterm with IUGR had significantly lower cognitive (effect size = 0.42) and motor (effect size = 0.41) scores and were more likely to have a positive Modified-Checklist for Autism in Toddlers screening for autism (OR = 2.12) compared with peers of very preterm birth who were AGA. CONCLUSIONS IUGR might confer a neurodevelopmental risk that is greater than that posed by very preterm alone, in terms of both alterations in brain growth and poorer toddlerhood outcomes.
Collapse
Affiliation(s)
- Chiara Sacchi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Serena Jane Counsell
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Alessandra Simonelli
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Michela Cesano
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Nigel Kennea
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Phumza Nongena
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Ann Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Anthony David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, United Kingdom; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom.
| |
Collapse
|
24
|
Dimitrova R, Pietsch M, Ciarrusta J, Fitzgibbon SP, Williams LZJ, Christiaens D, Cordero-Grande L, Batalle D, Makropoulos A, Schuh A, Price AN, Hutter J, Teixeira RP, Hughes E, Chew A, Falconer S, Carney O, Egloff A, Tournier JD, McAlonan G, Rutherford MA, Counsell SJ, Robinson EC, Hajnal JV, Rueckert D, Edwards AD, O'Muircheartaigh J. Preterm birth alters the development of cortical microstructure and morphology at term-equivalent age. Neuroimage 2021; 243:118488. [PMID: 34419595 PMCID: PMC8526870 DOI: 10.1016/j.neuroimage.2021.118488] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Collapse
Affiliation(s)
- Ralica Dimitrova
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Sean P Fitzgibbon
- Centre for Functional MRI of the Brain (FMRIB), Welcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Biomedical Image Technologies, ETSI Telecomunicación, Universidad Politécnica de Madrid and CIBER-BBN, Madrid, Spain
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Antonios Makropoulos
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Rui Pag Teixeira
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Andrew Chew
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Olivia Carney
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Grainne McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom; South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom; Faculty of Informatics and Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom.
| |
Collapse
|
25
|
Delahaye-Duriez A, Dufour A, Bokobza C, Gressens P, Van Steenwinckel J. Targeting Microglial Disturbances to Protect the Brain From Neurodevelopmental Disorders Associated With Prematurity. J Neuropathol Exp Neurol 2021; 80:634-648. [PMID: 34363661 DOI: 10.1093/jnen/nlab049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Microglial activation during critical phases of brain development can result in short- and long-term consequences for neurological and psychiatric health. Several studies in humans and rodents have shown that microglial activation, leading to a transition from the homeostatic state toward a proinflammatory phenotype, has adverse effects on the developing brain and neurodevelopmental disorders. Targeting proinflammatory microglia may be an effective strategy for protecting the brain and attenuating neurodevelopmental disorders induced by inflammation. In this review we focus on the role of inflammation and the activation of immature microglia (pre-microglia) soon after birth in prematurity-associated neurodevelopmental disorders, and the specific features of pre-microglia during development. We also highlight the relevance of immunomodulatory strategies for regulating activated microglia in a rodent model of perinatal brain injury. An original neuroprotective approach involving a nanoparticle-based therapy and targeting microglia, with the aim of improving myelination and protecting the developing brain, is also addressed.
Collapse
Affiliation(s)
- Andrée Delahaye-Duriez
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France.,UFR SMBH, Université Sorbonne Paris Nord, Bobigny, France.,Assistance Publique des Hôpitaux de Paris, Hôpital Jean Verdier, Service d'Histologie-Embryologie-Cytogénétique, Bondy, France
| | - Adrien Dufour
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Cindy Bokobza
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | - Pierre Gressens
- From the NeuroDiderot, UMR 1141, Inserm, Université de Paris, Paris, France
| | | |
Collapse
|
26
|
Abstract
Diffusion magnetic resonance imaging (MRI) offers a wealth of information regarding the neonatal brain. Diffusion anisotropy values reflect changes in the microstructure that accompany early maturation of white and gray matter. In term neonates with neonatal encephalopathy, diffusion imaging provides a useful means of assessing brain injury during the first week of life. In preterm neonates, measures of white matter anisotropy provide information on the nature and extent of white matter disruption. Subsequently, diffusion MRI plays an important role in illuminating fundamental elements of brain development and fulfilling the clinical need to develop prognostic indicators for term and preterm infants.
Collapse
Affiliation(s)
- Jeffrey J Neil
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St Louis, MO 63110-1093, USA; Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St Louis, MO 63110-1093, USA; Department of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8131, St Louis, MO 63110-1093, USA
| | - Christopher D Smyser
- Department of Neurology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St Louis, MO 63110-1093, USA; Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St Louis, MO 63110-1093, USA; Department of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8131, St Louis, MO 63110-1093, USA.
| |
Collapse
|
27
|
Dubois J, Alison M, Counsell SJ, Hertz‐Pannier L, Hüppi PS, Benders MJ. MRI of the Neonatal Brain: A Review of Methodological Challenges and Neuroscientific Advances. J Magn Reson Imaging 2021; 53:1318-1343. [PMID: 32420684 PMCID: PMC8247362 DOI: 10.1002/jmri.27192] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/04/2023] Open
Abstract
In recent years, exploration of the developing brain has become a major focus for researchers and clinicians in an attempt to understand what allows children to acquire amazing and unique abilities, as well as the impact of early disruptions (eg, prematurity, neonatal insults) that can lead to a wide range of neurodevelopmental disorders. Noninvasive neuroimaging methods such as MRI are essential to establish links between the brain and behavioral changes in newborns and infants. In this review article, we aim to highlight recent and representative studies using the various techniques available: anatomical MRI, quantitative MRI (relaxometry, diffusion MRI), multiparametric approaches, and functional MRI. Today, protocols use 1.5 or 3T MRI scanners, and specialized methodologies have been put in place for data acquisition and processing to address the methodological challenges specific to this population, such as sensitivity to motion. MR sequences must be adapted to the brains of newborns and infants to obtain relevant good soft-tissue contrast, given the small size of the cerebral structures and the incomplete maturation of tissues. The use of age-specific image postprocessing tools is also essential, as signal and contrast differ from the adult brain. Appropriate methodologies then make it possible to explore multiple neurodevelopmental mechanisms in a precise way, and assess changes with age or differences between groups of subjects, particularly through large-scale projects. Although MRI measurements only indirectly reflect the complex series of dynamic processes observed throughout development at the molecular and cellular levels, this technique can provide information on brain morphology, structural connectivity, microstructural properties of gray and white matter, and on the functional architecture. Finally, MRI measures related to clinical, behavioral, and electrophysiological markers have a key role to play from a diagnostic and prognostic perspective in the implementation of early interventions to avoid long-term disabilities in children. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Jessica Dubois
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Marianne Alison
- University of ParisNeuroDiderot, INSERM,ParisFrance
- Department of Pediatric RadiologyAPHP, Robert‐Debré HospitalParisFrance
| | - Serena J. Counsell
- Centre for the Developing BrainSchool of Biomedical Engineering & Imaging Sciences, King's College LondonLondonUK
| | - Lucie Hertz‐Pannier
- University of ParisNeuroDiderot, INSERM,ParisFrance
- UNIACT, NeuroSpin, CEA; Paris‐Saclay UniversityGif‐sur‐YvetteFrance
| | - Petra S. Hüppi
- Division of Development and Growth, Department of Woman, Child and AdolescentUniversity Hospitals of GenevaGenevaSwitzerland
| | - Manon J.N.L. Benders
- Department of NeonatologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtthe Netherlands
| |
Collapse
|
28
|
Prasad JD, van de Looij Y, Gunn KC, Ranchhod SM, White PB, Berry MJ, Bennet L, Sizonenko SV, Gunn AJ, Dean JM. Long-term coordinated microstructural disruptions of the developing neocortex and subcortical white matter after early postnatal systemic inflammation. Brain Behav Immun 2021; 94:338-356. [PMID: 33307171 DOI: 10.1016/j.bbi.2020.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Severe postnatal systemic infection is highly associated with persistent disturbances in brain development and neurobehavioral outcomes in survivors of preterm birth. However, the contribution of less severe but prolonged postnatal infection and inflammation to such disturbances is unclear. Further, the ability of modern imaging techniques to detect the underlying changes in cellular microstructure of the brain in these infants remains to be validated. We used high-field ex-vivo MRI, neurohistopathology, and behavioral tests in newborn rats to demonstrate that prolonged postnatal systemic inflammation causes subtle, persisting disturbances in brain development, with neurodevelopmental delays and mild motor impairments. Diffusion-tensor MRI and neurite orientation dispersion and density imaging (NODDI) revealed delayed maturation of neocortical and subcortical white matter microstructure. Analysis of pyramidal neurons showed that the cortical deficits involved impaired dendritic arborization and spine formation. Analysis of oligodendrocytes showed that the white matter deficits involved impaired oligodendrocyte maturation and axonal myelination. These findings indicate that prolonged postnatal inflammation, without severe infection, may critically contribute to the diffuse spectrum of brain pathology and subtle long-term disability in preterm infants, with a cellular mechanism involving oligodendrocyte and neuronal dysmaturation. NODDI may be useful for clinical detection of these microstructural deficits.
Collapse
Affiliation(s)
- Jaya D Prasad
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Yohan van de Looij
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland; Center for Biomedical Imaging - Animal Imaging and Technology, Lausanne Federal Polytechnic School, Lausanne, Switzerland
| | - Katherine C Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Sonya M Ranchhod
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Petra B White
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Mary J Berry
- The Department of Pediatrics and Health Care, University of Otago, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Stéphane V Sizonenko
- Division of Child Development and Growth, Department of Pediatrics and Gynecology Obstetrics, University of Geneva, Geneva, Switzerland
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| |
Collapse
|
29
|
Story L, Davidson A, Patkee P, Fleiss B, Kyriakopoulou V, Colford K, Sankaran S, Seed P, Jones A, Hutter J, Shennan A, Rutherford M. Brain volumetry in fetuses that deliver very preterm: An MRI pilot study. NEUROIMAGE-CLINICAL 2021; 30:102650. [PMID: 33838546 PMCID: PMC8045030 DOI: 10.1016/j.nicl.2021.102650] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/26/2021] [Indexed: 11/17/2022]
Abstract
Fetuses that subsequently deliver very preterm have a reduction in cortical and extra cerebrospinal fluid volumes. If such alterations commence antenatally this suggests a role for earlier administration of neuroprotective agents.
Background Infants born preterm are at increased risk of neurological complications resulting in significant morbidity and mortality. The exact mechanism and the impact of antenatal factors has not been fully elucidated, although antenatal infection/inflammation has been implicated in both the aetiology of preterm birth and subsequent neurological sequelae. It is therefore hypothesized that processes driving preterm birth are affecting brain development in utero. This study aims to compare MRI derived regional brain volumes in fetuses that deliver < 32 weeks with fetuses that subsequently deliver at term. Methods Women at high risk of preterm birth, with gestation 19.4–32 weeks were recruited prospectively. A control group was obtained from existing study datasets. Fetal MRI was performed on a 1.5 T or 3 T MRI scanner: T2-weighted images were obtained of the fetal brain. 3D brain volumetric datsets were produced using slice to volume reconstruction and regional segmentations were produced using multi-atlas approaches for supratentorial brain tissue, lateral ventricles, cerebellum cerebral cortex and extra-cerebrospinal fluid (eCSF). Statistical comparison of control and high-risk for preterm delivery fetuses was performed by creating normal ranges for each parameter from the control datasets and then calculating gestation adjusted z scores. Groups were compared using t-tests. Results Fetal image datasets from 24 pregnancies with delivery < 32 weeks and 87 control pregnancies that delivered > 37 weeks were included. Median gestation at MRI of the preterm group was 26.8 weeks (range 19.4–31.4) and control group 26.2 weeks (range 21.7–31.9). No difference was found in supra-tentorial brain volume, ventricular volume or cerebellar volume but the eCSF and cerebral cortex volumes were smaller in fetuses that delivered preterm (p < 0.001 in both cases). Conclusion Fetuses that deliver preterm have a reduction in cortical and eCSF volumes. This is a novel finding and needs further investigation. If alterations in brain development are commencing antenatally in fetuses that subsequently deliver preterm, this may present a window for in utero therapy in the future.
Collapse
Affiliation(s)
- Lisa Story
- Department of Women and Children's Health, King's College London, UK.
| | - Alice Davidson
- Centre for the Developing Brain, King's College London, London, UK
| | - Prachi Patkee
- Centre for the Developing Brain, King's College London, London, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, King's College London, London, UK; School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, VIC, Australia; Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France
| | | | - Kathleen Colford
- Centre for the Developing Brain, King's College London, London, UK; Centre for Medical Engineering, King's College London, London, UK
| | | | - Paul Seed
- Department of Women and Children's Health, King's College London, UK
| | - Alice Jones
- Centre for the Developing Brain, King's College London, London, UK; Queen Mary University Medical School, UK
| | - Jana Hutter
- Centre for the Developing Brain, King's College London, London, UK; School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, VIC, Australia
| | - Andrew Shennan
- Department of Women and Children's Health, King's College London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, London, UK
| |
Collapse
|
30
|
Eyre M, Fitzgibbon SP, Ciarrusta J, Cordero-Grande L, Price AN, Poppe T, Schuh A, Hughes E, O'Keeffe C, Brandon J, Cromb D, Vecchiato K, Andersson J, Duff EP, Counsell SJ, Smith SM, Rueckert D, Hajnal JV, Arichi T, O'Muircheartaigh J, Batalle D, Edwards AD. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 2021; 144:2199-2213. [PMID: 33734321 PMCID: PMC8370420 DOI: 10.1093/brain/awab118] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
The Developing Human Connectome Project is an Open Science project that provides the
first large sample of neonatal functional MRI data with high temporal and spatial
resolution. These data enable mapping of intrinsic functional connectivity between
spatially distributed brain regions under normal and adverse perinatal circumstances,
offering a framework to study the ontogeny of large-scale brain organization in humans.
Here, we characterize in unprecedented detail the maturation and integrity of resting
state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm).
First, we applied group independent component analysis to define 11 RSNs in term-born
infants scanned at 43.5–44.5 weeks postmenstrual age (PMA). Adult-like topography was
observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among
six higher-order, association RSNs, analogues of the adult networks for language and
ocular control were identified, but a complete default mode network precursor was not.
Next, we regressed the subject-level datasets from an independent cohort of infants
scanned at 37–43.5 weeks PMA against the group-level RSNs to test for the effects of age,
sex and preterm birth. Brain mapping in term-born infants revealed areas of positive
association with age across four of six association RSNs, indicating active maturation in
functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased
connectivity in inferotemporal regions of the visual association network. Preterm birth
was associated with striking impairments of functional connectivity across all RSNs in a
dose-dependent manner; conversely, connectivity of the superior parietal lobules within
the lateral motor network was abnormally increased in preterm infants, suggesting a
possible mechanism for specific difficulties such as developmental coordination disorder,
which occur frequently in preterm children. Overall, we found a robust, modular,
symmetrical functional brain organization at normal term age. A complete set of
adult-equivalent primary RSNs is already instated, alongside emerging connectivity in
immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence
of brain development. The early developmental disruption imposed by preterm birth is
associated with extensive alterations in functional connectivity.
Collapse
Affiliation(s)
- Michael Eyre
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Sean P Fitzgibbon
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Judit Ciarrusta
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Anthony N Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tanya Poppe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Andreas Schuh
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Emer Hughes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Camilla O'Keeffe
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Jakki Brandon
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Katy Vecchiato
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Jesper Andersson
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Eugene P Duff
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK.,Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Imperial College London, London SW7 2AZ, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Tomoki Arichi
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Jonathan O'Muircheartaigh
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Dafnis Batalle
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.,Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - A David Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| |
Collapse
|
31
|
Blesa M, Galdi P, Cox SR, Sullivan G, Stoye DQ, Lamb GJ, Quigley AJ, Thrippleton MJ, Escudero J, Bastin ME, Smith KM, Boardman JP. Hierarchical Complexity of the Macro-Scale Neonatal Brain. Cereb Cortex 2020; 31:2071-2084. [PMID: 33280008 PMCID: PMC7945030 DOI: 10.1093/cercor/bhaa345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The human adult structural connectome has a rich nodal hierarchy, with highly diverse connectivity patterns aligned to the diverse range of functional specializations in the brain. The emergence of this hierarchical complexity in human development is unknown. Here, we substantiate the hierarchical tiers and hierarchical complexity of brain networks in the newborn period, assess correspondences with hierarchical complexity in adulthood, and investigate the effect of preterm birth, a leading cause of atypical brain development and later neurocognitive impairment, on hierarchical complexity. We report that neonatal and adult structural connectomes are both composed of distinct hierarchical tiers and that hierarchical complexity is greater in term born neonates than in preterms. This is due to diversity of connectivity patterns of regions within the intermediate tiers, which consist of regions that underlie sensorimotor processing and its integration with cognitive information. For neonates and adults, the highest tier (hub regions) is ordered, rather than complex, with more homogeneous connectivity patterns in structural hubs. This suggests that the brain develops first a more rigid structure in hub regions allowing for the development of greater and more diverse functional specialization in lower level regions, while connectivity underpinning this diversity is dysmature in infants born preterm.
Collapse
Affiliation(s)
- Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gillian J Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK.,Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Javier Escudero
- School of Engineering, Institute for Digital Communications, University of Edinburgh, Edinburgh EH9 3FG, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Keith M Smith
- Usher Institute, University of Edinburgh, Edinburgh EH16 4UX, UK.,Health Data Research UK, London NW1 2BE, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
32
|
Ball G, Seidlitz J, O’Muircheartaigh J, Dimitrova R, Fenchel D, Makropoulos A, Christiaens D, Schuh A, Passerat-Palmbach J, Hutter J, Cordero-Grande L, Hughes E, Price A, Hajnal JV, Rueckert D, Robinson EC, Edwards AD. Cortical morphology at birth reflects spatiotemporal patterns of gene expression in the fetal human brain. PLoS Biol 2020; 18:e3000976. [PMID: 33226978 PMCID: PMC7721147 DOI: 10.1371/journal.pbio.3000976] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023] Open
Abstract
Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. We compared cortical morphology captured by high-resolution, multimodal magnetic resonance imaging (MRI) in n = 292 healthy newborn infants (mean age at birth = 39.9 weeks) with regional patterns of gene expression in the fetal cortex across gestation (n = 156 samples from 16 brains, aged 12 to 37 postconceptional weeks [pcw]). We tested the hypothesis that noninvasive measures of cortical structure at birth mirror areal differences in cortical gene expression across gestation, and in a cohort of n = 64 preterm infants (mean age at birth = 32.0 weeks), we tested whether cortical alterations observed after preterm birth were associated with altered gene expression in specific developmental cell populations. Neonatal cortical structure was aligned to differential patterns of cell-specific gene expression in the fetal cortex. Principal component analysis (PCA) of 6 measures of cortical morphology and microstructure showed that cortical regions were ordered along a principal axis, with primary cortex clearly separated from heteromodal cortex. This axis was correlated with estimated tissue maturity, indexed by differential expression of genes expressed by progenitor cells and neurons, and engaged in stem cell differentiation, neuron migration, and forebrain development. Preterm birth was associated with altered regional MRI metrics and patterns of differential gene expression in glial cell populations. The spatial patterning of gene expression in the developing cortex was thus mirrored by regional variation in cortical morphology and microstructure at term, and this was disrupted by preterm birth. This work provides a framework to link molecular mechanisms to noninvasive measures of cortical development in early life and highlights novel pathways to injury in neonatal populations at increased risk of neurodevelopmental disorder. Interruption to gestation through preterm birth can significantly impact cortical development and have long-lasting adverse effects on neurodevelopmental outcome. A large neuroimaging study of newborn infants reveals how their cortical structure at birth is associated with patterns of gene expression in the fetal cortex and how this relationship is affected by preterm birth.
Collapse
Affiliation(s)
- Gareth Ball
- Developmental Imaging, Murdoch Children’s Research Institute, Melbourne, Australia
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- * E-mail:
| | - Jakob Seidlitz
- Developmental Neurogenomics Unit, National Institute of Mental Health, Bethesda, United States of America
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Jonathan O’Muircheartaigh
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Ralica Dimitrova
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daphna Fenchel
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Antonios Makropoulos
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Belgium
| | - Andreas Schuh
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | | | - Jana Hutter
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Lucilio Cordero-Grande
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Emer Hughes
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Jo V. Hajnal
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - Daniel Rueckert
- Biomedical Image Analysis Group, Department of Computing, Imperial College London, United Kingdom
| | - Emma C. Robinson
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging & Health, King’s College London, United Kingdom
| |
Collapse
|
33
|
Boswinkel V, Nijboer-Oosterveld J, Nijholt IM, Edens MA, Mulder-de Tollenaer SM, Boomsma MF, de Vries LS, van Wezel-Meijler G. A systematic review on brain injury and altered brain development in moderate-late preterm infants. Early Hum Dev 2020; 148:105094. [PMID: 32711341 DOI: 10.1016/j.earlhumdev.2020.105094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES To provide a systematic review of brain injury and altered brain development in moderate-late preterm (MLPT) infants as compared to very preterm and term infants. STUDY DESIGN A systematic search in five databases was performed in January 2020. Original research papers on incidence of brain injury and papers using quantitative data on brain development in MLPT infants were selected. The Johanna Briggs Institute 'Critical Appraisal Checklist for Studies Reporting Prevalence Data' was used for quality appraisal. Data extraction included: imaging modality, incidences of brain injury, brain volumes, 2D-measurements and diffusivity values. RESULTS In total, 24 studies were eligible. Most studies had a moderate quality. Twenty studies reported on the incidence of brain injury in MLPT infants. The incidence of intraventricular hemorrhage (IVH) ranged from 0.0% to 23.5% and of white matter injury (WMI) from 0.5% to 10.8%. One study reported the incidence of arterial infarction (0.3%) and none of cerebellar hemorrhage. Eleven studies compared incidences of brain injury between MLPT infants and very preterm or term infants. Five studies reported signs of altered brain development in MLPT infants. CONCLUSIONS The incidences of IVH and WMI in MLPT infants varied widely between studies. Other abnormalities were sparsely reported. Evidence regarding a higher or lower incidence of brain injury in MLPT infants compared to very preterm or term infants is weak due to moderate methodological quality of reported studies. There is limited evidence suggesting a difference in brain development between MLPT and term infants.
Collapse
Affiliation(s)
- Vivian Boswinkel
- Department of Neonatology, Isala Women and Children's hospital, Zwolle, the Netherlands; University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | | | - Ingrid M Nijholt
- Department of Radiology, Isala hospital, Zwolle, the Netherlands
| | - Mireille A Edens
- Department of Innovation and Science, Isala hospital, Zwolle, the Netherlands
| | | | | | - Linda S de Vries
- Department of Neonatology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | |
Collapse
|
34
|
Volpe JJ. Commentary - Marijuana use during pregnancy and premature birth: A problem likely to worsen. J Neonatal Perinatal Med 2020; 13:1-3. [PMID: 32007963 PMCID: PMC7242827 DOI: 10.3233/npm-190403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Joseph J Volpe
- Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Galdi P, Blesa M, Stoye DQ, Sullivan G, Lamb GJ, Quigley AJ, Thrippleton MJ, Bastin ME, Boardman JP. Neonatal morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm birth. Neuroimage Clin 2020; 25:102195. [PMID: 32044713 PMCID: PMC7016043 DOI: 10.1016/j.nicl.2020.102195] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Multi-contrast MRI captures information about brain macro- and micro-structure which can be combined in an integrated model to obtain a detailed "fingerprint" of the anatomical properties of an individual's brain. Inter-regional similarities between features derived from structural and diffusion MRI, including regional volumes, diffusion tensor metrics, neurite orientation dispersion and density imaging measures, can be modelled as morphometric similarity networks (MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm and 46 term) who were scanned between 38 and 45 weeks postmenstrual age (PMA). Inter-regional similarities were used as predictors in a regression model of age at the time of scanning and in a classification model to discriminate between preterm and term infant brains. When tested on unseen data, the regression model predicted PMA at scan with a mean absolute error of 0.70 ± 0.56 weeks, and the classification model achieved 92% accuracy. We conclude that MSNs predict chronological brain age accurately; and they provide a data-driven approach to identify networks that characterise typical maturation and those that contribute most to neuroanatomic variation associated with preterm birth.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gillian J Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
36
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
37
|
Solis-Urra P, Esteban-Cornejo I, Cadenas-Sanchez C, Rodriguez-Ayllon M, Mora-Gonzalez J, Migueles JH, Labayen I, Verdejo-Román J, Kramer AF, Erickson KI, Hillman CH, Catena A, Ortega FB. Early life factors, gray matter brain volume and academic performance in overweight/obese children: The ActiveBrains project. Neuroimage 2019; 202:116130. [PMID: 31465844 DOI: 10.1016/j.neuroimage.2019.116130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Accepted: 08/23/2019] [Indexed: 11/28/2022] Open
Abstract
Early life factors may influence brain and academic outcomes later in life, especially during childhood. Here we investigate the associations of early life factors (i.e., birth weight, birth length, and breastfeeding) with gray matter volume, adjusted for body mass index and cardiorespiratory fitness, and ii) we test whether early-life factor-related differences in gray matter volume are associated with academic performance in overweight/obese children. 96 children with overweight/obesity aged 8-11 years participated. Birth weight, birth length and gestational age were collected from birth records, and breastfeeding practices were asked to parents. T1-weighted images were acquired with a 3.0 T Magnetom Tim Trio system. Academic performance was assessed with the Bateria III Woodcock-Muñoz Tests of Achievement. Whole-brain voxel-wise multiple regressions were used to test the associations of each early life factor with gray matter volume. Higher birth weight and birth length were associated with greater gray matter volume in 9 brain regions including the middle frontal gyrus, rectal gyrus, thalamus, putamen, middle temporal gyrus, lingual gyrus, middle occipital gyrus, calcarine cortex and cerebellum bilaterally (β ranging from 0.361 to 0.539, t ranging from 3.46 to 5.62 and cluster size from 82 to 4478 voxels; p < 0.001); and greater duration of any breastfeeding was associated with greater gray matter volume in 3 regions including the bilateral inferior frontal gyrus and rolandic operculum (β ranging from 0.359 to 0.408, t ranging from 4.01 to 4.32 and cluster size from 64 to 171 voxels; p < 0.001). No associations were found for duration of exclusive breastfeeding. Additionally, none of the gray matter regions that were associated with the early life factors were associated with academic performance (all p > 0.05). Our results demonstrate that birth weight, birth length, and breastfeeding are predictive of gray matter volume of numerous brain structures that are involved in higher order cognition and emotion regulation, but how these results relate to measures of academic achievement remain a matter of speculation.
Collapse
Affiliation(s)
- Patricio Solis-Urra
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain; IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaiso, Valparaiso, Chile.
| | - Irene Esteban-Cornejo
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain; Department of Psychology, Northeastern University, Boston, MA, USA
| | - Cristina Cadenas-Sanchez
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain
| | - Maria Rodriguez-Ayllon
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain
| | - Jose Mora-Gonzalez
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain
| | - Jairo H Migueles
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain
| | - Idoia Labayen
- Institute for Innovation & Sustainable Development in Food Chain (IS-FOOD), Public University of Navarra, Pamplona, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Center for Biomedical Technology (CTB), Pozuelo de Alarcón, Spain
| | - Arthur F Kramer
- Department of Psychology, Northeastern University, Boston, MA, USA; Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, 3601 Sennott Square, Pittsburgh, PA, USA
| | - Charles H Hillman
- Department of Psychology, Northeastern University, Boston, MA, USA; Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern University, Boston, MA, USA
| | - Andrés Catena
- Department of Experimental Psychology, Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada, Granada, Spain
| | - Francisco B Ortega
- PROFITH "PROmoting FITness and Health Through Physical Activity" Research Group, Sport and Health University Research Institute (iMUDS), Department of Physical and Sports Education, Faculty of Sport Sciences, University of Granada, Spain
| |
Collapse
|
38
|
Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC. Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 2018; 95:315-335. [PMID: 30236781 DOI: 10.1016/j.neubiorev.2018.09.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023]
Abstract
Although genuine motor abnormalities (GMA) are frequently found in schizophrenia, they are also considered as an intrinsic feature of bipolar, obsessive-compulsive, and neurodevelopmental disorders with early onset such as autism, ADHD, and Tourette syndrome. Such transnosological observations strongly suggest a common neural pathophysiology. This systematic review highlights the evidence on GMA and their neuroanatomical substrates in bipolar, obsessive-compulsive, and neurodevelopmental disorders. The data lends support for a common pattern contributing to GMA expression in these diseases that seems to be related to cerebello-thalamo-cortical, fronto-parietal, and cortico-subcortical motor circuit dysfunction. The identified studies provide first evidence for a motor network dysfunction as a correlate of early neurodevelopmental deviance prior to clinical symptom expression. There are also first hints for a developmental risk factor model of these mental disorders. An in-depth analysis of motor networks and related patho-(physiological) mechanisms will not only help promoting Research Domain Criteria (RDoC) Motor System construct, but also facilitate the development of novel psychopharmacological models, as well as the identification of neurobiologically plausible target sites for non-invasive brain stimulation.
Collapse
Affiliation(s)
- Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Fritze
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Robert C Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|