1
|
Damon J, Chase C, Higashimoto T. Primary amenorrhea in myotonic dystrophy type 1: Initial presentation versus incidental finding on whole genome sequencing. Am J Med Genet A 2024; 194:e63650. [PMID: 38709060 DOI: 10.1002/ajmg.a.63650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
Myotonic dystrophy type 1 is an autosomal dominant condition due to a CTG repeat expansion in the myotonic dystrophy protein kinase (DMPK) gene. This multisystem disorder affects multiple organ systems. Hypogonadism in males affected by myotonic dystrophy is commonly reported; however, the effect on female hypogonadism remains controversial. A 19-year-old female was referred to our genetics clinic due to primary amenorrhea without any family history of similar symptoms. Initial genetics evaluation identified a variant of uncertain significance in IGSF10, c.2210T>C (p.Phe737Ser). Follow-up genetic evaluation via whole genome sequencing identified at least 100 CTG repeats in the DMPK gene, thus resulting in the diagnosis of myotonic dystrophy type 1. The patient remains otherwise asymptomatic from myotonic dystrophy. This is the first report that demonstrates primary amenorrhea as a possible presenting feature of myotonic dystrophy type 1, thus providing evidence supporting female hypogonadism in myotonic dystrophy type 1.
Collapse
Affiliation(s)
- Jenna Damon
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Colby Chase
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tomoyasu Higashimoto
- Department of Internal Medicine, Division of Genetic Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pediatrics, Division of Genetics, Genomics, and Metabolism, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Winters SJ. Hypogonadism in Males With Genetic Neurodevelopmental Syndromes. J Clin Endocrinol Metab 2022; 107:e3974-e3989. [PMID: 35913018 DOI: 10.1210/clinem/dgac421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 11/19/2022]
Abstract
Genetic syndromes that affect the nervous system may also disrupt testicular function, and the mechanisms for these effects may be interrelated. Most often neurological signs and symptoms predominate and hypogonadism remains undetected and untreated, while in other cases, a thorough evaluation of a hypogonadal male reveals previously unrecognized ataxia, movement disorder, muscle weakness, tremor, or seizures, leading to a syndromic diagnosis. Androgen deficiency in patients with neurological diseases may aggravate muscle weakness and fatigue and predispose patients to osteoporosis and obesity. The purpose of this mini review is to provide a current understanding of the clinical, biochemical, histologic, and genetic features of syndromes in which male hypogonadism and neurological dysfunction may coexist and may be encountered by the clinical endocrinologist.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism & Diabetes, University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Nieuwenhuis S, Widomska J, Blom P, ‘t Hoen PBAC, van Engelen BGM, Glennon JC, on behalf of the OPTIMISTIC Consortium. Blood Transcriptome Profiling Links Immunity to Disease Severity in Myotonic Dystrophy Type 1 (DM1). Int J Mol Sci 2022; 23:3081. [PMID: 35328504 PMCID: PMC8954763 DOI: 10.3390/ijms23063081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
The blood transcriptome was examined in relation to disease severity in type I myotonic dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were associated with increasing disease severity, as measured by the muscle impairment rating scale (MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression were compared using a number of complementary pathways, gene ontology and upstream regulator analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in innate and adaptive immunity associated with muscle-wasting. Future studies should explore the role of immunity in DM1 in more detail to assess its relevance to DM1.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Paul Blom
- VDL Enabling Technologies Group B.V., 5651 GH Eindhoven, The Netherlands;
| | - Peter-Bram A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
| | - Baziel G. M. van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands;
| | - Jeffrey C. Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | |
Collapse
|
4
|
Abstract
Myotonic dystrophy is a dominantly inherited multisystem disorder that results from increased CTG repeats in the 3' region of the myotonic dystrophy protein kinase gene (DMPK). The mutant DMPK mRNA remains in the nucleus and sequesters RNA-binding proteins, including regulators of mRNA splicing. Myotonic dystrophy is characterized by a highly variable phenotype that includes muscle weakness and myotonia, and the disorder may affect the function of many endocrine glands. DMPK mRNA is expressed in muscle, testis, liver, pituitary, thyroid, and bone; the mutated form leads to disruption of meiosis and an increase in fetal insulin receptor-A relative to adult insulin receptor-B, resulting in adult primary testicular failure and insulin resistance predisposing to diabetes, respectively. Patients with myotonic dystrophy are also at increased risk for hyperlipidemia, nonalcoholic fatty liver disease, erectile dysfunction, benign and malignant thyroid nodules, bone fractures, miscarriage, preterm delivery, and failed labor during delivery. Circulating parathyroid hormone and adrenocorticotropic hormone levels may be elevated, but the mechanisms for these associations are unclear. This review summarizes what is known about endocrine dysfunction in individuals with myotonic dystrophy.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Tylock KM, Auerbach DS, Tang ZZ, Thornton CA, Dirksen RT. Biophysical mechanisms for QRS- and QTc-interval prolongation in mice with cardiac expression of expanded CUG-repeat RNA. J Gen Physiol 2021; 152:133632. [PMID: 31968060 PMCID: PMC7062505 DOI: 10.1085/jgp.201912450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, results from the expression of toxic gain-of-function transcripts containing expanded CUG-repeats. DM1 patients experience cardiac electrophysiological defects, including prolonged PR-, QRS-, and QT-intervals, that increase susceptibility to sudden cardiac death (SCD). However, the specific biophysical and molecular mechanisms that underlie the electrocardiograph (ECG) abnormalities and SCD in DM1 are unclear. Here, we addressed this issue using a novel transgenic mouse model that exhibits robust cardiac expression of expanded CUG-repeat RNA (LC15 mice). ECG measurements in conscious LC15 mice revealed significantly prolonged QRS- and corrected QT-intervals, but a normal PR-interval. Although spontaneous arrhythmias were not observed in conscious LC15 mice under nonchallenged conditions, acute administration of the sodium channel blocker flecainide prolonged the QRS-interval and unveiled an increased susceptibility to lethal ventricular arrhythmias. Current clamp measurements in ventricular myocytes from LC15 mice revealed significantly reduced action potential upstroke velocity at physiological pacing (9 Hz) and prolonged action potential duration at all stimulation rates (1–9 Hz). Voltage clamp experiments revealed significant rightward shifts in the voltage dependence of sodium channel activation and steady-state inactivation, as well as a marked reduction in outward potassium current density. Together, these findings indicate that expression of expanded CUG-repeat RNA in the murine heart results in reduced sodium and potassium channel activity that results in QRS- and QT-interval prolongation, respectively.
Collapse
Affiliation(s)
- Kevin M Tylock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - David S Auerbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY.,Department of Pharmacology, Upstate Medical University, Syracuse, NY
| | - Zhen Zhi Tang
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Charles A Thornton
- Department of Neurology, University of Rochester Medical Center, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
6
|
Mateus T, Martins F, Nunes A, Herdeiro MT, Rebelo S. Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041794. [PMID: 33673200 PMCID: PMC7918590 DOI: 10.3390/ijerph18041794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary and multisystemic disease, characterized by progressive distal muscle weakness and myotonia. Despite huge efforts, the pathophysiological mechanisms underlying DM1 remain elusive. In this review, the metabolic alterations observed in patients with DM1 and their connection with lipin proteins are discussed. We start by briefly describing the epidemiology, the physiopathological and systemic features of DM1. The molecular mechanisms proposed for DM1 are explored and summarized. An overview of metabolic syndrome, dyslipidemia, and the summary of metabolic alterations observed in patients with DM1 are presented. Patients with DM1 present clinical evidence of metabolic alterations, namely increased levels of triacylglycerol and low-density lipoprotein, increased insulin and glucose levels, increased abdominal obesity, and low levels of high-density lipoprotein. These metabolic alterations may be associated with lipins, which are phosphatidate phosphatase enzymes that regulates the triacylglycerol levels, phospholipids, lipid signaling pathways, and are transcriptional co-activators. Furthermore, lipins are also important for autophagy, inflammasome activation and lipoproteins synthesis. We demonstrate the association of lipin with the metabolic alterations in patients with DM1, which supports further clinical studies and a proper exploration of lipin proteins as therapeutic targets for metabolic syndrome, which is important for controlling many diseases including DM1.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Rebelo
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
7
|
Yadava RS, Kim YK, Mandal M, Mahadevan K, Gladman JT, Yu Q, Mahadevan MS. MBNL1 overexpression is not sufficient to rescue the phenotypes in a mouse model of RNA toxicity. Hum Mol Genet 2020; 28:2330-2338. [PMID: 30997488 DOI: 10.1093/hmg/ddz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expanded (CTG)n tract in the 3'UTR of the DM protein kinase (DMPK) gene. The RNA transcripts produced from the expanded allele sequester or alter the function of RNA-binding proteins (MBNL1, CUGBP1, etc.). The sequestration of MBNL1 results in RNA-splicing defects that contribute to disease. Overexpression of MBNL1 in skeletal muscle has been shown to rescue some of the DM1 features in a mouse model and has been proposed as a therapeutic strategy for DM1. Here, we sought to confirm if overexpression of MBNL1 rescues the phenotypes in a different mouse model of RNA toxicity. Using an inducible mouse model of RNA toxicity in which expression of the mutant DMPK 3'UTR results in RNA foci formation, MBNL1 sequestration, splicing defects, myotonia and cardiac conduction defects, we find that MBNL1 overexpression did not rescue skeletal muscle function nor beneficially affect cardiac conduction. Surprisingly, MBNL1 overexpression also did not rescue myotonia, though variable rescue of Clcn1 splicing and other splicing defects was seen. Additionally, contrary to the previous study, we found evidence for increased muscle histopathology with MBNL1 overexpression. Overall, we did not find evidence for beneficial effects from overexpression of MBNL1 as a means to correct RNA toxicity mediated by mRNAs containing an expanded DMPK 3'UTR.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Yun K Kim
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Jordan T Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Mutation analysis of multiple pilomatricomas in a patient with myotonic dystrophy type 1 suggests a DM1-associated hypermutation phenotype. PLoS One 2020; 15:e0230003. [PMID: 32155193 PMCID: PMC7064234 DOI: 10.1371/journal.pone.0230003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an inherited neuromuscular disease which results from an expansion of repetitive DNA elements within the 3' untranslated region of the DMPK gene. Some patients develop multiple pilomatricomas as well as malignant tumors in other tissues. Mutations of the catenin-β gene (CTNNB1) could be demonstrated in most non-syndromic pilomatricomas. In order to gain insight into the molecular mechanisms which might be responsible for the occurrence of multiple pilomatricomas and cancers in patients with DM1, we have sequenced the CTNNB1 gene of four pilomatricomas and of one pilomatrical carcinoma which developed in one patient with molecularly proven DM1 within 4 years. We further analyzed the pilomatrical tumors for microsatellite instability as well as by NGS for mutations in 161 cancer-associated genes. Somatic and independent point-mutations were detected at typical hotspot regions of CTNNB1 (S33C, S33F, G34V, T41I) while one mutation within CTNNB1 represented a duplication mutation (G34dup.). Pilomatricoma samples were analyzed for microsatellite instability and expression of mismatch repair proteins but no mutated microsatellites could be detected and expression of mismatch repair proteins MLH1, MSH2, MSH6, PMS2 was not perturbed. NGS analysis only revealed one heterozygous germline mutation c.8494C>T; p.(Arg2832Cys) within the ataxia telangiectasia mutated gene (ATM) which remained heterozygous in the pilomatrical tumors. The detection of different somatic mutations in different pilomatricomas and in the pilomatrical carcinoma as well as the observation that the patient developed multiple pilomatricomas and one pilomatrical carcinoma over a short time period strongly suggest that the patient displays a hypermutation phenotype. This hypermutability seems to be tissue and gene restricted. Simultaneous transcription of the mutated DMPK gene and the CTNNB1 gene in cycling hair follicles might constitute an explanation for the observed tissue and gene specificity of hypermutability observed in DM1 patients. Elucidation of putative mechanisms responsible for hypermutability in DM1 patients requires further research.
Collapse
|
9
|
DMPK is a New Candidate Mediator of Tumor Suppressor p53-Dependent Cell Death. Molecules 2019; 24:molecules24173175. [PMID: 31480541 PMCID: PMC6749264 DOI: 10.3390/molecules24173175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Tumor suppressor p53 plays an integral role in DNA-damage induced apoptosis, a biological process that protects against tumor progression. Cell shape dramatically changes when cells undergo apoptosis, which is associated with actomyosin contraction; however, it remains entirely elusive how p53 regulates actomyosin contraction in response to DNA-damaging agents. To identify a novel p53 regulating gene encoding the modulator of myosin, we conducted DNA microarray analysis. We found that, in response to DNA-damaging agent doxorubicin, expression of myotonic dystrophy protein kinase (DMPK), which is known to upregulate actomyosin contraction, was increased in a p53-dependent manner. The promoter region of DMPK gene contained potential p53-binding sequences and its promoter activity was increased by overexpression of the p53 family protein p73, but, unexpectedly, not of p53. Furthermore, we found that doxorubicin treatment induced p73 expression, which was significantly attenuated by downregulation of p53. These data suggest that p53 induces expression of DMPK through upregulating p73 expression. Overexpression of DMPK promotes contraction of the actomyosin cortex, which leads to formation of membrane blebs, loss of cell adhesion, and concomitant caspase activation. Taken together, our results suggest the existence of p53-p73-DMPK axis which mediates DNA-damage induced actomyosin contraction at the cortex and concomitant cell death.
Collapse
|
10
|
Wang PY, Lin YM, Wang LH, Kuo TY, Cheng SJ, Wang GS. Reduced cytoplasmic MBNL1 is an early event in a brain-specific mouse model of myotonic dystrophy. Hum Mol Genet 2017; 26:2247-2257. [PMID: 28369378 DOI: 10.1093/hmg/ddx115] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expansion of CTG repeats in the 3' untranslated region (UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Cognitive impairment associated with structural change in the brain is prevalent in DM1. How this histopathological abnormality during disease progression develops remains elusive. Nuclear accumulation of mutant DMPK mRNA containing expanded CUG RNA disrupting the cytoplasmic and nuclear activities of muscleblind-like (MBNL) protein has been implicated in DM1 neural pathogenesis. The association between MBNL dysfunction and morphological changes has not been investigated. We generated a mouse model for postnatal expression of expanded CUG RNA in the brain that recapitulates the features of the DM1 brain, including the formation of nuclear RNA and MBNL foci, learning disability, brain atrophy and misregulated alternative splicing. Characterization of the pathological abnormalities by a time-course study revealed that hippocampus-related learning and synaptic potentiation were impaired before structural changes in the brain, followed by brain atrophy associated with progressive reduction of axon and dendrite integrity. Moreover, cytoplasmic MBNL1 distribution on dendrites decreased before dendrite degeneration, whereas reduced MBNL2 expression and altered MBNL-regulated alternative splicing was evident after degeneration. These results suggest that the expression of expanded CUG RNA in the DM1 brain results in neurodegenerative processes, with reduced cytoplasmic MBNL1 as an early event response to expanded CUG RNA.
Collapse
Affiliation(s)
- Pei-Ying Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Mei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Lee-Hsin Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ting-Yu Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Sin-Jhong Cheng
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Guey-Shin Wang
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
11
|
Buckley L, Lacey M, Ehrlich M. Epigenetics of the myotonic dystrophy-associated DMPK gene neighborhood. Epigenomics 2016; 8:13-31. [PMID: 26756355 PMCID: PMC4863877 DOI: 10.2217/epi.15.104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Identify epigenetic marks in the vicinity of DMPK (linked to myotonic dystrophy, DM1) that help explain tissue-specific differences in its expression. Materials & methods: At DMPK and its flanking genes (DMWD, SIX5, BHMG1 and RSPH6A), we analyzed many epigenetic and transcription profiles from myoblasts, myotubes, skeletal muscle, heart and 30 nonmuscle samples. Results: In the DMPK gene neighborhood, muscle-associated DNA hypermethylation and hypomethylation, enhancer chromatin, and CTCF binding were seen. Myogenic DMPK hypermethylation correlated with high expression and decreased alternative promoter usage. Testis/sperm hypomethylation of BHMG1 and RSPH6A was associated with testis-specific expression. G-quadruplex (G4) motifs and sperm-specific hypomethylation were found near the DM1-linked CTG repeats within DMPK. Conclusion: Tissue-specific epigenetic features in DMPK and neighboring genes help regulate its expression. G4 motifs in DMPK DNA and RNA might contribute to DM1 pathology.
Collapse
Affiliation(s)
- Lauren Buckley
- Human Genetics Program, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lacey
- Tulane Cancer Center & Department of Mathematics, Tulane University, New Orleans, LA 70112, USA
| | - Melanie Ehrlich
- Human Genetics Program, Center for Bioinformatics & Genomics, Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
12
|
Pantic B, Trevisan E, Citta A, Rigobello MP, Marin O, Bernardi P, Salvatori S, Rasola A. Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death Dis 2013; 4:e858. [PMID: 24136222 PMCID: PMC3920960 DOI: 10.1038/cddis.2013.385] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/30/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
Abstract
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.
Collapse
Affiliation(s)
- B Pantic
- 1] CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy [2] Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jones K, Timchenko L, Timchenko NA. The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev 2012; 11:442-9. [PMID: 22446383 DOI: 10.1016/j.arr.2012.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/14/2022]
Abstract
Aging liver is characterized by alterations of liver biology and by a reduction of many functions which are important for the maintenance of body homeostasis. The main dysfunctions include appearance of enlarged hepatocytes, impaired liver regeneration after partial hepatectomy (PH), development of hepatic steatosis, reduction of secretion of proteins and alterations in the hepatic sinusoid. RNA binding proteins are involved in the regulation of gene expression in all tissues including regulation of biological processes in the liver. This review is focused on the role of a conserved, multi-functional RNA-binding protein, CUGBP1, in the development of aging phenotype in the liver. CUGBP1 has been identified as a protein which binds to RNA CUG repeats expanded in Myotonic Dystrophy type 1 (DM1). CUGBP1 is highly expressed in the liver and regulates translation of proteins which are critical for maintenance of liver functions. In livers of young mice, CUGBP1 forms complexes with eukaryotic translation initiation factor eIF2 and supports translation of C/EBPβ and HDAC1 proteins, which are involved in liver growth, differentiation and liver cancer. Aging changes several signaling pathways which lead to the elevation of the CUGBP1-eIF2α complex and to an increase of translation of C/EBPβ and HDAC1. These proteins form multi-protein complexes with additional transcription factors and with chromatin remodeling proteins causing epigenetic alterations of gene expression in livers of old mice. It appears that CUGBP1-mediated translational elevation of HDAC1 is one of the key events in the epigenetic changes in livers of old mice, leading to the development of age-associated dysfunctions of the liver. This review will also discuss a possible role of CUGBP1 in liver dysfunction in patients affected with DM1.
Collapse
|
14
|
Lukáš Z, Falk M, Feit J, Souček O, Falková I, Štefančíková L, Janoušová E, Fajkusová L, Zaorálková J, Hrabálková R. Sequestration of MBNL1 in tissues of patients with myotonic dystrophy type 2. Neuromuscul Disord 2012; 22:604-16. [DOI: 10.1016/j.nmd.2012.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
|
15
|
Childs-Disney JL, Hoskins J, Rzuczek SG, Thornton CA, Disney MD. Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. ACS Chem Biol 2012; 7:856-62. [PMID: 22332923 DOI: 10.1021/cb200408a] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA is an important drug target, but it is difficult to design or discover small molecules that modulate RNA function. In the present study, we report that rationally designed, modularly assembled small molecules that bind the RNA that causes myotonic dystrophy type 1 (DM1) are potently bioactive in cell culture models. DM1 is caused when an expansion of r(CUG) repeats, or r(CUG)(exp), is present in the 3' untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. r(CUG)(exp) folds into a hairpin with regularly repeating 5'CUG/3'GUC motifs and sequesters muscleblind-like 1 protein (MBNL1). A variety of defects are associated with DM1, including (i) formation of nuclear foci, (ii) decreased translation of DMPK mRNA due to its nuclear retention, and (iii) pre-mRNA splicing defects due to inactivation of MBNL1, which controls the alternative splicing of various pre-mRNAs. Previously, modularly assembled ligands targeting r(CUG)(exp) were designed using information in an RNA motif-ligand database. These studies showed that a bis-benzimidazole (H) binds the 5'CUG/3'GUC motif in r(CUG)(exp.) Therefore, we designed multivalent ligands to bind simultaneously multiple copies of this motif in r(CUG)(exp). Herein, we report that the designed compounds improve DM1-associated defects including improvement of translational and pre-mRNA splicing defects and the disruption of nuclear foci. These studies may establish a foundation to exploit other RNA targets in genomic sequence.
Collapse
Affiliation(s)
- Jessica L. Childs-Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Jason Hoskins
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Suzanne G. Rzuczek
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| | - Charles A. Thornton
- Department
of Neurology, University of Rochester,
Rochester, New York 14642,
United States
| | - Matthew D. Disney
- The Kellogg
School of Science
and Engineering, Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way #3A1, Jupiter, Florida
33458, United States
| |
Collapse
|
16
|
Tarnopolsky MA, Pearce E, Matteliano A, James C, Armstrong D. Bacterial overgrowth syndrome in myotonic muscular dystrophy is potentially treatable. Muscle Nerve 2011; 42:853-5. [PMID: 21104859 DOI: 10.1002/mus.21787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over one third of patients with myotonic muscular dystrophy type 1 (DM1) have gastrointestinal complaints. The cause is multifactorial, and treatment options are limited. Twenty DM1 patients with gastrointestinal symptoms were screened over a 2-year period using glucose breath hydrogen testing (GBHT) to evaluate the prevalence of small intestinal bacterial overgrowth (SIBO). Sixty-five percent of patients had a positive GBHT, and diarrhea was the most common presenting symptom. Ciprofloxacin was the most common antibiotic used for treatment, and 70% of patients reported a good response to the initial course of treatment. Although the causes of gastrointestinal symptoms in patients with DM1 are multifactorial, small intestinal bacterial overgrowth is an important diagnostic consideration that is easily diagnosed using glucose breath hydrogen testing and often shows a good response to treatment with common antibiotics.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street West, HSC-2H26, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | | | |
Collapse
|
17
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 4: intercellular bridges, mitochondria, nuclear envelope, apoptosis, ubiquitination, membrane/voltage-gated channels, methylation/acetylation, and transcription factors. Microsc Res Tech 2010; 73:364-408. [PMID: 19941288 DOI: 10.1002/jemt.20785] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As germ cells divide and differentiate from spermatogonia to spermatozoa, they share a number of structural and functional features that are common to all generations of germ cells and these features are discussed herein. Germ cells are linked to one another by large intercellular bridges which serve to move molecules and even large organelles from the cytoplasm of one cell to another. Mitochondria take on different shapes and features and topographical arrangements to accommodate their specific needs during spermatogenesis. The nuclear envelope and pore complex also undergo extensive modifications concomitant with the development of germ cell generations. Apoptosis is an event that is normally triggered by germ cells and involves many proteins. It occurs to limit the germ cell pool and acts as a quality control mechanism. The ubiquitin pathway comprises enzymes that ubiquitinate as well as deubiquitinate target proteins and this pathway is present and functional in germ cells. Germ cells express many proteins involved in water balance and pH control as well as voltage-gated ion channel movement. In the nucleus, proteins undergo epigenetic modifications which include methylation, acetylation, and phosphorylation, with each of these modifications signaling changes in chromatin structure. Germ cells contain specialized transcription complexes that coordinate the differentiation program of spermatogenesis, and there are many male germ cell-specific differences in the components of this machinery. All of the above features of germ cells will be discussed along with the specific proteins/genes and abnormalities to fertility related to each topic.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, 3640 University Street, Montreal, QC Canada H3A 2B2.
| | | | | | | |
Collapse
|
18
|
Oude Ophuis RJA, Mulders SAM, van Herpen REMA, van de Vorstenbosch R, Wieringa B, Wansink DG. DMPK protein isoforms are differentially expressed in myogenic and neural cell lineages. Muscle Nerve 2009; 40:545-55. [PMID: 19626675 DOI: 10.1002/mus.21352] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an unstable (CTG . CAG)n segment in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. It is commonly accepted that DMPK mRNA-based toxicity is the main contributor to DM1 manifestations; however, not much is known about the significance of the DMPK protein. To appreciate its normal and possible pathobiological role, we analyzed the patterns of DMPK splice isoform expression in mouse tissues. Long membrane-anchored DMPK dominated in heart, diaphragm, and skeletal muscle, whereas short cytosolic isoforms were highly expressed in bladder and stomach. Both isoform types were present in diverse brain regions. DMPK protein was also detectable in cultured myoblasts, myotubes, cortical astrocytes, and related cell lines of neural or muscle origin, but not in hippocampal neurons. This work identifies DMPK as a kinase with pronounced expression in diverse muscle and neural tissues that are affected in DM1.
Collapse
Affiliation(s)
- Ralph J A Oude Ophuis
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Harmon EB, Harmon ML, Larsen TD, Paulson AF, Perryman MB. Myotonic dystrophy protein kinase is expressed in embryonic myocytes and is required for myotube formation. Dev Dyn 2008; 237:2353-66. [DOI: 10.1002/dvdy.21653] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
20
|
Kaliman P, Llagostera E. Myotonic dystrophy protein kinase (DMPK) and its role in the pathogenesis of myotonic dystrophy 1. Cell Signal 2008; 20:1935-41. [PMID: 18583094 DOI: 10.1016/j.cellsig.2008.05.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/12/2008] [Indexed: 10/22/2022]
Abstract
Myotonic dystrophy 1 (DM1) is an autosomal, dominant inherited, neuromuscular disorder. The DM1 mutation consists in the expansion of an unstable CTG-repeat in the 3'-untranslated region of a gene encoding DMPK (myotonic dystrophy protein kinase). Clinical expression of DM1 is variable, presenting a progressive muscular dystrophy that affects distal muscles more than proximal and is associated with the inability to relax muscles appropriately (myotonia), cataracts, cardiac arrhythmia, testicular atrophy and insulin resistance. DMPK is a Ser/Thr protein kinase homologous to the p21-activated kinases MRCK and ROCK/rho-kinase/ROK. The most abundant isoform of DMPK is an 80 kDa protein mainly expressed in smooth, skeletal and cardiac muscles. Decreased DMPK protein levels may contribute to the pathology of DM1, as revealed by gene target studies. Here we review current understanding of the structural, functional and pathophysiological characteristics of DMPK.
Collapse
Affiliation(s)
- Perla Kaliman
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic, Universitat de Barcelona, Spain.
| | | |
Collapse
|
21
|
Echenne B, Rideau A, Roubertie A, Sébire G, Rivier F, Lemieux B. Myotonic dystrophy type I in childhood Long-term evolution in patients surviving the neonatal period. Eur J Paediatr Neurol 2008; 12:210-23. [PMID: 17892958 DOI: 10.1016/j.ejpn.2007.07.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/16/2007] [Accepted: 07/31/2007] [Indexed: 01/19/2023]
Abstract
In a retrospective study, 32 patients with myotonic dystrophy, including congenital (n=17) and infantile/juvenile forms (n=15) were studied during a long follow-up lasting 7-28 years (median: 17 years). The clinical presentation was extremely variable; however, a continuum did exist between severe and less severe congenital forms, and later-onset forms, without genotype-phenotype correlation. We observed some unusual presentations, such as 3 cases of isolated club-feet during the neonatal period, and 7 patients (23%) with a completely isolated mental deficiency, language delay and school failure, who only completed the clinical picture several years later. Wechsler scale testing was performed in all cases, and repeated with 8 patients. It demonstrated a decrease in intellectual abilities in 5 patients, suggesting the possibility of a degenerative cerebral process occurring in these children. This decrease has also been reported in some adult cases. This study illustrates the extremely heterogeneous clinical presentation of myotonic dystrophy in childhood.
Collapse
Affiliation(s)
- Bernard Echenne
- Service de Neuropédiatrie, Centre hospitalier universitaire de Montpellier, France.
| | | | | | | | | | | |
Collapse
|
22
|
Somatic CTG*CAG repeat instability in a mouse model for myotonic dystrophy type 1 is associated with changes in cell nuclearity and DNA ploidy. BMC Mol Biol 2007; 8:61. [PMID: 17645799 PMCID: PMC1940261 DOI: 10.1186/1471-2199-8-61] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 07/23/2007] [Indexed: 11/22/2022] Open
Abstract
Background Trinucleotide instability is a hallmark of degenerative neurological diseases like Huntington's disease, some forms of spinocerebellar ataxia and myotonic dystrophy type 1 (DM1). To investigate the effect of cell type and cell state on the behavior of the DM1 CTG•CAG repeat, we studied a knock-in mouse model for DM1 at different time points during ageing and followed how repeat fate in cells from liver and pancreas is associated with polyploidization and changes in nuclearity after the onset of terminal differentiation. Results After separation of liver hepatocytes and pancreatic acinar cells in pools with 2n, 4n or 8n DNA, we analyzed CTG•CAG repeat length variation by resolving PCR products on an automated PAGE system. We observed that somatic CTG•CAG repeat expansion in our DM1 mouse model occurred almost uniquely in the fraction of cells with high cell nuclearity and DNA ploidy and aggravated with aging. Conclusion Our findings suggest that post-replicative and terminal-differentiation events, coupled to changes in cellular DNA content, form a preconditional state that influences the control of DNA repair or recombination events involved in trinucleotide expansion in liver hepatocytes and pancreatic acinar cells.
Collapse
|
23
|
Rudnicki DD, Holmes SE, Lin MW, Thornton CA, Ross CA, Margolis RL. Huntington's disease--like 2 is associated with CUG repeat-containing RNA foci. Ann Neurol 2007; 61:272-82. [PMID: 17387722 DOI: 10.1002/ana.21081] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Huntington's disease-like 2 (HDL2) is caused by a CAG/CTG expansion mutation on chromosome 16q24.3. The repeat falls, in the CTG orientation, within a variably spliced exon of junctophilin-3 (JPH3). The existence of a JPH3 splice variant with the CTG repeat in 3' untranslated region suggested that transcripts containing an expanded CUG repeat could play a role in the pathogenesis of HDL2, similar to the proposed pathogenic role of expanded CUG repeats in myotonic dystrophy type 1 (DM1). The goal of this study, therefore, was to test the plausibility of an RNA gain-of-function component in the pathogenesis of HDL2. METHODS The presence and composition of RNA foci in frontal cortex from HDL2, Huntington's disease, DM1, and control brains were investigated by in situ hybridization and immunohistochemistry. An untranslatable JPH3 transcript containing either a normal or an expanded CUG repeat was engineered and expressed in human embryonic kidney 293 and HT22 cells to further test the toxic RNA hypothesis. The formation of RNA foci and the extent of cell death were quantified. RESULTS RNA foci resembling DM1 foci were detected in neurons in HDL2 cortex and other brain regions. Similar to DM1, the foci colocalize with muscleblind-like protein 1, and nuclear muscleblind-like protein 1 in HDL2 cortical neurons is decreased relative to controls. In cell experiments, expression of a JPH3 transcript with an expanded CUG repeat resulted in the formation of RNA foci that colocalized with muscleblind-like protein 1 and in cell toxicity. INTERPRETATION These results imply that RNA toxicity may contribute to the pathogenesis of HDL2.
Collapse
Affiliation(s)
- Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
24
|
Leroy O, Dhaenens CM, Schraen-Maschke S, Belarbi K, Delacourte A, Andreadis A, Sablonnière B, Buée L, Sergeant N, Caillet-Boudin ML. ETR-3 represses Tau exons 2/3 inclusion, a splicing event abnormally enhanced in myotonic dystrophy type I. J Neurosci Res 2006; 84:852-9. [PMID: 16862542 DOI: 10.1002/jnr.20980] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered splicing of transcripts, including the insulin receptor (IR) and the cardiac troponin (cTNT), is a key feature of myotonic dystrophy type I (DM1). CELF and MBNL splicing factor members regulate the splicing of those transcripts. We have previously described an alteration of Tau exon 2 splicing in DM1 brain, resulting in the favored exclusion of exon 2. However, the factors required for alternative splicing of Tau exon 2 remain undetermined. Here we report a decreased expression of CELF family member and MBNL transcripts in DM1 brains as assessed by RT-PCR. By using cellular models with a control- or DM1-like splicing pattern of Tau transcripts, we demonstrate that ETR-3 promotes selectively the exclusion of Tau exon 2. These results together with the analysis of Tau exon 6 and IR exon 11 splicing in brain, muscle, and cell models suggest that DM1 splicing alteration of several transcripts involves various factors.
Collapse
|
25
|
Leroy O, Wang J, Maurage CA, Parent M, Cooper T, Buée L, Sergeant N, Andreadis A, Caillet-Boudin ML. Brain-specific change in alternative splicing of Tau exon 6 in myotonic dystrophy type 1. Biochim Biophys Acta Mol Basis Dis 2005; 1762:460-7. [PMID: 16487687 DOI: 10.1016/j.bbadis.2005.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/21/2005] [Accepted: 12/01/2005] [Indexed: 12/18/2022]
Abstract
Alternative splicing is altered in myotonic dystrophy of type 1 (DM1), a syndrome caused by an increase of CTG triplet repeats in the 3' untranslated region of the myotonic dystrophy protein kinase gene. Previously, we reported the preferential skipping of Tau exon 2 in DM1 brains. In this study, we analyze the alternative splicing of Tau exon 6 which can be inserted in three different forms (c, p and d) depending on the 3' splice site used. In fact, inclusion of exon 6c decreases in DM1 brains compared to control brains whereas inclusion of 6d increases. Alteration of exon 6 splicing was not observed in DM1 muscle although this exon was inserted in RNAs from normal muscle and DM1 splicing alterations were first described in this organ. In contrast, alteration of exon 2 of Tau mRNA was observed in both muscle and brain. However, co-transfections of a minigene containing exon 6 with CELF or MBNL1 cDNAs, two splicing factor families suspected to be involved in DM1, showed that they influence exon 6 splicing. Altogether, these results show the importance of determining all the exons and organs targeted by mis-splicing to determine the dysregulation mechanisms of mis-splicing in DM1.
Collapse
Affiliation(s)
- Olivier Leroy
- INSERM U422, Pl. de Verdun. 59045 Lille Cedex- France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
van Herpen REMA, Oude Ophuis RJA, Wijers M, Bennink MB, van de Loo FAJ, Fransen J, Wieringa B, Wansink DG. Divergent mitochondrial and endoplasmic reticulum association of DMPK splice isoforms depends on unique sequence arrangements in tail anchors. Mol Cell Biol 2005; 25:1402-14. [PMID: 15684391 PMCID: PMC548020 DOI: 10.1128/mcb.25.4.1402-1414.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy protein kinase (DMPK) is a Ser/Thr-type protein kinase with unknown function, originally identified as the product of the gene that is mutated by triplet repeat expansion in patients with myotonic dystrophy type 1 (DM1). Alternative splicing of DMPK transcripts results in multiple protein isoforms carrying distinct C termini. Here, we demonstrate by expressing individual DMPKs in various cell types, including C(2)C(12) and DMPK(-/-) myoblast cells, that unique sequence arrangements in these tails control the specificity of anchoring into intracellular membranes. Mouse DMPK A and C were found to associate specifically with either the endoplasmic reticulum (ER) or the mitochondrial outer membrane, whereas the corresponding human DMPK A and C proteins both localized to mitochondria. Expression of mouse and human DMPK A-but not C-isoforms in mammalian cells caused clustering of ER or mitochondria. Membrane association of DMPK isoforms was resistant to alkaline conditions, and mutagenesis analysis showed that proper anchoring was differentially dependent on basic residues flanking putative transmembrane domains, demonstrating that DMPK tails form unique tail anchors. This work identifies DMPK as the first kinase in the class of tail-anchored proteins, with a possible role in organelle distribution and dynamics.
Collapse
Affiliation(s)
- René E M A van Herpen
- Department of Cell Biology, NCMLS, Geert Grooteplein 28, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kaliman P, Catalucci D, Lam JT, Kondo R, Gutiérrez JCP, Reddy S, Palacín M, Zorzano A, Chien KR, Ruiz-Lozano P. Myotonic dystrophy protein kinase phosphorylates phospholamban and regulates calcium uptake in cardiomyocyte sarcoplasmic reticulum. J Biol Chem 2004; 280:8016-21. [PMID: 15598648 DOI: 10.1074/jbc.m412845200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotonic dystrophy (DM) is caused by a CTG expansion in the 3'-untranslated region of a protein kinase gene (DMPK). Cardiovascular disease is one of the most prevalent causes of death in DM patients. Electrophysiological studies in cardiac muscles from DM patients and from DMPK(-/-) mice suggested that DMPK is critical to the modulation of cardiac contractility and to the maintenance of proper cardiac conduction activity. However, there are no data regarding the molecular signaling pathways involved in DM heart failure. Here we show that DMPK expression in cardiac myocytes is highly enriched in the sarcoplasmic reticulum (SR) where it colocalizes with the ryanodine receptor and phospholamban (PLN), a muscle-specific SR Ca(2+)-ATPase (SERCA2a) inhibitor. Coimmunoprecipitation studies showed that DMPK and PLN can physically associate. Furthermore, purified wild-type DMPK, but not a kinase-deficient mutant (K110A DMPK), phosphorylates PLN in vitro. Subsequent studies using the DMPK(-/-) mice demonstrated that PLN is hypo-phosphorylated in SR vesicles from DMPK(-/-) mice compared with wild-type mice both in vitro and in vivo. Finally, we show that Ca(2+) uptake in SR is impaired in ventricular homogenates from DMPK(-/-) mice. Together, our data suggest the existence of a novel regulatory DMPK pathway for cardiac contractility and provide a molecular mechanism for DM heart pathology.
Collapse
Affiliation(s)
- Perla Kaliman
- Institute of Molecular Medicine, University of California, San Diego, California 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jiang H, Mankodi A, Swanson MS, Moxley RT, Thornton CA. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 2004; 13:3079-88. [PMID: 15496431 DOI: 10.1093/hmg/ddh327] [Citation(s) in RCA: 387] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene. In skeletal muscles, DM1 may involve a novel, RNA-dominant disease mechanism in which transcripts from the mutant DMPK allele accumulate in the nucleus and compromise the regulation of alternative splicing. Here we show evidence for a similar disease mechanism in brain. Examination of post-mortem DM1 tissue by fluorescence in situ hybridization indicates that the mutant DMPK mRNA, with its expanded CUG repeat in the 3'-untranslated region, is widely expressed in cortical and subcortical neurons. The mutant transcripts accumulate in discrete foci within neuronal nuclei. Proteins in the muscleblind family are recruited into the RNA foci and depleted elsewhere in the nucleoplasm. In parallel, a subset of neuronal pre-mRNAs show abnormal regulation of alternative splicing. These observations suggest that CNS impairment in DM1 may result from a deleterious gain-of-function by mutant DMPK mRNA.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Neurology, University of Rochester School of Medicine and Dentistry, PO Box 673, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|