1
|
Carrascosa-Sàez M, Colom-Rodrigo A, González-Martínez I, Pérez-Gómez R, García-Rey A, Piqueras-Losilla D, Ballestar A, Llamusí B, Cerro-Herreros E, Artero R. Use of HSA LR female mice as a model for the study of myotonic dystrophy type I. Lab Anim (NY) 2025; 54:92-102. [PMID: 40016516 PMCID: PMC11957995 DOI: 10.1038/s41684-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2025] [Indexed: 03/01/2025]
Abstract
HSALR mice are the most broadly used animal model for studying myotonic dystrophy type I (DM1). However, so far, HSALR preclinical studies have often excluded female mice or failed to document the biological sex of the animals. This leaves an unwanted knowledge gap concerning the differential development of DM1 in males and females, particularly considering that the disease has a different clinical presentation in men and women. Here we compared typical functional measurements, histological features, molecular phenotypes and biochemical plasma profiles in the muscles of male and female HSALR mice in search of any significant between-sex differences that could justify this exclusion of female mice in HSALR studies and, critically, in candidate therapy assays performed with this model. We found no fundamental differences between HSALR males and females during disease development. Both sexes presented comparable functional and tissue phenotypes, with similar molecular muscle profiles. The only sex differences and significant interactions observed were in plasma biochemical parameters, which are also intrinsically variable in patients with DM1. In addition, we tested the influence of age on these measurements. We therefore suggest including female HSALR mice in regular DM1 studies, and recommend documenting the sex of animals, especially in studies focusing on metabolic alterations. This will allow researchers to detect and report any potential differences between male and female HSALR mice, especially regarding the efficacy of experimental treatments that could be relevant to patients with DM1.
Collapse
Affiliation(s)
- Marc Carrascosa-Sàez
- ARTHEx Biotech, Paterna, Spain
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, Spain
| | - Anna Colom-Rodrigo
- ARTHEx Biotech, Paterna, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Irene González-Martínez
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Raquel Pérez-Gómez
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | - Andrea García-Rey
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
- ARTHEx Biotech, Paterna, Spain
| | | | - Ana Ballestar
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| | | | - Estefanía Cerro-Herreros
- ARTHEx Biotech, Paterna, Spain.
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain.
- Incliva Biomedical Research Institute, Valencia, Spain.
| | - Ruben Artero
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Human Translational Genomics Group, University Institute of Biotechnology and Biomedicine, Universidad de Valencia, Burjassot, Spain
- Incliva Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
2
|
Morales F, Vargas D, Palma-Jiménez M, Rodríguez EJ, Azofeifa G, Hernández-Hernández O. Natural Antioxidants Reduce Oxidative Stress and the Toxic Effects of RNA-CUG (exp) in an Inducible Glial Myotonic Dystrophy Type 1 Cell Model. Antioxidants (Basel) 2025; 14:260. [PMID: 40227219 PMCID: PMC11939792 DOI: 10.3390/antiox14030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 04/15/2025] Open
Abstract
The toxic gain-of-function of RNA-CUG(exp) in DM1 has been largely studied in skeletal muscle, with little focus on its effects on the central nervous system (CNS). This study aimed to study if oxidative stress is present in DM1, its relationship with the toxic RNA gain-of-function and if natural antioxidants can revert some of the RNA-CUG(exp) toxic effects. Using an inducible glial DM1 model (MIO-M1 cells), we compared OS in expanded vs. unexpanded cells and investigated whether antioxidants can mitigate OS and RNA-CUG(exp) toxicity. OS was measured via superoxide anion and lipid peroxidation assays. RNA foci were identified using FISH, and the mis-splicing of selected exons was analyzed using semi-quantitative RT-PCR. Cells were treated with natural antioxidants, and the effects on OS, foci formation, and mis-splicing were compared between treated and untreated cells. The results showed significantly higher superoxide anion and lipid peroxidation levels in untreated DM1 cells, which decreased after antioxidant treatment (ANOVA, p < 0.001). Foci were present in 51% of the untreated cells but were reduced in a dose-dependent manner following treatment (ANOVA, p < 0.001). Antioxidants also improved the splicing of selected exons (ANOVA, p < 0.001), suggesting OS plays a role in DM1, and antioxidants may offer therapeutic potential.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Dayana Vargas
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Melissa Palma-Jiménez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Esteban J. Rodríguez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 2060, Costa Rica; (D.V.); (M.P.-J.); (E.J.R.)
| | - Gabriela Azofeifa
- Departamento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San José 2060, Costa Rica;
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, INR-LGII, Mexico City 14389, Mexico;
| |
Collapse
|
3
|
Hu RC, Zhang Y, Nitschke L, Johnson SJ, Hurley AE, Lagor WR, Xia Z, Cooper TA. MBNL overexpression rescues cardiac phenotypes in a myotonic dystrophy type 1 heart mouse model. J Clin Invest 2025; 135:e186416. [PMID: 39932794 PMCID: PMC11957708 DOI: 10.1172/jci186416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the dystrophia myotonica protein kinase (DMPK) gene. The expanded CUG repeat RNA (CUGexp RNA) transcribed from the mutant allele sequesters the muscleblind-like (MBNL) family of RNA-binding proteins, causing their loss of function and disrupting regulated pre-mRNA processing. We used a DM1 heart mouse model that inducibly expresses CUGexp RNA to test the contribution of MBNL loss to DM1 cardiac abnormalities and explored MBNL restoration as a potential therapy. AAV9-mediated overexpression of MBNL1 and/or MBNL2 significantly rescued DM1 cardiac phenotypes including conduction delays, contractile dysfunction, hypertrophy, and misregulated alternative splicing and gene expression. While robust, the rescue was partial compared with reduced CUGexp RNA and plateaued with increased exogenous MBNL expression. These findings demonstrate that MBNL loss is a major contributor to DM1 cardiac manifestations and suggest that additional mechanisms play a role, highlighting the complex nature of DM1 pathogenesis.
Collapse
Affiliation(s)
- Rong-Chi Hu
- Department of Pathology and Immunology, and
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yi Zhang
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Sara J. Johnson
- Department of Pathology and Immunology, and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ayrea E. Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - William R. Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
- Center for Biomedical Data Science, Oregon Health and Science University, Portland, Oregon, USA
| | - Thomas A. Cooper
- Department of Pathology and Immunology, and
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Piasecka A, Szcześniak M, Sekrecki M, Kajdasz A, Sznajder Ł, Baud A, Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res 2024; 52:12055-12073. [PMID: 39258536 PMCID: PMC11514471 DOI: 10.1093/nar/gkae774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.
Collapse
Affiliation(s)
- Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał W Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał Sekrecki
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704Poznań, Poland
| | - Łukasz J Sznajder
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Anna Baud
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Yang Y, Wang Y, Yan Z, Li Z, Guo P. Effects of interrupting residues on DNA dumbbell structures formed by CCTG tetranucleotide repeats associated with myotonic dystrophy type 2. FEBS Lett 2024; 598:2544-2556. [PMID: 38922834 DOI: 10.1002/1873-3468.14952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
Myotonic dystrophy type 2 (DM2) is a neurogenerative disease caused by caprylic/capric triglyceride (CCTG) tetranucleotide repeat expansions in intron 1 of the cellular nucleic acid-binding protein (CNBP) gene. Non-B DNA structures formed by CCTG repeats can promote genetic instability, whereas interrupting motifs of NCTG (N = A/T/G) within CCTG repeats help to maintain genomic stability. However, whether the interrupting motifs can affect DNA structures of CCTG repeats remains unclear. Here, we report that four CCTG repeats with an interrupting 3'-A/T/G residue formed dumbbell structures, whereas a non-interrupting 3'-C residue resulted in a multi-loop structure exhibiting conformational dynamics that may contribute to a higher tendency of escaping from DNA mismatch repair and causing repeat expansions. The results provide new structural insights into the genetic instability of CCTG repeats in DM2.
Collapse
Affiliation(s)
- Yingquan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
- School of Materials Science and Engineering, Tianjin University, China
| | - Zhenzhen Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| | - Zhigang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences, China
| |
Collapse
|
6
|
Jenquin JR, O’Brien AP, Poukalov K, Lu Y, Frias JA, Shorrock HK, Richardson JI, Mazdiyasni H, Yang H, Huigens RW, Boykin D, Ranum LP, Cleary JD, Wang ET, Berglund JA. Molecular characterization of myotonic dystrophy fibroblast cell lines for use in small molecule screening. iScience 2022; 25:104198. [PMID: 35479399 PMCID: PMC9035709 DOI: 10.1016/j.isci.2022.104198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/30/2021] [Accepted: 04/01/2022] [Indexed: 01/05/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are common forms of adult onset muscular dystrophy. Pathogenesis in both diseases is largely driven by production of toxic-expanded repeat RNAs that sequester MBNL RNA-binding proteins, causing mis-splicing. Given this shared pathogenesis, we hypothesized that diamidines, small molecules that rescue mis-splicing in DM1 models, could also rescue mis-splicing in DM2 models. While several DM1 cell models exist, few are available for DM2 limiting research and therapeutic development. Here, we characterize DM1 and DM2 patient-derived fibroblasts for use in small molecule screens and therapeutic studies. We identify mis-splicing events unique to DM2 fibroblasts and common events shared with DM1 fibroblasts. We show that diamidines can partially rescue molecular phenotypes in both DM1 and DM2 fibroblasts. This study demonstrates the potential of fibroblasts as models for DM1 and DM2, which will help meet an important need for well-characterized DM2 cell models.
Collapse
Affiliation(s)
- Jana R. Jenquin
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Alana P. O’Brien
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kiril Poukalov
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yidan Lu
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jesus A. Frias
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Hannah K. Shorrock
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Jared I. Richardson
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Hormoz Mazdiyasni
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Hongfen Yang
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - David Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Laura P.W. Ranum
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - John Douglas Cleary
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| | - Eric T. Wang
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - J. Andrew Berglund
- Department of Biochemistry and Molecular Biology, Center for NeuroGenetics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- RNA Institute, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
- Department of Biological Sciences, College of Arts and Sciences, University at Albany-SUNY, Albany, NY 12222, USA
| |
Collapse
|
7
|
Sano T, Kawazoe T, Shioya A, Mori-Yoshimura M, Oya Y, Maruo K, Nishino I, Hoshino M, Murayama S, Saito Y. Unique Lewy pathology in myotonic dystrophy type 1. Neuropathology 2022; 42:104-116. [PMID: 35199386 DOI: 10.1111/neup.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/25/2023]
Abstract
Lewy body-related α-synucleinopathy (Lewy pathology) has been reported in patients with myotonic dystrophy (DM) type 1 (DM1), but no detailed report has described the prevalence and extent of its occurrence. We studied consecutive full autopsy cases of DM1 at the National Center of Neurology and Psychiatry (NCNP) Brain Bank for intractable psychiatric and neurological disorders. Thirty-two cases, genetically determined to be DM1 (59.0 ± 8.7 years), obtained from the NCNP Brain Bank, were compared with control cases obtained from the Brain Bank for Aging Research (BBAR) in Japan. The investigated anatomical sites followed the Dementia with Lewy Bodies Consensus Guideline, expanding to the peripheral autonomic nervous system, temporal pole, and occipital cortex, in addition to the olfactory epithelium and spinal cord. Of the 32 patients, 11 (34.4%) had Lewy pathology, with a significantly higher prevalence than that in the control cases from the BBAR (20.1%). Lewy pathology detected in DM1 was widespread, but no macroscopic depigmentation of the substantia nigra was observed in any DM1 case; this was commensurate with the microscopic paucity of Lewy pathology in the substantia nigra and amygdala. Lewy pathology in DM1 does not appear to follow either Braak's ascending paradigm or the olfactory-amygdala extension. Lewy neurites and dots in DM1 were very sparse in the cerebral cortex and distinct from those observed in BBAR control cases. This study was the first demonstration of unique Lewy pathology in DM1 and may contribute to the understanding of the protein propagation hypothesis of Lewy pathology.
Collapse
Affiliation(s)
- Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,NCNP Brain Physiology and Pathology, Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoya Kawazoe
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ayako Shioya
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neurology, Mito Kyodo General Hospital, Tsukuba University Hospital Mito Area Medical Education Center, Ibaraki, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazushi Maruo
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ichizo Nishino
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mikio Hoshino
- NCNP Brain Physiology and Pathology, Cognitive and Behavioral Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Shigeo Murayama
- Department of Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan.,Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child Development, Osaka University, Osaka, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| |
Collapse
|
8
|
Kajdasz A, Niewiadomska D, Sekrecki M, Sobczak K. Distribution of alternative untranslated regions within the mRNA of the CELF1 splicing factor affects its expression. Sci Rep 2022; 12:190. [PMID: 34996980 PMCID: PMC8742084 DOI: 10.1038/s41598-021-03901-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023] Open
Abstract
CUG-binding protein, ELAV-like Family Member 1 (CELF1) plays an important role during the development of different tissues, such as striated muscle and brain tissue. CELF1 is an RNA-binding protein that regulates RNA metabolism processes, e.g., alternative splicing, and antagonizes other RNA-binding proteins, such as Muscleblind-like proteins (MBNLs). Abnormal activity of both classes of proteins plays a crucial role in the pathogenesis of myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults. In this work, we show that alternative splicing of exons forming both the 5' and 3' untranslated regions (UTRs) of CELF1 mRNA is efficiently regulated during development and tissue differentiation and is disrupted in skeletal muscles in the context of DM1. Alternative splicing of the CELF1 5'UTR leads to translation of two potential protein isoforms that differ in the lengths of their N-terminal domains. We also show that the MBNL and CELF proteins regulate the distribution of mRNA splicing isoforms with different 5'UTRs and 3'UTRs and affect the CELF1 expression by changing its sensitivity to specific microRNAs or RNA-binding proteins. Together, our findings show the existence of different mechanisms of regulation of CELF1 expression through the distribution of various 5' and 3' UTR isoforms within CELF1 mRNA.
Collapse
Affiliation(s)
- Arkadiusz Kajdasz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Daria Niewiadomska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Michal Sekrecki
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
9
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
10
|
Rocha CT, Escolar DM. Treatment and Management of Muscular Dystrophies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Karamlou M, Asaria I, Barron J, Boutros P, Fisher V, Grandinetti R, Johnson J, Richard E, Susko D, Urrutia C, Woolsey B, Baumann R, Cottle J, Sweaney R, Wenzel M, Nusstein J, Hall D. Complications After Dental Sedation: A Myotonic Mystery Case Report. Anesth Prog 2022; 69:26-31. [PMID: 36534775 PMCID: PMC9773408 DOI: 10.2344/anpr-69-02-09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 03/18/2022] [Indexed: 12/23/2022] Open
Abstract
Myotonic dystrophy (dystrophia myotonica; DM) is an uncommon progressive hereditary muscle disorder that can present with variable severity at birth, in early childhood, or most commonly as an adult. Patients with DM, especially type 1 (DM1), are extremely sensitive to the respiratory depressant effects of sedative-hypnotics, anxiolytics, and opioid agonists. This case report describes a 37-year-old male patient with previously undiagnosed DM1 who received dental care under minimal sedation using intravenous midazolam. During the case, the patient experienced 2 brief episodes of hypoxemia, the second of which required emergency intubation after propofol and succinylcholine and resulted in extended hospital admission. A lipid emulsion (Liposyn II 20%) infusion was given approximately 2 hours after the last local anesthetic injection due to slight ST elevation and suspicion of local anesthetic toxicity (LAST). Months after treatment, the patient suffered a fall resulting in a fatal traumatic brain injury. Complications noted in this case report were primarily attributed to the unknown diagnosis of DM1, although additional precipitating factors were likely present. This report also provides a basic review of the literature and clinical guidelines for managing myotonic dystrophy patients for dental care with local anesthesia, sedation, or general anesthesia.
Collapse
Affiliation(s)
- Milad Karamlou
- Former Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Iman Asaria
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Jaime Barron
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Petra Boutros
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Vincent Fisher
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Rachel Grandinetti
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Julian Johnson
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Emily Richard
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - David Susko
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Cristobal Urrutia
- Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Bryce Woolsey
- Chief Resident, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Ronald Baumann
- Former Assistant Professor and Attending, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - James Cottle
- Assistant Professor and Attending, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Richard Sweaney
- Assistant Professor and Attending, The Ohio State University College of Dentistry General Practice Residency Program, Columbus, Ohio
| | - Mark Wenzel
- Program Director and Hospital Attending, The Ohio State University College of Dentistry General Practice Residency Program and Wexner Medical Center, Columbus, Ohio
| | - John Nusstein
- Professor and Chair Division of Endodontics, The Ohio State University College of Dentistry, Columbus, Ohio
| | - David Hall
- Associate Professor and Hospital Attending, The Ohio State University College of Dentistry General Practice Residency Program and Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
12
|
Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int J Mol Sci 2021; 23:ijms23010354. [PMID: 35008780 PMCID: PMC8745394 DOI: 10.3390/ijms23010354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most variable monogenic diseases at phenotypic, genetic, and epigenetic level. The disease is multi-systemic with the age at onset ranging from birth to late age. The underlying mutation is an unstable expansion of CTG repeats in the DMPK gene, varying in size from 50 to >1000 repeats. Generally, large expansions are associated with an earlier age at onset. Additionally, the most severe, congenital DM1 form is typically associated with local DNA methylation. Genetic variability of DM1 mutation is further increased by its structural variations due to presence of other repeats (e.g., CCG, CTC, CAG). These variant repeats or repeat interruptions seem to confer an additional level of epigenetic variability since local DNA methylation is frequently associated with variant CCG repeats independently of the expansion size. The effect of repeat interruptions on DM1 molecular pathogenesis is not investigated enough. Studies on patients indicate their stabilizing effect on DMPK expansions because no congenital cases were described in patients with repeat interruptions, and the age at onset is frequently later than expected. Here, we review the clinical relevance of repeat interruptions in DM1 and genetic and epigenetic characteristics of interrupted DMPK expansions based on patient studies.
Collapse
|
13
|
Mateus T, Costa A, Viegas D, Marques A, Herdeiro MT, Rebelo S. Outcome measures frequently used to assess muscle strength in patients with myotonic dystrophy type 1: a systematic review. Neuromuscul Disord 2021; 32:99-115. [PMID: 35031191 DOI: 10.1016/j.nmd.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 10/20/2022]
Abstract
Measurement of muscle strength is fundamental for the management of patients with myotonic dystrophy type 1 (DM1). Nevertheless, guidance on this topic is somewhat limited due to heterogeneous outcome measures used. This systematic literature review aimed to summarize the most frequent outcome measures to assess muscle strength in patients with DM1. We searched on Pubmed, Web of Science and Embase databases. Observational studies using measures of muscle strength assessment in adult patients with DM1 were included. From a total of 80 included studies, 24 measured cardiac, 45 skeletal and 23 respiratory muscle strength. The most common method and outcome measures used to assess cardiac muscle strength were echocardiography and ejection fraction, for skeletal muscle strength were quantitative muscle test, manual muscle test and maximum isometric torque and medical research council and for respiratory muscle strength were manometry and maximal inspiratory and expiratory pressure. We successfully gathered the more consensual methods and measures to evaluate muscle strength in future clinical studies, particularly to test muscle strength response to treatments in patients with DM1. Future consensus on a set of measures to evaluate muscle strength (core outcome set), is important for these patients.
Collapse
Affiliation(s)
- Tiago Mateus
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Adriana Costa
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Diana Viegas
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Alda Marques
- Respiratory Research and Rehabilitation Laboratory - Lab3R, Institute of Biomedicine (iBiMED), School of Health Sciences (ESSUA), University of Aveiro, Aveiro, Portugal
| | - Maria Teresa Herdeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro 3810-193, Portugal.
| |
Collapse
|
14
|
Buonaiuto G, Desideri F, Taliani V, Ballarino M. Muscle Regeneration and RNA: New Perspectives for Ancient Molecules. Cells 2021; 10:cells10102512. [PMID: 34685492 PMCID: PMC8533951 DOI: 10.3390/cells10102512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
The ability of the ribonucleic acid (RNA) to self-replicate, combined with a unique cocktail of chemical properties, suggested the existence of an RNA world at the origin of life. Nowadays, this hypothesis is supported by innovative high-throughput and biochemical approaches, which definitively revealed the essential contribution of RNA-mediated mechanisms to the regulation of fundamental processes of life. With the recent development of SARS-CoV-2 mRNA-based vaccines, the potential of RNA as a therapeutic tool has received public attention. Due to its intrinsic single-stranded nature and the ease with which it is synthesized in vitro, RNA indeed represents the most suitable tool for the development of drugs encompassing every type of human pathology. The maximum effectiveness and biochemical versatility is achieved in the guise of non-coding RNAs (ncRNAs), which are emerging as multifaceted regulators of tissue specification and homeostasis. Here, we report examples of coding and ncRNAs involved in muscle regeneration and discuss their potential as therapeutic tools. Small ncRNAs, such as miRNA and siRNA, have been successfully applied in the treatment of several diseases. The use of longer molecules, such as lncRNA and circRNA, is less advanced. However, based on the peculiar properties discussed below, they represent an innovative pool of RNA biomarkers and possible targets of clinical value.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- COVID-19
- Homeostasis
- Humans
- Mice
- MicroRNAs/metabolism
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/virology
- Myocardium/metabolism
- Origin of Life
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- RNA, Small Untranslated/genetics
- RNA, Untranslated/genetics
- RNA, Viral/metabolism
- Regeneration
- SARS-CoV-2/genetics
Collapse
Affiliation(s)
- Giulia Buonaiuto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Fabio Desideri
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Center for Life Nano & Neuro-Science of Instituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Valeria Taliani
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
| | - Monica Ballarino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (G.B.); (F.D.); (V.T.)
- Correspondence:
| |
Collapse
|
15
|
Soldos P, Besenyi Z, Hideghéty K, Pávics L, Hegedűs Á, Rácz L, Kopper B. Comparison of Shear Wave Elastography and Dynamometer Test in Muscle Tissue Characterization for Potential Medical and Sport Application. Pathol Oncol Res 2021; 27:1609798. [PMID: 34267604 PMCID: PMC8275576 DOI: 10.3389/pore.2021.1609798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022]
Abstract
Skeletal muscle status and its dynamic follow up are of particular importance in the management of several diseases where weight and muscle mass loss and, consequently, immobilization occurs, as in cancer and its treatment, as well as in neurodegenerative disorders. But immobilization is not the direct result of body and muscle mass loss, but rather the loss of the maximal tension capabilities of the skeletal muscle. Therefore, the development of a non-invasive and real-time method which can measure muscle tension capabilities in immobile patients is highly anticipated. Our aim was to introduce and evaluate a special ultrasound measurement technique to estimate a maximal muscle tension characteristic which can be used in medicine and also in sports diagnostics. Therefore, we determined the relationship between the results of shear wave elastography measurements and the dynamometric data of individuals. The measurements were concluded on the m. vastus lateralis. Twelve healthy elite athletes took part in our preliminary proof of principle study—five endurance (S) and seven strength (F) athletes showing unambiguously different muscle composition features, nine healthy subjects (H) without prior sports background, and four cancer patients in treatment for a stage 3 brain tumor (T). Results showed a high correlation between the maximal dynamometric isometric torque (Mmax) and mean elasticity value (E) for the non-athletes [(H + T), (r = 0.795)] and for the athletes [(S + F), (r = 0.79)]. For the athletes (S + F), the rate of tension development at contraction (RTDk) and E correlation was also determined (r = 0.84, p < 0.05). Our measurements showed significantly greater E values for the strength athletes with fast muscle fiber dominance than endurance athletes with slow muscle fiber dominance (p < 0.05). Our findings suggest that shear wave ultrasound elastography is a promising method for estimating maximal muscle tension and, also, the human skeletal muscle fiber ratio. These results warrant further investigations with a larger number of individuals, both in medicine and in sports science.
Collapse
Affiliation(s)
- Peter Soldos
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Zsuzsanna Besenyi
- Department of Nuclear Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Hideghéty
- Department of Oncotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Pávics
- Department of Nuclear Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ádám Hegedűs
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Levente Rácz
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| | - Bence Kopper
- Faculty of Kinesiology, University of Physical Education, Budapest, Hungary
| |
Collapse
|
16
|
González-Barriga A, Lallemant L, Dincã DM, Braz SO, Polvèche H, Magneron P, Pionneau C, Huguet-Lachon A, Claude JB, Chhuon C, Guerrera IC, Bourgeois CF, Auboeuf D, Gourdon G, Gomes-Pereira M. Integrative Cell Type-Specific Multi-Omics Approaches Reveal Impaired Programs of Glial Cell Differentiation in Mouse Culture Models of DM1. Front Cell Neurosci 2021; 15:662035. [PMID: 34025359 PMCID: PMC8136287 DOI: 10.3389/fncel.2021.662035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by a non-coding CTG repeat expansion in the DMPK gene. This mutation generates a toxic CUG RNA that interferes with the RNA processing of target genes in multiple tissues. Despite debilitating neurological impairment, the pathophysiological cascade of molecular and cellular events in the central nervous system (CNS) has been less extensively characterized than the molecular pathogenesis of muscle/cardiac dysfunction. Particularly, the contribution of different cell types to DM1 brain disease is not clearly understood. We first used transcriptomics to compare the impact of expanded CUG RNA on the transcriptome of primary neurons, astrocytes and oligodendrocytes derived from DMSXL mice, a transgenic model of DM1. RNA sequencing revealed more frequent expression and splicing changes in glia than neuronal cells. In particular, primary DMSXL oligodendrocytes showed the highest number of transcripts differentially expressed, while DMSXL astrocytes displayed the most severe splicing dysregulation. Interestingly, the expression and splicing defects of DMSXL glia recreated molecular signatures suggestive of impaired cell differentiation: while DMSXL oligodendrocytes failed to upregulate a subset of genes that are naturally activated during the oligodendroglia differentiation, a significant proportion of missplicing events in DMSXL oligodendrocytes and astrocytes increased the expression of RNA isoforms typical of precursor cell stages. Together these data suggest that expanded CUG RNA in glial cells affects preferentially differentiation-regulated molecular events. This hypothesis was corroborated by gene ontology (GO) analyses, which revealed an enrichment for biological processes and cellular components with critical roles during cell differentiation. Finally, we combined exon ontology with phosphoproteomics and cell imaging to explore the functional impact of CUG-associated spliceopathy on downstream protein metabolism. Changes in phosphorylation, protein isoform expression and intracellular localization in DMSXL astrocytes demonstrate the far-reaching impact of the DM1 repeat expansion on cell metabolism. Our multi-omics approaches provide insight into the mechanisms of CUG RNA toxicity in the CNS with cell type resolution, and support the priority for future research on non-neuronal mechanisms and proteomic changes in DM1 brain disease.
Collapse
Affiliation(s)
- Anchel González-Barriga
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Louison Lallemant
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Diana M Dincã
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Sandra O Braz
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.,Inserm UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Hélène Polvèche
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France.,Inserm/UEVE UMR 861, Université Paris Saclay I-STEM, Corbeil-Essonnes, France
| | - Paul Magneron
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), Paris, France
| | - Aline Huguet-Lachon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jean-Baptiste Claude
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Cerina Chhuon
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Ida Chiara Guerrera
- Proteomics Platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, Inserm US24/CNRS UMS 3633, Paris, France
| | - Cyril F Bourgeois
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Didier Auboeuf
- Laboratory of Biology and Modeling of the Cell, Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Geneviève Gourdon
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Mário Gomes-Pereira
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
17
|
Yadava RS, Mandal M, Giese JM, Rigo F, Bennett CF, Mahadevan MS. Modeling muscle regeneration in RNA toxicity mice. Hum Mol Genet 2021; 30:1111-1130. [PMID: 33864373 PMCID: PMC8188403 DOI: 10.1093/hmg/ddab108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3′UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3′UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jack M Giese
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
18
|
Langbehn KE, Carlson-Stadler Z, van der Plas E, Hefti MM, Dawson JD, Moser DJ, Nopoulos PC. DMPK mRNA Expression in Human Brain Tissue Throughout the Lifespan. NEUROLOGY-GENETICS 2020; 7:e537. [PMID: 33575482 PMCID: PMC7862092 DOI: 10.1212/nxg.0000000000000537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/19/2020] [Indexed: 11/15/2022]
Abstract
Objective Myotonic dystrophy is a multisystem disorder caused by a trinucleotide repeat expansion on the myotonic dystrophy protein kinase (DMPK) gene. To determine whether wildtype DMPK expression patterns vary as a function of age, we analyzed DMPK expression in the brain from 99 donors ranging from 5 postconceptional weeks to 80 years old. Methods We used the BrainSpan messenger RNA sequencing and the Yale Microarray data sets, which included brain tissue samples from 42 and 57 donors, respectively. Collectively, donors ranged in age from 5 postconceptional weeks to 80 years old. DMPK expression was normalized for each donor across regions available in both data sets. Restricted cubic spline linear regression models were used to analyze the effects of log-transformed age and sex on normalized DMPK expression data. Results Age was a statistically significant predictor of normalized DMPK expression pattern in the human brain in the BrainSpan (p < 0.005) and Yale data sets (p < 0.005). Sex was not a significant predictor. Across both data sets, normalized wildtype DMPK expression steadily increases during fetal development, peaks around birth, and then declines to reach a nadir around age 10. Conclusions Peak expression of DMPK coincides with a time of dynamic brain development. Abnormal brain DMPK expression due to myotonic dystrophy may have implications for early brain development.
Collapse
Affiliation(s)
- Kathleen E Langbehn
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| | - Zoe Carlson-Stadler
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| | - Ellen van der Plas
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| | - Marco M Hefti
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| | - Jeffrey D Dawson
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| | - David J Moser
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| | - Peggy C Nopoulos
- Department of Psychiatry (K.E.L., Z.C.-S., E.v.d.P., D.J.M., and P.C.N.), Department of Pathology (M.M.H.), Department of Pediatrics (P.C.N.), and Department of Neurology (P.C.N.), College of Public Health (J.D.D.), University of Iowa
| |
Collapse
|
19
|
Meola G. Myotonic dystrophy type 2: the 2020 update. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:222-234. [PMID: 33458578 PMCID: PMC7783423 DOI: 10.36185/2532-1900-026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
The myotonic dystrophies are the commonest cause of adult-onset muscular dystrophy. Phenotypes of DM1 and DM2 are similar, but there are some important differences, including the presence or absence of congenital form, muscles primarily affected (distal vs proximal), involved muscle fiber types (type 1 vs type 2 fibers), and some associated multisystemic phenotypes. There is currently no cure for the myotonic dystrophies but effective management significantly reduces the morbidity and mortality of patients. For the enormous understanding of the molecular pathogenesis of myotonic dystrophy type 1 and myotonic dystrophy type 2, these diseases are now called "spliceopathies" and are mediated by a primary disorder of RNA rather than proteins. Despite clinical and genetic similarities, myotonic dystrophy type 1 and type 2 are distinct disorders requiring different diagnostic and management strategies. Gene therapy for myotonic dystrophy type 1 and myotonic dystrophy type 2 appears to be very close and the near future is an exciting time for clinicians and patients.
Collapse
Affiliation(s)
- Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, Italy.,Department of Neurorehabilitation Sciences, Casa di Cura del Policlinico, Milan, Italy
| |
Collapse
|
20
|
Hagler LD, Luu LM, Tonelli M, Lee J, Hayes SM, Bonson SE, Vergara JI, Butcher SE, Zimmerman SC. Expanded DNA and RNA Trinucleotide Repeats in Myotonic Dystrophy Type 1 Select Their Own Multitarget, Sequence-Selective Inhibitors. Biochemistry 2020; 59:3463-3472. [PMID: 32856901 DOI: 10.1021/acs.biochem.0c00472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There are few methods available for the rapid discovery of multitarget drugs. Herein, we describe the template-assisted, target-guided discovery of small molecules that recognize d(CTG) in the expanded d(CTG·CAG) sequence and its r(CUG) transcript that cause myotonic dystrophy type 1. A positive cross-selection was performed using a small library of 30 monomeric alkyne- and azide-containing ligands capable of producing >5000 possible di- and trimeric click products. The monomers were incubated with d(CTG)16 or r(CUG)16 under physiological conditions, and both sequences showed selectivity in the proximity-accelerated azide-alkyne [3+2] cycloaddition click reaction. The limited number of click products formed in both selections and the even smaller number of common products suggests that this method is a useful tool for the discovery of single-target and multitarget lead therapeutic agents.
Collapse
Affiliation(s)
- Lauren D Hagler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Long M Luu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Marco Tonelli
- National Magnetics Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - JuYeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samuel M Hayes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Sarah E Bonson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - J Ignacio Vergara
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Yadava RS, Yu Q, Mandal M, Rigo F, Bennett CF, Mahadevan MS. Systemic therapy in an RNA toxicity mouse model with an antisense oligonucleotide therapy targeting a non-CUG sequence within the DMPK 3'UTR RNA. Hum Mol Genet 2020; 29:1440-1453. [PMID: 32242217 PMCID: PMC7268549 DOI: 10.1093/hmg/ddaa060] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/19/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
23
|
Hagler LD, Bonson SE, Kocheril PA, Zimmerman SC. Assessing the feasibility and stability of uracil base flipping in RNA–small molecule complexes using molecular dynamics simulations. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Small molecules can be used to target RNAs that mediate disease. A fundamental understanding of binding interactions between RNA and small molecules and the structure of their complexes will further inform the design of new targeting agents. Two small molecule ligands were investigated for their ability to recognize the expanded CUG repeat sequence in RNA, the causative agent of myotonic dystrophy type 1. We report the use of molecular dynamics simulations to explore small molecule–RNA complexes and the finding of a stabilized base flipped conformation at UU mismatches. The results of this computational study support experimental observations and suggest that base flipping is feasible for CUG-repeat RNA.
Collapse
Affiliation(s)
- Lauren D. Hagler
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarah E. Bonson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Philip A. Kocheril
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Steven C. Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Disney MD, Suresh BM, Benhamou RI, Childs-Disney JL. Progress toward the development of the small molecule equivalent of small interfering RNA. Curr Opin Chem Biol 2020; 56:63-71. [PMID: 32036231 PMCID: PMC7311281 DOI: 10.1016/j.cbpa.2020.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Given that many small molecules could bind to structured regions at sites that will not affect function, approaches that trigger degradation of RNA could provide a general way to affect biology. Indeed, targeted RNA degradation is an effective strategy to selectively and potently modulate biology. We describe several approaches to endow small molecules with the power to cleave RNAs. Central to these strategies is Inforna, which designs small molecules targeting RNA from human genome sequence. Inforna deduces the uniqueness of a druggable pocket, enables generation of hypotheses about functionality of the pocket, and defines on- and off-targets to drive compound optimization. RNA-binding compounds are then converted into cleavers that degrade the target directly or recruit an endogenous nuclease to do so. Cleaving compounds have significantly contributed to understanding and manipulating biological functions. Yet, there is much to be learned about how to affect human RNA biology with small molecules.
Collapse
Affiliation(s)
- Matthew D Disney
- Scripps Research, Department of Chemistry, 110 Scripps Way, Jupiter, FL, 33458, USA.
| | - Blessy M Suresh
- Scripps Research, Department of Chemistry, 110 Scripps Way, Jupiter, FL, 33458, USA
| | - Raphael I Benhamou
- Scripps Research, Department of Chemistry, 110 Scripps Way, Jupiter, FL, 33458, USA
| | | |
Collapse
|
25
|
Abstract
OBJECTIVE This study explored mental rotation (MR) performance in patients with myotonic dystrophy 1 (DM1), an inherited neuromuscular disorder dominated by muscular symptoms, including muscle weakness and myotonia. The aim of the study was twofold: to gain new insights into the neurocognitive mechanisms of MR and to better clarify the cognitive profile of DM1 patients. To address these aims, we used MR tasks involving kinds of stimuli that varied for the extent to which they emphasized motor simulation and activation of body representations (body parts) versus visuospatial imagery (abstract objects). We hypothesized that, if peripheral sensorimotor feedback system plays a pivotal role in modulating MR performance, then DM1 patients would exhibit more difficulties in mentally rotating hand stimuli than abstract objects. METHOD Twenty-four DM1 patients and twenty-four age- and education-matched control subjects were enrolled in the study and were required to perform two computerized MR tasks involving pictures of hands and abstract objects. RESULTS The analysis of accuracy showed that patients had impaired MR performance when the angular disparities between the stimuli were higher. Notably, as compared to controls, patients showed slower responses when the stimuli were hands, whereas no significant differences when stimuli were objects. CONCLUSION The findings are coherent with the embodied cognition view, indicating a tight relation between body- and motor-related processes and MR. They suggest that peripheral, muscular, abnormalities in DM1 lead to alterations in manipulation of motor representations, which in turn affect MR, especially when body parts are to mentally rotate.
Collapse
|
26
|
Yadava RS, Kim YK, Mandal M, Mahadevan K, Gladman JT, Yu Q, Mahadevan MS. MBNL1 overexpression is not sufficient to rescue the phenotypes in a mouse model of RNA toxicity. Hum Mol Genet 2020; 28:2330-2338. [PMID: 30997488 DOI: 10.1093/hmg/ddz065] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 03/17/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by an expanded (CTG)n tract in the 3'UTR of the DM protein kinase (DMPK) gene. The RNA transcripts produced from the expanded allele sequester or alter the function of RNA-binding proteins (MBNL1, CUGBP1, etc.). The sequestration of MBNL1 results in RNA-splicing defects that contribute to disease. Overexpression of MBNL1 in skeletal muscle has been shown to rescue some of the DM1 features in a mouse model and has been proposed as a therapeutic strategy for DM1. Here, we sought to confirm if overexpression of MBNL1 rescues the phenotypes in a different mouse model of RNA toxicity. Using an inducible mouse model of RNA toxicity in which expression of the mutant DMPK 3'UTR results in RNA foci formation, MBNL1 sequestration, splicing defects, myotonia and cardiac conduction defects, we find that MBNL1 overexpression did not rescue skeletal muscle function nor beneficially affect cardiac conduction. Surprisingly, MBNL1 overexpression also did not rescue myotonia, though variable rescue of Clcn1 splicing and other splicing defects was seen. Additionally, contrary to the previous study, we found evidence for increased muscle histopathology with MBNL1 overexpression. Overall, we did not find evidence for beneficial effects from overexpression of MBNL1 as a means to correct RNA toxicity mediated by mRNAs containing an expanded DMPK 3'UTR.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Yun K Kim
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | | | - Jordan T Gladman
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
27
|
Abstract
There is increasing evidence of central nervous system involvement in numerous neuromuscular disorders primarily considered diseases of skeletal muscle. Our knowledge on cerebral affection in myopathies is expanding continuously due to a better understanding of the genetic background and underlying pathophysiological mechanisms. Intriguingly, there is a remarkable overlap of brain pathology in muscular diseases with pathomechanisms involved in neurodegenerative or neurodevelopmental disorders. A rapid progress in advanced neuroimaging techniques results in further detailed insight into structural and functional cerebral abnormalities. The spectrum of clinical manifestations is broad and includes movement disorders, neurovascular complications, paroxysmal neurological symptoms like migraine and epileptic seizures, but also behavioural abnormalities and cognitive dysfunction. Cerebral involvement implies a high socio-economic and personal burden in adult patients sometimes exceeding the everyday challenges associated with muscle weakness. It is especially important to clarify the nature and natural history of brain affection against the background of upcoming specific treatment regimen in hereditary myopathies that should address the brain as a secondary target. This review aims to highlight the character and extent of central nervous system involvement in patients with hereditary myopathies manifesting in adulthood, however also includes some childhood-onset diseases with brain abnormalities that transfer into adult neurological care.
Collapse
Affiliation(s)
- Jens Reimann
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| | - Cornelia Kornblum
- Department of Neurology, Section of Neuromuscular Diseases, University Hospital Bonn, Germany
- Center for Rare Diseases, University Hospital Bonn, Germany
| |
Collapse
|
28
|
Banez-Coronel M, Ranum LPW. Repeat-associated non-AUG (RAN) translation: insights from pathology. J Transl Med 2019; 99:929-942. [PMID: 30918326 PMCID: PMC7219275 DOI: 10.1038/s41374-019-0241-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
More than 40 different neurological diseases are caused by microsatellite repeat expansions. Since the discovery of repeat-associated non-AUG (RAN) translation by Zu et al. in 2011, nine expansion disorders have been identified as RAN-positive diseases. RAN proteins are translated from different types of nucleotide repeat expansions and can be produced from both sense and antisense transcripts. In some diseases, RAN proteins have been shown to accumulate in affected brain regions. Here we review the pathological and molecular aspects associated with RAN protein accumulation for each particular disorder, the correlation between disease pathology and the available in vivo models and the common aspects shared by some of the newly discovered RAN proteins.
Collapse
Affiliation(s)
- Monica Banez-Coronel
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Laura P W Ranum
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
29
|
Suh MR, Kim DH, Jung J, Kim B, Lee JW, Choi WA, Kang SW. Clinical implication of maximal voluntary ventilation in myotonic muscular dystrophy. Medicine (Baltimore) 2019; 98:e15321. [PMID: 31045770 PMCID: PMC6504256 DOI: 10.1097/md.0000000000015321] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Patients with myotonic muscular dystrophy type 1 (DM1) tend to exhibit earlier respiratory insufficiency than patients with other neuromuscular diseases at similar or higher forced vital capacity (FVC). This study aimed to analyze several pulmonary function parameters to determine which factor contributes the most to early hypercapnia in patients with DM1.We analyzed ventilation status monitoring, pulmonary function tests (including FVC, maximal voluntary ventilation [MVV], and maximal inspiratory and expiratory pressure), and polysomnography in subjects with DM1 who were admitted to a single university hospital. The correlation of each parameter with hypercapnia was determined. Subgroup analysis was also performed by dividing the subjects into 2 subgroups according to usage of mechanical ventilation.Final analysis included 50 patients with a mean age of 42.9 years (standard deviation = 11.1), 46.0% of whom were male. The hypercapnia was negatively correlated with MVV, FVC, forced expiratory volume in 1 second (FEV1), and their ratios to predicted values in subjects with myotonic muscular dystrophy type 1. At the same partial pressure of carbon dioxide, the ratio to the predicted value was lowest for MVV, then FEV1, followed by FVC. Moreover, the P values for differences in MVV and its ratio to the predicted value between ventilator users and nonusers were the lowest.When screening ventilation failure in patients with DM1, MVV should be considered alongside other routinely measured parameters.
Collapse
Affiliation(s)
- Mi Ri Suh
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, GyeongGi-do
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, GyeongGi-do
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- The Graduate School, Yonsei University College of Medicine, Seoul
| | - Dong Hyun Kim
- Department of Physical Medicine and Rehabilitation, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul
| | - Jiho Jung
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| | - Bitnarae Kim
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
- Department of Physical Therapy, Graduate School of Yonsei University, Gangwon-do
| | - Jang Woo Lee
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Won Ah Choi
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| | - Seong-Woong Kang
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul
- Department of Rehabilitation Medicine and Pulmonary Rehabilitation Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul
| |
Collapse
|
30
|
Dastidar S, Ardui S, Singh K, Majumdar D, Nair N, Fu Y, Reyon D, Samara E, Gerli MF, Klein AF, De Schrijver W, Tipanee J, Seneca S, Tulalamba W, Wang H, Chai Y, In’t Veld P, Furling D, Tedesco F, Vermeesch JR, Joung JK, Chuah MK, VandenDriessche T. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res 2018; 46:8275-8298. [PMID: 29947794 PMCID: PMC6144820 DOI: 10.1093/nar/gky548] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Simon Ardui
- Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Nisha Nair
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Yanfang Fu
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak Reyon
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ermira Samara
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Mattia F M Gerli
- Department of Cell and Developmental Biology, University College London, London WC1E6DE, UK
| | - Arnaud F Klein
- Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France
| | - Wito De Schrijver
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Sara Seneca
- Research Group Reproduction and Genetics (REGE), Center for Medical Genetics, UZ Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Hui Wang
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Yoke Chin Chai
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Peter In’t Veld
- Department of Pathology, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Denis Furling
- Sorbonne Universités, INSERM, Association Institute de Myologie, Center de Recherche en Myologie, F-75013 , France
| | | | - Joris R Vermeesch
- Department of Human Genetics, University of Leuven, Leuven 3000, Belgium
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research and Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, MA02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, Brussels 1090, Belgium
- Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
31
|
Zhang F, Bodycombe NE, Haskell KM, Sun YL, Wang ET, Morris CA, Jones LH, Wood LD, Pletcher MT. A flow cytometry-based screen identifies MBNL1 modulators that rescue splicing defects in myotonic dystrophy type I. Hum Mol Genet 2018; 26:3056-3068. [PMID: 28535287 PMCID: PMC5886090 DOI: 10.1093/hmg/ddx190] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 05/08/2017] [Indexed: 11/17/2022] Open
Abstract
Myotonic dystrophy Type 1 (DM1) is a rare genetic disease caused by the expansion of CTG trinucleotide repeats ((CTG)exp) in the 3' untranslated region of the DMPK gene. The repeat transcripts sequester the RNA binding protein Muscleblind-like protein 1 (MBNL1) and hamper its normal function in pre-mRNA splicing. Overexpressing exogenous MBNL1 in the DM1 mouse model has been shown to rescue the splicing defects and reverse myotonia. Although a viable therapeutic strategy, pharmacological modulators of MBNL1 expression have not been identified. Here, we engineered a ZsGreen tag into the endogenous MBNL1 locus in HeLa cells and established a flow cytometry-based screening system to identify compounds that increase MBNL1 level. The initial screen of small molecule compound libraries identified more than thirty hits that increased MBNL1 expression greater than double the baseline levels. Further characterization of two hits revealed that the small molecule HDAC inhibitors, ISOX and vorinostat, increased MBNL1 expression in DM1 patient-derived fibroblasts and partially rescued the splicing defect caused by (CUG)exp repeats in these cells. These findings demonstrate the feasibility of this flow-based cytometry screen to identify both small molecule compounds and druggable targets for MBNL1 upregulation.
Collapse
Affiliation(s)
| | - Nicole E Bodycombe
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | - Keith M Haskell
- Pharmacokinetics, Dynamics and Metabolism - New Chemical Entities, Worldwide Research and Development, Pfizer, CT 06340, USA
| | | | - Eric T Wang
- Center for Neurogenetics, University of Florida, Gainesville, FL 32610, USA
| | | | - Lyn H Jones
- Medicine Design, Worldwide Research and Development, Pfizer, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
32
|
Arandel L, Polay Espinoza M, Matloka M, Bazinet A, De Dea Diniz D, Naouar N, Rau F, Jollet A, Edom-Vovard F, Mamchaoui K, Tarnopolsky M, Puymirat J, Battail C, Boland A, Deleuze JF, Mouly V, Klein AF, Furling D. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds. Dis Model Mech 2017; 10:487-497. [PMID: 28188264 PMCID: PMC5399563 DOI: 10.1242/dmm.027367] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/05/2017] [Indexed: 01/20/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. Summary: Myotonic dystrophy muscle cell models displaying characteristic disease-associated molecular features can be used to investigate molecular pathophysiological mechanisms and evaluate therapeutic approaches.
Collapse
Affiliation(s)
- Ludovic Arandel
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Micaela Polay Espinoza
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Magdalena Matloka
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Audrey Bazinet
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Damily De Dea Diniz
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Naïra Naouar
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Frédérique Rau
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Arnaud Jollet
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Frédérique Edom-Vovard
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Kamel Mamchaoui
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Mark Tarnopolsky
- McMaster University Medical Center, Departments of Pediatrics and Medicine, 1200 Main St W., Hamilton, Ontario, Canada, L8N 3Z5
| | - Jack Puymirat
- CHU de Quebec, site Enfant-Jésus, Université Laval, Québec, Canada G1J 1Z4
| | - Christophe Battail
- Centre National de Génotypage, Institut de Génomique, CEA, 91000 Evry, France
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, 91000 Evry, France
| | | | - Vincent Mouly
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Arnaud F Klein
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| | - Denis Furling
- Sorbonne Universités UPMC Univ Paris 06, INSERM, CNRS, Centre de Recherche en Myologie, Institut de Myologie, GH Pitié-Salpêtrière, Paris 75013, France
| |
Collapse
|
33
|
Sommerville RB, Vincenti MG, Winborn K, Casey A, Stitziel NO, Connolly AM, Mann DL. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: A model for the multidisciplinary care of complex genetic disorders. Trends Cardiovasc Med 2017; 27:51-58. [DOI: 10.1016/j.tcm.2016.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 01/16/2023]
|
34
|
Kim YK, Yadava RS, Mandal M, Mahadevan K, Yu Q, Leitges M, Mahadevan MS. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS One 2016; 11:e0163325. [PMID: 27657532 PMCID: PMC5033491 DOI: 10.1371/journal.pone.0163325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 02/07/2023] Open
Abstract
Myotonic dystrophy type 1(DM1) is the prototype for diseases caused by RNA toxicity. RNAs from the mutant allele contain an expanded (CUG)n tract within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The toxic RNAs affect the function of RNA binding proteins leading to sequestration of muscleblind-like (MBNL) proteins and increased levels of CELF1 (CUGBP, Elav-like family member 1). The mechanism for increased CELF1 is not very clear. One favored proposition is hyper-phosphorylation of CELF1 by Protein Kinase C alpha (PKCα) leading to increased CELF1 stability. However, most of the evidence supporting a role for PKC-α relies on pharmacological inhibition of PKC. To further investigate the role of PKCs in the pathogenesis of RNA toxicity, we generated transgenic mice with RNA toxicity that lacked both the PKCα and PKCβ isoforms. We find that these mice show similar disease progression as mice wildtype for the PKC isoforms. Additionally, the expression of CELF1 is also not affected by deficiency of PKCα and PKCβ in these RNA toxicity mice. These data suggest that disease phenotypes of these RNA toxicity mice are independent of PKCα and PKCβ.
Collapse
Affiliation(s)
- Yun K. Kim
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ramesh S. Yadava
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Karunasai Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Qing Yu
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
| | - Mani S. Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
35
|
Results from an external proficiency testing program: 11 years of molecular genetics testing for myotonic dystrophy type 1. Genet Med 2016; 18:1290-1294. [PMID: 27253733 DOI: 10.1038/gim.2016.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 03/28/2016] [Indexed: 01/10/2023] Open
Abstract
PURPOSE The aim of this study was to examine the performance of laboratories offering assessment for myotonic dystrophy type 1 (DM1) using external proficiency testing samples. DM1, a dominant disorder, has a prevalence of 1:20,000 due to the expansion of CTG trinucleotide repeats in the DMPK gene. METHODS External proficiency testing administered by the College of American Pathologists/American College of Medical Genetics and Genomics distributes three samples twice yearly. Responses from 2003 through the first distribution of 2013 were analyzed after stratification by location (United States/international). Both the repeat sizes (analytic validity) and clinical interpretations were assessed. RESULTS Over the 21 distributions, 45 US and 29 international laboratories participated. Analytic sensitivity for detecting and reporting expanded repeats (≥50) was 99.2% (382/385 challenges) and 97.1% (133/137 challenges), respectively. Analytic specificity (to within two repeats of the consensus) was 99.2% (1,790/1,805 alleles) and 98.6% (702/712 alleles), respectively. Clinical interpretations were correct for 99.3% (450/453) and 98.2% (224/228) of positive challenges and in 99.9% (936/937) and 99.6% (455/457) of negative challenges, respectively. Of four incorrect interpretations made in the United States, two were probably due to sample mix-up. CONCLUSION This review of laboratory performance regarding laboratory-developed genetic tests indicates very high performance for both the analytic and interpretative challenges for DM1.Genet Med 18 12, 1290-1294.
Collapse
|
36
|
Acket B, Lepage B, Maury P, Arne-Bes MC, Cintas P. Chloride channel dysfunction study in myotonic dystrophy type 1 using repeated short exercise tests. Muscle Nerve 2016; 54:104-9. [DOI: 10.1002/mus.25003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Blandine Acket
- Service de Neurologie; Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan; 1 Place Baylac 31059 Toulouse France
| | - Benoit Lepage
- Clinical Epidemiology Unit; Centre Hospitalier Universitaire de Toulouse; Faculté de Médecine de Purpan Toulouse France
| | - Philippe Maury
- Federation of Cardiology; Centre Hospitalier Universitaire de Toulouse, Hôpital Rangueil; Toulouse France
| | - Marie-Christine Arne-Bes
- Service de Neurologie; Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan; 1 Place Baylac 31059 Toulouse France
| | - Pascal Cintas
- Service de Neurologie; Centre Hospitalier Universitaire de Toulouse, Hôpital Purpan; 1 Place Baylac 31059 Toulouse France
| |
Collapse
|
37
|
Takarada T, Nishida A, Takeuchi A, Lee T, Takeshima Y, Matsuo M. Resveratrol enhances splicing of insulin receptor exon 11 in myotonic dystrophy type 1 fibroblasts. Brain Dev 2015; 37:661-8. [PMID: 25476247 DOI: 10.1016/j.braindev.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/07/2014] [Accepted: 11/07/2014] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Myotonic dystrophy type 1 (DM1) is characterized by splicing abnormalities caused by CUG expansion of the DMPK gene transcript. Splicing of exon 11 of the insulin receptor (IR) gene is deregulated to suppress exon 11 inclusion into mRNA in DM1. Consequently, the exon 11-deleted IR isoform that is less sensitive to insulin is predominantly produced, leading to glucose intolerance in DM1. Upregulation of exon 11 retaining full-length IR mRNA is a potential way to recover insulin sensitivity in DM1. METHODS We examined candidate chemicals for their ability to enhance inclusion of exon 11 of the IR gene in cultured cells by reverse transcription-PCR amplification of a fragment extending from exons 10 to 12 of IR mRNA. RESULTS We revealed that resveratrol (RES) enhanced the percentage of exon 11-containing IR mRNA among the total IR mRNA in HeLa cells. The RES-mediated enhancement of exon 11 inclusion was cell-specific and highest in fibroblasts. We tested RES on four fibroblast samples from three generations of one DM1 family. In each sample, RES treatment significantly upregulated the percentage of exon 11-containing IR mRNA to levels higher than that of the control, irrespective of the length of the sample's CTG repeat expansion. DISCUSSION A natural compound, RES, was shown for the first time to upregulate the full-length IR mRNA in fibroblasts from DM1 cases. Our results provide the justification of RES as a leading compound to improve glucose tolerance in DM1.
Collapse
Affiliation(s)
- Toru Takarada
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Nishi, Kobe 6512180, Japan; Kobe Pharmaceutical University, Higashinada, Kobe 6588558, Japan
| | - Atsushi Nishida
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Nishi, Kobe 6512180, Japan
| | - Atsuko Takeuchi
- Kobe Pharmaceutical University, Higashinada, Kobe 6588558, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638131, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638131, Japan
| | - Masafumi Matsuo
- Department of Medical Rehabilitation, Faculty of Rehabilitation, Kobegakuin University, Nishi, Kobe 6512180, Japan.
| |
Collapse
|
38
|
Yang WY, Wilson HD, Velagapudi SP, Disney MD. Inhibition of Non-ATG Translational Events in Cells via Covalent Small Molecules Targeting RNA. J Am Chem Soc 2015; 137:5336-45. [PMID: 25825793 PMCID: PMC4856029 DOI: 10.1021/ja507448y] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One major class of disease-causing RNAs is expanded repeating transcripts. These RNAs cause diseases via multiple mechanisms, including: (i) gain-of-function, in which repeating RNAs bind and sequester proteins involved in RNA biogenesis and (ii) repeat associated non-ATG (RAN) translation, in which repeating transcripts are translated into toxic proteins without use of a canonical, AUG, start codon. Herein, we develop and study chemical probes that bind and react with an expanded r(CGG) repeat (r(CGG)(exp)) present in a 5' untranslated region that causes fragile X-associated tremor/ataxia syndrome (FXTAS). Reactive compounds bind to r(CGG)(exp) in cellulo as shown with Chem-CLIP-Map, an approach to map small molecule binding sites within RNAs in cells. Compounds also potently improve FXTAS-associated pre-mRNA splicing and RAN translational defects, while not affecting translation of the downstream open reading frame. In contrast, oligonucleotides affect both RAN and canonical translation when they bind to r(CGG)(exp), which is mechanistically traced to a decrease in polysome loading. Thus, designer small molecules that react with RNA targets can be used to profile the RNAs to which they bind in cells, including identification of binding sites, and can modulate several aspects of RNA-mediated disease pathology in a manner that may be more beneficial than oligonucleotides.
Collapse
Affiliation(s)
- Wang-Yong Yang
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Henry D. Wilson
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Sai Pradeep Velagapudi
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
39
|
Bugiardini E, Rivolta I, Binda A, Soriano Caminero A, Cirillo F, Cinti A, Giovannoni R, Botta A, Cardani R, Wicklund M, Meola G. SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype. Neuromuscul Disord 2015; 25:301-7. [DOI: 10.1016/j.nmd.2015.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/09/2015] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
|
40
|
Chau A, Kalsotra A. Developmental insights into the pathology of and therapeutic strategies for DM1: Back to the basics. Dev Dyn 2015; 244:377-90. [PMID: 25504326 DOI: 10.1002/dvdy.24240] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/25/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involves many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1.
Collapse
Affiliation(s)
- Anthony Chau
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Department of Medical Biochemistry, University of Illinois, Urbana-Champaign, Illinois; Institute of Genomic Biology, University of Illinois, Urbana-Champaign, Illinois
| | | |
Collapse
|
41
|
Tramonti C, Dalise S, Bertolucci F, Rossi B, Chisari C. Abnormal Lactate Levels Affect Motor Performance in Myotonic Dystrophy Type 1. Eur J Transl Myol 2014; 24:4726. [PMID: 26913141 PMCID: PMC4748969 DOI: 10.4081/ejtm.2014.4726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is a dominantly inherited disease comprehending multiple features. Fatigue and exhaustion during exercise often represent significant factors able to negatively influence their compliance to rehabilitation programs. Mitochondrial abnormalities and a significant increase in oxidative markers, previously reported, suggest the hypothesis of a mitochondrial functional impairment. The study aims at evaluating oxidative metabolism efficiency in 18 DM1 patients and in 15 healthy subjects, through analysis of lactate levels at rest and after an incremental exercise test. The exercise protocol consisted of a submaximal incremental exercise performed on an electronically calibrated treadmill, maintained in predominantly aerobic condition. Lactate levels were assessed at rest and at 5, 10 and 30 minutes after the end of the exercise. The results showed early exercise-related fatigue in DM1 patients, as they performed a mean number of 9 steps, while controls completed the whole exercise. Moreover, while resting values of lactate were comparable between the patients and the control group (p=0.69), after the exercise protocol, dystrophic subjects reached higher values of lactate, at any recovery time (p<0,05). These observations suggest an early activation of anaerobic metabolism, thus evidencing an alteration in oxidative metabolism of such dystrophic patients. As far as intense aerobic training could be performed in DM1 patients, in order to improve maximal muscle oxidative capacity and blood lactate removal ability, then, this safe and validate method could be used to evaluate muscle oxidative metabolism and provide an efficient help on rehabilitation programs to be prescribed in such patients.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Neuroscience, University Hospital of Pisa, Italy
| |
Collapse
|
42
|
Yu Z, Goodman LD, Shieh SY, Min M, Teng X, Zhu Y, Bonini NM. A fly model for the CCUG-repeat expansion of myotonic dystrophy type 2 reveals a novel interaction with MBNL1. Hum Mol Genet 2014; 24:954-62. [PMID: 25305073 DOI: 10.1093/hmg/ddu507] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expanded non-coding RNA repeats of CUG and CCUG are the underlying genetic causes for myotonic dystrophy type 1 (DM1) and type 2 (DM2), respectively. A gain-of-function of these pathogenic repeat expansions is mediated at least in part by their abnormal interactions with RNA-binding proteins such as MBNL1 and resultant loss of activity of these proteins. To study pathogenic mechanisms of CCUG-repeat expansions in an animal model, we created a fly model of DM2 that expresses pure, uninterrupted CCUG-repeat expansions ranging from 16 to 720 repeats in length. We show that this fly model for DM2 recapitulates key features of human DM2 including RNA repeat-induced toxicity, ribonuclear foci formation and changes in alternative splicing. Interestingly, expression of two isoforms of MBNL1, MBNL135 and MBNL140, leads to cleavage and concurrent upregulation of the levels of the RNA-repeat transcripts, with MBNL140 having more significant effects than MBNL135. This property is shared with a fly CUG-repeat expansion model. Our results suggest a novel mechanism for interaction between the pathogenic RNA repeat expansions of myotonic dystrophy and MBNL1.
Collapse
Affiliation(s)
| | - Lindsey D Goodman
- Neurosciences Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | - Nancy M Bonini
- Department of Biology and Neurosciences Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Szmidt-Salkowska E, Gawel M, Lusakowska A, Nojszewska M, Lipowska M, Sulek A, Krysa W, Rajkiewicz M, Seroka A, Kaminska AM. Does quantitative EMG differ myotonic dystrophy type 2 and type 1? J Electromyogr Kinesiol 2014; 24:755-61. [DOI: 10.1016/j.jelekin.2014.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 04/22/2014] [Accepted: 05/30/2014] [Indexed: 11/30/2022] Open
|
44
|
Boric M, Jelicic Kadic A, Puljak L. Cutaneous expression of calcium/calmodulin-dependent protein kinase II in rats with type 1 and type 2 diabetes. J Chem Neuroanat 2014; 61-62:140-6. [PMID: 25266254 DOI: 10.1016/j.jchemneu.2014.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 12/11/2022]
Abstract
Changes in calcium-calmodulin protein kinase II (CaMKII) have been well demonstrated in nervous tissue of diabetic animal models. Skin shares the same ectodermal origin as nervous tissue and it is often affected in diabetic patients. The goal of this study was to analyze expression of CaMKII in rat foot pad 2 weeks and 2 months after induction of diabetes type 1 and 2. Forty-two Sprague-Dawley rats were used. Diabetes mellitus type 1 (DM1) was induced with intraperitoneally (i.p.) injected 55 mg/kg of streptozotocin (STZ) and diabetes mellitus type 2 (DM2) with a combination of high-fat diet (HFD) and i.p. injection of low-dose STZ (35 mg/kg). Two weeks and two months following diabetes induction rats were sacrificed and skin samples from plantar surface of the both hind paws were removed. Immunohistochemistry was performed for detection of total CaMKII (tCaMKII) and its alpha isoform (pCaMKIIα). For detection of intraepidermal nerve fibers polyclonal antiserum against protein gene product 9.5 (PGP 9.5) was used. The results showed that CaMKII was expressed in the skin of both diabetic models. Total CaMKII was uniformly distributed throughout the epidermis and pCaMKIIα was limited to stratum granulosum. The tCaMKII and pCaMKIIα were not expressed in intraepidermal nerve fibers. Two weeks after induction of diabetes in rats there were no significant differences in expression of tCaMKII and pCaMKIIα between DM1 and DM2 compared to respective controls. In the 2-month experiments, significant increase in epidermal expression of tCaMKII and pCaMKIIα was observed in DM1 animals compared to controls, but not in DM2 animals. This study is the first description of cutaneous CaMKII expression pattern in a diabetic model. CaMKII could play a role in transformation of skin layers and contribute to cutaneous diabetic changes. Further research on physiological role of CaMKII in skin and its role in cutaneous diabetic complications should be undertaken in order to elucidate its function in epidermis.
Collapse
Affiliation(s)
- Matija Boric
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia.
| | - Antonia Jelicic Kadic
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| | - Livia Puljak
- Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, 21000 Split, Croatia
| |
Collapse
|
45
|
Prevalence of type 1 Brugada ECG pattern after administration of Class 1C drugs in patients with type 1 myotonic dystrophy: Myotonic dystrophy as a part of the Brugada syndrome. Heart Rhythm 2014; 11:1721-7. [PMID: 25016148 DOI: 10.1016/j.hrthm.2014.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Both type 1 myotonic dystrophy (MD1) and Brugada syndrome (BrS) may be complicated by conduction disturbances and sudden death. Spontaneous BrS has been observed in MD1 patients, but the prevalence of drug-induced BrS in MD1 is unknown. OBJECTIVE The purpose of this study was to prospectively assess the prevalence of type 1 ST elevation as elicited during pharmacologic challenge with Class 1C drugs in a subgroup of MD1 patients and to further establish correlations with ECG and electrophysiologic variables and prognosis. METHODS From a group of unselected 270 MD1 patients, ajmaline or flecainide drug challenge was performed in a subgroup of 44 patients (27 men, median age 43 years) with minor depolarization/repolarization abnormalities suggestive of possible BrS. The presence of type 1 ST elevation after drug challenge was correlated to clinical, ECG, and electrophysiologic variables. RESULTS Eight of 44 patients (18%) presented with BrS after drug challenge. BrS was seen more often in men (26% vs 6%, P = .09) and was related to younger age (35 vs 48 years, P = .07). BrS was not correlated to symptoms, baseline ECG, HV interval, results of signal-averaged ECG, or abnormalities on ambulatory recordings. MD1 patients with BrS had longer corrected QT intervals, greater increase in PR interval after drug challenge, and higher rate of inducible ventricular arrhythmias (62% vs 21%, P = .03). Twelve patients were implanted with a pacemaker and 5 with an implantable cardioverter-defibrillator. Significant bradycardia did not occur in any patients, and malignant ventricular arrhythmia never occurred during median 7-year follow-up (except 1 hypokalemia-related ventricular fibrillation). CONCLUSION BrS is elicited by a Class 1 drug in 18% of MD1 patients presenting with minor depolarization/repolarization abnormalities at baseline, but the finding seems to be devoid of a prognostic role.
Collapse
|
46
|
Sun X, Marque LO, Cordner Z, Pruitt JL, Bhat M, Li PP, Kannan G, Ladenheim EE, Moran TH, Margolis RL, Rudnicki DD. Phosphorodiamidate morpholino oligomers suppress mutant huntingtin expression and attenuate neurotoxicity. Hum Mol Genet 2014; 23:6302-17. [PMID: 25035419 DOI: 10.1093/hmg/ddu349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the huntingtin (HTT) gene. Disease pathogenesis derives, at least in part, from the long polyglutamine tract encoded by mutant HTT. Therefore, considerable effort has been dedicated to the development of therapeutic strategies that significantly reduce the expression of the mutant HTT protein. Antisense oligonucleotides (ASOs) targeted to the CAG repeat region of HTT transcripts have been of particular interest due to their potential capacity to discriminate between normal and mutant HTT transcripts. Here, we focus on phosphorodiamidate morpholino oligomers (PMOs), ASOs that are especially stable, highly soluble and non-toxic. We designed three PMOs to selectively target expanded CAG repeat tracts (CTG22, CTG25 and CTG28), and two PMOs to selectively target sequences flanking the HTT CAG repeat (HTTex1a and HTTex1b). In HD patient-derived fibroblasts with expanded alleles containing 44, 77 or 109 CAG repeats, HTTex1a and HTTex1b were effective in suppressing the expression of mutant and non-mutant transcripts. CTGn PMOs also suppressed HTT expression, with the extent of suppression and the specificity for mutant transcripts dependent on the length of the targeted CAG repeat and on the CTG repeat length and concentration of the PMO. PMO CTG25 reduced HTT-induced cytotoxicity in vitro and suppressed mutant HTT expression in vivo in the N171-82Q transgenic mouse model. Finally, CTG28 reduced mutant HTT expression and improved the phenotype of Hdh(Q7/Q150) knock-in HD mice. These data demonstrate the potential of PMOs as an approach to suppressing the expression of mutant HTT.
Collapse
Affiliation(s)
- Xin Sun
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Leonard O Marque
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Zachary Cordner
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Jennifer L Pruitt
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Manik Bhat
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Pan P Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Geetha Kannan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences
| | - Ellen E Ladenheim
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Timothy H Moran
- Behavioral Neuroscience Laboratory, Department of Psychiatry and Behavioral Sciences
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Department of Neurology, and Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dobrila D Rudnicki
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Program of Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Consensus on cerebral involvement in myotonic dystrophy. Neuromuscul Disord 2014; 24:445-52. [DOI: 10.1016/j.nmd.2014.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 01/28/2014] [Indexed: 11/15/2022]
|
48
|
Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014; 6:57. [PMID: 24409116 PMCID: PMC3885824 DOI: 10.3389/fnmol.2013.00057] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/20/2013] [Indexed: 01/18/2023] Open
Abstract
Myotonic dystrophy (DM) of type 1 and 2 (DM1 and DM2) are inherited autosomal dominant diseases caused by dynamic and unstable expanded microsatellite sequences (CTG and CCTG, respectively) in the non-coding regions of the genes DMPK and ZNF9, respectively. These mutations result in the intranuclear accumulation of mutated transcripts and the mis-splicing of numerous transcripts. This so-called RNA gain of toxic function is the main feature of an emerging group of pathologies known as RNAopathies. Interestingly, in addition to these RNA inclusions, called foci, the presence of neurofibrillary tangles (NFT) in patient brains also distinguishes DM as a tauopathy. Tauopathies are a group of nearly 30 neurodegenerative diseases that are characterized by intraneuronal protein aggregates of the microtubule-associated protein Tau (MAPT) in patient brains. Furthermore, a number of neurodegenerative diseases involve the dysregulation of splicing regulating factors and have been characterized as spliceopathies. Thus, myotonic dystrophies are pathologies resulting from the interplay among RNAopathy, spliceopathy, and tauopathy. This review will describe how these processes contribute to neurodegeneration. We will first focus on the tauopathy associated with DM1, including clinical symptoms, brain histology, and molecular mechanisms. We will also discuss the features of DM1 that are shared by other tauopathies and, consequently, might participate in the development of a tauopathy. Moreover, we will discuss the determinants common to both RNAopathies and spliceopathies that could interfere with tau-related neurodegeneration.
Collapse
Affiliation(s)
- Marie-Laure Caillet-Boudin
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Francisco-Jose Fernandez-Gomez
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Hélène Tran
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Claire-Marie Dhaenens
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Luc Buee
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| | - Nicolas Sergeant
- Alzheimer and Tauopathies, Faculty of Medicine, Jean-Pierre Aubert Research Centre, Institute of Predictive Medicine and Therapeutic Research, Inserm, UMR 837 Lille, France ; University of Lille Nord de France, UDSL Lille, France
| |
Collapse
|
49
|
Abstract
Alternative pre-mRNA splicing is an integral part of gene regulation in eukaryotes. Here we provide a basic overview of the various types of alternative splicing, as well as the functional role, highlighting how alternative splicing varies across phylogeny. Regulated alternative splicing can affect protein function and ultimately impact biological outcomes. We examine the possibility that portions of alternatively spliced transcripts are the result of stochastic processes rather than regulated. We discuss the implications of misregulated alternative splicing and explore of the role of alternative splicing in human disease.
Collapse
Affiliation(s)
- Stacey D Wagner
- Department of Chemistry and Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | | |
Collapse
|
50
|
Cagnetti C, Buratti L, Foschi N, Balestrini S, Provinciali L. Generalized epilepsy in a patient with myotonic dystrophy type 2. Neurol Sci 2013; 35:489-90. [PMID: 24277201 DOI: 10.1007/s10072-013-1578-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Affiliation(s)
- C Cagnetti
- Department of Experimental and Clinical Medicine, Neurologic Clinic, Polytechnic University of Marche, Via Conca 71, 60020, Ancona, AN, Italy
| | | | | | | | | |
Collapse
|