1
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025; 21:964-987. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
2
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
3
|
Lislien M, Kuchovska E, Kapr J, Duale N, Andersen JM, Dirven H, Myhre O, Fritsche E, Koch K, Wojewodzic MW. Transcriptomic characterization of 2D and 3D human induced pluripotent stem cell-based in vitro models as New Approach Methodologies for developmental neurotoxicity testing. Toxicology 2025; 510:154000. [PMID: 39551125 DOI: 10.1016/j.tox.2024.154000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
The safety and developmental neurotoxicity (DNT) potential of chemicals remain critically understudied due to limitations of current in vivo testing guidelines, which are low throughput, resource-intensive, and hindered by species differences that limit their relevance to human health. To address these issues, robust New Approach Methodologies (NAMs) using deeply characterized cell models are essential. This study presents the comprehensive transcriptomic characterization of two advanced human-induced pluripotent stem cell (hiPSC)-derived models: a 2D adherent and a 3D neurosphere model of human neural progenitor cells (hiNPCs) differentiated up to 21 days. Using high-throughput RNA sequencing, we compared gene expression profiles of 2D and 3D models at three developmental stages (3, 14, and 21 days of differentiation). Both models exhibit maturation towards post-mitotic neurons, with the 3D model maturing faster and showing a higher prevalence of GABAergic neurons, while the 2D model is enriched with glutamatergic neurons. Both models demonstrate broad applicability domains, including excitatory and inhibitory neurons, astrocytes, and key endocrine and especially the understudied cholinergic receptors. Comparison with human fetal brain samples confirms their physiological relevance. This study provides novel in-depth applicability insights into the temporal and dimensional aspects of hiPSC-derived neural models for DNT testing. The complementary use of these two models is highlighted: the 2D model excels in synaptogenesis assessment, while the 3D model is particularly suited for neural network formation as observed as well in previous functional studies with these models. This research marks a significant advancement in developing human-relevant, high-throughput DNT assays for regulatory purposes.
Collapse
Affiliation(s)
- Malene Lislien
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Eliska Kuchovska
- IUF-Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Julia Kapr
- IUF-Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jill Mari Andersen
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Ellen Fritsche
- IUF-Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany; DNTOX GmbH, Düsseldorf, Germany; Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Katharina Koch
- IUF-Leibniz-Research Institute for Environmental Medicine, Düsseldorf, Germany; DNTOX GmbH, Düsseldorf, Germany
| | - Marcin W Wojewodzic
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway; Department of Research, Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
4
|
Kühne BA, Gutierrez-Vázquez L, Sánchez Lamelas E, Guardia-Escote L, Pla L, Loreiro C, Gratacós E, Barenys M, Illa M. Lactoferrin/sialic acid prevents adverse effects of intrauterine growth restriction on neurite length: investigations in an in vitro rabbit neurosphere model. Front Cell Neurosci 2023; 17:1116405. [PMID: 37180944 PMCID: PMC10169722 DOI: 10.3389/fncel.2023.1116405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Intrauterine growth restriction (IUGR) is a well-known cause of impaired neurodevelopment during life. In this study, we aimed to characterize alterations in neuronal development underlying IUGR and discover strategies to ameliorate adverse neurodevelopment effects by using a recently established rabbit in vitro neurosphere culture. Methods IUGR was surgically induced in pregnant rabbits by ligation of placental vessels in one uterine horn, while the contralateral horn remained unaffected for normal growth (control). At this time point, rabbits were randomly assigned to receive either no treatment, docosahexaenoic acid (DHA), melatonin (MEL), or lactoferrin (LF) until c-section. Neurospheres consisting of neural progenitor cells were obtained from control and IUGR pup's whole brain and comparatively analyzed for the ability to differentiate into neurons, extend neurite length, and form dendritic branching or pre-synapses. We established for the very first time a protocol to cultivate control and IUGR rabbit neurospheres not only for 5 days but under long-term conditions up to 14 days under differentiation conditions. Additionally, an in vitro evaluation of these therapies was evaluated by exposing neurospheres from non-treated rabbits to DHA, MEL, and SA (sialic acid, which is the major lactoferrin compound) and by assessing the ability to differentiate neurons, extend neurite length, and form dendritic branching or pre-synapses. Results We revealed that IUGR significantly increased the neurite length after 5 days of cultivation in vitro, a result in good agreement with previous in vivo findings in IUGR rabbits presenting more complex dendritic arborization of neurons in the frontal cortex. MEL, DHA, and SA decreased the IUGR-induced length of primary dendrites in vitro, however, only SA was able to reduce the total neurite length to control level in IUGR neurospheres. After prenatal in vivo administration of SAs parent compound LF with subsequent evaluation in vitro, LF was able to prevent abnormal neurite extension. Discussion We established for the first time the maintenance of the rabbit neurosphere culture for 14 days under differentiation conditions with increasing complexity of neuronal length and branching up to pre-synaptic formation. From the therapies tested, LF or its major compound, SA, prevents abnormal neurite extension and was therefore identified as the most promising therapy against IUGR-induced changes in neuronal development.
Collapse
Affiliation(s)
- Britta Anna Kühne
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Lara Gutierrez-Vázquez
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Estela Sánchez Lamelas
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laia Guardia-Escote
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Laura Pla
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Carla Loreiro
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Marta Barenys
- Grup de Recerca en Toxicologia (GRET) i INSA-UB, Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
- German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Miriam Illa
- BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
5
|
Joshi P, Patel R, Kang SY, Serbinowski E, Lee MY. Establishment of ion channel and ABC transporter assays in 3D-cultured ReNcell VM on a 384-pillar plate for neurotoxicity potential. Toxicol In Vitro 2022; 82:105375. [PMID: 35550413 DOI: 10.1016/j.tiv.2022.105375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Neurotoxicity potential of compounds by inhibition of ion channels and efflux transporters has been studied traditionally using two-dimensionally (2D) cultured cell lines such as CHO and HEK-293 overexpressing the protein of interest. However, these approaches are time consuming and do not recapitulate the activity of ion channels and efflux transporters indigenously expressed in neural stem cells (NSCs) in vivo. To overcome these issues, we established ion channel and transporter assays on a 384-pillar plate with three-dimensionally (3D) cultured ReNcell VM and demonstrated high-throughput measurement of ion channel and transporter activity. RNA sequencing analysis identified major ion channels and efflux transporters expressed in ReNcell VM, followed by validating 3D ReNcell-based ion channel and transporter assays with model compounds. Major ion channel activities were measured by specifically inhibiting potassium channels Kv 7.2 with XE-991 and Kv 4.3 with fluoxetine, and a calcium channel with 2-APB. Activities of major efflux transporters, MDR1, MRP1, and BCRP, were assessed using their respective blockers, verapamil, probenecid, and novobiocin. From this study, we demonstrated that 3D-cultured ReNcell VM on the 384-pillar plate could be a good alternative to rapidly identify environmental chemicals and therapeutic compounds for their role in modulating the activity of ion channels and efflux transporters, potentially leading to neurotoxicity.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Bioprinting Laboratories Inc, Denton, TX, USA
| | - Rushabh Patel
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Soo-Yeon Kang
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Emily Serbinowski
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Moo-Yeal Lee
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, USA; Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
| |
Collapse
|
6
|
Coccini T, Spinillo A, Roccio M, Lenta E, Valsecchi C, De Simone U. Human Umbilical Cord Mesenchymal Stem Cell-Based in vitro Model for Neurotoxicity Testing. Curr Protoc 2022; 2:e423. [PMID: 35471597 DOI: 10.1002/cpz1.423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neurotoxicity (NT) testing for regulatory purposes is based on in vivo animal testing. There is general consensus, however, about the need for the development of alternative methodologies to allow researchers to more rapidly and cost effectively screen large numbers of chemicals for their potential to cause NT, or to investigate their mode of action. In vitro assays are considered an important source of information for making regulatory decisions, and human cell-based systems are recommended as one of the most relevant models in toxicity testing, to reduce uncertainty in the extrapolation of results from animal-based models. Human neuronal models range from various neuroblastoma cell lines to stem cell-derived systems, including those derived from mesenchymal stem/stromal cells (hMSC). hMSCs exhibit numerous advantages, including the fact that they can be obtained in high yield from healthy human adult tissues, can be cultured with a minimal laboratory setup and without genetic manipulations, are able of continuous and repeated self-renewal, are nontumorigenic, and can form large populations of stably differentiated cells representative of different tissues, including neuronal cells. hMSCs derived from human umbilical cord (hUC) in particular possess several prominent advantages, including a painless, non-invasive, and ethically acceptable collection procedure, simple and convenient preparation, and high proliferation capacity. In addition, hMSCs can be efficiently differentiated into neuron-like cells (hNLCs), which can then be used for the assessment of neuronal toxicity of potential neurotoxic compounds in humans. Here, we describe a step-by-step procedure to use hMSCs from the umbilical cord for in vitro neurotoxicity testing. First, we describe how to isolate, amplify, and store hMSCs derived from the umbilical cord. We then outline the steps to transdifferentiate these cells into hNLCs, and then use the hNLCs for neurotoxicity testing by employing multiple common cytotoxicity assays after treatment with test compounds. The approach follows the most updated guidance on using human cell-based systems. These protocols will allow investigators to implement an alternative system for obtaining primary NLCs of human origin, and support advancement in neurotoxicity research. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation and maintenance of human mesenchymal stem/stromal cells (hMSCs) obtained from the umbilical cord lining membrane Basic Protocol 2: Transdifferentiation of hMSCs into neuron-like cells (hNLCs) and basic neurotoxicity assessment.
Collapse
Affiliation(s)
- Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Arsenio Spinillo
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marianna Roccio
- Department of Obstetrics and Gynecology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Elisa Lenta
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Valsecchi
- Immunology and Transplantation Laboratory, Pediatric Hematology Oncology Unit, Cell Factory, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Uliana De Simone
- Laboratory of Clinical and Experimental Toxicology, and Pavia Poison Centre-National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
7
|
Koch K, Bartmann K, Hartmann J, Kapr J, Klose J, Kuchovská E, Pahl M, Schlüppmann K, Zühr E, Fritsche E. Scientific Validation of Human Neurosphere Assays for Developmental Neurotoxicity Evaluation. FRONTIERS IN TOXICOLOGY 2022; 4:816370. [PMID: 35295221 PMCID: PMC8915868 DOI: 10.3389/ftox.2022.816370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 01/06/2023] Open
Abstract
There is a call for a paradigm shift in developmental neurotoxicity (DNT) evaluation, which demands the implementation of faster, more cost-efficient, and human-relevant test systems than current in vivo guideline studies. Under the umbrella of the Organisation for Economic Co-operation and Development (OECD), a guidance document is currently being prepared that instructs on the regulatory use of a DNT in vitro battery (DNT IVB) for fit-for-purpose applications. One crucial issue for OECD application of methods is validation, which for new approach methods (NAMs) requires novel approaches. Here, mechanistic information previously identified in vivo, as well as reported neurodevelopmental adversities in response to disturbances on the cellular and tissue level, are of central importance. In this study, we scientifically validate the Neurosphere Assay, which is based on human primary neural progenitor cells (hNPCs) and an integral part of the DNT IVB. It assesses neurodevelopmental key events (KEs) like NPC proliferation (NPC1ab), radial glia cell migration (NPC2a), neuronal differentiation (NPC3), neurite outgrowth (NPC4), oligodendrocyte differentiation (NPC5), and thyroid hormone-dependent oligodendrocyte maturation (NPC6). In addition, we extend our work from the hNPCs to human induced pluripotent stem cell-derived NPCs (hiNPCs) for the NPC proliferation (iNPC1ab) and radial glia assays (iNPC2a). The validation process we report for the endpoints studied with the Neurosphere Assays is based on 1) describing the relevance of the respective endpoints for brain development, 2) the confirmation of the cell type-specific morphologies observed in vitro, 3) expressions of cell type-specific markers consistent with those morphologies, 4) appropriate anticipated responses to physiological pertinent signaling stimuli and 5) alterations in specific in vitro endpoints upon challenges with confirmed DNT compounds. With these strong mechanistic underpinnings, we posit that the Neurosphere Assay as an integral part of the DNT in vitro screening battery is well poised for DNT evaluation for regulatory purposes.
Collapse
Affiliation(s)
- Katharina Koch
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kristina Bartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Hartmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Jördis Klose
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Eliška Kuchovská
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Melanie Pahl
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Kevin Schlüppmann
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Etta Zühr
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
8
|
Barenys M, Illa M, Hofrichter M, Loreiro C, Pla L, Klose J, Kühne BA, Gómez-Catalán J, Braun JM, Crispi F, Gratacós E, Fritsche E. Rabbit neurospheres as a novel in vitro tool for studying neurodevelopmental effects induced by intrauterine growth restriction. Stem Cells Transl Med 2020; 10:209-221. [PMID: 33034168 PMCID: PMC7848321 DOI: 10.1002/sctm.20-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to develop a rabbit neurosphere culture to characterize differences in basic processes of neurogenesis induced by intrauterine growth restriction (IUGR). A novel in vitro neurosphere culture has been established using fresh or frozen neural progenitor cells from newborn (PND0) rabbit brains. After surgical IUGR induction in pregnant rabbits and cesarean section 5 days later, neural progenitor cells from both control and IUGR groups were isolated and directly cultured or frozen at −80°C. These neural progenitor cells spontaneously formed neurospheres after 7 days in culture. The ability of control and IUGR neurospheres to migrate, proliferate, differentiate to neurons, astrocytes, or oligodendrocytes was compared and the possibility to modulate their responses was tested by exposure to several positive and negative controls. Neurospheres obtained from IUGR brains have a significant impairment in oligodendrocyte differentiation, whereas no significant differences are observed in other basic processes of neurogenesis. This impairment can be reverted by in vitro exposure of IUGR neurospheres to thyroid hormone, which is known to play an essential role in white matter maturation in vivo. Our new rabbit neurosphere model and the results of this study open the possibility to test several substances in vitro as neuroprotective candidates against IUGR induced neurodevelopmental damage while decreasing the number of animals and resources and allowing a more mechanistic approach at a cellular functional level.
Collapse
Affiliation(s)
- Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.,GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Miriam Illa
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Maxi Hofrichter
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Carla Loreiro
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Laura Pla
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Jördis Klose
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Britta Anna Kühne
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.,BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Jesús Gómez-Catalán
- GRET, INSA-UB and Toxicology Unit, Pharmacology, Toxicology and Therapeutical Chemistry Department, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Jan Matthias Braun
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Fatima Crispi
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Eduard Gratacós
- BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Center for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| |
Collapse
|
9
|
Brier MI, Mundell JW, Yu X, Su L, Holmann A, Squeri J, Zhang B, Stanley SA, Friedman JM, Dordick JS. Uncovering a possible role of reactive oxygen species in magnetogenetics. Sci Rep 2020; 10:13096. [PMID: 32753716 PMCID: PMC7403421 DOI: 10.1038/s41598-020-70067-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Recent reports have shown that intracellular, (super)paramagnetic ferritin nanoparticles can gate TRPV1, a non-selective cation channel, in a magnetic field. Here, we report the effects of differing field strength and frequency as well as chemical inhibitors on channel gating using a Ca2+-sensitive promoter to express a secreted embryonic alkaline phosphatase (SEAP) reporter. Exposure of TRPV1-ferritin-expressing HEK-293T cells at 30 °C to an alternating magnetic field of 501 kHz and 27.1 mT significantly increased SEAP secretion by ~ 82% relative to control cells, with lesser effects at other field strengths and frequencies. Between 30-32 °C, SEAP production was strongly potentiated 3.3-fold by the addition of the TRPV1 agonist capsaicin. This potentiation was eliminated by the competitive antagonist AMG-21629, the NADPH oxidase assembly inhibitor apocynin, and the reactive oxygen species (ROS) scavenger N-acetylcysteine, suggesting that ROS contributes to magnetogenetic TRPV1 activation. These results provide a rational basis to address the heretofore unknown mechanism of magnetogenetics.
Collapse
Affiliation(s)
- Matthew I Brier
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jordan W Mundell
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaofei Yu
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Lichao Su
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Alexander Holmann
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jessica Squeri
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Baolin Zhang
- State Key Laboratory Breeding Base of Nonferrous Metals and Specific Materials Processing, College of Material Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin, 541004, China
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, 10065, USA
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Departments of Biomedical Engineering and Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
10
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which the cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes, as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
11
|
Helenes González C, Jayasinghe SN, Ferretti P. Bio-electrosprayed human neural stem cells are viable and maintain their differentiation potential. F1000Res 2020; 9:267. [PMID: 32518635 PMCID: PMC7255967 DOI: 10.12688/f1000research.19901.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2020] [Indexed: 03/30/2024] Open
Abstract
Background: Bio-electrospray (BES) is a jet-based delivery system driven by an electric field that has the ability to form micro to nano-sized droplets. It holds great potential as a tissue engineering tool as it can be used to place cells into specific patterns. As the human central nervous system (CNS) cannot be studied in vivo at the cellular and molecular level, in vitro CNS models are needed. Human neural stem cells (hNSCs) are the CNS building block as they can generate both neurones and glial cells. Methods: Here we assessed for the first time how hNSCs respond to BES. To this purpose, different hNSC lines were sprayed at 10 kV and their ability to survive, grow and differentiate was assessed at different time points. Results: BES induced only a small and transient decrease in hNSC metabolic activity, from which cells recovered by day 6, and no significant increase in cell death was observed, as assessed by flow cytometry. Furthermore, bio-electrosprayed hNSCs differentiated as efficiently as controls into neurones, astrocytes and oligodendrocytes as shown by morphological, protein and gene expression analysis. Conclusions: This study highlights the robustness of hNSCs and identifies BES as a suitable technology that could be developed for the direct deposition of these cells in specific locations and configurations.
Collapse
Affiliation(s)
- Citlali Helenes González
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Suwan N. Jayasinghe
- BioPhysics Group, Department of Mechanical Engineering, University College London, London, WC1E 7JE, UK
| | - Patrizia Ferretti
- Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
12
|
Sachana M, Bal-Price A, Crofton KM, Bennekou SH, Shafer TJ, Behl M, Terron A. International Regulatory and Scientific Effort for Improved Developmental Neurotoxicity Testing. Toxicol Sci 2019; 167:45-57. [PMID: 30476307 DOI: 10.1093/toxsci/kfy211] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Organisation for Economic Co-Operation and Development (OECD) coordinates international efforts to enhance developmental neurotoxicity (DNT) testing. In most regulatory sectors, including the ones dealing with pesticides and industrial chemicals registration, historical use of the in vivo DNT test guideline has been limited. Current challenges include a lack of DNT data and mechanistic information for thousands of chemicals, and difficulty in interpreting results. A series of workshops in the last decade has paved the way for a consensus among stakeholders that there is need for a DNT testing battery that relies on in vitro endpoints (proliferation, differentiation, synaptogenesis, etc.) and is complemented by alternative species (eg, zebrafish) assays. Preferably, a battery of in vitro and alternative assays should be anchored toward mechanistic relevance for applying an integrated approach for testing and assessment (IATA) framework. Specific activities have been initiated to facilitate this OECD project: the collation of available DNT in vitro methods and their scoring for readiness; the selection of these methods to form a DNT testing battery; the generation of a reference set of chemicals that will be tested using the battery; the case studies exemplifying how DNT in vitro data can be interpreted; and the development of an OECD guidance document. This manuscript highlights these international efforts and activities.
Collapse
Affiliation(s)
- Magdalini Sachana
- Organisation for Economic Co-Operation and Development (OECD), 75775 Paris Cedex 16, France
| | - Anna Bal-Price
- European Commission Joint Research Centre, Health, Consumers and Reference Materials, Unit Chemicals Safety and Alternative Methods I-21027 Ispra (VA), Italy
| | | | - Susanne H Bennekou
- Danish Environmental Protection Agency, Haraldsgade 53, DK - 2100, Copenhagen, Denmark
| | - Timothy J Shafer
- U.S. Environmental Protection Agency (EPA), Office of Research and Development, Research Triangle Park, North Carolina 27711, USA
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences Research Triangle Park, North Carolina, 27709 USA
| | - Andrea Terron
- European Food Safety Authority, Via Carlo Magno, 1A, 43126, Parma, Italy
| |
Collapse
|
13
|
Degl'Innocenti D, Ramazzotti M, Sarchielli E, Monti D, Chevanne M, Vannelli GB, Barletta E. Oxadiazon affects the expression and activity of aldehyde dehydrogenase and acylphosphatase in human striatal precursor cells: A possible role in neurotoxicity. Toxicology 2018; 411:110-121. [PMID: 30391265 DOI: 10.1016/j.tox.2018.10.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/05/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Exposure to herbicides can induce long-term chronic adverse effects such as respiratory diseases, malignancies and neurodegenerative diseases. Oxadiazon, a pre-emergence or early post-emergence herbicide, despite its low acute toxicity, may induce liver cancer and may exert adverse effects on reproductive and on endocrine functions. Unlike other herbicides, there are no indications on neurotoxicity associated with long-term exposure to oxadiazon. Therefore, we have analyzed in primary neuronal precursor cells isolated from human striatal primordium the effects of non-cytotoxic doses of oxadiazon on neuronal cell differentiation and migration, and on the expression and activity of the mitochondrial aldehyde dehydrogenase 2 (ALDH2) and of the acylphosphatase (ACYP). ALDH2 activity protects neurons against neurotoxicity induced by toxic aldehydes during oxidative stress and plays a role in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. ACYP is involved in ion transport, cell differentiation, programmed cell death and cancer, and increased levels of ACYP have been revealed in fibroblasts from patients affected by Alzheimer's disease. In this study we demonstrated that non-cytotoxic doses of oxadiazon were able to inhibit neuronal striatal cell migration and FGF2- and BDNF-dependent differentiation towards neuronal phenotype, and to inhibit the expression and activity of ALDH2 and to increase the expression and activity of ACYP2. In addition, we have provided evidence that in human primary neuronal precursor striatal cells the inhibitory effects of oxadiazon on cell migration and differentiation towards neuronal phenotype were achieved through modulation of ACYP2. Taken together, our findings reveal for the first time that oxadiazon could exert neurotoxic effects by impairing differentiative capabilities of primary neuronal cells and indicate that ALDH2 and ACYP2 are relevant molecular targets for the neurotoxic effects of oxadiazon, suggesting a potential role of this herbicide in the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Donatella Degl'Innocenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Marta Chevanne
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | | | - Emanuela Barletta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
14
|
Nierode GJ, Gopal S, Kwon P, Clark DS, Schaffer DV, Dordick JS. High-throughput identification of factors promoting neuronal differentiation of human neural progenitor cells in microscale 3D cell culture. Biotechnol Bioeng 2018; 116:168-180. [PMID: 30229860 DOI: 10.1002/bit.26839] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/08/2018] [Accepted: 09/12/2018] [Indexed: 01/01/2023]
Abstract
Identification of conditions for guided and specific differentiation of human stem cell and progenitor cells is important for continued development and engineering of in vitro cell culture systems for use in regenerative medicine, drug discovery, and human toxicology. Three-dimensional (3D) and organotypic cell culture models have been used increasingly for in vitro cell culture because they may better model endogenous tissue environments. However, detailed studies of stem cell differentiation within 3D cultures remain limited, particularly with respect to high-throughput screening. Herein, we demonstrate the use of a microarray chip-based platform to screen, in high-throughput, individual and paired effects of 12 soluble factors on the neuronal differentiation of a human neural progenitor cell line (ReNcell VM) encapsulated in microscale 3D Matrigel cultures. Dose-response analysis of selected combinations from the initial combinatorial screen revealed that the combined treatment of all-trans retinoic acid (RA) with the glycogen synthase kinase 3 inhibitor CHIR-99021 (CHIR) enhances neurogenesis while simultaneously decreases astrocyte differentiation, whereas the combined treatment of brain-derived neurotrophic factor and the small azide neuropathiazol enhances the differentiation into neurons and astrocytes. Subtype specification analysis of RA- and CHIR-differentiated cultures revealed that enhanced neurogenesis was not biased toward a specific neuronal subtype. Together, these results demonstrate a high-throughput screening platform for rapid evaluation of differentiation conditions in a 3D environment, which will aid the development and application of 3D stem cell culture models.
Collapse
Affiliation(s)
- Gregory J Nierode
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Sneha Gopal
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Paul Kwon
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
15
|
Bal-Price A, Pistollato F, Sachana M, Bopp SK, Munn S, Worth A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol Appl Pharmacol 2018; 354:7-18. [PMID: 29476865 PMCID: PMC6095942 DOI: 10.1016/j.taap.2018.02.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 01/23/2023]
Abstract
Currently, the identification of chemicals that have the potential to induce developmental neurotoxicity (DNT) is based on animal testing. Since at the regulatory level, systematic testing of DNT is not a standard requirement within the EU or USA chemical legislation safety assessment, DNT testing is only performed in higher tiered testing triggered based on chemical structure activity relationships or evidence of neurotoxicity in systemic acute or repeated dose toxicity studies. However, these triggers are rarely used and, in addition, do not always serve as reliable indicators of DNT, as they are generally based on observations in adult rodents. Therefore, there is a pressing need for developing alternative methodologies that can reliably support identification of DNT triggers, and more rapidly and cost-effectively support the identification and characterization of chemicals with DNT potential. We propose to incorporate mechanistic knowledge and data derived from in vitro studies to support various regulatory applications including: (a) the identification of potential DNT triggers, (b) initial chemical screening and prioritization, (c) hazard identification and characterization, (d) chemical biological grouping, and (e) assessment of exposure to chemical mixtures. Ideally, currently available cellular neuronal/glial models derived from human induced pluripotent stem cells (hiPSCs) should be used as they allow evaluation of chemical impacts on key neurodevelopmental processes, by reproducing different windows of exposure during human brain development. A battery of DNT in vitro test methods derived from hiPSCs could generate valuable mechanistic data, speeding up the evaluation of thousands of compounds present in industrial, agricultural and consumer products that lack safety data on DNT potential.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| | | | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), 2 rue André Pascal, 75775 Paris, Cedex 16, France
| | | | - Sharon Munn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
16
|
Knockdown of Butyrylcholinesterase but Not Inhibition by Chlorpyrifos Alters Early Differentiation Mechanisms in Human Neural Stem Cells. TOXICS 2018; 6:toxics6030052. [PMID: 30200437 PMCID: PMC6160911 DOI: 10.3390/toxics6030052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/14/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
Abstract
Butyrylcholinesterase (BChE) is the evolutionary counterpart to acetylcholinesterase (AChE). Both are expressed early in nervous system development prior to cholinergic synapse formation. The organophosphate pesticide chlorpyrifos (CPF) primarily exerts toxicity through the inhibition of AChE, which results in excess cholinergic stimulation at the synapse. We hypothesized that the inhibition of AChE and BChE by CPF may impair early neurogenesis in neural stem cells (NSCs). To model neurodevelopment in vitro, we used human NSCs derived from induced pluripotent stem cells (iPSCs) with a focus on the initial differentiation mechanisms. Over the six days of NSC differentiation, the BChE activity and mRNA expression significantly increased, while the AChE activity and expression remained unchanged. The CPF treatment (10 μM) caused 82% and 92% inhibition of AChE and BChE, respectively. The CPF exposure had no effect on the cell viability or the expression of the differentiation markers HES5, DCX, or MAP2. However, the shRNA-knockdown of the BChE expression resulted in the decreased or delayed expression of the transcription factors HES5 and HES3. BChE may have a role in the differentiation of NSCs independent of, or in addition to, its enzymatic activity.
Collapse
|
17
|
Combining mouse embryonic stem cells and zebrafish embryos to evaluate developmental toxicity of chemical exposure. Reprod Toxicol 2018; 81:220-228. [PMID: 30103011 DOI: 10.1016/j.reprotox.2018.07.080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/28/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Abstract
The assays in this study utilize mouse embryonic stem cells (mESCs) and zebrafish embryos to evaluate the potential developmental toxicity of industrial and pharmaceutical chemicals. A set of eleven chemicals of known mammalian in vivo teratogenicity were tested in the assays and correlations to mammalian data. Using mESCs, proliferation, differentiation, and cytotoxicity of the chemicals were measured. In zebrafish embryos, lethality and the lowest effect level concentrations for morphological malformations were determined. Clustering of the assays based on frequency of affected assays resulted in a ranking of the test compounds that correlated to in vivo rodent data (R = 0.88, P < 0.001). We conclude that the combination of ESC- and zebrafish-based assays provides a valuable platform for the prioritization of pharmaceutical and industrial chemicals for further testing of developmental toxicity in rodents.
Collapse
|
18
|
Myhre O, Låg M, Villanger GD, Oftedal B, Øvrevik J, Holme JA, Aase H, Paulsen RE, Bal-Price A, Dirven H. Early life exposure to air pollution particulate matter (PM) as risk factor for attention deficit/hyperactivity disorder (ADHD): Need for novel strategies for mechanisms and causalities. Toxicol Appl Pharmacol 2018; 354:196-214. [PMID: 29550511 DOI: 10.1016/j.taap.2018.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/14/2018] [Accepted: 03/12/2018] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have demonstrated that air pollution particulate matter (PM) and adsorbed toxicants (organic compounds and trace metals) may affect child development already in utero. Recent studies have also indicated that PM may be a risk factor for neurodevelopmental disorders (NDDs). A pattern of increasing prevalence of attention deficit/hyperactivity disorder (ADHD) has been suggested to partly be linked to environmental pollutants exposure, including PM. Epidemiological studies suggest associations between pre- or postnatal exposure to air pollution components and ADHD symptoms. However, many studies are cross-sectional without possibility to reveal causality. Cohort studies are often small with poor exposure characterization, and confounded by traffic noise and socioeconomic factors, possibly overestimating the study associations. Furthermore, the mechanistic knowledge how exposure to PM during early brain development may contribute to increased risk of ADHD symptoms or cognitive deficits is limited. The closure of this knowledge gap requires the combined use of well-designed longitudinal cohort studies, supported by mechanistic in vitro studies. As ADHD has profound consequences for the children affected and their families, the identification of preventable risk factors such as air pollution exposure should be of high priority.
Collapse
Affiliation(s)
- Oddvar Myhre
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway.
| | - Marit Låg
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Gro D Villanger
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Bente Oftedal
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Jørn A Holme
- Department of Air pollution and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Norway
| | - Anna Bal-Price
- European Commission, Joint Research Centre, Ispra, Italy
| | - Hubert Dirven
- Department of Toxicology and Risk Assessment, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
In vitro assessment of chemotherapy-induced neuronal toxicity. Toxicol In Vitro 2018; 50:109-123. [PMID: 29427706 DOI: 10.1016/j.tiv.2018.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 12/14/2022]
Abstract
Neurotoxicity is a major concern during drug development, and together with liver and cardio-toxicity, it is one of the main causes of clinical drug attrition. Current pre-clinical models may not sufficiently identify and predict the risk for central or peripheral nervous system toxicity. One such example is clinically dose-limiting neuropathic effects after the administration of chemotherapeutic agents. Thus, the need to establish novel in vitro tools to evaluate the risk of neurotoxicities, such as neuropathy, remains unmet in drug discovery. Though in vitro studies have been conducted using primary and immortalized cell lines, some limitations include the utility for higher throughput methodologies, method reproducibility, and species extrapolation. As a novel alternative, human induced-pluripotent stem cell (iPSC)-derived neurons appear promising for testing new drug candidates. These iPSC-derived neurons are readily available and can be manipulated as required. Here, we describe a novel approach to assess neurotoxicity caused by different classes of chemotherapeutics using kinetic monitoring of neurite dynamic changes and apoptosis in human iPSC-neurons. These studies show promising changes in neurite dynamics in response to clinical inducers of neuropathy, as well as the ability to rank-order and gather mechanistic insight into class-specific compound induced neurotoxicity. This platform can be utilized in early drug development, as part of a weight of evidence approach, to screen drug candidates, and potentially reduce clinical attrition due to neurotoxicity.
Collapse
|
20
|
Buzanska L, Zychowicz M, Kinsner-Ovaskainen A. Bioengineering of the Human Neural Stem Cell Niche: A Regulatory Environment for Cell Fate and Potential Target for Neurotoxicity. Results Probl Cell Differ 2018; 66:207-230. [PMID: 30209661 DOI: 10.1007/978-3-319-93485-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human neural stem/progenitor cells of the developing and adult organisms are surrounded by the microenvironment, so-called neurogenic niche. The developmental processes of stem cells, such as survival, proliferation, differentiation, and fate decisions, are controlled by the mutual interactions between cells and the niche components. Such interactions are tissue specific and determined by the biochemical and biophysical properties of the niche constituencies and the presence of other cell types. This dynamic approach of the stem cell niche, when translated into in vitro settings, requires building up "biomimetic" microenvironments resembling natural conditions, where the stem/progenitor cell is provided with diverse extracellular signals exerted by soluble and structural cues, mimicking those found in vivo. The neural stem cell niche is characterized by a unique composition of soluble components including neurotransmitters and trophic factors as well as insoluble extracellular matrix proteins and proteoglycans. Biotechnological innovations provide tools such as a new generation of tunable biomaterials capable of releasing specific signals in a spatially and temporally controlled manner, thus creating in vitro nature-like conditions and, when combined with stem cell-derived tissue specific progenitors, producing differentiated neuronal tissue structures. In addition, substantial progress has been made on the protocols to obtain stem cell-derived cell aggregates such as neurospheres and self-assembled organoids.In this chapter, we have assessed the application of bioengineered human neural stem cell microenvironments to produce in vitro models of different levels of biological complexity for the efficient control of stem cell fate. Examples of biomaterial-supported two-dimensional and three-dimensional (2D and 3D) complex culture systems that provide artificial neural stem cell niches are discussed in the context of their application for basic research and neurotoxicity testing.
Collapse
Affiliation(s)
- Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| | - Marzena Zychowicz
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Kinsner-Ovaskainen
- European Commission, Joint Research Centre, Directorate for Health Consumers and Reference Materials, Ispra, Italy
| |
Collapse
|
21
|
Hofrichter M, Nimtz L, Tigges J, Kabiri Y, Schröter F, Royer-Pokora B, Hildebrandt B, Schmuck M, Epanchintsev A, Theiss S, Adjaye J, Egly JM, Krutmann J, Fritsche E. Comparative performance analysis of human iPSC-derived and primary neural progenitor cells (NPC) grown as neurospheres in vitro. Stem Cell Res 2017; 25:72-82. [PMID: 29112887 DOI: 10.1016/j.scr.2017.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Developmental neurotoxicity (DNT) testing performed in rats is resource-intensive (costs, time, animals) and bears the issue of species extrapolation. Thus, reliable alternative human-based approaches are needed for predicting neurodevelopmental toxicity. Human induced pluripotent stem cells (hiPSCs) represent a basis for an alternative method possibly being part of an alternative DNT testing strategy. Here, we compared two hiPSC neural induction protocols resulting in 3D neurospheres: one using noggin and one cultivating cells in neural induction medium (NIM protocol). Performance of Nestin+/SOX2+ hiPSC-derived neural progenitor cells (NPCs) was compared to primary human NPCs. Generally, primary hNPCs first differentiate into Nestin+ and/or GFAP+ radial glia-like cells, while the hiPSC-derived NPCs (hiPSC-NPC) first differentiate into βIII-Tubulin+ neurons suggesting an earlier developmental stage of hiPSC-NPC. In the 'Neurosphere Assay', NIM generated hiPSC-NPC produced neurons with higher performance than with the noggin protocol. After long-term differentiation, hiPSC-NPC form neuronal networks, which become electrically active on microelectrode arrays after 85days. Finally, methylmercury chloride inhibits hiPSC-NPC and hNPC migration with similar potencies. hiPSC-NPCs-derived neurospheres seem to be useful for DNT evaluation representing early neural development in vitro. More system characterization by compound testing is needed to gain higher confidence in this method.
Collapse
Affiliation(s)
- Maxi Hofrichter
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Laura Nimtz
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Julia Tigges
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Yaschar Kabiri
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Friederike Schröter
- Institute for Stem Cell Research & Regenerative Medicine, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Brigitte Royer-Pokora
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Martin Schmuck
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alexey Epanchintsev
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire: IGBMC, Centre National de la Recherche Scientifique, INSERUM, Université de Strasbourg, Strasbourg, France
| | - Stephan Theiss
- Institute of clinical neuroscience and medical psychology, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research & Regenerative Medicine, Medical Faculty, Heinrich-Heine-University, Duesseldorf, Germany
| | - Jean-Marc Egly
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire: IGBMC, Centre National de la Recherche Scientifique, INSERUM, Université de Strasbourg, Strasbourg, France
| | - Jean Krutmann
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
22
|
Pistollato F, Canovas-Jorda D, Zagoura D, Bal-Price A. Nrf2 pathway activation upon rotenone treatment in human iPSC-derived neural stem cells undergoing differentiation towards neurons and astrocytes. Neurochem Int 2017. [DOI: 10.1016/j.neuint.2017.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Fu KZ, Li J, Vemula S, Moe B, Li XF. Effects of halobenzoquinone and haloacetic acid water disinfection byproducts on human neural stem cells. J Environ Sci (China) 2017; 58:239-249. [PMID: 28774615 DOI: 10.1016/j.jes.2017.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 06/07/2023]
Abstract
Human neural stem cells (hNSCs) are a useful tool to assess the developmental effects of various environmental contaminants; however, the application of hNSCs to evaluate water disinfection byproducts (DBPs) is scarce. Comprehensive toxicological results are essential to the prioritization of DBPs for further testing and regulation. Therefore, this study examines the effects of DBPs on the proliferation and differentiation of hNSCs. Prior to DBP treatment, characteristic protein markers of hNSCs from passages 3 to 6 were carefully examined and it was determined that hNSCs passaged 3 or 4 times maintained stem cell characteristics and can be used for DBP analysis. Two regulated DBPs, monobromoacetic acid (BAA) and monochloroacetic acid (CAA), and two emerging DBPs, 2,6-dibromo-1,4-benzoquinone (2,6-DBBQ) and 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), were chosen for hNSC treatment. Both 2,6-DBBQ and 2,6-DCBQ induced cell cycle arrest at S-phase at concentrations up to 1μmol/L. Comparatively, BAA and CAA at 0.5μmol/L affected neural differentiation. These results suggest DBP-dependent effects on hNSC proliferation and differentiation. The DBP-induced cell cycle arrest and inhibition of normal hNSC differentiation demonstrate the need to assess the developmental neurotoxicity of DBPs.
Collapse
Affiliation(s)
- Katherine Z Fu
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jinhua Li
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Sai Vemula
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Birget Moe
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada; Alberta Centre for Toxicology, Department of Physiology & Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | - Xing-Fang Li
- Division of Analytical & Environmental Toxicology, Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada.
| |
Collapse
|
24
|
Al-Rubai AJ, Wigmore P, Pratten MK. Evaluation of a human neural stem cell culture method for prediction of the neurotoxicity of anti-epileptics. Altern Lab Anim 2017; 45:67-81. [PMID: 28598192 DOI: 10.1177/026119291704500202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human neural stem cells have been proposed as an in vitro model to predict neurotoxicity. In this study, the potential of in vitro cultures of human-derived neurospheres to predict the effects of various anti-epileptic drugs (sodium valproate, phenytoin, carbamazepine and phenobarbitone) was evaluated. In general, these drugs had no significant effects on cell viability, total cellular protein, and neuronal process length at low doses, but at high doses these parameters were reduced significantly. Therapeutic doses of sodium valproate and phenytoin had a clear effect on neurosphere size and cell migration, with a significant reduction in both parameters when compared with the control group. The other drugs (carbamazepine and phenobarbitone) reduced neurosphere size and cell migration only at higher doses. The expression levels of glial fibrillary protein and tubulin III, which were used to identify astrocytes and neuronal cells, respectively, were reduced in a dose-dependent manner that became significant at high doses. The levels of glial fibrillary protein did not indicate any occurrence of reactive astrocytosis.
Collapse
Affiliation(s)
- Abdal-Jabbar Al-Rubai
- College of Medicine, Almustansiriyah University, Baghdad, Iraq and School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Peter Wigmore
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Margaret K Pratten
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| |
Collapse
|
25
|
Zeng Y, Kurokawa Y, Win-Shwe TT, Zeng Q, Hirano S, Zhang Z, Sone H. Effects of PAMAM dendrimers with various surface functional groups and multiple generations on cytotoxicity and neuronal differentiation using human neural progenitor cells. J Toxicol Sci 2017; 41:351-70. [PMID: 27193728 DOI: 10.2131/jts.41.351] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Polyamidoamine (PAMAM) dendrimers have potential for biological applications as delivery systems for genes, drugs, and imaging agents into the brain, but their developmental neurotoxicity remains unknown. We investigated the effects of PAMAM dendrimers with various surface functional groups and multiple generations on neuronal differentiation using human neural progenitor cells at an equal mass concentration. Only PAMAM dendrimers containing amine (NH2) surface groups at concentrations of 10 μg/mL significantly reduced cell viability and neuronal differentiation, compared with non-amine-terminated dendrimers. PAMAM-NH2 with generation (G)3, G4, G5 G6, and G7 significantly decreased cell viability and inhibited neuronal differentiation from a concentration of 5 μg/mL, but G0, G1, and G2 dendrimers did not have any effect at this concentration. Cytotoxicity indices of PAMAM-NH2 dendrimers at 10 μg/mL correlated well with the zeta potentials of the particles. Surface group density and particle number in unit volume is more important characteristic than particle size to influence cytotoxicity for positive changed dendrimers. PAMAM-50% C12 at 1 μg/mL altered the expression level of the oxidative stress-related genes, ROR1, CYP26A1, and TGFB1, which is a DNA damage response gene. Our results indicate that PAMAM dendrimer exposure may have a surface charge-dependent adverse effect on neuronal differentiation, and that the effect may be associated with oxidative stress and DNA damage during development of neural cells.
Collapse
Affiliation(s)
- Yang Zeng
- Center for Environmental Risk Research, National Institute for Environmental Studies
| | | | | | | | | | | | | |
Collapse
|
26
|
Christen V, Rusconi M, Crettaz P, Fent K. Developmental neurotoxicity of different pesticides in PC-12 cells in vitro. Toxicol Appl Pharmacol 2017; 325:25-36. [PMID: 28385489 DOI: 10.1016/j.taap.2017.03.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 03/31/2017] [Indexed: 11/19/2022]
Abstract
The detection of developmental neurotoxicity (DNT) of chemicals has high relevance for protection of human health. However, DNT of many pesticides is only little known. Furthermore, validated in vitro systems for assessment of DNT are not well established. Here we employed the rat phaeochromocytoma cell line PC-12 to evaluate DNT of 18 frequently used pesticides of different classes, including neonicotinoids, pyrethroids, organophosphates, organochlorines, as well as quaternary ammonium compounds, the organic compound used in pesticides, piperonyl butoxide, as well as the insect repellent diethyltoluamide (DEET). We determined the outgrowth of neurites in PC-12 cells co-treated with nerve growth factor and different concentrations of biocides for 5days. Furthermore, we determined transcriptional alterations of selected genes that may be associated with DNT, such as camk2α and camk2β, gap-43, neurofilament-h, tubulin-α and tubulin-β. Strong and dose- dependent inhibition of neurite outgrowth was induced by azamethiphos and chlorpyrifos, and dieldrin and heptachlor, which was correlated with up-regulation of gap-43. No or only weak effects on neurite outgrowth and transcriptional alterations occurred for neonicotinoids acetamiprid, clothianidin, imidacloprid and thiamethoxam, the pyrethroids λ-cyhalothrin, cyfluthrin, deltamethrin, and permethrin, the biocidal disinfectants C12-C14-alkyl(ethylbenzyl)dimethylammonium (BAC), benzalkonium chloride and barquat (dimethyl benzyl ammonium chloride), and piperonyl butoxide and DEET. Our study confirms potential developmental neurotoxicity of some pesticides and provides first evidence that azamethiphos has the potential to act as a developmental neurotoxic compound. We also demonstrate that inhibition of neurite outgrowth and transcriptional alterations of gap-43 expression correlate, which suggests the employment of gap-43 expression as a biomarker for detection and initial evaluation of potential DNT of chemicals.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland
| | - Manuel Rusconi
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Pierre Crettaz
- Federal Office of Public Health, Division Chemical Products, 3003 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132, Muttenz, Switzerland; Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental Systems Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland.
| |
Collapse
|
27
|
Dach K, Bendt F, Huebenthal U, Giersiefer S, Lein PJ, Heuer H, Fritsche E. BDE-99 impairs differentiation of human and mouse NPCs into the oligodendroglial lineage by species-specific modes of action. Sci Rep 2017; 7:44861. [PMID: 28317842 PMCID: PMC5357893 DOI: 10.1038/srep44861] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 02/15/2017] [Indexed: 01/02/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants causing developmental neurotoxicity (DNT) in humans and rodents. Their DNT effects are suspected to involve thyroid hormone (TH) signaling disruption. Here, we tested the hypothesis whether disturbance of neural progenitor cell (NPC) differentiation into the oligodendrocyte lineage (O4+ cells) by BDE-99 involves disruption of TH action in human and mouse (h,m)NPCs. Therefore, we quantified differentiation of NPCs into O4+ cells and measured their maturation via expression of myelin-associated genes (hMBP, mMog) in presence and absence of TH and/or BDE-99. T3 promoted O4+ cell differentiation in mouse, but not hNPCs, and induced hMBP/mMog gene expression in both species. BDE-99 reduced generation of human and mouse O4+ cells, but there is no indication for BDE-99 interfering with cellular TH signaling during O4+ cell formation. BDE-99 reduced hMBP expression due to oligodendrocyte reduction, but concentrations that did not affect the number of mouse O4+ cells inhibited TH-induced mMog transcription by a yet unknown mechanism. In addition, ascorbic acid antagonized only the BDE-99-dependent loss of human, not mouse, O4+ cells by a mechanism probably independent of reactive oxygen species. These data point to species-specific modes of action of BDE-99 on h/mNPC development into the oligodendrocyte lineage.
Collapse
Affiliation(s)
- Katharina Dach
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Huebenthal
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Susanne Giersiefer
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, United States
| | - Heike Heuer
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF- Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| |
Collapse
|
28
|
Patnaik R, Padhy RN. Human Umbilical Cord Blood-Derived Neural Stem Cell Line as a Screening Model for Toxicity. Neurotox Res 2016; 31:319-326. [PMID: 27807796 DOI: 10.1007/s12640-016-9681-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/22/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
Abstract
The aim was to investigate whether a human neural stem cell (NSC) line derived from human umbilical cord blood (hUCB) can be used for toxicity study. Toxicity of both neurotoxic environmental xenobiotics, methyl mercury chloride (CH3HgCl), lead acetate (CH3COOPb), and chlorpyrifos (CP), and non-neurotoxic insecticide, dichlorvos, as well as non-neurotoxic drugs, theophylline and acetaminophen were assessed. Additionally, differentiation of neuronal and glial cell lines derived from hUCB was elucidated. It was observed that CH3HgCl was more toxic to human NSCs in comparison to CH3COOPb and CP. The minimum inhibitory concentration (MIC) value against NSCs was 3, 10, and 300 mg/L, in each staining process, acridine orange/ethidium bromide (AO/EB) staining, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay, and Hoechst staining, for CH3HgCl, CP, and CH3COOPb, respectively. CH3HgCl had the LC25 value as 10.0, 14.4, and 12.7 mg/L, by staining method mentioned in succession. CP had the LC25 value as 21.9, 23.7, and 18.4 mg/L; similarly, CH3COOPb had LC25 values, successively as 616.9, 719.2, and 890.3 mg/L. LC50 values ranged from 18.2 to 21.7 mg/L for CH3HgCl, 56.4 to 60.2 mg/L for CP, and 1000 to 1460.1 for CH3COOPb. Theophylline, acetaminophen, and dichlorvos had no impact on the viability of NSCs. This work justified that hUCB-NSC model can be used for toxicity study.
Collapse
Affiliation(s)
- Rajashree Patnaik
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha, 751003, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
29
|
Lenk K, Priwitzer B, Ylä-Outinen L, Tietz LHB, Narkilahti S, Hyttinen JAK. Simulation of developing human neuronal cell networks. Biomed Eng Online 2016; 15:105. [PMID: 27576323 PMCID: PMC5006268 DOI: 10.1186/s12938-016-0226-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background Microelectrode array (MEA) is a widely used technique to study for example the functional properties of neuronal networks derived from human embryonic stem cells (hESC-NN). With hESC-NN, we can investigate the earliest developmental stages of neuronal network formation in the human brain. Methods In this paper, we propose an in silico model of maturating hESC-NNs based on a phenomenological model called INEX. We focus on simulations of the development of bursts in hESC-NNs, which are the main feature of neuronal activation patterns. The model was developed with data from developing hESC-NN recordings on MEAs which showed increase in the neuronal activity during the investigated six measurement time points in the experimental and simulated data. Results Our simulations suggest that the maturation process of hESC-NN, resulting in the formation of bursts, can be explained by the development of synapses. Moreover, spike and burst rate both decreased at the last measurement time point suggesting a pruning of synapses as the weak ones are removed. Conclusions To conclude, our model reflects the assumption that the interaction between excitatory and inhibitory neurons during the maturation of a neuronal network and the spontaneous emergence of bursts are due to increased connectivity caused by the forming of new synapses.
Collapse
Affiliation(s)
- Kerstin Lenk
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland.
| | - Barbara Priwitzer
- Faculty of Engineering and Computer Science, Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen Einheit 1, 03046, Cottbus, Germany
| | - Laura Ylä-Outinen
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, BioMediTech, PL100, Tampere, Finland
| | - Lukas H B Tietz
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Institute of Biomedical Technology, University of Tampere, BioMediTech, PL100, Tampere, Finland
| | - Jari A K Hyttinen
- Department of Electronics and Communications Engineering, Tampere University of Technology, BioMediTech, PL100, Tampere, Finland
| |
Collapse
|
30
|
Baldassarro VA, Dolci LS, Mangano C, Giardino L, Gualandi C, Focarete ML, Calzà L. In Vitro Testing of Biomaterials for Neural Repair: Focus on Cellular Systems and High-Content Analysis. Biores Open Access 2016; 5:201-11. [PMID: 27588220 PMCID: PMC4991583 DOI: 10.1089/biores.2016.0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Biomimetic materials are designed to stimulate specific cellular responses at the molecular level. To improve the soundness of in vitro testing of the biological impact of new materials, appropriate cell systems and technologies must be standardized also taking regulatory issues into consideration. In this study, the biological and molecular effects of different scaffolds on three neural systems, that is, the neural cell line SH-SY5Y, primary cortical neurons, and neural stem cells, were compared. The effect of poly(L-lactic acid) scaffolds having different surface geometry (conventional two-dimensional seeding flat surface, random or aligned fibers as semi3D structure) and chemical functionalization (laminin or ECM extract) were studied. The endpoints were defined for efficacy (i.e., neural differentiation and neurite elongation) and for safety (i.e., cell death/survival) using high-content analysis. It is demonstrated that (i) the definition of the biological properties of biomaterials is profoundly influenced by the test system used; (ii) the definition of the in vitro safety profile of biomaterials for neural repair is also influenced by the test system; (iii) cell-based high-content screening may well be successfully used to characterize both the efficacy and safety of novel biomaterials, thus speeding up and improving the soundness of this critical step in material science having medical applications.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Luisa Stella Dolci
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| | - Chiara Mangano
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna , Bologna, Italy
| | - Luciana Giardino
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Veterinary Medical Science, University of Bologna, Bologna, Italy
| | - Chiara Gualandi
- Department of Chemistry "G. Ciamician" and National Consortium of Materials, Science, and Technology (INSTM, Bologna RU), University of Bologna , Bologna, Italy
| | - Maria Letizia Focarete
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Chemistry "G. Ciamician" and National Consortium of Materials, Science, and Technology (INSTM, Bologna RU), University of Bologna, Bologna, Italy
| | - Laura Calzà
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Bologna, Italy.; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy
| |
Collapse
|
31
|
Colaianna M, Ilmjärv S, Peterson H, Kern I, Julien S, Baquié M, Pallocca G, Bosgra S, Sachinidis A, Hengstler JG, Leist M, Krause KH. Fingerprinting of neurotoxic compounds using a mouse embryonic stem cell dual luminescence reporter assay. Arch Toxicol 2016; 91:365-391. [PMID: 27015953 PMCID: PMC5225183 DOI: 10.1007/s00204-016-1690-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/10/2016] [Indexed: 02/05/2023]
Abstract
Identification of neurotoxic drugs and environmental chemicals is an important challenge. However, only few tools to address this topic are available. The aim of this study was to develop a neurotoxicity/developmental neurotoxicity (DNT) test system, using the pluripotent mouse embryonic stem cell line CGR8 (ESCs). The test system uses ESCs at two differentiation stages: undifferentiated ESCs and ESC-derived neurons. Under each condition, concentration–response curves were obtained for three parameters: activity of the tubulin alpha 1 promoter (typically activated in early neurons), activity of the elongation factor 1 alpha promoter (active in all cells), and total DNA content (proportional to the number of surviving cells). We tested 37 compounds from the ESNATS test battery, which includes polypeptide hormones, environmental pollutants (including methylmercury), and clinically used drugs (including valproic acid and tyrosine kinase inhibitors). Different classes of compounds showed distinct concentration–response profiles. Plotting of the lowest observed adverse effect concentrations (LOAEL) of the neuronal promoter activity against the general promoter activity or against cytotoxicity, allowed the differentiation between neurotoxic/DNT substances and non-neurotoxic controls. Reporter activity responses in neurons were more susceptible to neurotoxic compounds than the reporter activities in ESCs from which they were derived. To relate the effective/toxic concentrations found in our study to relevant in vivo concentrations, we used a reverse pharmacokinetic modeling approach for three exemplary compounds (teriflunomide, geldanamycin, abiraterone). The dual luminescence reporter assay described in this study allows high-throughput, and should be particularly useful for the prioritization of the neurotoxic potential of a large number of compounds.
Collapse
Affiliation(s)
- Marilena Colaianna
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | - Sten Ilmjärv
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Ilse Kern
- Department of Pediatrics, Geneva University Hospital, Geneva, Switzerland.,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Stephanie Julien
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland
| | | | - Giorgia Pallocca
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Sieto Bosgra
- TNO, Zeist, The Netherlands.,BioMarin Pharmaceutical Inc., Leiden, The Netherlands
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Marcel Leist
- Doerenkamp-Zbinden Chair for In Vitro Toxicology and Biomedicine, University of Konstanz, Constance, Germany
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland. .,Department of Genetic and Laboratory Medicine, Geneva University Hospital, Centre Medical Universitaire, Rue Michel-Servet, 1211, Geneva 4, Switzerland.
| |
Collapse
|
32
|
Mori H, Sasaki G, Nishikawa M, Hara M. Effects of subcytotoxic cadmium on morphology of glial fibrillary acidic protein network in astrocytes derived from murine neural stem/progenitor cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:639-644. [PMID: 26363133 DOI: 10.1016/j.etap.2015.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/12/2015] [Accepted: 08/16/2015] [Indexed: 06/05/2023]
Abstract
The susceptibility of mouse neural stem/progenitor cells (NSPCs) to heavy-metal cytotoxicity was assessed by measuring cell viability following exposure to heavy metal chlorides (ZnCl2, CdCl2, CuCl2, and HgCl2, respectively). We determined half-maximal inhibitory concentration (IC50) values, subcytotoxic doses, capacity for neural differentiation, and morphological features of glial fibrillary acidic protein (GFAP) network at the subcytotoxic doses of heavy metal ions. Experiments were performed using two protocols for the exposure at subcytotoxic doses of heavy metal ions; these protocols included simultaneous exposure with the induction of NSPC differentiation and sequential exposure after the induction for 1 week. Exposure to HgCl2 using both protocols reduced the ratio of neuronal NSPC differentiation. Although sequential exposure to CdCl2 reduced the size of GFAP network, simultaneous exposure did not induce any change. In conclusion, image analyses of the cytoskeletal morphology of NSPCs as a novel tool for assessing neurodevelopmental cytotoxicity enabled us to obtain new information about the localization of cytoskeletal proteins.
Collapse
Affiliation(s)
- Hideki Mori
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan.
| | - Go Sasaki
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Mayu Nishikawa
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Masayuki Hara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| |
Collapse
|
33
|
Anderson GW, Deans PJM, Taylor RDT, Raval P, Chen D, Lowder H, Murkerji S, Andreae LC, Williams BP, Srivastava DP. Characterisation of neurons derived from a cortical human neural stem cell line CTX0E16. Stem Cell Res Ther 2015; 6:149. [PMID: 26296747 PMCID: PMC4546258 DOI: 10.1186/s13287-015-0136-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/29/2015] [Accepted: 07/17/2015] [Indexed: 01/11/2023] Open
Abstract
Introduction Conditionally immortalised human neural progenitor cells (hNPCs) represent a robust source of native neural cells to investigate physiological mechanisms in both health and disease. However, in order to recognise the utility of such cells, it is critical to determine whether they retain characteristics of their tissue of origin and generate appropriate neural cell types upon differentiation. To this end, we have characterised the conditionally immortalised, cortically-derived, human NPC line, CTX0E16, investigating the molecular and cellular phenotype of differentiated neurons to determine whether they possess characteristics of cortical glutamatergic neurons. Methods Differentiated CTX0E16 cells were characterised by assessing expression of several neural fates markers, and examination of developing neuronal morphology. Expression of neurotransmitter receptors, signalling proteins and related proteins were assessed by q- and RT-PCR and complemented by Ca2+ imaging, electrophysiology and assessment of ERK signalling in response to neurotransmitter ligand application. Finally, differentiated neurons were assessed for their ability to form putative synapses and to respond to activity-dependent stimulation. Results Differentiation of CTX0E16 hNPCs predominately resulted in the generation of neurons expressing markers of cortical and glutamatergic (excitatory) fate, and with a typical polarized neuronal morphology. Gene expression analysis confirmed an upregulation in the expression of cortical, glutamatergic and signalling proteins following differentiation. CTX0E16 neurons demonstrated Ca2+ and ERK1/2 responses following exogenous neurotransmitter application, and after 6 weeks displayed spontaneous Ca2+ transients and electrophysiological properties consistent with that of immature neurons. Differentiated CTX0E16 neurons also expressed a range of pre- and post-synaptic proteins that co-localized along distal dendrites, and moreover, displayed structural plasticity in response to modulation of neuronal activity. Conclusions Taken together, these findings demonstrate that the CTX0E16 hNPC line is a robust source of cortical neurons, which display functional properties consistent with a glutamatergic phenotype. Thus CTX0E16 neurons can be used to study cortical cell function, and furthermore, as these neurons express a range of disease-associated genes, they represent an ideal platform with which to investigate neurodevelopmental mechanisms in native human cells in health and disease. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0136-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Greg W Anderson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - P J Michael Deans
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ruth D T Taylor
- MRC Centre for Developmental Neurobiology, King's College London, London, SE5 8AF, UK.
| | - Pooja Raval
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Ding Chen
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Harrison Lowder
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Srishti Murkerji
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Laura C Andreae
- MRC Centre for Developmental Neurobiology, King's College London, London, SE5 8AF, UK.
| | - Brenda P Williams
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| | - Deepak P Srivastava
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry Psychology & Neuroscience, King's College London, London, SE5 8AF, UK.
| |
Collapse
|
34
|
Sirenko O, Hesley J, Rusyn I, Cromwell EF. High-content high-throughput assays for characterizing the viability and morphology of human iPSC-derived neuronal cultures. Assay Drug Dev Technol 2015; 12:536-47. [PMID: 25506803 DOI: 10.1089/adt.2014.592] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Development of quantitative high-throughput in vitro assays that enable assessment of viability and morphological changes in neuronal cells is an active area of investigation in drug discovery and environmental chemical safety assessment. High-content imaging is an emerging and efficient tool for generating multidimensional quantitative cellular readouts; in addition, human induced pluripotent stem cell (iPSC)-derived neurons are a promising in vitro model system that emulates both the functionality and behavior of mature neurons, and they are available in quantities sufficient for screening workflows. The goal of this study was to develop high-content imaging and analysis methods to assess multiple phenotypes in human iPSC-derived neuronal cells. Specifically, we optimized cell culture, staining, and imaging protocols in a 384-well assay format and improved laboratory workflow by designing a one-step procedure to reduce assay time and minimize cell disturbance. Phenotypic readouts include quantitative characterization of neurite outgrowth and branching, cell number and viability, as well as measures of adverse effects on mitochondrial integrity and membrane potential. To verify the robustness of the workflow, we tested a series of compounds that are established toxicants. We report concentration-response effects of selected test compounds on human iPSC-derived neuronal cells and illustrate how the proposed methods may be used for high-content high-throughput compound toxicity screening and safety evaluation of drugs and environmental chemicals.
Collapse
|
35
|
Citrate-stabilized gold nanoparticles as negative controls for measurements of neurite outgrowth. Toxicol In Vitro 2015; 29:187-94. [PMID: 25458488 DOI: 10.1016/j.tiv.2014.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 11/21/2022]
Abstract
Gold nanoparticles (AuNPs) are promising candidates for medical diagnostics and therapeutics, due to their chemical stability, optical properties, and ease of functionalization. Citrate-stabilized reference materials also have potential as negative controls in toxicology studies of other nanoparticles. Here we examine the impact of 30 nm particles on the in vitro development of rat-cortex neural progenitor cells (NPCs), which mimic aspects of the developing neurological environment. AuNPs dispersed in a low serum culture medium initially agglomerated, but then remained stable during a three day incubation period, and agglomerated only slightly during a ten day incubation period, as determined by dynamic light scattering. Transmission electron microscopy indicated the presence of individual nanoparticles at all time points examined. Fixed cells were cross-sectioned by ion milling and imaged by scanning electronmicroscopy and helium-ion microscopy to evaluate particle incorporation. Individual nanoparticles could be resolved inside cross-sectioned cells. AuNPs were incubated with developing NPCs for ten days at concentrations of 0.5 μg/mL Au, 0.1 μg/mL Au, or 0.05 μg/mL Au. Adenosine triphosphate levels, as determined by bioluminescence measurements sensitive to low cell numbers, were not affected by AuNPs and the particles did not interfere with the assay. Multiple endpoints of neurite outgrowth were not altered by AuNPs, in particular, total neurite outgrowth per cell, a sensitive measure of neuronal development. Slide-level comparisons demonstrated the consistent response of NPCs to gold nanoparticles and a positive control chemical, neuroactive lithium. These results indicate that 30 nm citrate-stabilized AuNPs could serve as negative-control reference materials for in vitro measurements of neurite outgrowth.
Collapse
|
36
|
Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch Toxicol 2015. [DOI: 10.1007/s00204-015-1568-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Novel scalable 3D cell based model for in vitro neurotoxicity testing: Combining human differentiated neurospheres with gene expression and functional endpoints. J Biotechnol 2015; 205:82-92. [DOI: 10.1016/j.jbiotec.2014.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/29/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022]
|
38
|
An Overview on Human Umbilical Cord Blood Stem Cell-Based Alternative In Vitro Models for Developmental Neurotoxicity Assessment. Mol Neurobiol 2015; 53:3216-3226. [PMID: 26041658 DOI: 10.1007/s12035-015-9202-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/29/2015] [Indexed: 01/05/2023]
Abstract
The developing brain is found highly vulnerable towards the exposure of different environmental chemicals/drugs, even at concentrations, those are generally considered safe in mature brain. The brain development is a very complex phenomenon which involves several processes running in parallel such as cell proliferation, migration, differentiation, maturation and synaptogenesis. If any step of these cellular processes hampered due to exposure of any xenobiotic/drug, there is almost no chance of recovery which could finally result in a life-long disability. Therefore, the developmental neurotoxicity (DNT) assessment of newly discovered drugs/molecules is a very serious concern among the neurologists. Animal-based DNT models have their own limitations such as ethical concerns and lower sensitivity with less predictive values in humans. Furthermore, non-availability of human foetal brain tissues/cells makes job more difficult to understand about mechanisms involve in DNT in human beings. Although, the use of cell culture have been proven as a powerful tool for DNT assessment, but many in vitro models are currently utilizing genetically unstable cell lines. The interpretation of data generated using such terminally differentiated cells is hard to extrapolate with in vivo situations. However, human umbilical cord blood stem cells (hUCBSCs) have been proposed as an excellent tool for alternative DNT testing because neuronal development from undifferentiated state could exactly mimic the original pattern of neuronal development in foetus when hUCBSCs differentiated into neuronal cells. Additionally, less ethical concern, easy availability and high plasticity make them an attractive source for establishing in vitro model of DNT assessment. In this review, we are focusing towards recent advancements on hUCBSCs-based in vitro model to understand DNTs.
Collapse
|
39
|
Neural Differentiation of Human Pluripotent Stem Cells for Nontherapeutic Applications: Toxicology, Pharmacology, and In Vitro Disease Modeling. Stem Cells Int 2015; 2015:105172. [PMID: 26089911 PMCID: PMC4454762 DOI: 10.1155/2015/105172] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 02/08/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) derived from either blastocyst stage embryos (hESCs) or reprogrammed somatic cells (iPSCs) can provide an abundant source of human neuronal lineages that were previously sourced from human cadavers, abortuses, and discarded surgical waste. In addition to the well-known potential therapeutic application of these cells in regenerative medicine, these are also various promising nontherapeutic applications in toxicological and pharmacological screening of neuroactive compounds, as well as for in vitro modeling of neurodegenerative and neurodevelopmental disorders. Compared to alternative research models based on laboratory animals and immortalized cancer-derived human neural cell lines, neuronal cells differentiated from hPSCs possess the advantages of species specificity together with genetic and physiological normality, which could more closely recapitulate in vivo conditions within the human central nervous system. This review critically examines the various potential nontherapeutic applications of hPSC-derived neuronal lineages and gives a brief overview of differentiation protocols utilized to generate these cells from hESCs and iPSCs.
Collapse
|
40
|
Fernandes AR, Chari DM. A multicellular, neuro-mimetic model to study nanoparticle uptake in cells of the central nervous system. Integr Biol (Camb) 2015; 6:855-61. [PMID: 25017718 DOI: 10.1039/c4ib00085d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Evaluating the uptake and handling of biomedically relevant nanoparticles by cells of the nervous system critically underpins the effective use of nanoparticle platforms for neuro-regenerative therapies. The lack of biologically relevant and 'neuromimetic' models for nanomaterials testing (that can simulate the cellular complexity of neural tissue) currently represents a bottleneck. Further, propagation of individual cell types, in different neural cell-specific media (as commonly occurs in the nanotechnology field), can result in non-standardised corona formation around particles, confounding analyses of intercellular differences between neural cells in nanoparticle uptake. To address these challenges, we have developed a facile multicellular model that broadly simulates the ratios of neurons, astrocytes and oligodendrocytes found in vivo. All cell types in the model are derived from a single neural stem cell source, and propagated in the same medium overcoming the issue of variant corona formation. Using a fluorescent transfection-grade magnetic particle (MP), we demonstrate dramatic differences in particle uptake and resultant gene transfer between neural cell subtypes, with astrocytes being the dominant population in terms of particle uptake and transfection. We demonstrate the compatibility of the model with a high resolution scanning electron microscopy technique, allowing for membrane features of MP stimulated cells to be examined. Using this approach, astrocytes displayed high membrane activity in line with extensive particle uptake/transfection, relative to neurons and oligodendrocytes. We consider that the stem cell based model described here can provide a simple and versatile tool to evaluate interactions of neural cells with nanoparticle systems developed for neurological applications. Models of greater complexity can be evolved from this basic system, to further enhance its neuromimetic capacity.
Collapse
Affiliation(s)
- A R Fernandes
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire, UK.
| | | |
Collapse
|
41
|
Smirnova L, Hogberg HT, Leist M, Hartung T. Developmental neurotoxicity - challenges in the 21st century and in vitro opportunities. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2015; 31:129-56. [PMID: 24687333 DOI: 10.14573/altex.1403271] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 11/23/2022]
Abstract
In recent years neurodevelopmental problems in children have increased at a rate that suggests lifestyle factors and chemical exposures as likely contributors. When environmental chemicals contribute to neurodevelopmental disorders developmental neurotoxicity (DNT) becomes an enormous concern. But how can it be tackled? Current animal test- based guidelines are prohibitively expensive, at $ 1.4 million per substance, while their predictivity for human health effects may be limited, and mechanistic data that would help species extrapolation are not available. A broader screening for substances of concern requires a reliable testing strategy, applicable to larger numbers of substances, and sufficiently predictive to warrant further testing. This review discusses the evidence for possible contributions of environmental chemicals to DNT, limitations of the current test paradigm, emerging concepts and technologies pertinent to in vitro DNT testing and assay evaluation, as well as the prospect of a paradigm shift based on 21st century technologies.
Collapse
Affiliation(s)
- Lena Smirnova
- Centers for Alternatives to Animal Testing (CAAT) at Johns Hopkins Bloomberg School of Public Health, USA
| | | | | | | |
Collapse
|
42
|
Barbosa DJ, Capela JP, de Lourdes Bastos M, Carvalho F. In vitro models for neurotoxicology research. Toxicol Res (Camb) 2015; 4:801-842. [DOI: 10.1039/c4tx00043a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The nervous system has a highly complex organization, including many cell types with multiple functions, with an intricate anatomy and unique structural and functional characteristics; the study of its (dys)functionality following exposure to xenobiotics, neurotoxicology, constitutes an important issue in neurosciences.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Maria de Lourdes Bastos
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| | - Félix Carvalho
- REQUIMTE (Rede de Química e Tecnologia)
- Laboratório de Toxicologia
- Departamento de Ciências Biológicas
- Faculdade de Farmácia
- Universidade do Porto
| |
Collapse
|
43
|
Beker van Woudenberg A, Snel C, Rijkmans E, de Groot D, Bouma M, Hermsen S, Piersma A, Menke A, Wolterbeek A. Zebrafish embryotoxicity test for developmental (neuro)toxicity: Demo case of an integrated screening approach system using anti-epileptic drugs. Reprod Toxicol 2014; 49:101-16. [DOI: 10.1016/j.reprotox.2014.07.082] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 07/14/2014] [Accepted: 07/31/2014] [Indexed: 01/26/2023]
|
44
|
Xu J, Nash RJ, Frey TK. Cellular responses to Sindbis virus infection of neural progenitors derived from human embryonic stem cells. BMC Res Notes 2014; 7:757. [PMID: 25343994 PMCID: PMC4307679 DOI: 10.1186/1756-0500-7-757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/10/2014] [Indexed: 11/12/2022] Open
Abstract
Background Sindbis virus (SINV) causes age-dependent encephalitis in mice, and therefore serves as a model to study viral encephalitis. SINV is used as a vector for the delivery of genes into selected neural stem cell lines; however, the toxicity and side effects of this vector have rarely been discussed. In this context, we investigated the cellular responses of human embryonic stem cell (hESCs) derived neural progenitors (hNPCs) to SINV infection by assessing susceptibility of the cells to SINV infection, analyzing the effect of infection on cell proliferation and cell death, and examining the impact of SINV infection on hNPCs markers of stemness. Findings We found that hNPCs are highly susceptible to SINV infection. Upon infection, the viruses induced apoptosis to hNPCs while not affecting the expression of cell proliferation markers. Lastly, SINV infections result in significant changes in the expression of key regulators of hNPCs’ plasticity and homeostasis. Conclusion The robust and versatile signaling, proliferation, and other cell responses of hESCs-derived hNPCs to virus infection demonstrated that it is a good model to study the pathogenesis of viral-induced neurodevelopmental and degenerative diseases. On the other hand, the toxicity of SINV to hNPCs cells cannot be ignored, and therefore extra care should be taken when using SINV as a vector to deliver genes into human stem cell lines.
Collapse
Affiliation(s)
| | | | - Teryl K Frey
- Department of Biology, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
45
|
Malik N, Efthymiou AG, Mather K, Chester N, Wang X, Nath A, Rao MS, Steiner JP. Compounds with species and cell type specific toxicity identified in a 2000 compound drug screen of neural stem cells and rat mixed cortical neurons. Neurotoxicology 2014; 45:192-200. [PMID: 25454721 DOI: 10.1016/j.neuro.2014.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 10/08/2014] [Accepted: 10/08/2014] [Indexed: 11/30/2022]
Abstract
Human primary neural tissue is a vital component for the quick and simple determination of chemical compound neurotoxicity in vitro. In particular, such tissue would be ideal for high-throughput screens that can be used to identify novel neurotoxic or neurotherapeutic compounds. We have previously established a high-throughput screening platform using human induced pluripotent stem cell (iPSC)-derived neural stem cells (NSCs) and neurons. In this study, we conducted a 2000 compound screen with human NSCs and rat cortical cells to identify compounds that are selectively toxic to each group. Approximately 100 of the tested compounds showed specific toxicity to human NSCs. A secondary screen of a small subset of compounds from the primary screen on human iPSCs, NSC-derived neurons, and fetal astrocytes validated the results from >80% of these compounds with some showing cell specific toxicity. Amongst those compounds were several cardiac glycosides, all of which were selectively toxic to the human cells. As the screen was able to reliably identify neurotoxicants, many with species and cell-type specificity, this study demonstrates the feasibility of this NSC-driven platform for higher-throughput neurotoxicity screens.
Collapse
Affiliation(s)
- Nasir Malik
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States.
| | - Anastasia G Efthymiou
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States
| | - Karly Mather
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Nathaniel Chester
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Xiantao Wang
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States
| | - Avindra Nath
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| | - Mahendra S Rao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, United States; National Institute of Health Center for Regenerative Medicine, National Institutes of Health, United States
| | - Joseph P Steiner
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States
| |
Collapse
|
46
|
Using Pluripotent Stem Cells and Their Progeny as an In VitroModel to Assess (Developmental) Neurotoxicity. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2014. [DOI: 10.1002/9783527674183.ch13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Torrado EF, Gomes C, Santos G, Fernandes A, Brites D, Falcão AS. Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population. Int J Dev Neurosci 2014; 37:94-9. [DOI: 10.1016/j.ijdevneu.2014.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 02/02/2023] Open
Affiliation(s)
- Ema F. Torrado
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
| | - Cátia Gomes
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
| | - Gisela Santos
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
| | - Adelaide Fernandes
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
- Department of Biochemistry and Human BiologyFaculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
| | - Dora Brites
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
- Department of Biochemistry and Human BiologyFaculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
| | - Ana S. Falcão
- Research Institute for Medicines (iMed.ULisboa)Faculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
- Department of Biochemistry and Human BiologyFaculdade de FarmáciaUniversidade de Lisboa, Avenida Professor Gama Pinto1649‐003LisbonPortugal
| |
Collapse
|
48
|
Wilson MS, Graham JR, Ball AJ. Multiparametric High Content Analysis for assessment of neurotoxicity in differentiated neuronal cell lines and human embryonic stem cell-derived neurons. Neurotoxicology 2014; 42:33-48. [DOI: 10.1016/j.neuro.2014.03.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/12/2014] [Accepted: 03/26/2014] [Indexed: 01/03/2023]
|
49
|
Meli L, Barbosa HSC, Hickey AM, Gasimli L, Nierode G, Diogo MM, Linhardt RJ, Cabral JMS, Dordick JS. Three dimensional cellular microarray platform for human neural stem cell differentiation and toxicology. Stem Cell Res 2014; 13:36-47. [PMID: 24816401 DOI: 10.1016/j.scr.2014.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/18/2014] [Accepted: 04/08/2014] [Indexed: 01/10/2023] Open
Abstract
We developed a three-dimensional (3D) cellular microarray platform for the high-throughput (HT) analysis of human neural stem cell (hNSC) growth and differentiation. The growth of an immortalized hNSC line, ReNcell VM, was evaluated on a miniaturized cell culture chip consisting of 60nl spots of cells encapsulated in alginate, and compared to standard 2D well plate culture conditions. Using a live/dead cell viability assay, we demonstrated that the hNSCs are able to expand on-chip, albeit with lower proliferation rates and viabilities than in conventional 2D culture platforms. Using an in-cell, on-chip immunofluorescence assay, which provides quantitative information on cellular levels of proteins involved in neural fate, we demonstrated that ReNcell VM can preserve its multipotent state during on-chip expansion. Moreover, differentiation of the hNSCs into glial progeny was achieved both off- and on-chip six days after growth factor removal, accompanied by a decrease in the neural progenitor markers. The versatility of the platform was further demonstrated by complementing the cell culture chip with a chamber system that allowed us to screen for differential toxicity of small molecules to hNSCs. Using this approach, we showed differential toxicity when evaluating three neurotoxic compounds and one antiproliferative compound, and the null effect of a non-toxic compound at relevant concentrations. Thus, our 3D high-throughput microarray platform may help predict, in vitro, which compounds pose an increased threat to neural development and should therefore be prioritized for further screening and evaluation.
Collapse
Affiliation(s)
- Luciana Meli
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hélder S C Barbosa
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal
| | - Anne Marie Hickey
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Gregory Nierode
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Maria Margarida Diogo
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Joaquim M S Cabral
- Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Portugal
| | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Department of Materials Science and Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
50
|
Baumann J, Barenys M, Gassmann K, Fritsche E. Comparative human and rat "neurosphere assay" for developmental neurotoxicity testing. ACTA ACUST UNITED AC 2014; 59:12.21.1-24. [PMID: 24898107 DOI: 10.1002/0471140856.tx1221s59] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The developing nervous system is highly vulnerable to the adverse effects of chemical agents. Currently, there is an increasing need for testing and regulating chemical compounds in general use and, due to the lack of available data, to identify those which are developmental neurotoxicants. In this context, alternative testing strategies are needed in order to allow fast and cost-efficient screening and to reduce the number of animal experiments usually required. In this unit we present an in vitro three-dimensional model for developmental neurotoxicity screening based on human and rat neural progenitor cells. This model enables the detection of disturbances in basic processes of brain development, such as proliferation, migration, differentiation and apoptosis, and allows the distinction of these specific disturbances from general cytotoxicity. Furthermore, the comparison of human and rat data provides useful insights into species differences for toxicodynamics of compounds contributing to human risk assessment of developmental neurotoxicants.
Collapse
Affiliation(s)
- Jenny Baumann
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany; Both authors contributed equally to this unit
| | | | | | | |
Collapse
|