1
|
Varela ACC, Siqueira L, Fortuna M, Soares SM, Freddo N, Barletto ÍP, Ariotti MS, Bertuol MZ, Rutikoski GW, Andrade CM, Barcellos LJG. Behavioral and endocrine effects of early-life exposure to etonogestrel in zebrafish. Toxicol Appl Pharmacol 2025; 498:117300. [PMID: 40089191 DOI: 10.1016/j.taap.2025.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Progestin use as a contraceptive has increased exponentially in the last few decades, as has its disposal in the environment. These synthetic hormones can impair the physiology and behavior of non-target organisms, such as fish. In this study, we evaluated the effects of exposure to an environmentally relevant concentration of etonogestrel (ETO, 3.2 ng L-1) on the behavior and endocrine system of zebrafish (Danio rerio) larvae. We found that ETO caused anxiogenic-like behavior in larvae, as demonstrated by the open-field and light-dark tests. The exposed larvae also presented an increase in whole-body cortisol levels. These changes may lead to an ecological imbalance, emphasizing the risk of early exposure to progestins in the environment.
Collapse
Affiliation(s)
- Amanda Carolina Cole Varela
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Lisiane Siqueira
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Milena Fortuna
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil
| | - Suelen Mendonça Soares
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natália Freddo
- Graduate Program in Bioexperimentation Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil
| | - Ísis Piasson Barletto
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Maíra Souza Ariotti
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Milena Zanoello Bertuol
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | | - Cecília Mazutti Andrade
- Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS 97105-900, Brazil; Graduate Program in Bioexperimentation Universidade de Passo Fundo, BR 285, São José, Passo Fundo, RS 99052-900, Brazil; Undergraduate Course of Veterinary Medicine, University of Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Zheng R, Zhang S, Chen S, Zha W, Li X, Li Q, He J, He S, Feng M, Shen Y. Sunlight-mediated environmental risks of tinidazole in seawater: A neglected ocular toxicity of photolysis mixtures. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137217. [PMID: 39823881 DOI: 10.1016/j.jhazmat.2025.137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Tinidazole (TNZ), a common nitroimidazole antibiotic, is pervasive in aquatic ecosystems, posing potential threats to marine organisms. The environmental fate of TNZ, particularly under solar irradiation, and the associated secondary risks are not well characterized. Herein, the photochemical reactivity of TNZ and four other typical nitroimidazoles (i.e., metronidazole, ornidazole, dimetridazole, and secnidazole) were quantified for multiple photoreactive species. The photolysis products of these nitroimidazoles were identified under solar irradiation, from which the reaction pathways were tentatively proposed. Furthermore, the photo-induced toxicity evolution mechanisms of TNZ were investigated by comparing phenotypic, transcriptomic, and metabolomic changes in marine medaka embryos (Oryzias melastigma) after exposure to TNZ and its photo-irradiated mixtures. Our results indicated that the photo-irradiated TNZ enhanced visual toxicity to marine medaka embryos compared to the parent compound. The photolysis mixtures induced embryonic ocular malformation and significantly affected the expression of the associated genes with the initiation/termination of the phototransduction cascade, leading to metabolite changes related to visual impairment. This work reported the first comprehensive assessment of the photolysis-mediated environmental fate and secondary risks of TNZ in seawater. The findings highlighted the necessity of including complex photolysis mixtures under solar irradiation in future chemical risk assessments of marine environments.
Collapse
Affiliation(s)
- Ruping Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shengyue Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Wenqi Zha
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinyue Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Qiuru Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jinlin He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shanshan He
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Yingjia Shen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
He Y, Ouyang K, Yang H, Wang L, Zhang Q, Li D, Li L. The MC-LR induced neuroinflammation and the disorders of neurotransmitter system in zebrafish (Danio rerio): Oxidative stress as a key. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110126. [PMID: 39824299 DOI: 10.1016/j.fsi.2025.110126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Microcystin-leucine-arginine (MC-LR) has been shown to induce neuroinflammation and disrupt neurotransmitter system. However, little is known about the mechanism of toxicity. In this study, male adult zebrafish (Danio rerio) were exposed to MC-LR at concentrations of 0, 0.1, 1, 10 μg/L for 30 days. Histomorphological evaluation revealed thrombus formation and vacuolization in the brains of zebrafish exposed to 10 μg/L MC-LR. Additionally, this exposure led to elevated MDA levels and decreased T-SOD, CAT and GSH levels in the brain, indicating oxidative stress. MC-LR exposure also significantly increased TNF-α and IL-1β contents and altered transcriptional levels of genes associated with the NOD/NFκB pathway (nod1, nod2, tak2, ripk2, ikbkb, nfkbiaa and nfkb2), implicating that MC-LR induced neuroinflammation. Concurrently, disruptions in neurotransmitter systems were observed, manifested by reductions in ACH, DA, 5-HT contents, an increase in Glu, and changes in related genes (ache, chran7a, dat, drd2b, 5htt, htr1aa, glsa and grin2aa). Partial least squares path modeling (PLS-PM) analysis showed that the oxidative stress and antioxidant defenses directly affected the cholinergic and glutamatergic systems and inflammatory response, as well as indirectly influenced the dopaminergic system via inflammation. Thus, our results suggested that oxidative stress may be a potential mechanism underlying the neuroinflammation and disruption of neurotransmitter systems induced by MC-LR. Furthermore, BMD modeling indicated that the BMDL values for ACH, T-SOD and MDA were all greater than 1 μg/L, suggesting that long-term exposure to MC-LR concentrations below 1 μg/L pose a relatively low risk of neurotoxicity. The lowest BMDL for MDA also implies that oxidative stress is a primary concern in the brain, making MDA a preferred biomarker for MC-LR exposure.
Collapse
Affiliation(s)
- Ya He
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang Ouyang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangmou Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
4
|
Liu Y, Liu F, Wang C. Acute Toxicity, Neurotoxic, Immunotoxic, and Behavioral Effects of Deltamethrin and Sulfamethoxazole in Adult Zebrafish: Insights into Chemical Interactions and Environmental Implications. TOXICS 2025; 13:128. [PMID: 39997943 PMCID: PMC11860506 DOI: 10.3390/toxics13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
The increasing presence of antimicrobial agents and pesticides in aquatic environments raises concerns about their potential impacts on non-target organisms. Among these chemicals, deltamethrin (DM), a widely used pesticide, and sulfamethoxazole (SMX), an antimicrobial commonly detected in water bodies, pose significant ecological risks. This study investigates the acute toxicity, neurotoxic effects, oxidative stress responses, immune-related gene expression, and feeding behavior of adult zebrafish exposed to DM and SMX. The 96 h LC50 for DM was 4.84 µg/L, indicating significant acute toxicity, while the LC50 for the DM + SMX mixture was 11.32 µg/L, suggesting that SMX may mitigate the toxicity of DM. Neurotransmitter alterations, including reduced levels of γ-aminobutyric acid (γ-GABA), serotonin (5-HT), and acetylcholinesterase (AChE), were observed, with the combination of DM and SMX showing partial restoration of AChE activity. Oxidative stress markers revealed significant changes in antioxidant enzyme activities, with DM exposure increasing superoxide dismutase (SOD) and glutathione-S-transferase (GST) activities, while decreasing catalase (CAT) and glutathione peroxidase (GPX) activities. Immune-related gene expression demonstrated suppressed IgM, IgD, and IgZ levels, along with altered inflammatory responses, with both DM and DM + SMX exposure inducing pro-inflammatory cytokines. Finally, feeding behavior was significantly impaired in the DM group at the 3 min mark, while the DM + SMX group showed partial mitigation of this effect. These findings highlight the neurotoxic, immunotoxic, and behavioral effects of DM and SMX, and underscore the potential for chemical interactions to modulate toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Yueyue Liu
- College of Water Science, Beijing Normal University, Beijing 100875, China;
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengyu Liu
- State Environment Protection Key Laboratory of Environmental Monitoring Quality Control, China National Environmental Monitoring Center, Beijing 100012, China;
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
5
|
Lachowicz-Radulska J, Widelski J, Nowaczyński F, Serefko A, Sobczyński J, Ludwiczuk A, Kasica N, Szopa A. Zebrafish as a Suitable Model for Utilizing the Bioactivity of Coumarins and Coumarin-Based Compounds. Int J Mol Sci 2025; 26:1444. [PMID: 40003910 PMCID: PMC11855297 DOI: 10.3390/ijms26041444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
The aim of this review is to summarize the current knowledge on the use of coumarin-derived compounds in the zebrafish (Danio rerio) model. Coumarins, a class of naturally occurring compounds with diverse biological activities, including compounds such as coumarin, angelicin, and warfarin, have attracted considerable attention in the study of potential therapeutic agents for cancer, central nervous system disorders, and infectious diseases. The capabilities of coumarins as active compounds have led to synthesizing various derivatives with their own properties. While such variety is certainly promising, it is also cumbersome due to the large amount of research needed to find the most optimal compounds. The zebrafish model offers unique advantages for such studies, including high genetic and physiological homology to mammals, optical transparency of the embryos, and rapid developmental processes, facilitating the assessment of compound toxicity and underlying mechanisms of action. This review provides an in-depth analysis of the chemical properties of coumarins, their mechanisms of biological activity, and the results of previous studies evaluating the toxicity and efficacy of these compounds in zebrafish assays. The zebrafish model allows for a holistic assessment of the therapeutic potential of coumarin derivatives, offering valuable insights for advancing drug discovery and development.
Collapse
Affiliation(s)
- Joanna Lachowicz-Radulska
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Filip Nowaczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Anna Serefko
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Jan Sobczyński
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| | - Agnieszka Ludwiczuk
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Street, 20-093 Lublin, Poland; (J.W.); (A.L.)
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Aleksandra Szopa
- Department of Clinical Pharmacy and Pharmaceutical Care, Medical University of Lublin, 7 Chodźki Street, 20-093 Lublin, Poland; (J.L.-R.); (F.N.); (A.S.); (J.S.)
| |
Collapse
|
6
|
Lodetti G, Baldin SL, de Farias ACS, de Pieri Pickler K, Teixeira AG, Dondossola ER, Bernardo HT, Maximino C, Rico EP. Repeated exposure to ethanol alters memory acquisition and neurotransmission parameters in zebrafish brain. Pharmacol Biochem Behav 2025; 246:173915. [PMID: 39586362 DOI: 10.1016/j.pbb.2024.173915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Alcohol is widely consumed worldwide and its abuse can cause cognitive dysfunction, affecting memory and learning due to several neurophysiological changes. An imbalance in several neurotransmitters, including the cholinergic and glutamatergic systems, have been implicated in these effects. Zebrafish are sensitive to alcohol, respond to reward stimuli, and tolerate and exhibit withdrawal behaviors. Therefore, we investigated the effects of repetitive exposure to ethanol (REE) and the NMDA receptor antagonist dizocilpine (MK-801) on memory acquisition and glutamatergic and cholinergic neurotransmission. Memory was assessed using the inhibitory avoidance and object recognition tasks. Brain glutamate levels and the activity of Na+-dependent transporters were evaluated as indexes of glutamatergic activity, while acetylcholinesterase (AChE) and choline acetyltransferase (ChAT), enzyme activity were evaluated as indexes of cholinergic activity. Behavioral assessments showed that REE impaired aversive and spatial memory, an effect that MK-801 mimicked. Glutamate levels, but not transporter activity, were significantly lower in the REE group; similarly, REE increased the activity of AChE, but not ChAT, activity. These findings suggest that intermittent exposure to ethanol leads to impairments in zebrafish memory consolidation, and that these effects could be associated with alterations in parameters related to neurotransmission systems mediated by glutamate and acetylcholine. These results provide a better understanding of the neurophysiological and behavioral changes caused by repetitive alcohol use.
Collapse
Affiliation(s)
- Guilherme Lodetti
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Ana Carolina Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Amanda Gomes Teixeira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Caio Maximino
- Laboratory of Neurosciences and Behavior, Institute of Health and Biological Studies, Federal University of South and Southeast of Pará, Marabá, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Yang H, Kong L, Chen Z, Wu J. Effect of functional groups of polystyrene nanoplastics on the neurodevelopmental toxicity of acrylamide in the early life stage of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 278:107177. [PMID: 39612669 DOI: 10.1016/j.aquatox.2024.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/17/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Polystyrene nanoplastics (PS NPs) and acrylamide (ACR), both emerging contaminants, have been found to be related to neurotoxicity. However, the effects of PS NPs on ACR-induced neurodevelopmental toxicity remain unclear. In this study, anionic carboxyl polystyrene nanoplastics (PS NPs-COOH), cationic amino polystyrene nanoplastics (PS NPs-NH2) and unmodified PS NPs were selected to investigate their interaction with ACR. A serious of the neurotoxicity biomarkers from individual to molecular level were evaluated to explore the specific mechanisms. The results indicated that the unmodified PS NPs had the most significant impact on embryonic development at low concentrations in combination with ACR. The toxicity of the other two functionalized PS NPs increased with concentration, exhibiting a clear dose-response relationship. Meanwhile, all three kinds of PS NPs significantly enhanced the impacts of ACR on the locomotion behavior of zebrafish larvae. Analysis of zebrafish nervous system development showed that PS NPs-COOH exhibit greater toxicity to the central nervous system. In contrast, PS NPs-NH2 had a more significant impact on the motor nervous system. Gene expression analysis revealed that ACR and PS NPs significantly affected the expression levels of neurodevelopmental related genes, including Neurog1, Elavl3, Gfap, Gap43, Mbpa, Shha. PS NPs modified with functional groups could induce corresponding neurotoxicity by affecting genes expression related to neuronal differentiation, motor neuron, and axonal development. Based on the comprehensive biomarker response index, the order of the impacts of NPs on the neurotoxicity of ACR was PS NPs-COOH > PS NPs-NH2 > PS NPs. In conclusion, this study provides new insights into the interactive biological effects of NPs and ACR on zebrafish embryo, contributing to a better understanding of their environmental risk to aquatic ecosystem.
Collapse
Affiliation(s)
- Haohan Yang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Linghui Kong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhuoyu Chen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jun Wu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
8
|
Qiu X, Zhang Y, Gao J, Cui Y, Dong K, Chen K, Shi Y. Exposure to thimerosal induces behavioral abnormality in the early life stages of zebrafish via altering amino acid homeostasis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135548. [PMID: 39154483 DOI: 10.1016/j.jhazmat.2024.135548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Thimerosal (THI) has become a significant source of organic mercury pollutants in aquatic ecosystems, but there is limited information regarding its adverse effects on fish. In this study, zebrafish embryos were exposed to THI at 0 (control), 5.0, and 50 ng/L from 0-5 days post fertilization (dpf), and variations in their survival, development, behavior, free amino acid contents, and the biochemical responses involved in monoaminergic systems were examined. Although THI exposure did not significantly affect the survival, heart rate, or hatching time of zebrafish embryos, it substantially increased swimming velocity (136-154 % of the control) and reduced exploratory behavior (141-142 % of the control) in zebrafish larvae at 5 dpf. Exposure also significantly altered the amino acid contents (51-209 % of the control) and monoamine levels (70-154 % of the control) in zebrafish larvae, some of which displayed significant correlations with behavioral traits. THI significantly elevated dopamine receptor gene expression and monoamine oxidase activity in zebrafish larvae. Adding extra phenylalanine or tryptophan to the E3 medium facilitates the recovery of zebrafish larvae from the abnormal behaviors induced by THI. These findings reveal for the first time that THI exposure at the level of ng/L is sufficient to induce neurobehavioral toxic effects in the early life stages of zebrafish, and disrupting amino acid homeostasis is a critical underlying mechanism. This study provides valuable insights into the toxicity of THI to fish and highlights the importance of assessing its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yibing Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiarui Gao
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yiming Cui
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kejun Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
9
|
Müller TE, Dos Santos MM, Ferreira SA, Claro MT, de Macedo GT, Fontana BD, Barbosa NV. Negative impacts of social isolation on behavior and neuronal functions are recovered after short-term social reintroduction in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111038. [PMID: 38810717 DOI: 10.1016/j.pnpbp.2024.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Recently, social isolation measures were crucial to prevent the spread of the coronavirus pandemic. However, the lack of social interactions affected the population mental health and may have long-term consequences on behavior and brain functions. Here, we evaluated the behavioral, physiological, and molecular effects of a social isolation (SI) in adult zebrafish, and whether the animals recover such changes after their reintroduction to the social environment. Fish were submitted to 12 days of SI, and then reintroduced to social context (SR). Behavioral analyses to evaluate locomotion, anxiety-like and social-related behaviors were performed after SI protocol, and 3 and 6 days after SR. Cortisol and transcript levels from genes involved in neuronal homeostasis (c-fos, egr, bdnf), and serotonergic (5-HT) and dopaminergic (DA) neurotransmission (thp, th) were also measured. SI altered social behaviors in zebrafish such as aggression, social preference, and shoaling. Fish submitted to SI also presented changes in the transcript levels of genes related to neural activity, and 5-HT/DA signaling. Interestingly, most of the behavioral and molecular changes induced by SI were not found again 6 days after SR. Thus, we highlight that SR of zebrafish to their conspecifics played a positive role in social behaviors and in the expression of genes involved in different neuronal signaling pathways that were altered after 12 days of SI. This study brings unprecedented data on the effects of SR in the recovery from SI neurobehavioral alterations, and reinforces the role of zebrafish as a translational model for understanding the neurobiological mechanisms adjacent to SI and resocialization.
Collapse
Affiliation(s)
- Talise E Müller
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil..
| | - Matheus M Dos Santos
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Sabrina A Ferreira
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Mariana T Claro
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Gabriel T de Macedo
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Barbara D Fontana
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Nilda V Barbosa
- Laboratory of Toxicological Biochemistry, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil..
| |
Collapse
|
10
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
11
|
El Messaoudi N, Franco DSP, Gubernat S, Georgin J, Şenol ZM, Ciğeroğlu Z, Allouss D, El Hajam M. Advances and future perspectives of water defluoridation by adsorption technology: A review. ENVIRONMENTAL RESEARCH 2024; 252:118857. [PMID: 38569334 DOI: 10.1016/j.envres.2024.118857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Fluoride contamination in water sources poses a significant challenge to human health and the environment. In recent years, adsorption technology has emerged as a promising approach for water defluoridation due to its efficiency and cost-effectiveness. This review article comprehensively explores the advances in water defluoridation through adsorption processes. Various adsorbents, including natural and synthetic materials, have been investigated for their efficacy in removing fluoride ions from water. The mechanisms underlying adsorption interactions are elucidated, shedding light on the factors influencing defluoridation efficiency. Moreover, the review outlines the current state of technology, highlighting successful case studies and field applications. Future perspectives in the field of water defluoridation by adsorption are discussed, emphasizing the need for sustainable and scalable solutions. The integration of novel materials, process optimization, and the development of hybrid technologies are proposed as pathways to address existing challenges and enhance the overall efficacy of water defluoridation. This comprehensive assessment of the advances and future directions in adsorption-based water defluoridation provides valuable insights for researchers, policymakers, and practitioners working towards ensuring safe and accessible drinking water for all.
Collapse
Affiliation(s)
- Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir, 80000, Morocco.
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Sylwia Gubernat
- Inżynieria Rzeszów S.A., ul. Podkarpacka 59A, 35-082, Rzeszów, Poland
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia.
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering and Natural Sciences, Usak University, Usak, 64300, Turkey
| | - Dalia Allouss
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, FSTM, Hassan II University, Casablanca, Morocco
| | - Maryam El Hajam
- Advanced Structures and Composites Center, University of Maine, Orono, 04469, United States
| |
Collapse
|
12
|
Ren X, Liu Z, Zhang R, Shao Y, Duan X, Sun B, Zhao X. Nanoplastics aggravated TDCIPP-induced transgenerational developmental neurotoxicity in zebrafish depending on the involvement of the dopamine signaling pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104436. [PMID: 38599507 DOI: 10.1016/j.etap.2024.104436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastics pose a hazard to the environment. Although plastics have toxicity, microplastics (MPs) and nanoplastics (NPs) are capable of interacting with the rest pollutants in the environment, so they serve as the carriers and interact with organic pollutants to modulate their toxicity, thus resulting in unpredictable ecological risks. PS-NPs and TDCIPP were used expose from 2 h post-fertilization (hpf) to 150 days post-fertilization (dpf) to determine the bioaccumulation of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and its potential effects on neurodevelopment in F1 zebrafish (Danio rerio) offspring under the action of polystyrene nano plastics (PS-NPs). The exposure groups were assigned to TDCIPP (0, 0.4, 2 or 10 µg/L) alone group and the PS-NPs (100 µg/L) and TDCIPP co-exposed group. F1 embryos were collected and grown in clean water to 5 dpf post-fertilization. PS-NPs facilitated the bioaccumulation of TDCIPP in the gut, gill, head,gonad and liver of zebrafish in a sex-dependent manner and promoted the transfer of TDCIPP to their offspring, thus contributing to PS-NPs aggravated the inhibition of offspring development and neurobehavior of TDCIPP-induced. In comparison with TDCIPP exposure alone, the combination could notably down-regulate the levels of the dopamine neurotransmitter, whereas the levels of serotonin or acetylcholine were not notably different. This result was achieved probably because PS-NPs interfered with the TDCIPP neurotoxic response of zebrafish F1 offspring not through the serotonin or acetylcholine neurotransmitter pathway. The increased transfer of TDCIPP to the offspring under the action of PS-NPs increased TDCIPP-induced transgenerational developmental neurotoxicity, which was proven by a further up-regulation/down-regulation the key gene and protein expression related to dopamine synthesis, transport, and metabolism in F1 larvae, in contrast to TDCIPP exposure alone. The above findings suggested that dopaminergic signaling involvement could be conducive to the transgenerational neurodevelopmental toxicity of F1 larval upon parental early co-exposure to PS-NPs and TDCIPP.
Collapse
Affiliation(s)
- Xin Ren
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Zhibo Liu
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ruiqi Zhang
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Yuting Shao
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xiaoyue Duan
- Key Laboratory of Environmental Materials and Pollution Control, Education Department of Jilin Province, Siping 136000, China
| | - Bo Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Xuesong Zhao
- College of Engineering, Jilin Normal University, Haifeng Street, Tiexi Dist, Siping 136000, China.
| |
Collapse
|
13
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
14
|
Collins EMS, Hessel EVS, Hughes S. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity. Neurotoxicology 2024; 102:48-57. [PMID: 38552718 PMCID: PMC11139590 DOI: 10.1016/j.neuro.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Developmental neurotoxicity (DNT) is not routinely evaluated in chemical risk assessment because current test paradigms for DNT require the use of mammalian models which are ethically controversial, expensive, and resource demanding. Consequently, efforts have focused on revolutionizing DNT testing through affordable novel alternative methods for risk assessment. The goal is to develop a DNT in vitro test battery amenable to high-throughput screening (HTS). Currently, the DNT in vitro test battery consists primarily of human cell-based assays because of their immediate relevance to human health. However, such cell-based assays alone are unable to capture the complexity of a developing nervous system. Whole organismal systems that qualify as 3 R (Replace, Reduce and Refine) models are urgently needed to complement cell-based DNT testing. These models can provide the necessary organismal context and be used to explore the impact of chemicals on brain function by linking molecular and/or cellular changes to behavioural readouts. The nematode Caenorhabditis elegans, the planarian Dugesia japonica, and embryos of the zebrafish Danio rerio are all suited to low-cost HTS and each has unique strengths for DNT testing. Here, we review the strengths and the complementarity of these organisms in a novel, integrative context and highlight how they can augment current cell-based assays for more comprehensive and robust DNT screening of chemicals. Considering the limitations of all in vitro test systems, we discuss how a smart combinatory use of these systems will contribute to a better human relevant risk assessment of chemicals that considers the complexity of the developing brain.
Collapse
Affiliation(s)
- Eva-Maria S Collins
- Swarthmore College, Biology, 500 College Avenue, Swarthmore, PA 19081, USA; Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center of Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, Bilthoven, 3721 MA, the Netherlands
| | - Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, de Boelelaan 1085, Amsterdam, 1081 HV, the Netherlands.
| |
Collapse
|
15
|
Sun Y, Ding P, Zhang J, Sun K, Li X, Ge Q, Dang Y, Yu Y, Hu G. Combined neurotoxicity of aged microplastics and thiamethoxam in the early developmental stages of zebrafish (Daniorerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123853. [PMID: 38552772 DOI: 10.1016/j.envpol.2024.123853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/25/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Microplastics (MPs) pollution, together with its consequential effect on aquatic biota, represent a burgeoning environmental concern that has garnered significant scholarly attention. Thiamethoxam (TMX), a prevalently utilized neonicotinoid insecticide, is renowned for its neurotoxic impact and selective action against targeted pests. The aquatic environment serves as a receptacle for numerous pollutants, such as MPs and neonicotinoid insecticides. However, there is currently a lack of comprehensive understanding regarding the toxic effects of co-exposure to aged MPs and neonicotinoid insecticides in aquatic organisms. Therefore, we endeavor to elucidate the deleterious impacts of aged polystyrene (PS) and TMX on zebrafish (Danio rerio) larvae when present at environmentally relevant concentrations, and to reveal the underlying molecular mechanisms driving these effects. Our study showed that exposure to aged PS, TMX, or their combination notably inhibited the heart rate and locomotion of zebrafish larvae, with a pronounced effect observed under combined exposure. Aged PS and TMX were found to diminish the activity of antioxidative enzymes (SOD, CAT, and GST), elevate MDA levels, and disrupt neurotransmitter homeostasis (5-HT, GABA and ACh). Notably, the mixtures exhibited synergistic effects. Moreover, gene expression related to oxidative stress (e.g., gstr1, gpx1a, sod1, cat1, p38a, ho-1, and nrf2b) and neurotransmission (e.g., ache, ChAT, gat1, gabra1, 5ht1b, and 5ht1aa) was significantly altered upon co-exposure to aged PS and TMX in larval zebrafish. In summary, our findings support the harmful effects of aged MPs and the neonicotinoid insecticides they carry on aquatic organisms. Results from this study enhance our understanding of the biological risks of MPs and insecticides, as well as help fill existing knowledge gaps on neonicotinoid insecticides and MPs coexistence toxicity in aquatic environment.
Collapse
Affiliation(s)
- Yanan Sun
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Kexin Sun
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xintong Li
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Qing Ge
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Guocheng Hu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
16
|
Thawkar B, Kaur G. The current models unravel the molecular mechanisms underlying the intricate pathophysiology of Alzheimer's disease using zebrafish. Methods Cell Biol 2024; 192:17-31. [PMID: 39863389 DOI: 10.1016/bs.mcb.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities. Several transgenic animals are used as models for AD; however, they have cost and time concerns. Zebrafish (Danio rerio) has become a suitable model organism for high-throughput pharmacological screening of neuroactive substances and neurodegenerative research. The past few decades have seen a significant increase in research on AD. The fight against amyloidosis has, however, been unexpectedly unsuccessful. It may be due to a need for more relevant in vivo models for high throughput screening, which emphasizes the need to find other anti-AD models. Alternative animal models, including zebrafish, have developed into a potentially useful research tool that must be employed for AD research to be effective. Only a few comprehensive zebrafish models exhibiting AD-like pathogenesis have been reported in the literature, and this book chapter describes these models.
Collapse
Affiliation(s)
- Baban Thawkar
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, Mumbai, India; Department of Pharmacology, Bharati Vidyapeeth's College of Pharmacy, CBD Belapur, Navi Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, Mumbai, India.
| |
Collapse
|
17
|
Liao XL, Chen ZF, Ou SP, Liu QY, Lin SH, Zhou JM, Wang Y, Cai Z. Neurological impairment is crucial for tire rubber-derived contaminant 6PPDQ-induced acute toxicity to rainbow trout. Sci Bull (Beijing) 2024; 69:621-635. [PMID: 38185590 DOI: 10.1016/j.scib.2023.12.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024]
Abstract
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) has attracted significant attention due to its highly acute lethality to sensitive salmonids. However, studies investigating the mechanisms underlying its acute toxicity have been lacking. In this work, we demonstrated the sensitivity of rainbow trout to 6PPDQ-induced mortality. Moribund trout exhibited significantly higher brain concentrations of 6PPDQ compared to surviving trout. In an in vitro model using human brain microvascular endothelial cells, 6PPDQ can penetrate the blood-brain barrier and enhance blood-brain barrier permeability without compromising cell viability. The time spent in the top of the tank increased with rising 6PPDQ concentrations, as indicated by locomotion behavior tests. Furthermore, 6PPDQ influenced neurotransmitter levels and mRNA expression of neurotransmission-related genes in the brain and exhibited strong binding affinity to target neurotransmission-related proteins using computational simulations. The integrated biomarker response value associated with neurotoxicity showed a positive linear correlation with trout mortality. These findings significantly contribute to filling the knowledge gap between neurological impairments and apical outcomes, including behavioral effects and mortality, induced by 6PPDQ.
Collapse
Affiliation(s)
- Xiao-Liang Liao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Shi-Ping Ou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Qian-Yi Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Shan-Hong Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Ming Zhou
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yujie Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zongwei Cai
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
18
|
Dos Santos MM, Ferreira SA, de Macedo GT, Claro MT, Müller TE, Prestes ADS, da Rocha JBT, Núñez-Figueredo Y, Barbosa NDV. JM-20 potently prevents the onset of caffeine-induced anxiogenic phenotypes in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109843. [PMID: 38237841 DOI: 10.1016/j.cbpc.2024.109843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/29/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Anxiety is among the most prevalent mental disorders present in the general population. Benzodiazepines are the most commonly prescribed drugs for the treatment of anxiety. Using zebrafish as a model organism, we investigated the anxiolytic activity of JM-20, a novel hybrid molecule with a 1,5-benzodiazepine ring fused to a dihydropyridine moiety. Firstly, we carried out some assays to analyze the possible toxicity mediated by JM-20. For this, zebrafish were exposed to different JM-20 concentrations (0-5 μM) for 96 h. Then, using the novel tank test, we evaluated both locomotor and anxiety-like behavior of the animals. Furthermore, brain, liver and plasma were removed to assess toxicity parameters. JM-20 exposure did not cause changes on novel tank, and also did not alter brain viability, hepatic LDH and plasma ALT levels. Afterward, we investigated whether a pre-exposure to JM-20 would prevent the anxiogenic effect evoked by caffeine. In the novel tank test, caffeine significantly decreased the time spent at the top, as well as the number of transitions to the top area. Moreover, caffeine decreased both the total and average time spent in the lit area, as well as increased the number of risk episodes evaluated by the light-dark test. Whole-body cortisol levels were also increased by caffeine exposure. Interestingly, pre-treatment with JM-20 abolished all alterations induced by caffeine. The anxiolytic effect profile of JM-20 was similar to those found for diazepam (positive control). Our findings show, for the first time, the anxiolytic effect of JM-20 in zebrafish, and its relationship with cortisol regulation.
Collapse
Affiliation(s)
- Matheus Mülling Dos Santos
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil; Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), 96203-900 Rio Grande, RS, Brazil.
| | - Sabrina Antunes Ferreira
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Talise Ellwanger Müller
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - João Batista Teixeira da Rocha
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| | - Yanier Núñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No. 1605. Boyeros y Puentes Grandes, CP 10600, La Habana, Cuba
| | - Nilda de Vargas Barbosa
- Programa de Pós-graduação em Bioquímica Toxicológica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
19
|
Sun Y, Wang X, Zhou S, Zhou Y, Hua J, Guo Y, Wang Y, Zhang W, Yang L, Zhou B. Evaluation and Mechanistic Study of Transgenerational Neurotoxicity in Zebrafish upon Life Cycle Exposure to Decabromodiphenyl Ethane (DBDPE). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16811-16822. [PMID: 37880149 DOI: 10.1021/acs.est.3c04578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant in the environment, which may evoke imperceptible effects in humans or wild animals. Hence in this study, zebrafish embryos were exposed to DBDPE (0, 0.1, 1, and 10 nM) until sexual maturity (F0), and F1 and F2 generations were cultured without further exposure to study the multi- and transgenerational toxicity and underlying mechanism. The growth showed sex-different changing profiles across three generations, and the social behavior confirmed transgenerational neurotoxicity in adult zebrafish upon life cycle exposure to DBDPE. Furthermore, maternal transfer of DBDPE was not detected, whereas parental transfer of neurotransmitters to zygotes was specifically disturbed in F1 and F2 offspring. A lack of changes in the F1 generation and opposite changing trends in the F0 and F2 generations were observed in a series of indicators for DNA damage, DNA methylation, and gene transcription. Taken together, life cycle exposure to DBDPE at environmentally relevant concentrations could induce transgenerational neurotoxicity in zebrafish. Our findings also highlighted potential impacts on wild gregarious fish, which would face higher risks from predators.
Collapse
Affiliation(s)
- Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yan Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Alnassar N, Hillman C, Fontana BD, Robson SC, Norton WHJ, Parker MO. angptl4 gene expression as a marker of adaptive homeostatic response to social isolation across the lifespan in zebrafish. Neurobiol Aging 2023; 131:209-221. [PMID: 37690345 DOI: 10.1016/j.neurobiolaging.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Social isolation has detrimental health effects, but the underlying mechanisms are unclear. Here, we investigated the impact of 2 weeks of isolation on behavior and gene expression in the central nervous system at different life stages of zebrafish. Results showed that socially deprived young adult zebrafish experienced increased anxiety, accompanied by changes in gene expression. Most gene expression patterns returned to normal within 24 hours of reintroduction to a social environment, except angptl4, which was upregulated after reintroduction, suggesting an adaptive mechanism. Similarly, aging zebrafish displayed heightened anxiety and increased central nervous system expression of angptl4 during isolation, but effects were reversed upon reintroduction to a social group. The findings imply that angptl4 plays a homeostatic role in response to social isolation, which varies across the lifespan. The study emphasizes the importance of social interactions for psychological well-being and highlights the negative consequences of isolation, especially in older individuals. Further research may unravel how social isolation affects angptl4 expression and its developmental and aging effects.
Collapse
Affiliation(s)
- Nancy Alnassar
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK
| | - Courtney Hillman
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK
| | | | - Samuel C Robson
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, UK; School of Biological Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Matthew O Parker
- Surrey Sleep Research Centre, University of Surrey, Guilford, UK.
| |
Collapse
|
21
|
Araujo-Silva H, de Souza AM, Mamede JPM, de Medeiros SRB, Luchiari AC. Individual differences in response to alcohol and nicotine in zebrafish: Gene expression and behavior. Dev Growth Differ 2023; 65:434-445. [PMID: 37435714 DOI: 10.1111/dgd.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023]
Abstract
Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (ache, bdnf, gaba1, gad1b, th1, and tph1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in tph1 mRNA expression in bold fish, while bdnf mRNA expression was increased in shy fish. Nicotine increased ache, bdnf, and tph1 mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.
Collapse
Affiliation(s)
- Heloysa Araujo-Silva
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Augusto Monteiro de Souza
- Department of Molecular Biology and Genetics, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - João Paulo Medeiros Mamede
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology and Behavior, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Graduate Program in Psychobiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
22
|
Shi Q, Yang H, Chen Y, Zheng N, Li X, Wang X, Ding W, Zhang B. Developmental Neurotoxicity of Trichlorfon in Zebrafish Larvae. Int J Mol Sci 2023; 24:11099. [PMID: 37446277 DOI: 10.3390/ijms241311099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Trichlorfon is an organophosphorus pesticide widely used in aquaculture and has potential neurotoxicity, but the underlying mechanism remains unclear. In the present study, zebrafish embryos were exposed to trichlorfon at concentrations (0, 0.1, 2 and 5 mg/L) used in aquaculture from 2 to 144 h post fertilization. Trichlorfon exposure reduced the survival rate, hatching rate, heartbeat and body length and increased the malformation rate of zebrafish larvae. The locomotor activity of larvae was significantly reduced. The results of molecular docking revealed that trichlorfon could bind to acetylcholinesterase (AChE). Furthermore, trichlorfon significantly inhibited AChE activity, accompanied by decreased acetylcholine, dopamine and serotonin content in larvae. The transcription patterns of genes related to acetylcholine (e.g., ache, chrna7, chata, hact and vacht), dopamine (e.g., drd4a and drd4b) and serotonin systems (e.g., tph1, tph2, tphr, serta, sertb, htrlaa and htrlab) were consistent with the changes in acetylcholine, dopamine, serotonin content and AChE activity. The genes related to the central nervous system (CNS) (e.g., a1-tubulin, mbp, syn2a, shha and gap-43) were downregulated. Our results indicate that the developmental neurotoxicity of trichlorfon might be attributed to disorders of cholinergic, dopaminergic and serotonergic signaling and the development of the CNS.
Collapse
Affiliation(s)
- Qipeng Shi
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Huaran Yang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yangli Chen
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academic of Sciences, Wuhan 430072, China
| | - Xiaoyu Li
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Weikai Ding
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bangjun Zhang
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
23
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
Tian D, Yu Y, Yu Y, Lu L, Tong D, Zhang W, Zhang X, Shi W, Liu G. Tris(2-chloroethyl) Phosphate Exerts Hepatotoxic Impacts on Zebrafish by Disrupting Hypothalamic-Pituitary-Thyroid and Gut-Liver Axes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37276532 DOI: 10.1021/acs.est.3c01631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The ubiquitous environmental presence of tris(2-chloroethyl) phosphate (TCEP) poses a potential threat to animals; however, little is known about its hepatotoxicity. In this study, the effects of TCEP exposure (0.5 and 5.0 μg/L for 28 days) on liver health and the potential underlying toxification mechanisms were investigated in zebrafish. Our results demonstrated that TCEP exposure led to hepatic tissue lesions and resulted in significant alterations in liver-injury-specific markers. Moreover, TCEP-exposed fish had significantly lower levels of thyrotropin-releasing hormone and thyroid-stimulating hormone in the brain, evidently less triiodothyronine whereas more thyroxine in plasma, and markedly altered expressions of genes from the hypothalamic-pituitary-thyroid (HPT) axis in the brain or liver. In addition, a significantly higher proportion of Bacteroidetes in the gut microbiota, an elevated bacterial source endotoxin lipopolysaccharide (LPS) in the plasma, upregulated expression of LPS-binding protein and Toll-like receptor 4 in the liver, and higher levels of proinflammatory cytokines in the liver were detected in TCEP-exposed zebrafish. Furthermore, TCEP-exposed fish also suffered severe oxidative damage, possibly due to disruption of the antioxidant system. These findings suggest that TCEP may exert hepatotoxic effects on zebrafish by disrupting the HPT and gut-liver axes and thereafter inducing hepatic inflammation and oxidative stress.
Collapse
Affiliation(s)
- Dandan Tian
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yihan Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| |
Collapse
|
25
|
Agues-Barbosa T, de Souza AM, de Lima JNG, Luchiari AC. Long-term behavioral alterations following embryonic alcohol exposure in three zebrafish populations. Neurotoxicology 2023; 96:174-183. [PMID: 37120037 DOI: 10.1016/j.neuro.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Fetal alcohol exposure may lead to a condition known as fetal alcohol spectrum disorder (FASD), which comprises a set of consequences, including cognitive and behavioral impairments. Although zebrafish has been applied as a reliable model for studying FASD, there is no approach to the disorder's ontogeny and population differences. Here, we evaluated the behavioral outcomes of AB, Outbred (OB), and Tübingen (TU) zebrafish populations embryonically exposed to alcohol throughout the development to the adult stage. We exposed 24hpf eggs to 0%, 0.5%, or 1.0% alcohol for 2h. Fish were let grow and locomotor and anxiety-like behaviors were tested in a novel tank at larval - 6dpf, juvenile - 45dpf, and adult- 90dpf stages. At 6dpf, both AB and OB treated with 1.0% alcohol showed hyperactivity, while 0.5% and 1.0% TU fish exhibited hypolocomotion. At 45dpf, AB and TU fish maintained the larval pattern of locomotion. At the adult stage - 90dpf, both AB and TU populations showed increased locomotor activity and anxiogenic responses, while the OB population did not show altered behavior. Our results show for the first time that zebrafish populations exhibit behavioral differences in response to embryonic alcohol exposure and that it varies along animals' ontogeny. AB fish showed the most consistent behavioral pattern through developmental stages, TU fish showed behavioral changes only in adulthood, and OB population showed high interindividual variability. These data reinforce that different populations of zebrafish are better adapted to translational studies, offering reliable results in contrast to domesticated OB populations obtained from farms, which exhibit more variable genomes.
Collapse
Affiliation(s)
- Thaís Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | - Augusto Monteiro de Souza
- Department of Cell Biology and Genetics, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
26
|
Wu Y, Wang J, Xia Y, Tang K, Xu J, Wang A, Hu S, Wen L, Wang B, Yao W, Wang J. Toxic effects of isofenphos-methyl on zebrafish embryonic development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114723. [PMID: 36871354 DOI: 10.1016/j.ecoenv.2023.114723] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiawen Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Yumei Xia
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Kaiqin Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jincheng Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Anli Wang
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, Zhejiang, China
| | - Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| |
Collapse
|
27
|
Liu S, Qiu W, Li R, Chen B, Wu X, Magnuson JT, Xu B, Luo S, Xu EG, Zheng C. Perfluorononanoic Acid Induces Neurotoxicity via Synaptogenesis Signaling in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3783-3793. [PMID: 36797597 DOI: 10.1021/acs.est.2c06739] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Perfluorononanoic acid (PFNA), commonly used as an alternative polyfluorinated compound (PFC) of perfluorooctanoic acid (PFOA), has been widely detected in the aquatic environment. Previous ecotoxicological and epidemiological results suggested that some neurobehavioral effects were associated with PFC exposure; however, the ecological impacts and underlying neurotoxicity mechanisms remain unclear, particularly in aquatic organisms during sensitive, early developmental stages. In this study, zebrafish embryos were exposed to environmentally relevant concentrations of PFNA for 120 h, and the neurological effects of PFNA were comprehensively assessed using transcriptional, biochemical, morphological, and behavioral assays. RNA sequencing and advanced bioinformatics analyses predicted and characterized the key biological processes and pathways affected by PFNA exposure, which included the synaptogenesis signaling pathway, neurotransmitter synapse, and CREB signaling in neurons. Neurotransmitter levels (acetylcholine, glutamate, 5-hydroxytryptamine, γ-aminobutyric acid, dopamine, and noradrenaline) were significantly decreased in zebrafish larvae, and the Tg(gad67:GFP) transgenic line revealed a decreased number of GABAergic neurons in PFNA-treated larvae. Moreover, the swimming distance, rotation frequency, and activity degree were also significantly affected by PFNA, linking molecular-level changes to behavioral consequences.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Avenue 7777, Qingshan Lake District, Nanchang 330012, China
| | - Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuandadao 1088, Nanshan District, Shenzhen 518055, China
| | - Rongzhen Li
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuandadao 1088, Nanshan District, Shenzhen 518055, China
| | - Bei Chen
- Fisheries Research Institute of Fujian, Haishan Road 7, Huli District, Xiamen 361000, China
| | - Xin Wu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuandadao 1088, Nanshan District, Shenzhen 518055, China
| | - Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Måltidets Hus-Richard Johnsens gate 4, Stavanger 4021, Norway
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| | - Shusheng Luo
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuandadao 1088, Nanshan District, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Campusvej 55, Odense 5230, Denmark
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Xueyuandadao 1088, Nanshan District, Shenzhen 518055, China
- EIT Institute for Advanced Study, Tongxin Road 568, Zhenhai District, Ningbo 315200, China
| |
Collapse
|
28
|
Kim YS, Sohn SH, Min TJ. Protective Effect of Ulinastatin on Cognitive Function After Hypoxia. Neuromolecular Med 2023; 25:136-143. [PMID: 35917079 DOI: 10.1007/s12017-022-08721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Ulinastatin (UTI) has neuroprotective properties. Neurologic insults, including hypoxia and use of anesthetic agents, cause postoperative cognitive dysfunction and alter gamma-aminobutyric acid (GABA) function. This study aimed to assess whether UTI could preserve learning and memory using a zebrafish hypoxic behavior model and biomarkers. Zebrafish (6-8 months of age and 2.5-3.5 cm long) were divided into eight groups as follows: phosphate-buffered saline (PBS) control, hypoxia + PBS, UTI (10,000, 50,000, and 100,000 units/kg), and hypoxia with UTI (10,000, 50,000, and 100,000 units/kg) groups. The endpoints of the T-maze experiment included total time, distance moved, and frequency in target or opposite compartment. We also measured the degree of brain infarction using 2,3,5‑triphenyltetrazolium chloride staining, assessed SA-β-galactosidase activity, and examined GABAA receptor expression using real-time polymerase chain reaction. In a dose-dependent manner, UTI affected learning and memory in zebrafish. Despite hypoxia, 100,000 units/kg of UTI preserved preference (time and distance) for the target compartment. More than 50,000 units/kg of UTI also showed reduced hypoxia-induced brain infarction, decreased SA-β-galactosidase levels, and upregulated GABAA receptors. This study demonstrated that the location of the GABAA receptor is affected by hypoxia or UTI.
Collapse
Affiliation(s)
- Young Sung Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Hwa Sohn
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Too Jae Min
- Department of Anesthesiology and Pain Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea.
| |
Collapse
|
29
|
Sun Y, Zhou S, Zhu B, Li F, Fu K, Guo Y, Men J, Han J, Zhang W, Yang L, Zhou B. Multi- and Transgenerational Developmental Impairments Are Induced by Decabromodiphenyl Ethane (DBDPE) in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2887-2897. [PMID: 36779393 DOI: 10.1021/acs.est.3c00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) has become a ubiquitous emerging pollutant; hence, the knowledge of its long-term toxic effects and underlying mechanism would be critical for further health risk assessment. In the present study, the multi- and transgenerational toxicity of DBDPE was investigated in zebrafish upon a life cycle exposure at environmentally relevant concentrations. The significantly increased malformation rate and declined survival rate specifically occurred in unexposed F2 larvae suggested transgenerational development toxicity by DBDPE. The changing profiles revealed by transcriptome and DNA methylome confirmed an increased susceptibility in F2 larvae and figured out potential disruptions of glycolipid metabolism, mitochondrial energy metabolism, and neurodevelopment. The changes of biochemical indicators such as ATP production confirmed a disturbance in the energy metabolism, whereas the alterations of neurotransmitter contents and light-dark stimulated behavior provided further evidence for multi- and transgenerational neurotoxicity in zebrafish. Our findings also highlighted the necessity for considering the long-term impacts when evaluating the health of wild animals as well as human beings by emerging pollutants.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Biran Zhu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Li
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiyu Fu
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongyong Guo
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Men
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lihua Yang
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
30
|
Ichikawa S, Abe R, Fujimoto H, Higashi K, Zang L, Nakayama H, Matsuoka I, Shimada Y. Paraburkholderia sabiae administration alters zebrafish anxiety-like behavior via gut microbial taurine metabolism. Front Microbiol 2023; 14:1079187. [PMID: 36876090 PMCID: PMC9977788 DOI: 10.3389/fmicb.2023.1079187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/09/2023] [Indexed: 02/18/2023] Open
Abstract
Interventions to the gut microbiome manipulate the gut-brain axis and could be useful in the treatment of anxiety and depression. In this study, we demonstrated that administration of the bacterium Paraburkholderia sabiae reduces anxiety-like behavior in adult zebrafish. P. sabiae administration increased the diversity of the zebrafish gut microbiome. Linear discriminant analysis Effect Size (LEfSe) analysis revealed that the populations of Actinomycetales including Nocardiaceae, Nocardia, Gordoniaceae, Gordonia, Nakamurellaceae, and Aeromonadaceae were reduced, whereas those of Rhizobiales including Xanthobacteraceae, Bradyrhizobiaceae, Rhodospirillaceae, and Pirellulaceae were increased in the gut microbiome. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2) predicted that P. sabiae administration altered taurine metabolism in the zebrafish gut, and we demonstrated that P. sabiae administration increased the taurine concentration in the brain. Since taurine functions as an antidepressant neurotransmitter in vertebrates, our results suggest that P. sabiae could improve anxiety-like behavior in zebrafish via the gut-brain axis.
Collapse
Affiliation(s)
- Shunsuke Ichikawa
- Faculty of Education, Mie University, Tsu, Mie, Japan.,Mie University Zebrafish Drug Screening Center, Tsu, Japan
| | - Reimi Abe
- Faculty of Education, Mie University, Tsu, Mie, Japan
| | | | | | - Liqing Zang
- Mie University Zebrafish Drug Screening Center, Tsu, Japan.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| | - Hiroko Nakayama
- Mie University Zebrafish Drug Screening Center, Tsu, Japan.,Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
| | - Izumi Matsuoka
- Mie University Zebrafish Drug Screening Center, Tsu, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Japan.,Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Japan
| |
Collapse
|
31
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
32
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
33
|
Prikhodko VA, Sysoev YI, Gerasimova EV, Okovityi SV. Novel Chromone-Containing Allylmorpholines Induce Anxiolytic-like and Sedative Effects in Adult Zebrafish. Biomedicines 2022; 10:2783. [PMID: 36359303 PMCID: PMC9687339 DOI: 10.3390/biomedicines10112783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/30/2023] Open
Abstract
Chromone-containing allylmorpholines (CCAMs) are a novel class of compounds that have demonstrated acetyl- and butyryl-cholinesterase-inhibiting and N-methyl-D-aspartate (NMDA) receptor-blocking properties in vitro, but their in vivo pharmacological activity remains underexplored. In this work, we evaluated the psychotropic activity of five different CCAMs (1 (9a), 2 (9j), 3 (9l), 4 (33a), and 5 (33b)) using the novel tank test (NTT) and light/dark box (LDB) test in adult zebrafish. The CCAMs were screened in the NTT at a range of concentrations, and they were found to induce a dose-dependent sedative effect. Compound 4 (33a) was also evaluated using the LDB test, and it was found to have anxiolytic-like properties at low concentrations. To assess the potential contribution of the glutamate and cholinergic mechanisms in the effects of the CCAMs, we conducted experiments with pre-exposure to putative antagonists, NMDA and biperiden. Neither biperiden nor NMDA were able to diminish or cancel the effects of the CCAMs, countering the in vitro data obtained in previous studies. The apparent discrepancy could be related to the specifics of CCAM metabolism or to the interspecies differences between the putative target proteins, possibly due to the relatively low identity percentage of their sequences. Although further research in mammals is required in order to establish their pharmacological properties, novel CCAMs may represent an appealing group of psychoactive drug candidates.
Collapse
Affiliation(s)
- Veronika A. Prikhodko
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| | - Yuri I. Sysoev
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
- Laboratory of Neuromodulation of Motor and Visceral Functions, I.P. Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Department of Neurobiology, Sirius University of Science and Technology, 353340 Sochi, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Elena V. Gerasimova
- Department of Neurobiology, Sirius University of Science and Technology, 353340 Sochi, Russia
| | - Sergey V. Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical and Pharmaceutical University, 197376 Saint Petersburg, Russia
- Laboratory of Targeted Intra-Brain Drug Delivery, N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia
| |
Collapse
|
34
|
Bonan CD, Siebel AM. Editorial: Zebrafish as a model for pharmacological and toxicological research. Front Pharmacol 2022; 13:976970. [PMID: 36003523 PMCID: PMC9393701 DOI: 10.3389/fphar.2022.976970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- *Correspondence: Carla Denise Bonan, ,
| | - Anna Maria Siebel
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| |
Collapse
|
35
|
Rosa LV, Costa FV, Gonçalves FL, Rosemberg DB. Acetic acid-induced nociception modulates sociability in adult zebrafish: influence on shoaling behavior in heterogeneous groups and social preference. Behav Brain Res 2022; 434:114029. [PMID: 35907568 DOI: 10.1016/j.bbr.2022.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 11/02/2022]
Abstract
Due to the recognition of fishes as sentient beings, the zebrafish (Danio rerio) has become an emergent animal model system to investigate the biological processes of nocifensive responses. Here, we aimed to characterize the zebrafish social behavior in a nociception-based context. For this purpose, using a three-dimensional analysis of heterogeneous shoals, we investigated the main behavioral responses in two 6-min trials: before (baseline) and after a single intraperitoneal (i.p) injection of 10μL phosphate-buffered saline (PBS) (control), acetic acid 5% (AA), morphine 2.5mg/kg (MOR) or acetic acid 5% plus morphine 2.5mg/kg (AA+MOR) in one subject from a four-fish shoal. The social preference of individuals for tanks with shoals of fish treated with PBS, 5% AA, or to an empty aquarium were also tested. We verified that AA administration disrupted the shoal homogeneity by eliciting dispersion of the treated fish with simultaneous clustering of non-manipulated fish. Morphine coadministration protected against AA-induced behavioral changes. The social preference test revealed a clear preference to conspecifics (PBS and AA) over an empty tank. However, a prominent preference for PBS- over AA-treated shoal was verified. Overall, our novel findings show that nociception can modulate zebrafish sociability, possibly due to the visual recognition of nocifensive responses. Although future studies are needed to elucidate how nociception modulates zebrafish social behavior, our results contribute to improve the welfare assessment of zebrafish shoals under distinct experimental manipulations.
Collapse
Affiliation(s)
- Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | | | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
36
|
Adedara IA, Souza TP, Canzian J, Olabiyi AA, Borba JV, Biasuz E, Sabadin GR, Gonçalves FL, Costa FV, Schetinger MRC, Farombi EO, Rosemberg DB. Induction of aggression and anxiety-like responses by perfluorooctanoic acid is accompanied by modulation of cholinergic- and purinergic signaling-related parameters in adult zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113635. [PMID: 35605321 DOI: 10.1016/j.ecoenv.2022.113635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is a contaminant of global concern owing to its prevalent occurrence in aquatic and terrestrial environments with potential hazardous impact on living organisms. Here, we investigated the influence of realistic environmental concentrations of PFOA (0, 0.25, 0.5, or 1.0 mg/L) on relevant behaviors of adult zebrafish (Danio rerio) (e.g., exploration to novelty, social preference, and aggression) and the possible role of PFOA in modulating cholinergic and purinergic signaling in the brain after exposure for 7 consecutive days. PFOA significantly increased geotaxis as well as reduced vertical exploration (a behavioral endpoint for anxiety), and increased the frequency and duration of aggressive episodes without affecting their social preference. Exposure to PFOA did not affect ADP hydrolysis, whereas ATP and AMP hydrolysis were significantly increased at the highest concentration tested. However, AChE activity was markedly decreased in all PFOA-exposed groups when compared with control. In conclusion, PFOA induces aggression and anxiety-like behavior in adult zebrafish and modulates both cholinergic and purinergic signaling biomarkers. These novel data can provide valuable insights into possible health threats related to human activities, demonstrating the utility of adult zebrafish to elucidate how PFOA affects neurobehavioral responses in aquatic organisms.
Collapse
Affiliation(s)
- Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ayodeji A Olabiyi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Functional Food and Nutraceuticals Unit, Department of Medical Biochemistry, Afe Babalola University, Ado Ekiti, Nigeria
| | - João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Eduarda Biasuz
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Giovana R Sabadin
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria R C Schetinger
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
37
|
Baldin SL, de Pieri Pickler K, de Farias ACS, Bernardo HT, Scussel R, da Costa Pereira B, Pacheco SD, Dondossola ER, Machado-de-Ávila RA, Wanderley AG, Rico EP. Gallic acid modulates purine metabolism and oxidative stress induced by ethanol exposure in zebrafish brain. Purinergic Signal 2022; 18:307-315. [PMID: 35687211 DOI: 10.1007/s11302-022-09869-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Gallic acid (GA) is a secondary metabolite found in plants. It has the ability to cross the blood-brain barrier and, through scavenging properties, has a protective effect in a brain insult model. Alcohol metabolism generates reactive oxygen species (ROS); thus, alcohol abuse has a deleterious effect on the brain. The zebrafish is a vertebrate often used for screening toxic substances and in acute ethanol exposure models. The aim of this study was to evaluate whether GA pretreatment (24 h) prevents the changes induced by acute ethanol exposure (1 h) in the purinergic signaling pathway in the zebrafish brain via degradation of extracellular nucleotides and oxidative stress. The nucleotide cascade promoted by the nucleoside triphosphate diphosphohydrolase (NTPDase) and 5'-nucleotidase was assessed by quantifying nucleotide metabolism. The effect of GA alone at 5 and 10 mg L-1 did not change the nucleotide levels. Pretreatment with 10 mg L-1 GA prevented an ethanol-induced increase in ATP and ADP levels. No significant difference was found between the AMP levels of the two pretreatment groups. Pretreatment with 10 mg L-1 GA prevented ethanol-enhanced lipid peroxidation and dichlorodihydrofluorescein (DCFH) levels. The higher GA concentration was also shown to positively modulate against ethanol-induced effects on superoxide dismutase (SOD), but not on catalase (CAT). This study demonstrated that GA prevents the inhibitory effect of ethanol on NTPDase activity and oxidative stress parameters, thus consequently modulating nucleotide levels that may contribute to the possible protective effects induced by alcohol and purinergic signaling.
Collapse
Affiliation(s)
- Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Karolyne de Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ana Caroline Salvador de Farias
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Rahisa Scussel
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Suzielen Damin Pacheco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil
| | - Almir Gonçalves Wanderley
- Department of Pharmaceutical Sciences, Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, PE, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciuma, SC, Brazil. .,Laboratory of Translational Biomedicine Laboratory, University of Southern Santa Catarina (UNESC), Criciuma, Santa Catarina, Brazil.
| |
Collapse
|
38
|
Sahyoun C, Krezel W, Mattei C, Sabatier JM, Legros C, Fajloun Z, Rima M. Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom. BIOLOGY 2022; 11:biology11060888. [PMID: 35741410 PMCID: PMC9219918 DOI: 10.3390/biology11060888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Snake venoms are rich in molecules acting on different biological systems, and they are responsible for the complications following snake bite envenoming. These bioactive molecules are of interest in pharmaceutical industries as templates for drug design. Different biological activities of Montivipera bornmuelleri snake venom have been already studied; however, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Herein, we show that this venom induces toxicity on the nervous system and disrupts the cardiovascular system, highlighting a broad spectrum of biological activities. Abstract The complications following snake bite envenoming are due to the venom’s biological activities, which can act on different systems of the prey. These activities arise from the fact that snake venoms are rich in bioactive molecules, which are also of interest for designing drugs. The venom of Montivipera bornmuelleri, known as the Lebanon viper, has been shown to exert antibacterial, anticancer, and immunomodulatory effects. However, the venom’s activity on the nervous system has not yet been studied, and its effect on the cardiovascular system needs further investigation. Because zebrafish is a convenient model to study tissue alterations induced by toxic agents, we challenged it with the venom of Montivipera bornmuelleri. We show that this venom leads to developmental toxicity but not teratogenicity in zebrafish embryos. The venom also induces neurotoxic effects and disrupts the zebrafish cardiovascular system, leading to heartbeat rate reduction and hemorrhage. Our findings demonstrate the potential neurotoxicity and cardiotoxicity of M. bornmuelleri’s venom, suggesting a multitarget strategy during envenomation.
Collapse
Affiliation(s)
- Christina Sahyoun
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, University of Angers, 49000 Angers, France; (C.S.); (C.M.); (C.L.)
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 67400 Illkirch, France;
| | - César Mattei
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, University of Angers, 49000 Angers, France; (C.S.); (C.M.); (C.L.)
| | - Jean-Marc Sabatier
- CNRS, INP, Institute of Neurophysiopathology, Aix-Marseille University, 13385 Marseille, France
- Correspondence: (J.-M.S.); (Z.F.); (M.R.)
| | - Christian Legros
- INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, University of Angers, 49000 Angers, France; (C.S.); (C.M.); (C.L.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
- Department of Biology, Faculty of Sciences 3, Campus Michel Slayman, Lebanese University, Tripoli 1352, Lebanon
- Correspondence: (J.-M.S.); (Z.F.); (M.R.)
| | - Mohamad Rima
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 67400 Illkirch, France;
- Correspondence: (J.-M.S.); (Z.F.); (M.R.)
| |
Collapse
|
39
|
Faria M, Bellot M, Bedrossiantz J, Ramírez JRR, Prats E, Garcia-Reyero N, Gomez-Canela C, Mestres J, Rovira X, Barata C, Oliván LMG, Llebaria A, Raldua D. Environmental levels of carbaryl impair zebrafish larvae behaviour: The potential role of ADRA2B and HTR2B. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128563. [PMID: 35248961 DOI: 10.1016/j.jhazmat.2022.128563] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The insecticide carbaryl is commonly found in indirectly exposed freshwater ecosystems at low concentrations considered safe for fish communities. In this study, we showed that after only 24 h of exposure to environmental concentrations of carbaryl (0.066-660 ng/L), zebrafish larvae exhibit impairments in essential behaviours. Interestingly, the observed behavioural effects induced by carbaryl were acetylcholinesterase-independent. To elucidate the molecular initiating event that resulted in the observed behavioural effects, in silico predictions were followed by in vitro validation. We identified two target proteins that potentially interacted with carbaryl, the α2B adrenoceptor (ADRA2B) and the serotonin 2B receptor (HTR2B). Using a pharmacological approach, we then tested the hypothesis that carbaryl had antagonistic interactions with both receptors. Similar to yohimbine and SB204741, which are prototypic antagonists of ADRA2B and HTR2B, respectively, carbaryl increased the heart rate of zebrafish larvae. When we compared the behavioural effects of a 24-h exposure to these pharmacological antagonists with those of carbaryl, a high degree of similarity was found. These results strongly suggest that antagonism of both ADRA2B and HTR2B is the molecular initiating event that leads to adverse outcomes in zebrafish larvae that have undergone 24 h of exposure to environmentally relevant levels of carbaryl.
Collapse
Affiliation(s)
- Melissa Faria
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Jonathan Ricardo Rosas Ramírez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Natalia Garcia-Reyero
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Cristian Gomez-Canela
- Department of Analytical Chemistry and Applied (Chromatography section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Jordi Mestres
- Chemotargets, IMIM-Hospital del Mar, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Xavier Rovira
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain
| | - Leobardo Manuel Gómez Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
40
|
Im J, Eom HJ, Choi J. Effect of Early-Life Exposure of Polystyrene Microplastics on Behavior and DNA Methylation in Later Life Stage of Zebrafish. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:558-568. [PMID: 35469368 DOI: 10.1007/s00244-022-00924-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastic contamination has received increasing attention in recent years, and concern regarding the toxicity of microplastics to the environment and humans has increased. In this study, we investigated the neurodevelopmental toxicity of polystyrene microplastics (PSMPs) in the zebrafish Danio rerio under different exposure scenarios. Zebrafish were exposed to PSMPs during embryonic stage and then allowed the fish to recover. The neurodevelopmental toxic responses were investigated using fish behavior and behavior-related gene expression. Early-life exposure to PSMPs did not alter fish behavior at the early stage; however, it led to hyperactivity later life stage. Generally, oxidative stress (i.e., sod2 and nrf2a)- and nervous system (i.e., slc6a4b, npy, and nrbf2)-related gene expression increased in all PSMPs-exposed fish. DNA hypomethylation was observed in fish challenged for a second time using the same PSMPs. Taken together, the current results imply that PSMPs have neurodevelopmental toxic potential when introduced early in life.
Collapse
Affiliation(s)
- Jeongeun Im
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
41
|
Canzian J, Gonçalves FLS, Müller TE, Franscescon F, Santos LW, Adedara IA, Rosemberg DB. Zebrafish as a potential non-traditional model organism in translational bipolar disorder research: Genetic and behavioral insights. Neurosci Biobehav Rev 2022; 136:104620. [PMID: 35300991 DOI: 10.1016/j.neubiorev.2022.104620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 01/14/2023]
Abstract
Bipolar disorder (BD) is a severe and debilitating illness that affects 1-2% of the population worldwide. BD is characterized by recurrent and extreme mood swings, including mania/hypomania and depression. Animal experimental models have been used to elucidate the mechanisms underlying BD and different strategies have been proposed to assess BD-like symptoms. The zebrafish (Danio rerio) has been considered a suitable vertebrate system for modeling BD-like responses, due to the genetic tractability, molecular/physiological conservation, and well-characterized behavioral responses. In this review, we discuss how zebrafish-based models can be successfully used to understand molecular, biochemical, and behavioral alterations paralleling those found in BD. We also outline some advantages and limitations of this aquatic species to examine BD-like phenotypes in translational neurobehavioral research. Overall, we reinforce the use of zebrafish as a promising tool to investigate the neural basis associated with BD-like behaviors, which may foster the discovery of novel pharmacological therapies.
Collapse
Affiliation(s)
- Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Falco L S Gonçalves
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Laura W Santos
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
42
|
Zhang W, Fan R, Luo S, Liu Y, Jin Y, Li Y, Xiong M, Chen Y, Jia L, Yuan X. Combined effects of chlorpyrifos and cyfluthrin on neurobehavior and neurotransmitter levels in larval zebrafish. J Appl Toxicol 2022; 42:1662-1670. [PMID: 35470462 DOI: 10.1002/jat.4334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/27/2022] [Indexed: 11/10/2022]
Abstract
Chlorpyrifos and cyfluthrin are insecticides commonly used in agriculture. The mixed residues of chlorpyrifos and cyfluthrin in the aquatic environment may have combined effects on non-target species. Therefore, studying the combined toxic effects and mechanisms of pesticide mixtures is of great significance to environmental risk assessment. To evaluate the risk of combined exposure, we examined the effects of both compounds, separately and together, on motor activity, acetylcholinesterase (AChE) activity, and neurotransmitter levels in larval zebrafish. Chlorpyrifos exposure significantly reduced functional motor capacity (swim distance and velocity) and enhanced meandering, while cyfluthrin exposure alone had no significant effects on swim parameters. However, combined exposure significantly reduced total swimming distance and mean velocity, and increased meandering. Both compounds alone and the combination significantly reduced AChE activity, and the combined effect was antagonistic. Combined exposure also significantly altered the concentrations of serotonin, serotonin precursors, and dopamine precursors, as well as concentrations of the amino acid neurotransmitters glycine, alanine, and aspartic acid. Combined exposure to chlorpyrifos and cyfluthrin exhibited distinct joint action modes in terms of neurobehavior, AChE activity, and neurotransmitter levels, thereby providing an experimental basis for assessing the combined exposure to chlorpyrifos and cyfluthrin's environmental risk.
Collapse
Affiliation(s)
- Wanjun Zhang
- Center of Disease Control and Prevention, PLA, Beijing, PR China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ruiqi Fan
- Center of Disease Control and Prevention, PLA, Beijing, PR China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Sunlin Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Ying Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongpeng Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yongchen Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Mengqin Xiong
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Yiqiang Chen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, PR China
| | - Li Jia
- Center of Disease Control and Prevention, PLA, Beijing, PR China
| | - Xiaoyan Yuan
- Center of Disease Control and Prevention, PLA, Beijing, PR China.,School of Nursing and Health, Henan University, Kaifeng, PR China
| |
Collapse
|
43
|
Agues-Barbosa T, da Silva Junior FC, Gomes-de-Lima JN, Batistuzzo de Medeiros SR, Luchiari AC. Behavioral genetics of alcohol's effects in three zebrafish (Danio rerio) populations. Prog Neuropsychopharmacol Biol Psychiatry 2022; 114:110495. [PMID: 34915060 DOI: 10.1016/j.pnpbp.2021.110495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Alcohol abuse is one of the most dangerous and serious problems for patients and society. Interpopulation studies are important in understanding how genetic background contributes to the effects of alcohol. In this study, we applied a chronic alcohol exposure protocol in three zebrafish populations (Danio rerio; both sexes; AB, TU, and outbred fish - OB). We analyzed the behavioral responses and mRNA expression involved in neurotransmitter metabolism - th1, tph1, ache, ada1, gaba1, gad1b, and bdnf. Locomotion patterns were similar between populations (increased speed after acute alcohol and unaltered locomotion after chronic and withdrawal treatments). All populations exhibited increased expression of genes associated with locomotion (th1, gad1b, and gaba1) after acute alcohol exposure. Anxiety-like responses increased in AB and TU fish during withdrawal and decreased in AB fish after acute alcohol exposure. Genes related to anxiety-like behavior (tph1 and ada1) were overexpressed in AB and TU fish after acute and withdrawal treatments, while OB fish exhibited unaltered responses. Bdnf levels decreased during withdrawal in AB and OB fish, while TU showed upregulated levels in both chronic and withdrawal treatments. Our results suggest that zebrafish populations respond differently to alcohol exposure, which may contribute to understanding the mechanisms underlying alcohol use and dependence. Moreover, we found that a more diverse genetic background (OB) was related to higher variability in behavioral and mRNA expression, demonstrating that inbred populations (AB and TU) may be useful tools in identifying alcohol use and abuse mechanisms.
Collapse
Affiliation(s)
- Thais Agues-Barbosa
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil
| | | | | | | | - Ana Carolina Luchiari
- Department of Physiology & Behavior, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brazil.
| |
Collapse
|
44
|
Yang L, Guo H, Kuang Y, Yang H, Zhang X, Tang R, Li D, Li L. Neurotoxicity induced by combined exposure of microcystin-LR and nitrite in male zebrafish (Danio rerio): Effects of oxidant-antioxidant system and neurotransmitter system. Comp Biochem Physiol C Toxicol Pharmacol 2022; 253:109248. [PMID: 34826614 DOI: 10.1016/j.cbpc.2021.109248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
With the intensification of water eutrophication around the world, cyanobacterial blooms have been becoming a common environmental pollution problem. The levels of microcystin-LR (MC-LR) and nitrite rise sharply during the cyanobacterial bloom period, which may have potential joint toxicity on aquatic organisms. In this study, adult male zebrafish were immersed into different joint solutions of MC-LR (0, 3, 30 μg/L) and nitrite (0, 2, 20 mg/L) for 30 days to explore the neurotoxic effects and underlying mechanisms. The results showed that single factor MC-LR or nitrite caused a concentration-dependent damage in brain ultrastructure and the effects of their joint exposure were much more intense. Downregulated expression of mbp and bdnf associated with myelination of nerve fibers further confirmed that MC-LR and nitrite could damage the structure and function of neuron. The decreases in dopamine content, acetylcholinesterase activity and related gene mRNA levels indicated that MC-LR and nitrite adversely affected the normal function of the dopaminergic and cholinergic systems in zebrafish brain. In addition, the significant increase in malondialdehyde content suggested the occurrence of oxidative stress caused by MC-LR, nitrite and their joint-exposure, which paralleled a significant decrease in antioxidant enzyme‑manganese superoxide dismutase activity and its transcription level. In conclusion, MC-LR + Nitrite joint-exposure has synergistic neurotoxic effects on the structure and neurotransmitter systems of fish brain, and antioxidant capacity disruption caused by these two factors might be one of the underlying synergistic mechanisms. Therefore, there is a risk of being induced neurotoxicity in fish during sustained cyanobacterial bloom events.
Collapse
Affiliation(s)
- Liping Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Honghui Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yu Kuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hui Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xi Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, PR China; Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, PR China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PR China.
| |
Collapse
|
45
|
Bellot MS, Guermandi II, Camargo-dos-Santos B, Giaquinto PC. Differences in the Alcohol Preference Assessment of Shy and Bold Zebrafish. Front Behav Neurosci 2022; 16:810051. [PMID: 35283741 PMCID: PMC8907912 DOI: 10.3389/fnbeh.2022.810051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals differ in their preference for alcohol and propensity to develop alcoholism, where the behavioral profile, such as the bold-shy axis, plays an important role for such a difference. However, literature is limited and conflicting on the causes and consequences of this relationship. Translational studies using animal models, such as zebrafish, can help identify behavioral traits that predispose individuals to drink alcohol compulsively. Here, the preference for alcohol was investigated in two distinct traits in zebrafish: shy and bold. For this purpose, fish were separated into shy and bold traits and then a conditioned place preference paradigm was used, a strategy that allows the rewarding effects from alcohol to be assessed by the ability to enhance the animal’s preference for an environment that initially was not preferred. It was found that bold zebrafish actively searched for the environment that was paired to alcohol after one acute exposure, whereas, shy fish changed their place preference even without alcohol administration, showing that the conditioned place preference protocol, given the short amount time to assess place preference, is not ample enough for shy fish to choose. Our results show that behavioral profiles must be considered in further studies since differences between shy and bold individuals on preference behavior can strongly interfere in the assessment of drug preference, mainly when using the conditioned place preference paradigm.
Collapse
Affiliation(s)
- Marina Sanson Bellot
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center of Unesp, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Isabela Inforzato Guermandi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Bruno Camargo-dos-Santos
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center of Unesp, São Paulo State University, Jaboticabal, São Paulo, Brazil
| | - Percília Cardoso Giaquinto
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Aquaculture Center of Unesp, São Paulo State University, Jaboticabal, São Paulo, Brazil
- *Correspondence: Percília Cardoso Giaquinto,
| |
Collapse
|
46
|
Jiang N, Song P, Li X, Zhu L, Wang J, Yin X, Wang J. Dibutyl phthalate induced oxidative stress and genotoxicity on adult zebrafish (Danio rerio) brain. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127749. [PMID: 34844800 DOI: 10.1016/j.jhazmat.2021.127749] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most widely used plasticizers with a high concentration in the water. Although the toxicity of DBP on aquatic organisms has become a significant concern in recent years, the effects of DBP on zebrafish (Danio rerio) brain is poorly understood. This study investigated the toxic effects of DBP exposure for 7, 14, 21 and 28 days on zebrafish brain. The results showed that DBP significantly stimulated SOD and CAT activities, increasing MDA and 8-OHdG contents. On the 28th day, the AChE inhibition rates in 0.08, 0.4, 2 mg·L-1 treatment were 13.4%, 11.9%, 14.7%. The trend of Cu/Zn-sod gene variation was consistent with SOD activity, showing "inhibition-activation-inhibition". The expression of apoptotic genes (caspase-3, p53) showed "inhibition-activation-inhibition". The integrated biomarker response (IBR) results showed that the IBR values were 4.37, 7.18 and 9.63 in 0.08, 0.4 and 2 mg·L-1 group on the 28th day, presenting a "dose-response" relationship. These findings confirmed that low concentration of DBP induced oxidative damage and genotoxicity in zebrafish brain, which provided an effective toxicological basis for phthalate pollution. Based on above studies, it is of great significance for assessing the harmful effects of DBP with low concentration on aquatic organisms.
Collapse
Affiliation(s)
- Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China.
| | - Peipei Song
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712000, PR China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an 271000, PR China.
| |
Collapse
|
47
|
Dondossola ER, Pacheco SD, Visentin SC, Mendes NV, Baldin SL, Bernardo HT, Scussel R, Rico EP. Prolonged fluoride exposure alters neurotransmission and oxidative stress in the zebrafish brain. Neurotoxicology 2022; 89:92-98. [PMID: 35065950 DOI: 10.1016/j.neuro.2022.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Fluoride is an essential chemical found in dental preparations, pesticides and drinking water. Excessive fluoride exposure is related to toxicological and neurological disruption. Zebrafish are used in translational approaches to understand neurotoxicity in both biomedical and environmental areas. However, there is no complete knowledge about the cumulative effects of fluoride on neurotransmission systems. Therefore, the aim of this study was to evaluate whether prolonged exposure to sodium fluoride (NaF) alters cholinergic and glutamatergic systems and oxidative stress homeostasis in the zebrafish brain. Adult zebrafish were used, divided into four experimental groups, one control group and three groups exposed to NaF at 30, 50 and 100 mg.L-1 for a period of 30 days. After NaF at 30 mg.L-1 exposure, there were significant decreases in acetylcholinesterase (29.8%) and glutamate uptake (39.3%). Furthermore, thiobarbituric acid-reactive species were decreased at NaF 50 mg.L-1 (32.7%), while the group treated with NaF at 30 mg.L-1 showed an increase in dichlorodihydrofluorescein oxidation (41.4%). NaF at 30 mg.L-1 decreased both superoxide dismutase (55.3%) and catalase activities (26.1%). The inhibitory effect observed on cholinergic and glutamatergic signalling mechanisms could contribute to the neurodegenerative events promoted by NaF in the zebrafish brain.
Collapse
Affiliation(s)
- Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Suzielen Damin Pacheco
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Sulingue Casagrande Visentin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Niuany Viel Mendes
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Samira Leila Baldin
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Rahisa Scussel
- Experimental Physiology Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
48
|
Behavioral and histological features of zebrafish following sedation with eugenol or propofol. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Cararo JH, Rico EP. Long-lasting implications of embryonic exposure to alcohol: Insights from zebrafish research. Dev Neurobiol 2021; 82:29-40. [PMID: 34687497 DOI: 10.1002/dneu.22855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 11/08/2022]
Abstract
The harmful consumption of ethanol is associated with significant health problems and social burdens. This drug activates a complex network of reward mechanisms and habit formation learning that is supposed to contribute to the consumption of increasingly high and frequent amounts, ultimately leading to addiction. In the context of fetal alcohol spectrum disorders, fetal alcohol syndrome (FAS) is a consequence of the harmful use of alcohol during pregnancy, which affects the embryonic development of the fetus. FAS can be easily reproduced in zebrafish by exposing the embryos to different concentrations of ethanol in water. In this regard, the aim of the present review is to discuss the late pathological implications in zebrafish exposed to ethanol at the embryonic stage, providing information in the context of human fetal alcoholic spectrum disorders. Experimental FAS in zebrafish is associated with impairments in the metabolic, morphological, neurochemical, behavioral, and cognitive domains. Many of the pathways that are affected by ethanol in zebrafish have at least one ortholog in humans, collaborating with the wider adoption of zebrafish in studies on alcohol disorders. In fact, zebrafish present validities required for the study of these conditions, which contributes to the use of this species in research, in addition to studies with rodents.
Collapse
Affiliation(s)
- José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
50
|
He Y, Jia D, Du S, Zhu R, Zhou W, Pan S, Zhang Y. Toxicity of gabapentin-lactam on the early developmental stage of zebrafish (Danio rerio). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117649. [PMID: 34182397 DOI: 10.1016/j.envpol.2021.117649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Gabapentin-lactam (GBP-L) is a transformation product (TP) of gabapentin (GBP), a widely used anti-epileptic pharmaceutical. Due to its high persistence, GBP-L has been frequently detected in the surface water. However, the effects of GBP-L on aquatic organisms have not been thoroughly investigated. In the present study, zebrafish (Danio rerio) embryos as a model organism were used to study the impacts of GBP-L in terms of embryos LC50, spontaneous movement at 24 hpf (hours post fertilization), heartbeat rates at 48 hpf, and body length at 72 hpf, with the concentrations of GBP-L down to 0.01 μg/L, covering its environmental concentrations. Various biomarkers from nervous, antioxidant and immune systems of zebrafish larvae were analyzed, including acetylcholinesterase, acetylcholine, dopamine, gamma-aminobutyric acid, superoxide dismutase, catalase, glutathione S-transferase, C reactive protein, and lysozyme, to assess its toxicity on these systems. RT-qPCR was then used to further verify the results and explain the toxicological mechanism at the gene level. The results demonstrated that GBP-L is much more toxic than its parent compound, and could lead to adverse impacts on the aquatic organisms even at every low concentrations.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Dantong Jia
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Sen Du
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Rongwen Zhu
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Wei Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Shunlong Pan
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China.
| |
Collapse
|