1
|
Charge-Compensated Derivatives of Nido-Carborane. INORGANICS 2023. [DOI: 10.3390/inorganics11020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This review summarizes data on the main types of charge-compensated nido-carborane derivatives. Compared with organic analogs, onium derivatives of nido-carborane have increased stability due to the stabilizing electron-donor action of the boron cage. Charge-compensated derivatives are considered according to the type of heteroatom bonded to a boron atom.
Collapse
|
2
|
Yang L, Zhang Z, Bongsuiru Jei B, Ackermann L. Electrochemical Cage Activation of Carboranes. Angew Chem Int Ed Engl 2022; 61:e202200323. [PMID: 35148009 PMCID: PMC9310615 DOI: 10.1002/anie.202200323] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Carboranes are boron-carbon molecular clusters that possess unique properties, such as their icosahedron geometry, high boron content, and delocalized three-dimensional aromaticity. These features render carboranes valuable building blocks for applications in supramolecular design, nanomaterials, optoelectronics, organometallic coordination chemistry, and as boron neutron capture therapy (BNCT) agents. Despite tremendous progress in this field, stoichiometric chemical redox reagents are largely required for the oxidative activation of carborane cages. In this context, electrosyntheses represent an alternative strategy for more sustainable molecular syntheses. It is only in recent few years that considerable progress has been made in electrochemical cage functionalization of carboranes, which are summarized in this Minireview. We anticipate that electrocatalysis will serve as an increasingly powerful stimulus within the current renaissance of carborane electrochemistry.
Collapse
Affiliation(s)
- Long Yang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Zi‐Jing Zhang
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GottingenGermany
- Woehler Research Institute for Sustainable Chemistry (WISCh)Georg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
3
|
Yang L, Zhang ZJ, Jei BB, Ackermann L. Electrochemical Cage Activation of Carboranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Long Yang
- University of Göttingen: Georg-August-Universitat Gottingen IOBC GERMANY
| | - Zi-Jing Zhang
- University of Göttingen: Georg-August-Universitat Gottingen IOBC GERMANY
| | | | - Lutz Ackermann
- Georg-August-Universitaet Goettingen Institut fuer Organische und Biomolekulare Chemie Tammannstr. 2 37077 Goettingen GERMANY
| |
Collapse
|
4
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
5
|
Rudakov DA, Genaev AM, Dikusar EA, Zvereva TD, Zubreichuk ZP, Potkin VI. Halogenation and μH Tautomerism of 7-Benzyl-7,8-dicarba-nido-undecaborate(−1) Anion. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Abstract
Abstract
The halogens bromine and iodine have similar chemical properties and undergo similar reactions due to their closeness in Group 17 of the periodic chart. There are a number of bromine and iodine radionuclides that have properties useful for diagnosis and therapy of human diseases. The emission properties of radiobromine and radioiodine nuclides with half-lives longer than 1 h are summarized along with properties that make radionuclides useful in PET/SPECT imaging and β/Auger therapy, such that the reader can assess which of the radionuclides might be useful for medical applications. An overview of chemical approaches that have been used to radiolabel molecules with radiobromine and radioiodine nuclides is provided with examples. Further, references to a large variety of different organ/cancer-targeting agents utilizing the radiolabeling approaches described are provided.
Collapse
Affiliation(s)
- D. Scott Wilbur
- Department of Radiation Oncology, Box 355016 , University of Washington , 616 N.E. Northlake Place , Seattle, WA 98105 , USA
| | | |
Collapse
|
7
|
Milani S, Ghaemimanesh F, Salimi A, Hadavi R, Bayat AA, Alirezapour B, Rabbani H. Production and evaluation of a 67Ga-labeled anti-Ror1 monoclonal antibody in a mouse model of breast cancer. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5755-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Evaluation of HER2-specific peptide ligand for its employment as radiolabeled imaging probe. Sci Rep 2018; 8:2998. [PMID: 29445216 PMCID: PMC5812989 DOI: 10.1038/s41598-018-21283-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 02/01/2018] [Indexed: 01/19/2023] Open
Abstract
HER2 transmembrane receptor is an important target in immunotherapy treatment of breast and gastroesophageal cancer. Molecular imaging of HER2 expression may provide essential prognostic and predictive information concerning disseminated cancer and aid in selection of an optimal therapy. Radiolabeled low molecular weight peptide ligands are particularly attractive as probes for molecular imaging, since they reach and bind to the target and clear from non-target organs and blood stream faster than bulky antibodies. In this study, we evaluated a potential HER2-imaging probe, an A9 nonapeptide, derived from the trastuzumab-Fab portion. Its cellular uptake was investigated by mass spectrometry analysis of the cytoplasmic cellular extracts. Moreover, based on in-silico modeling, DTPA chelator was conjugated to N-terminus of A9. 111In-labeled A9 demonstrated nanomolar affinity to HER2-expressing BT474 cells and favorable biodistribution profile in NMRI mice. This study suggests that the peptide A9 represents a good lead candidate for development of molecular probe, to be used for imaging purposes and for the delivery of cytotoxic agents.
Collapse
|
9
|
Zhao L, Zhu M, Li Y, Xing Y, Zhao J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017; 22:E1350. [PMID: 28841180 PMCID: PMC6151832 DOI: 10.3390/molecules22091350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/10/2017] [Accepted: 08/10/2017] [Indexed: 12/11/2022] Open
Abstract
Recent advances in nuclear medicine have explored nanoscale carriers for targeted delivery of various radionuclides in specific manners to improve the effect of diagnosis and therapy of diseases. Due to the unique molecular architecture allowing facile attachment of targeting ligands and radionuclides, dendrimers provide versatile platforms in this filed to build abundant multifunctional radiolabeled nanoparticles for nuclear medicine applications. This review gives special focus to recent advances in dendrimer-based nuclear medicine agents for the imaging and treatment of cancer, cardiovascular and other diseases. Radiolabeling strategies for different radionuclides and several challenges involved in clinical translation of radiolabeled dendrimers are extensively discussed.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Meilin Zhu
- Basic Medical College, Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Yujie Li
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
10
|
Optimized preparation and preliminary evaluation of [64Cu]–DOTA–trastuzumab for targeting ErbB2/Neu expression. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1939-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Tiwari R, Toppino A, Agarwal HK, Huo T, Byun Y, Gallucci J, Hasabelnaby S, Khalil A, Goudah A, Baiocchi RA, Darby MV, Barth RF, Tjarks W. Synthesis, biological evaluation, and radioiodination of halogenated closo-carboranylthymidine analogues. Inorg Chem 2011; 51:629-39. [PMID: 22175713 DOI: 10.1021/ic202150b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The synthesis and initial biological evaluation of 3-carboranylthymidine analogues (3CTAs) that are (radio)halogenated at the closo-carborane cluster are described. Radiohalogenated 3CTAs have the potential to be used in the radiotherapy and imaging of cancer because they may be selectively entrapped in tumor cells through monophosphorylation by human thymidine kinase 1 (hTK1). Two strategies for the synthesis of a (127)I-labeled form of a specific 3CTA, previously designated as N5, are described: (1) direct iodination of N5 with iodine monochloride and aluminum chloride to obtain N5-(127)I and (2) initial monoiodination of o-carborane to 9-iodo-o-carborane followed by its functionalization to N5-(127)I. The former strategy produced N5-(127)I in low yields along with di-, tri-, and tetraiodinated N5 as well as decomposition products, whereas the latter method produced only N5-(127)I in high yields. N5-(127)I was subjected to nucleophilic halogen- and isotope-exchange reactions using Na(79/81)Br and Na(125)I, respectively, in the presence of Herrmann's catalyst to obtain N5-(79/81)Br and N5-(125)I, respectively. Two intermediate products formed using the second strategy, 1-(tert-butyldimethylsilyl)-9-iodo-o-carborane and 1-(tert-butyldimethylsilyl)-12-iodo-o-carborane, were subjected to X-ray diffraction studies to confirm that substitution at a single carbon atom of 9-iodo-o-carborane resulted in the formation of two structural isomers. To the best of our knowledge, this is the first report of halogen- and isotope-exchange reactions of B-halocarboranes that have been conjugated to a complex biomolecule. Human TK1 phosphorylation rates of N5, N5-(127)I, and N5-(79/81)Br ranged from 38.0% to 29.6% relative to that of thymidine, the endogenous hTK1 substrate. The in vitro uptake of N5, N5-(127)I, and N5-(79/81)Br in L929 TK1(+) cells was 2.0, 1.8, and 1.4 times greater than that in L929 TK1(-) cells.
Collapse
Affiliation(s)
- Rohit Tiwari
- Division of Medicinal Chemistry & Pharmacognosy, The Ohio State University, 500 West 12th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kong FL, Kim EE, Yang DJ. Targeted nuclear imaging of breast cancer: status of radiotracer development and clinical applications. Cancer Biother Radiopharm 2011; 27:105-12. [PMID: 21877909 DOI: 10.1089/cbr.2011.1025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Molecular imaging plays an important role in breast cancer diagnosis, staging, and treatment response evaluation. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are the main clinical molecular imaging modalities that are based on the detection of radiotracers. This article discusses the typical radiotracers used for breast cancer imaging by PET and SPECT. In addition, radiotracers that are currently applied for human breast cancer imaging or under clinical trials are also reviewed in compliance with the categories of tumor-specific targets to which they are aimed at.
Collapse
Affiliation(s)
- Fan-Lin Kong
- Department of Experimental Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| | | | | |
Collapse
|
13
|
Nagengast WB, Oude Munnink TH, Dijkers ECF, Hospers GAP, Brouwers AH, Schröder CP, Lub-de Hooge M, de Vries EGE. Multidrug resistance in oncology and beyond: from imaging of drug efflux pumps to cellular drug targets. Methods Mol Biol 2010; 596:15-31. [PMID: 19949918 DOI: 10.1007/978-1-60761-416-6_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such as P-glycoprotein (Pgp) and multidrug resistance-associated protein 1 (MRP1). Because of the hypothesis in the early eighties that blockade of these efflux pumps by modulators would improve the effect of chemotherapy, extensive effort has been put to visualize these pumps using nuclear imaging with several specific tracers, using both SPECT and PET techniques. The methods and possibilities to visualize these pumps in both the tumor and the blood-brain barrier will be discussed. Because of the fact that the addition of Pgp or MRP modulators has not shown any clinical benefit in patient outcome, these specific MDR tracers are not routinely used in clinical practice. Evidence emerges that combination of chemotherapeutic drugs involved in MDR with the so-called targeted agents can improve patient outcome. The concept of molecular imaging can also be used to visualize the targets for these agents, such as HER2/neu and angiogenic factors such as vascular endothelial growth factor (VEGF). Potentially visualizing molecular drug targets in the tumor can function as biomarkers to support treatment decision for the individual patient.
Collapse
Affiliation(s)
- Wouter B Nagengast
- Department of Medical Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Bénard F, Mavi A. Receptor Imaging in Patients with Breast Cancer. PET Clin 2009; 4:329-41. [DOI: 10.1016/j.cpet.2009.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Rudakov DA, Potkin VI, Lantsova IV. Halogenation and thiocyanation of the univalent anion of dodecahydro-7,8-dicarba-nido-undecaborate in a diaphragm electrochemical cell. RUSS J ELECTROCHEM+ 2009. [DOI: 10.1134/s1023193509070179] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Nayak TK, Brechbiel MW. Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 2009; 20:825-41. [PMID: 19125647 PMCID: PMC3397469 DOI: 10.1021/bc800299f] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radioimmunoimaging and therapy has been an area of interest for several decades. Steady progress has been made toward clinical translation of radiolabeled monoclonal antibodies for diagnosis and treatment of diseases. Tremendous advances have been made in imaging technologies such as positron emission tomography (PET). However, these advances have so far eluded routine translation into clinical radioimmunoimaging applications due to the mismatch between the short half-lives of routinely used positron-emitting radionuclides such as (18)F versus the pharmacokinetics of most intact monoclonal antibodies of interest. The lack of suitable positron-emitting radionuclides that match the pharmacokinetics of intact antibodies has generated interest in exploring the use of longer-lived positron emitters that are more suitable for radioimmunoimaging and dosimetry applications with intact monoclonal antibodies. In this review, we examine the opportunities and challenges of radioimmunoimaging with select longer-lived positron-emitting radionuclides such as (124)I, (89)Zr, and (86)Y with respect to radionuclide production, ease of radiolabeling intact antibodies, imaging characteristics, radiation dosimetry, and clinical translation potential.
Collapse
Affiliation(s)
- Tapan K. Nayak
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD-20892, USA
| | - Martin W. Brechbiel
- Radioimmune & Inorganic Chemistry Section, Radiation Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD-20892, USA
| |
Collapse
|
17
|
Sivaev IB, Bregadze VV. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur J Inorg Chem 2009. [DOI: 10.1002/ejic.200900003] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Igor B. Sivaev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow 119991, Russia, Fax: +7‐499‐1355085
| | - Vladimir V. Bregadze
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., Moscow 119991, Russia, Fax: +7‐499‐1355085
| |
Collapse
|
18
|
Persson M, Sivaev I, Winberg KJ, Gedda L, Malmström PU, Tolmachev V. In VitroEvaluation of Two Polyhedral Boron Anion Derivatives as Linkers for Attachment of Radioiodine to the Anti-HER2 Monoclonal Antibody Trastuzumab. Cancer Biother Radiopharm 2007; 22:585-96. [DOI: 10.1089/cbr.2006.338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mikael Persson
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Unit of Experimental Urology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Igor Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Uppsala University, Uppsala, Sweden
| | | | - Lars Gedda
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Unit of Experimental Urology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Per-Uno Malmström
- Unit of Experimental Urology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Chen WJ, Yen CL, Lo ST, Chen KT, Lo JM. Direct 99m Tc labeling of Herceptin (trastuzumab) by 99m Tc(I) tricarbonyl ion. Appl Radiat Isot 2007; 66:340-5. [PMID: 17996452 DOI: 10.1016/j.apradiso.2007.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/01/2007] [Accepted: 09/11/2007] [Indexed: 02/01/2023]
Abstract
By simply incubating Herceptin (trastuzumab) with [99m Tc(CO)3(OH2)3]+ ion in saline, a significant yield of 99m Tc-labeled trastuzumab was found to be achievable. The effective labeling may be based on that trastuzumab is inherent with endogenous histidine group to which 99m Tc(I) tricarbonyl ion can be strongly bound. For practical 99m Tc labeling processing, trastuzumab was purified beforehand from the commercial product, Herceptin (Genentech) via size exclusion chromatography to remove the excipient, alpha-histidine and a high-labeled yield could be obtained by incubating the purified trastuzumab with [99m Tc(CO)3(OH2)3]+. Retention of bioactivity of the 99m Tc(I)-labeled trastuzumab was validated using a cell binding test.
Collapse
Affiliation(s)
- Wan-Jou Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 2007; 35:186-208. [PMID: 17846765 DOI: 10.1007/s00259-007-0560-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 07/20/2007] [Indexed: 12/23/2022]
Abstract
The human epidermal growth factor receptor (HER) family of receptor tyrosine kinases controls critical pathways involved in epithelial cell differentiation, growth, division, and motility. Alterations and disruptions in the function of the HER-kinase axis can lead to malignancy. Many therapeutic agents targeting the HER-kinase axis are approved for clinical use or are in preclinical/clinical development. The ability to quantitatively image the HER-kinase axis in a noninvasive manner can aid in lesion detection, patient stratification, new drug development/validation, dose optimization, and treatment monitoring. This review summarizes the current status in multimodality imaging of the HER-kinase axis using PET, SPECT, optical, and MR imaging. The targeting ligands used include small-molecule tyrosine kinase inhibitors, peptides, proteins, antibodies, and engineered antibody fragments. EGFR and HER2 imaging have been well documented in the past, and imaging of HER3, HER4, HER heterodimers, and HER-kinase mutants deserves significant research effort in the future. Successful development of new HER-kinase-targeted imaging agents with optimal in vivo stability, targeting efficacy, and desirable pharmacokinetics for clinical translation will enable maximum benefit in cancer patient management.
Collapse
Affiliation(s)
- Weibo Cai
- The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford University School of Medicine, 1201 Welch Rd, P095, Stanford, CA 94305-5484, USA.
| | | | | |
Collapse
|
21
|
Wilbur DS, Chyan MK, Hamlin DK, Vessella RL, Wedge TJ, Hawthorne MF. Reagents for astatination of biomolecules. 2. Conjugation of anionic boron cage pendant groups to a protein provides a method for direct labeling that is stable to in vivo deastatination. Bioconjug Chem 2007; 18:1226-40. [PMID: 17583925 DOI: 10.1021/bc060345s] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer-targeting biomolecules labeled with 211At must be stable to in vivo deastatination, as control of the 211At distribution is critical due to the highly toxic nature of alpha-particle emission. Unfortunately, no astatinated aryl conjugates have shown in vivo stability toward deastatination when (relatively) rapidly metabolized proteins, such as monoclonal antibody Fab' fragments, are labeled. As a means of increasing the in vivo stability of 211At-labeled proteins, we have been investigating antibody conjugates of boron cage moieties. In this investigation, protein-reactive derivatives containing a nido-carborane (2), a bis-nido-carborane derivative (Venus Flytrap Complex, 3), and four 2-nonahydro-closo-decaborate(2-) derivatives (4-7) were prepared and conjugated with an antibody Fab' fragment such that subsequent astatination and in vivo tissue distributions could be obtained. To aid in determination of stability toward in vivo deastatination, the Fab'-borane conjugates were also labeled with 125I, and that material was coinjected with the 211At-labeled Fab'. For comparison, direct labeling of the Fab' with 125I and 211At was conducted. Direct labeling with Na[125I]I and Chloramine-T gave an 89% radiochemical yield. However, direct labeling of the Fab' with Na[211At]At and Chloramine-T resulted in a yield of <1% after quenching with NaS2O5. As another comparison, the same Fab' was conjugated with p-[211At]astatobenzoate NHS ester, [211At]1c-Fab', and (separately) with p-[125I]iodobenzoate NHS ester, [125I]1b-Fab'. An evaluation in athymic mice demonstrated that [211At]1c-Fab' underwent deastatination. In contrast, the high in vivo stability of [125I]1b-Fab' allowed it to be used as a tracer control for the natural distribution of Fab'. Although found to be much more stable in vivo than [211At]1c-Fab', the biodistributions of nido-carborane conjugated Fab' ([125I]2-Fab'/ [211At]2-Fab') and the bis-nido-carborane (VFC) ([125I]3-Fab'/[211At]3-Fab') had very different in vivo distributions than the control [125I]1b-Fab'. Biodistributions of closo-decaborate(2-) conjugates ([125I]4-Fab'/[211At]4-Fab', [125I]6-Fab'/[211At]6-Fab', and [125I]7-Fab'/[211At]7-Fab') demonstrated that they were stable to in vivo deastatination and had distributions similar to that of the control [125I]1b-Fab'. In contrast, a benzyl-modified closo-decaborate(2-) derivative evaluated in vivo ([125I]5-Fab'/[211At]5-Fab') had a very different tissue distribution from the control. This study has shown that astatinated protein conjugates of closo-decaborate(2-) are quite stable to in vivo deastatination and that some derivatives have little effect on the distribution of Fab'. Additionally, direct 211At labeling of Fab' conjugated with closo-decaborate(2-) derivatives provide very high (e.g., 58-75%) radiochemical yields. However, in vivo data also indicate that the closo-decaborate(2-) may cause some retention of radioactivity in the liver. Studies to optimize the closo-decaborate(2-) conjugates for protein labeling are underway.
Collapse
Affiliation(s)
- D Scott Wilbur
- Department of Radiation Oncology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Tjarks W, Tiwari R, Byun Y, Narayanasamy S, Barth RF. Carboranyl thymidine analogues for neutron capture therapy. Chem Commun (Camb) 2007:4978-91. [DOI: 10.1039/b707257k] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Welch MJ, Laforest R, Lewis JS. Production of non-standard PET radionuclides and the application of radiopharmaceuticals labeled with these nuclides. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2006:159-81. [PMID: 17172155 DOI: 10.1007/978-3-540-49527-7_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The field of positron emission tomography (PET) has expanded dramatically over recent years. In spite of this expansion the large majority of clinical studies are carried out utilizing one radiopharmaceutical-2-fluoro-2-deoxyglucose. Many research groups are developing novel radiopharmaceuticals. A major emphasis is on other agents labeled with 18F. Several other positron emitting radionuclides can be prepared in high yields in small biomedical cyclotrons. Some of these have half-lives that make delivery significantly easier than the delivery of 18F compounds. These radionuclides include: 64Cu (half life 12.7 h), 76Br (half life 16.2 h), 86Y (half life 14.74 h) and 124I (half life 4.2 days). The method of production of these and other 'non-standard' PET radionuclides will be discussed and the method of labeling radiopharmaceuticals with these radionuclides described. Several of these radiopharmaceuticals have been studied in animal models as well and a limited number translated to the human situation.
Collapse
Affiliation(s)
- M J Welch
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | |
Collapse
|
24
|
Björke H, Andersson K. Automated, high-resolution cellular retention and uptake studies in vitro. Appl Radiat Isot 2006; 64:901-5. [PMID: 16618544 DOI: 10.1016/j.apradiso.2006.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/17/2006] [Accepted: 03/07/2006] [Indexed: 11/30/2022]
Abstract
This report describes an automated method for the measurements of cellular retention and uptake of radiolabeled proteins interacting with cell-surface receptors on intact cancer cells. A complete uptake and retention measurement was performed in one cell dish using a rotating radioimmunoassay (RIA) principle. Compared to common manual measurements, rotating RIA saved both labor time and reagents and provided real-time binding traces with superior time-resolution. The rotating RIA retention profiles for different interactions agreed with retention times reported in the literature.
Collapse
Affiliation(s)
- Henrik Björke
- Division of Biomedical Radiation Sciences, Uppsala University, Sweden
| | | |
Collapse
|
25
|
Mume E, Orlova A, Larsson B, Nilsson AS, Nilsson FY, Sjöberg S, Tolmachev V. Evaluation of ((4-hydroxyphenyl)ethyl)maleimide for site-specific radiobromination of anti-HER2 affibody. Bioconjug Chem 2006; 16:1547-55. [PMID: 16287254 DOI: 10.1021/bc050056o] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Affibody molecules are a new class of small phage-display selected proteins using a scaffold domain of the bacterial receptor protein A. They can be selected for specific binding to a large variety of protein targets. An affibody molecule binding with high affinity to a tumor antigen HER2 was recently developed for radionuclide diagnostics and therapy in vivo. The use of the positron-emitting nuclide (76)Br (T(1/2) = 16.2 h) could improve the sensitivity of detection of HER2-expressing tumors. A site-specific radiobromination of a cysteine-containing variant of the anti-HER2 affibody, (Z(HER2:4))(2)-Cys, using ((4-hydroxyphenyl)ethyl)maleimide (HPEM), was evaluated in this study. It was found that HPEM can be radiobrominated with an efficiency of 83 +/- 0.4% and thereafter coupled to freshly reduced affibody with a yield of 65.3 +/- 3.9%. A "one-pot" labeling enabled the radiochemical purity of the conjugate to exceed 97%. The label was stable against challenge with large excess of nonlabeled bromide and in a high molar strength solution. In vitro cell tests demonstrated that radiobrominated affibody binds specifically to the HER2-expressing cell-line, SK-OV-3. Biodistribution studies in nude mice bearing SK-OV-3 xenografts have shown tumor accumulation of 4.8 +/- 2.2% IA/g and good tumor-to-normal tissue ratios.
Collapse
Affiliation(s)
- Eskender Mume
- Department of Chemistry, Organic Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
26
|
Mume E, Orlova A, Malmström PU, Lundqvist H, Sjöberg S, Tolmachev V. Radiobromination of humanized anti-HER2 monoclonal antibody trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate, a potential label for immunoPET. Nucl Med Biol 2006; 32:613-22. [PMID: 16026708 DOI: 10.1016/j.nucmedbio.2005.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/17/2005] [Accepted: 04/17/2005] [Indexed: 11/24/2022]
Abstract
Combining the specificity of radioimmunoscintigraphy and the high sensitivity of PET in an in vivo detection technique could improve the quality of nuclear diagnostics. Positron-emitting nuclide (76)Br (T(1/2)=16.2 h) might be a possible candidate for labeling monoclonal antibodies (mAbs) and their fragments, provided that the appropriate labeling chemistry has been established. For internalizing antibodies, such as the humanized anti-HER2 monoclonal antibody, trastuzumab, radiobromine label should be residualizing, i.e., ensuring that radiocatabolites are trapped intracellularly after the proteolytic degradation of antibody. This study evaluated the chemistry of indirect radiobromination of trastuzumab using N-succinimidyl 5-(tributylstannyl)-3-pyridinecarboxylate. Literature data indicated that the use of this method provided residualizing properties for iodine and astatine labels on some antibodies. An optimized "one-pot" procedure produced an overall labeling efficiency of 45.5+/-1.2% over 15 min. The bromine label was stable under physiological and denaturing conditions. The labeled trastuzumab retained its capacity to bind specifically to HER2-expressing SKOV-3 ovarian carcinoma cells in vitro (immunoreactivity more than 75%). However, in vitro cell test did not demonstrate that the radiobromination of trastuzumab using N-succinimidyl 5-bromo-3-pyridinecarboxylate improves cellular retention of radioactivity in comparison with the use of N-succinimidyl 4-bromobenzoate.
Collapse
Affiliation(s)
- Eskender Mume
- Organic Chemistry, Department of Chemistry, Uppsala University, S-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Wuest F. Aspects of positron emission tomography radiochemistry as relevant for food chemistry. Amino Acids 2005; 29:323-39. [PMID: 15997412 DOI: 10.1007/s00726-005-0201-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2004] [Accepted: 02/07/2005] [Indexed: 11/24/2022]
Abstract
Positron emission tomography (PET) is a medical imaging technique using compounds labelled with short-lived positron emitting radioisotopes to obtain functional information of physiological, biochemical and pharmacological processes in vivo. The need to understand the potential link between the ingestion of individual dietary agents and the effect of health promotion or health risk requires the exact metabolic characterization of food ingredients in vivo. This exciting but rather new research field of PET would provide new insights and perspectives on food chemistry by assessing quantitative information on pharmocokinetics and pharmacodynamics of food ingredients and dietary agents. To fully exploit PET technology in food chemistry appropriately radiolabelled compounds as relevant for food sciences are needed. The most widely used short-lived positron emitters are (11)C (t(1/2) = 20.4 min) and (18)F (t(1/2) = 109.8 min). Longer-lived radioisotopes are available by using (76)Br (t(1/2) = 16.2 h) and (124)I (t(1/2) = 4.12 d). The present review article tries to discuss some aspects for the radiolabelling of food ingredients and dietary agents either by means of isotopic labelling with (11)C or via prosthetic group labelling approaches using the positron emitting halogens (18)F, (76)Br and (124)I.
Collapse
Affiliation(s)
- F Wuest
- Positron Emission Tomography Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, Dresden, Germany.
| |
Collapse
|
28
|
Electrochemical thiocyanation of dodecahydro-7,8-dicarba-nido-undecaborate and 7,8-dimethyldecahydro-7,8-dicarba-nido-undecaborate monoanions. Russ Chem Bull 2005. [DOI: 10.1007/s11172-006-0009-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Tang Y, Wang J, Scollard DA, Mondal H, Holloway C, Kahn HJ, Reilly RM. Imaging of HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice using 111In-trastuzumab (Herceptin) Fab fragments. Nucl Med Biol 2005; 32:51-8. [PMID: 15691661 DOI: 10.1016/j.nucmedbio.2004.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2004] [Revised: 07/26/2004] [Accepted: 08/07/2004] [Indexed: 11/20/2022]
Abstract
Trastuzumab (Herceptin) Fab were prepared by digestion of intact IgG with immobilized papain, derivatized with diethylenetriaminepentaacetic acid (DTPA) and radiolabeled with (111)In. The dissociation constant (Kd) for binding of Fab to HER2/neu-positive SK-BR-3 human breast cancer cells was two- to threefold higher than for intact IgG (14-36 vs. 8-14 nM). The binding affinity was not significantly decreased after DTPA derivatization (Kd=47 nM). (111)In-trastuzumab Fab localized specifically in HER2/neu-positive BT-474 human breast cancer xenografts in athymic mice with tumor uptake of 7.8+/-0.7% injected dose (ID)/g and tumor/blood ratio of 25.2+/-1.6 at 72 h postinjection compared with 2.7+/-0.7% ID/g and 7.0+/-0.9 for (111)In-HuM195 anti-CD33 Fab (significantly different, P<.001). Small (3-5 mm in diameter) BT-474 tumors were imaged with (111)In-trastuzumab Fab as early as 24 h postinjection.
Collapse
Affiliation(s)
- Ying Tang
- Division of Nuclear Medicine, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | | | | | | | | | | | | |
Collapse
|