1
|
Garofalo M, De Simone G, Motta Z, Nuzzo T, De Grandis E, Bruno C, Boeri S, Riccio MP, Pastore L, Bravaccio C, Iasevoli F, Salvatore F, Pollegioni L, Errico F, de Bartolomeis A, Usiello A. Decreased free D-aspartate levels in the blood serum of patients with schizophrenia. Front Psychiatry 2024; 15:1408175. [PMID: 39050919 PMCID: PMC11266155 DOI: 10.3389/fpsyt.2024.1408175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Schizophrenia (SCZ) and autism spectrum disorder (ASD) are neurodevelopmental diseases characterized by different psychopathological manifestations and divergent clinical trajectories. Various alterations at glutamatergic synapses have been reported in both disorders, including abnormal NMDA and metabotropic receptor signaling. Methods We conducted a bicentric study to assess the blood serum levels of NMDA receptors-related glutamatergic amino acids and their precursors, including L-glutamate, L-glutamine, D-aspartate, L-aspartate, L-asparagine, D-serine, L-serine and glycine, in ASD, SCZ patients and their respective control subjects. Specifically, the SCZ patients were subdivided into treatment-resistant and non-treatment-resistant SCZ patients, based on their responsivity to conventional antipsychotics. Results D-serine and D-aspartate serum reductions were found in SCZ patients compared to controls. Conversely, no significant differences between cases and controls were found in amino acid concentrations in the two ASD cohorts analyzed. Discussion This result further encourages future research to evaluate the predictive role of selected D-amino acids as peripheral markers for SCZ pathophysiology and diagnosis.
Collapse
Affiliation(s)
- Martina Garofalo
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Zoraide Motta
- ”The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Tommaso Nuzzo
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Elisa De Grandis
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
| | - Claudio Bruno
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
- Center of Translational and Experimental Myology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Silvia Boeri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal, and Child Health - DINOGMI, University of Genoa, Genoa, Italy
| | - Maria Pia Riccio
- Department of Maternal and Child Health, Unità Operativa semplice di Dipartimento (UOSD) of Child and Adolescent Psychiatry, Azienda Ospedaliera Universitaria (AOU) Federico II, Naples, Italy
| | - Lucio Pastore
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Naples, Italy
| | - Carmela Bravaccio
- Department of Medical and Translational Sciences, Child Neuropsychiatry, Federico II University, Napoli, Italy
| | - Felice Iasevoli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Francesco Salvatore
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Centro Interuniversitario per Malattie Multigeniche e Multifattoriali e loro Modelli Animali (Federico II, Naples; Tor Vergata, Rome and “G. D’Annunzio”, Chieti-Pescara), Naples, Italy
| | - Loredano Pollegioni
- ”The Protein Factory 2.0”, Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell’Insubria, Varese, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Portici, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences and Odontostomatology, University Medical School of Naples “Federico II”, Naples, Italy
| | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate “Franco Salvatore”, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania “Luigi Vanvitelli”, Caserta, Italy
| |
Collapse
|
2
|
Uzun Uysal E, Tomruk NB, Çakır Şen C, Yıldızhan E. D-serine and D-amino acid oxidase levels in patients with schizophrenia spectrum disorders in the first episode and 6-month follow-up. J Psychiatr Res 2024; 175:123-130. [PMID: 38728915 DOI: 10.1016/j.jpsychires.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND D-serine and the D-amino acid oxidase (DAO) enzyme, which breaks down d-amino acids, may be involved in the pathophysiology of schizophrenia by affecting the N-methyl-D-aspartate (NMDA) receptor. The exact role of D-serine and DAO, as well as the consequences of increased DAO activity in patients with schizophrenia, remain unclear. We aimed to investigate D-serine and DAO levels in patients with first-episode schizophrenia spectrum disorders before treatment and after six months of treatment. METHOD Comparisons for the serum levels of D-serine and DAO were made between 81 healthy controls and 89 patients with first-episode schizophrenia spectrum disorders without a history of treatment. Further comparisons were made after 6 months for changes in these levels in the 41 patients in follow-up. The Positive and Negative Syndrome Scale (PANNS), Calgary Scale for Depression in Schizophrenia (CDSS), Montreal Cognitive Assessment Scale (MoCA), Global Assessment Scale (GAS), and Clinical Global Impression Scale (CGI) were used to evaluate the symptom severity and functionality. Secondary results included comparisons related to antipsychotic equivalent doses. RESULTS Before treatment, patients had significantly lower levels of D-serine, DAO, and D-serine/DAO ratio compared to healthy individuals (p < 0.001; p < 0.001; p = 0.004). DAO and D-serine levels of the patients were higher after six months of treatment (p = 0.025; p = 0.001). There was correlation of DAO levels with antipsychotic dosage and with PANSS negative and total subscale scores (rho = 0.421, p = 0.01; rho = 0.280, p = 0.008; rho = 0.371, p = 0.000). No correlation was found between serum D-serine level, DAO level, and the D-serine/DAO ratio with cognitive function. CONCLUSIONS The results suggest that D-serine and DAO may play a role that is sensitive to treatment effects in schizophrenia spectrum disorders. To gain a more comprehensive understanding of the impact antipsychotic drugs have on NMDA receptor dysfunction, there is a requirement for studies that directly evaluates the activity of the DAO enzyme.
Collapse
Affiliation(s)
- Eda Uzun Uysal
- Arnavutkoy State Hospital, Department of Psychiatry, Istanbul, Turkey.
| | - Nesrin Buket Tomruk
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Cansu Çakır Şen
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| | - Eren Yıldızhan
- Bakırköy Research and Training Hospital for Psychiatry, Neurology and Neurosurgery, Department of Psychiatry, Istanbul, Turkey
| |
Collapse
|
3
|
Imarisio A, Yahyavi I, Avenali M, Di Maio A, Buongarzone G, Galandra C, Picascia M, Filosa A, Gasparri C, Monti MC, Rondanelli M, Pacchetti C, Errico F, Valente EM, Usiello A. Blood D-serine levels correlate with aging and dopaminergic treatment in Parkinson's disease. Neurobiol Dis 2024; 192:106413. [PMID: 38253208 DOI: 10.1016/j.nbd.2024.106413] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
We recently described increased D- and L-serine concentrations in the striatum of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, the post-mortem caudate-putamen of human Parkinson's disease (PD) brains and the cerebrospinal fluid (CSF) of de novo living PD patients. However, data regarding blood D- and L-serine levels in PD are scarce. Here, we investigated whether the serum profile of D- and L-serine, as well as the other glutamate N-methyl-D-aspartate ionotropic receptor (NMDAR)-related amino acids, (i) differs between PD patients and healthy controls (HC) and (ii) correlates with clinical-demographic features and levodopa equivalent daily dose (LEDD) in PD. Eighty-three consecutive PD patients and forty-one HC were enrolled. PD cohort underwent an extensive clinical characterization. Serum levels of D- and L-serine, L-glutamate, L-glutamine, L-aspartate, L-asparagine and glycine were determined using High Performance Liquid Chromatography. In age- and sex-adjusted analyses, no differences emerged in the serum levels of D-serine, L-serine and other NMDAR-related amino acids between PD and HC. However, we found that D-serine and D-/Total serine ratio positively correlated with age in PD but not in HC, and also with PD age at onset. Moreover, we found that higher LEDD correlated with lower levels of D-serine and the other excitatory amino acids. Following these results, the addition of LEDD as covariate in the analyses disclosed a selective significant increase of D-serine in PD compared to HC (Δ ≈ 38%). Overall, these findings suggest that serum D-serine and D-/Total serine may represent a valuable biochemical signature of PD.
Collapse
Affiliation(s)
- Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Isar Yahyavi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Micol Avenali
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Anna Di Maio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Gabriele Buongarzone
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Caterina Galandra
- Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Marta Picascia
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Asia Filosa
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona "Istituto Santa Margherita", University of Pavia, 27100 Pavia, Italy
| | - Maria Cristina Monti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudio Pacchetti
- Parkinson's Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Francesco Errico
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Department of Agricultural Sciences, University of Naples "Federico II", 80055 Portici, Italy
| | - Enza Maria Valente
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100 Pavia, Italy.
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", 81100 Caserta, Italy; CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| |
Collapse
|
4
|
Lee A, Henderson R, Aylward J, McCombe P. Gut Symptoms, Gut Dysbiosis and Gut-Derived Toxins in ALS. Int J Mol Sci 2024; 25:1871. [PMID: 38339149 PMCID: PMC10856138 DOI: 10.3390/ijms25031871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Many pathogenetic mechanisms have been proposed for amyotrophic lateral sclerosis (ALS). Recently, there have been emerging suggestions of a possible role for the gut microbiota. Gut microbiota have a range of functions and could influence ALS by several mechanisms. Here, we review the possible role of gut-derived neurotoxins/excitotoxins. We review the evidence of gut symptoms and gut dysbiosis in ALS. We then examine a possible role for gut-derived toxins by reviewing the evidence that these molecules are toxic to the central nervous system, evidence of their association with ALS, the existence of biochemical pathways by which these molecules could be produced by the gut microbiota and existence of mechanisms of transport from the gut to the blood and brain. We then present evidence that there are increased levels of these toxins in the blood of some ALS patients. We review the effects of therapies that attempt to alter the gut microbiota or ameliorate the biochemical effects of gut toxins. It is possible that gut dysbiosis contributes to elevated levels of toxins and that these could potentially contribute to ALS pathogenesis, but more work is required.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
| | - Robert Henderson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - James Aylward
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| | - Pamela McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; (R.H.); (P.M.)
- Department of Neurology, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4029, Australia
- Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD 4066, Australia;
| |
Collapse
|
5
|
Ma S, Xin H, Zhao P, Feng S, Chen J, Yin S, Wei Y, Shi Y, Jin G, Di X, Zhang H. Comprehensive Stereoselectivity Assessment of Toxicokinetics, Tissue Distribution, Cytotoxicity, and Environmental Fate of Chiral Pesticide Propiconazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19760-19771. [PMID: 38036940 DOI: 10.1021/acs.jafc.3c05340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Propiconazole (PRO) has been widely used in the treatment of fungal infection in fruits, vegetables, cereals, and seeds. In this study, a newly established chiral liquid chromatography tandem mass spectrometry method was applied to the systemic stereoselectivity evaluation of PRO enantiomers, including toxicokinetics, tissue distributions, cytotoxicity, accumulation, and degradation. Our results showed that both trans (+)-2S,4S-PRO and cis (-)-2S,4R-PRO had lower Cmax and AUC0-∞ and higher CLz/F values in plasma and lower accumulation concentrations in the liver, heart, and brain. In cytotoxic assays, cis (-)-2S,4R-PRO exhibited the lowest cytotoxicity in PC12 neuronal, N9 microglia, SH-SY5Y neuroblastoma, and MRC5 lung fibroblast cell lines. Moreover, the Eisenia fetida incubation experiment revealed that the accumulations of both trans (+)-2S,4S-PRO and cis (-)-2S,4R-PRO were higher than those of their antipodes in E. fetida. In summary, our findings first suggested that the application of cis (-)-2S,4R-PRO for agriculture would hugely reduce the environmental risk.
Collapse
Affiliation(s)
- Siman Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Xin
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengfei Zhao
- Department of Clinical Pharmacy, Weifang People's Hospital, Weifang 261031, People's Republic of China
| | - Shiwen Feng
- School of Veterinary and Agriculture Sciences, The University of Melbourne, Victoria 3010, Australia
| | - Jialin Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiliang Yin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Yanan Wei
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yitong Shi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ge Jin
- School of Pharmacy, Shenyang Medical College, Shenyang 110034, China
| | - Xin Di
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hong Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Dyakin VV, Uversky VN. Arrow of Time, Entropy, and Protein Folding: Holistic View on Biochirality. Int J Mol Sci 2022; 23:ijms23073687. [PMID: 35409047 PMCID: PMC8998916 DOI: 10.3390/ijms23073687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Chirality is a universal phenomenon, embracing the space–time domains of non-organic and organic nature. The biological time arrow, evident in the aging of proteins and organisms, should be linked to the prevalent biomolecular chirality. This hypothesis drives our exploration of protein aging, in relation to the biological aging of an organism. Recent advances in the chirality discrimination methods and theoretical considerations of the non-equilibrium thermodynamics clarify the fundamental issues, concerning the biphasic, alternative, and stepwise changes in the conformational entropy associated with protein folding. Living cells represent open, non-equilibrium, self-organizing, and dissipative systems. The non-equilibrium thermodynamics of cell biology are determined by utilizing the energy stored, transferred, and released, via adenosine triphosphate (ATP). At the protein level, the synthesis of a homochiral polypeptide chain of L-amino acids (L-AAs) represents the first state in the evolution of the dynamic non-equilibrium state of the system. At the next step the non-equilibrium state of a protein-centric system is supported and amended by a broad set of posttranslational modifications (PTMs). The enzymatic phosphorylation, being the most abundant and ATP-driven form of PTMs, illustrates the principal significance of the energy-coupling, in maintaining and reshaping the system. However, the physiological functions of phosphorylation are under the permanent risk of being compromised by spontaneous racemization. Therefore, the major distinct steps in protein-centric aging include the biosynthesis of a polypeptide chain, protein folding assisted by the system of PTMs, and age-dependent spontaneous protein racemization and degradation. To the best of our knowledge, we are the first to pay attention to the biphasic, alternative, and stepwise changes in the conformational entropy of protein folding. The broader view on protein folding, including the impact of spontaneous racemization, will help in the goal-oriented experimental design in the field of chiral proteomics.
Collapse
Affiliation(s)
- Victor V. Dyakin
- Virtual Reality Perception Lab (VRPL), The Nathan S. Kline Institute for Psychiatric Research (NKI), 140 Old Orangeburg Road, Bldg, 35, Orangeburg, NY 10962, USA
- Correspondence:
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC07, Tampa, FL 33612, USA;
| |
Collapse
|
7
|
d-Amino Acids and pLG72 in Alzheimer's Disease and Schizophrenia. Int J Mol Sci 2021; 22:ijms222010917. [PMID: 34681579 PMCID: PMC8535920 DOI: 10.3390/ijms222010917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
Numerous studies over the last several years have shown that d-amino acids, especially d-serine, have been related to brain and neurological disorders. Acknowledged neurological functions of d-amino acids include neurotransmission and learning and memory functions through modulating N-methyl-d-aspartate type glutamate receptors (NMDARs). Aberrant d-amino acids level and polymorphisms of genes related to d-amino acids metabolism are associated with neurodegenerative brain conditions. This review summarizes the roles of d-amino acids and pLG72, also known as d-amino acid oxidase activator, on two neurodegenerative disorders, schizophrenia and Alzheimer’s disease (AD). The scope includes the changes in d-amino acids levels, gene polymorphisms of G72 genomics, and the role of pLG72 on NMDARs and mitochondria in schizophrenia and AD. The clinical diagnostic value of d-amino acids and pLG72 and the therapeutic importance are also reviewed.
Collapse
|
8
|
Pollegioni L, Molla G, Sacchi S, Murtas G. Human D-aspartate Oxidase: A Key Player in D-aspartate Metabolism. Front Mol Biosci 2021; 8:689719. [PMID: 34250021 PMCID: PMC8260693 DOI: 10.3389/fmolb.2021.689719] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
In recent years, the D-enantiomers of amino acids have been recognized as natural molecules present in all kingdoms, playing a variety of biological roles. In humans, d-serine and d-aspartate attracted attention for their presence in the central nervous system. Here, we focus on d-aspartate, which is involved in glutamatergic neurotransmission and the synthesis of various hormones. The biosynthesis of d-aspartate is still obscure, while its degradation is due to the peroxisomal flavin adenine dinucleotide (FAD)-containing enzyme d-aspartate oxidase. d-Aspartate emergence is strictly controlled: levels decrease in brain within the first days of life while increasing in endocrine glands postnatally and through adulthood. The human d-aspartate oxidase (hDASPO) belongs to the d-amino acid oxidase-like family: its tertiary structure closely resembles that of human d-amino acid oxidase (hDAAO), the enzyme that degrades neutral and basic d-amino acids. The structure-function relationships of the physiological isoform of hDASPO (named hDASPO_341) and the regulation of gene expression and distribution and properties of the longer isoform hDASPO_369 have all been recently elucidated. Beyond the substrate preference, hDASPO and hDAAO also differ in kinetic efficiency, FAD-binding affinity, pH profile, and oligomeric state. Such differences suggest that evolution diverged to create two different ways to modulate d-aspartate and d-serine levels in the human brain. Current knowledge about hDASPO is shedding light on the molecular mechanisms underlying the modulation of d-aspartate levels in human tissues and is pushing novel, targeted therapeutic strategies. Now, it has been proposed that dysfunction in NMDA receptor-mediated neurotransmission is caused by disrupted d-aspartate metabolism in the nervous system during the onset of various disorders (such as schizophrenia): the design of suitable hDASPO inhibitors aimed at increasing d-aspartate levels thus represents a novel and useful form of therapy.
Collapse
Affiliation(s)
- Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Gianluca Molla
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
9
|
Usiello A, Di Fiore MM, De Rosa A, Falvo S, Errico F, Santillo A, Nuzzo T, Chieffi Baccari G. New Evidence on the Role of D-Aspartate Metabolism in Regulating Brain and Endocrine System Physiology: From Preclinical Observations to Clinical Applications. Int J Mol Sci 2020; 21:E8718. [PMID: 33218144 PMCID: PMC7698810 DOI: 10.3390/ijms21228718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
The endogenous amino acids serine and aspartate occur at high concentrations in free D-form in mammalian organs, including the central nervous system and endocrine glands. D-serine (D-Ser) is largely localized in the forebrain structures throughout pre and postnatal life. Pharmacologically, D-Ser plays a functional role by acting as an endogenous coagonist at N-methyl-D-aspartate receptors (NMDARs). Less is known about the role of free D-aspartate (D-Asp) in mammals. Notably, D-Asp has a specific temporal pattern of occurrence. In fact, free D-Asp is abundant during prenatal life and decreases greatly after birth in concomitance with the postnatal onset of D-Asp oxidase expression, which is the only enzyme known to control endogenous levels of this molecule. Conversely, in the endocrine system, D-Asp concentrations enhance after birth during its functional development, thereby suggesting an involvement of the amino acid in the regulation of hormone biosynthesis. The substantial binding affinity for the NMDAR glutamate site has led us to investigate the in vivo implications of D-Asp on NMDAR-mediated responses. Herein we review the physiological function of free D-Asp and of its metabolizing enzyme in regulating the functions of the brain and of the neuroendocrine system based on recent genetic and pharmacological human and animal studies.
Collapse
Affiliation(s)
- Alessandro Usiello
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Maria Maddalena Di Fiore
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Arianna De Rosa
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Falvo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Francesco Errico
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Via Università, 100, 80055 Portici, Italy;
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| | - Tommaso Nuzzo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
- CEINGE Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Napoli, Italy;
| | - Gabriella Chieffi Baccari
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania «L. Vanvitelli», Via Vivaldi 43, 81100 Caserta, Italy; (M.M.D.F.); (S.F.); (A.S.); (T.N.)
| |
Collapse
|
10
|
Lee A, Arachchige BJ, Henderson R, Pow D, Reed S, Aylward J, McCombe PA. Elevated plasma levels of D-serine in some patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2020; 22:206-210. [PMID: 33908331 DOI: 10.1080/21678421.2020.1832120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
D-serine is an endogenous co-agonist with glutamate for activation of the N-methyl-D-aspartate receptor (NMDAR). D-serine exacerbates neuronal death and is elevated in the spinal cord from patients with sporadic/familial ALS. The present study was undertaken to examine whether plasma levels of D-serine of patients with ALS are different from those of healthy controls. Levels of D-serine in plasma (30 patients and 30 controls) were measured by high-performance liquid chromatography mass spectrometry. Plasma levels of D-serine in ALS patients (mean 39.27 ± 28.61 ng/ml) were significantly higher (p = 0.0293) than those of healthy control subjects (mean 21.07 ± 14.03 ng/ml) as well as previously reported values for healthy controls; ∼43% of patients had plasma D-serine levels that were 2 to 4-folds higher than those of controls. There was no association of plasma D-serine levels with disability, the duration of disease or with the age of subjects. In conclusion, we show that D-serine levels are elevated in the plasma of some ALS patients. Since D-serine serves as a co-agonist/activator of NMDAR, increases in D-serine could have a direct influence on glutamatergic neurotransmission and potentially contribute to excitotoxicity in some ALS patients.
Collapse
Affiliation(s)
- Aven Lee
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | | | - Robert Henderson
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia and
| | - David Pow
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - Sarah Reed
- Mass Spectrometry Facility, Centre for Clinical Research, The University of Queensland, Brisbane, Australia
| | - James Aylward
- Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| | - Pamela Ann McCombe
- Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Wesley Medical Research, The Wesley Hospital, Auchenflower, Australia
| |
Collapse
|
11
|
Xiong B, Zhang W, Zhang L, Huang X, Zhou W, Zou Q, Manyande A, Wang J, Tian Y, Tian X. Hippocampal glutamatergic synapses impairment mediated novel-object recognition dysfunction in rats with neuropathic pain. Pain 2020; 161:1824-1836. [PMID: 32701842 DOI: 10.1097/j.pain.0000000000001878] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive impairment is one of the most common complications associated with chronic pain. Almost 20% of chronic pain patients suffer from cognitive impairment, which may substantially influence their quality of life. Levels of major excitatory neurotransmitters in the central nervous system and alterations in the glutamatergic system may influence cognitive function and the pain sensory pathway. In this study, we adopted the spared nerve injury model to establish the progress of chronic pain and investigated the mechanism underlying the cognitive aspect related to it. At behavioral level, using the novel-object recognition test, mechanical hypersensitivity was observed in peripheral nerve-injured rats because they exhibited recognition deficits. We showed a dramatic decrease in hippocampal glutamate concentration using nuclear magnetic resonance and reduced glutamatergic synaptic transmission using whole-cell recordings. These were associated with deficient hippocampal long-term potentiation induced by high-frequency stimulation of the Schaffer collateral afferent. Ultra-high-performance liquid chromatography revealed lower levels of D-serine in the hippocampus of the spared nerve injury rats and that D-serine treatment could restore synaptic plasticity and cognitive dysfunction. The reduction of excitatory synapses was also increased by administering D-serine. These findings suggest that chronic pain has a critical effect on synaptic plasticity linked to cognitive function and may built up a new target for the development of cognitive impairment under chronic pain conditions.
Collapse
Affiliation(s)
- Bingrui Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Longqing Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xian Huang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenchang Zhou
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, United Kingdom
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Radaelli A, Gruetter R, Yoshihara HAI. In vivo detection of d-amino acid oxidase with hyperpolarized d-[1- 13 C]alanine. NMR IN BIOMEDICINE 2020; 33:e4303. [PMID: 32325540 DOI: 10.1002/nbm.4303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/19/2020] [Accepted: 03/07/2020] [Indexed: 06/11/2023]
Abstract
d-amino acid oxidase (DAO) is a peroxisomal enzyme that catalyzes the oxidative deamination of several neutral and basic d-amino acids to their corresponding α-keto acids. In most mammalian species studied, high DAO activity is found in the kidney, liver, brain and polymorphonuclear leukocytes, and its main function is to maintain low circulating d-amino acid levels. DAO expression and activity have been associated with acute and chronic kidney diseases and with several pathologies related to N-methyl-d-aspartate (NMDA) receptor hypo/hyper-function; however, its precise role is not completely understood. In the present study we show that DAO activity can be detected in vivo in the rat kidney using hyperpolarized d-[1-13 C]alanine. Following a bolus of hyperpolarized d-alanine, accumulation of pyruvate, lactate and bicarbonate was observed only when DAO activity was not inhibited. The measured lactate-to-d-alanine ratio was comparable to the values measured when the l-enantiomer was injected. Metabolites downstream of DAO were not observed when scanning the liver and brain. The conversion of hyperpolarized d-[1-13 C]alanine to lactate and pyruvate was detected in blood ex vivo, and lactate and bicarbonate were detected on scanning the blood pool in the heart in vivo; however, the bicarbonate-to-d-alanine ratio was significantly lower compared with the kidney. These results demonstrate that the specific metabolism of the two enantiomers of hyperpolarized [1-13 C]alanine in the kidney and in the blood can be distinguished, underscoring the potential of d-[1-13 C]alanine as a probe of d-amino acid metabolism.
Collapse
Affiliation(s)
- Alice Radaelli
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
13
|
Soh PXY, Marin Cely JM, Mortlock SA, Jara CJ, Booth R, Natera S, Roessner U, Crossett B, Cordwell S, Singh Khatkar M, Williamson P. Genome-wide association studies of 74 plasma metabolites of German shepherd dogs reveal two metabolites associated with genes encoding their enzymes. Metabolomics 2019; 15:123. [PMID: 31493001 DOI: 10.1007/s11306-019-1586-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION German shepherd dogs (GSDs) are a popular breed affected by numerous disorders. Few studies have explored genetic variations that influence canine blood metabolite levels. OBJECTIVES To investigate genetic variants affecting the natural metabolite variation in GSDs. METHODS A total of 82 healthy GSDs were genotyped on the Illumina CanineHD Beadchip, assaying 173,650 markers. For each dog, 74 metabolites were measured through liquid and gas chromatography mass spectrometry (LC-MS and GC-MS) and were used as phenotypes for genome-wide association analyses (GWAS). Sliding window and homozygosity analyses were conducted to fine-map regions of interest, and to identify haplotypes and gene dosage effects. RESULTS Summary statistics for 74 metabolites in this population of GSDs are reported. Forty-one metabolites had significant associations at a false discovery rate of 0.05. Two associations were located around genes which encode for enzymes for the relevant metabolites: 4-hydroxyproline was significantly associated to D-amino acid oxidase (DAO), and threonine to L-threonine 3-dehydrogenase (LOC477365). Three of the top ten haplotypes associated to 4-hydroxyproline included at least one SNP on DAO. These haplotypes occurred only in dogs with the highest 15 measurements of 4-hydroxyproline, ranging in frequency from 16.67 to 20%. None of the dogs were homozygous for these haplotypes. The top two haplotypes associated to threonine included SNPs on LOC477365 and were also overrepresented in dogs with the highest 15 measurements of threonine. These haplotypes occurred at a frequency of 90%, with 80% of these dogs homozygous for the haplotypes. In dogs with the lowest 15 measurements of threonine, the haplotypes occurred at a frequency of 26.67% and 0% homozygosity. CONCLUSION DAO and LOC477365 were identified as candidate genes affecting the natural plasma concentration of 4-hydroxyproline and threonine, respectively. Further investigations are needed to validate the effects of the variants on these genes.
Collapse
Affiliation(s)
- Pamela Xing Yi Soh
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Juliana Maria Marin Cely
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Sally-Anne Mortlock
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Christopher James Jara
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Rachel Booth
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
| | - Siria Natera
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, University of Melbourne, Parkville, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Stuart Cordwell
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia
- Sydney Mass Spectrometry, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - Mehar Singh Khatkar
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - Peter Williamson
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, Australia.
| |
Collapse
|
14
|
Panizzutti R, Fisher M, Garrett C, Man WH, Sena W, Madeira C, Vinogradov S. Association between increased serum d-serine and cognitive gains induced by intensive cognitive training in schizophrenia. Schizophr Res 2019; 207:63-69. [PMID: 29699895 PMCID: PMC9770102 DOI: 10.1016/j.schres.2018.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 04/01/2018] [Accepted: 04/04/2018] [Indexed: 02/04/2023]
Abstract
Neuroscience-guided cognitive training induces significant improvement in cognition in schizophrenia subjects, but the biological mechanisms associated with these changes are unknown. In animals, intensive cognitive activity induces increased brain levels of the NMDA-receptor co-agonist d-serine, a molecular system that plays a role in learning-induced neuroplasticity and that may be hypoactive in schizophrenia. Here, we investigated whether training-induced gains in cognition were associated with increases in serum d-serine in outpatients with schizophrenia. Ninety patients with schizophrenia and 53 healthy controls were assessed on baseline serum d-serine, l-serine, and glycine. Schizophrenia subjects performed neurocognitive tests and were assigned to 50 h of either cognitive training of auditory processing systems (N = 47) or a computer games control condition (N = 43), followed by reassessment of cognition and serum amino acids. At study entry, the mean serum d-serine level was significantly lower in schizophrenia subjects vs. healthy subjects, while the glycine levels were significantly higher. There were no significant changes in these measures at a group level after the intervention. However, in the active training group, increased d-serine was significantly and positively correlated with improvements in global cognition and in Verbal Learning. No such associations were observed in the computer games control subjects, and no such associations were found for glycine. d-Serine may be involved in the neurophysiologic changes induced by cognitive training in schizophrenia. Pharmacologic strategies that target d-serine co-agonism of NMDA-receptor functioning may provide a mechanism for enhancing the behavioral effects of intensive cognitive training.
Collapse
Affiliation(s)
- Rogerio Panizzutti
- W.M. Keck Foundation Center for Integrative Neurosciences, 675 Nelson Rising Lane, San Francisco, CA, USA; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitaria, Rio de Janeiro, RJ, Brazil; Instituto de Psiquiatria, Universidade Federal do Rio de Janeiro, Av. Venceslau Braz, 71, Rio de Janeiro, RJ, Brazil; Department of Psychiatry, UCSF School of Medicine, 982 Mission St, San Francisco, CA, USA.
| | - Melissa Fisher
- Department of Psychiatry, University of Minnesota, United States
| | - Coleman Garrett
- Department of Psychiatry, School of Medicine, University of California, San Francisco, CA
| | - Wai Hong Man
- Department of Psychiatry, School of Medicine, University of California, San Francisco, CA
| | - Walter Sena
- Biomedical Sciences Institute and Psychiatry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caroline Madeira
- Biomedical Sciences Institute and Psychiatry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
15
|
Abstract
Natural and nonnatural amino acids represent important building blocks for the development of peptidomimetic scaffolds, especially for targeting proteolytic enzymes and for addressing protein–protein interactions. Among all the different amino acids derivatives, proline is particularly relevant in chemical biology and medicinal chemistry due to its secondary structure’s inducing and stabilizing properties. Also, the pyrrolidine ring is a conformationally constrained template that can direct appendages into specific clefts of the enzyme binding site. Thus, many papers have appeared in the literature focusing on the use of proline and its derivatives as scaffolds for medicinal chemistry applications. In this review paper, an insight into the different biological outcomes of d-proline and l-proline in enzyme inhibitors is presented, especially when associated with matrix metalloprotease and metallo-β-lactamase enzymes.
Collapse
|
16
|
Errico F, Nuzzo T, Carella M, Bertolino A, Usiello A. The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Front Psychiatry 2018; 9:559. [PMID: 30459655 PMCID: PMC6232865 DOI: 10.3389/fpsyt.2018.00559] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Besides d-serine, another d-amino acid with endogenous occurrence in the mammalian brain, d-aspartate, has been recently shown to influence NMDA receptor (NMDAR)-mediated transmission. d-aspartate is present in the brain at extracellular level in nanomolar concentrations, binds to the agonist site of NMDARs and activates this subclass of glutamate receptors. Along with its direct effect on NMDARs, d-aspartate can also evoke considerable l-glutamate release in specific brain areas through the presynaptic activation of NMDA, AMPA/kainate and mGlu5 receptors. d-aspartate is enriched in the embryonic brain of rodents and humans and its concentration strongly decreases after birth, due to the post-natal expression of the catabolising enzyme d-aspartate oxidase (DDO). Based on the hypothesis of NMDAR hypofunction in schizophrenia pathogenesis, recent preclinical and clinical studies suggested a relationship between perturbation of d-aspartate metabolism and this psychiatric disorder. Consistently, neurophysiological and behavioral characterization of Ddo knockout (Ddo -/-) and d-aspartate-treated mice highlighted that abnormally higher endogenous d-aspartate levels significantly increase NMDAR-mediated synaptic plasticity, neuronal spine density and memory. Remarkably, increased d-aspartate levels influence schizophrenia-like phenotypes in rodents, as indicated by improved fronto-hippocampal connectivity, attenuated prepulse inhibition deficits and reduced activation of neuronal circuitry induced by phencyclidine exposure. In healthy humans, a genetic polymorphism associated with reduced prefrontal DDO gene expression predicts changes in prefrontal phenotypes including greater gray matter volume and enhanced functional activity during working memory. Moreover, neurochemical detections in post-mortem brain of schizophrenia-affected patients have shown significantly reduced d-aspartate content in prefrontal regions, associated with increased DDO mRNA expression or DDO enzymatic activity. Overall, these findings suggest a possible involvement of dysregulated embryonic d-aspartate metabolism in schizophrenia pathophysiology and, in turn, highlight the potential use of free d-aspartate supplementation as a new add-on therapy for treating the cognitive symptoms of this mental illness.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
17
|
MacKay MAB, Paylor JW, Wong JTF, Winship IR, Baker GB, Dursun SM. Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front Psychiatry 2018; 9:537. [PMID: 30425662 PMCID: PMC6218602 DOI: 10.3389/fpsyt.2018.00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a very complex syndrome that involves widespread brain multi-dysconnectivity. Neural circuits within specific brain regions and their links to corresponding regions are abnormal in the illness. Theoretical models of dysconnectivity and the investigation of connectomics and brain network organization have been examined in schizophrenia since the early nineteenth century. In more recent years, advancements have been achieved with the development of neuroimaging tools that have provided further clues to the structural and functional organization of the brain and global neural networks in the illness. Neural circuitry that extends across prefrontal, temporal and parietal areas of the cortex as well as limbic and other subcortical brain regions is disrupted in schizophrenia. As a result, many patients have a poor response to antipsychotic treatment and treatment failure is common. Treatment resistance that is specific to positive, negative, and cognitive domains of the illness may be related to distinct circuit phenotypes unique to treatment-refractory disease. Currently, there are no customized neural circuit-specific and targeted therapies that address this neural dysconnectivity. Investigation of targeted therapeutics that addresses particular areas of substantial regional dysconnectivity is an intriguing approach to precision medicine in schizophrenia. This review examines current findings of system and circuit-level brain dysconnectivity in treatment-resistant schizophrenia based on neuroimaging studies. Within a connectome context, on-off circuit connectivity synonymous with excitatory and inhibitory neuronal pathways is discussed. Mechanistic cellular, neurochemical and molecular studies are included with specific emphasis given to cell pathology and synaptic communication in glutamatergic and GABAergic systems. In this review we attempt to deconstruct how augmenting treatments may be applied within a circuit context to improve circuit integration and treatment response. Clinical studies that have used a variety of glutamate receptor and GABA interneuron modulators, nitric oxide-based therapies and a variety of other strategies as augmenting treatments with antipsychotic drugs are included. This review supports the idea that the methodical mapping of system-level networks to both on (excitatory) and off (inhibitory) cellular circuits specific to treatment-resistant disease may be a logical and productive approach in directing future research toward the advancement of targeted pharmacotherapeutics in schizophrenia.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - John W Paylor
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - James T F Wong
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Abstract
More than half a century ago researchers thought that D-amino acids had a minor function compared to L-enantiomers in biological processes. Many evidences have shown that D-amino acids are present in high concentration in microorganisms, plants, mammals and humans and fulfil specific biological functions. In the brain of mammals, D-serine (D-Ser) acts as a co-agonist of the N-methyl-D-aspartate (NMDA)-type glutamate receptors, responsible for learning, memory and behaviour. D-Ser metabolism is relevant for disorders associated with an altered function of the NMDA receptor, such as schizophrenia, ischemia, epilepsy and neurodegenerative disorders. On the other hand, D-aspartate (D-Asp) is one of the major regulators of adult neurogenesis and plays an important role in the development of endocrine function. D-Asp is present in the neuroendocrine and endocrine tissues and testes, and regulates the synthesis and secretion of hormones and spermatogenesis. Also food proteins contain D-amino acids that are naturally originated or processing-induced under conditions such as high temperatures, acid and alkali treatments and fermentation processes. The presence of D-amino acids in dairy products denotes thermal and alkaline treatments and microbial contamination. Two enzymes are involved in the metabolism of D-amino acids: amino acid racemase in the synthesis and D-amino acid oxidase in the degradation.
Collapse
|
19
|
Sacchi S, Novellis VD, Paolone G, Nuzzo T, Iannotta M, Belardo C, Squillace M, Bolognesi P, Rosini E, Motta Z, Frassineti M, Bertolino A, Pollegioni L, Morari M, Maione S, Errico F, Usiello A. Olanzapine, but not clozapine, increases glutamate release in the prefrontal cortex of freely moving mice by inhibiting D-aspartate oxidase activity. Sci Rep 2017; 7:46288. [PMID: 28393897 PMCID: PMC5385520 DOI: 10.1038/srep46288] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
D-aspartate levels in the brain are regulated by the catabolic enzyme D-aspartate oxidase (DDO). D-aspartate activates NMDA receptors, and influences brain connectivity and behaviors relevant to schizophrenia in animal models. In addition, recent evidence reported a significant reduction of D-aspartate levels in the post-mortem brain of schizophrenia-affected patients, associated to higher DDO activity. In the present work, microdialysis experiments in freely moving mice revealed that exogenously administered D-aspartate efficiently cross the blood brain barrier and stimulates L-glutamate efflux in the prefrontal cortex (PFC). Consistently, D-aspartate was able to evoke L-glutamate release in a preparation of cortical synaptosomes through presynaptic stimulation of NMDA, mGlu5 and AMPA/kainate receptors. In support of a potential therapeutic relevance of D-aspartate metabolism in schizophrenia, in vitro enzymatic assays revealed that the second-generation antipsychotic olanzapine, differently to clozapine, chlorpromazine, haloperidol, bupropion, fluoxetine and amitriptyline, inhibits the human DDO activity. In line with in vitro evidence, chronic systemic administration of olanzapine induces a significant extracellular release of D-aspartate and L-glutamate in the PFC of freely moving mice, which is suppressed in Ddo knockout animals. These results suggest that the second-generation antipsychotic olanzapine, through the inhibition of DDO activity, increases L-glutamate release in the PFC of treated mice.
Collapse
Affiliation(s)
- Silvia Sacchi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, 20131, Milano, Italy
| | - Vito De Novellis
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Giovanna Paolone
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Tommaso Nuzzo
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), 81100, Caserta, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Marta Squillace
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy
| | - Paolo Bolognesi
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Elena Rosini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, 20131, Milano, Italy
| | - Zoraide Motta
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy
| | - Martina Frassineti
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, 70121, Bari, Italy
| | - Loredano Pollegioni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell'Insubria, 21100, Varese, Italy.,The Protein Factory, Politecnico di Milano and Università degli studi dell'Insubria, 20131, Milano, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara and National Institute of Neuroscience, 44100, Ferrara, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology, The Second University of Naples (SUN), 80138, Naples, Italy
| | - Francesco Errico
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, 80145, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples (SUN), 81100, Caserta, Italy
| |
Collapse
|
20
|
Vollero A, Imperiali FG, Cinquetti R, Margheritis E, Peres A, Bossi E. The D-amino acid transport by the invertebrate SLC6 transporters KAAT1 and CAATCH1 from Manduca sexta. Physiol Rep 2016; 4:4/4/e12691. [PMID: 26884475 PMCID: PMC4759042 DOI: 10.14814/phy2.12691] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ability of the SLC6 family members, the insect neutral amino acid cotransporter KAAT1(K+‐coupled amino acid transporter 1) and its homologous CAATCH1(cation anion activated amino acid transporter/channel), to transport D‐amino acids has been investigated through heterologous expression in Xenopus laevis oocytes and electrophysiological techniques. In the presence of D‐isomers of leucine, serine, and proline, the msKAAT1 generates inward, transport‐associated, currents with variable relative potencies, depending on the driving ion Na+ or K+. Higher concentrations of D‐leucine (≥1 mmol/L) give rise to an anomalous response that suggests the existence of a second binding site with inhibitory action on the transport process. msCAATCH1 is also able to transport the D‐amino acids tested, including D‐leucine, whereas L‐leucine acts as a blocker. A similar behavior is exhibited by the KAAT1 mutant S308T, confirming the relevance of the residue in this position in L‐leucine binding and the different interaction of D‐leucine with residues involved in transport mechanism. D‐leucine and D‐serine on various vertebrate orthologs B0AT1 (SLC6A19) elicited only a very small current and singular behavior was not observed, indicating that it is specific of the insect neutral amino acid transporters. These findings highlight the relevance of D‐amino acid absorption in the insect nutrition and metabolism and may provide new evidences in the molecular transport mechanism of SLC6 family.
Collapse
Affiliation(s)
- Alessandra Vollero
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Francesca G Imperiali
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Raffaella Cinquetti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Eleonora Margheritis
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Antonio Peres
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy Interuniversity Center "The ProteinFactory", Politecnico di Milano, ICRM-CNR Milano and Università dell'Insubria, Milan, Italy
| |
Collapse
|
21
|
Li X, McCullum C, Zhao S, Hu H, Liu YM. D-serine uptake and release in PC-12 cells measured by chiral microchip electrophoresis-mass spectrometry. ACS Chem Neurosci 2015; 6:582-7. [PMID: 25611520 DOI: 10.1021/cn5003122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Previous work has established that D-serine (D-Ser) plays important roles in certain neurological processes. Study on its uptake/storage and release by neuronal cells is highly significant for elucidating relevant mechanisms. In this work, PC-12 cells were incubated with racemic Ser (100 μM each enantiomer). After incubation, both intra- and extracellular levels of D-Ser and L-Ser were quantified by chiral microchip electrophoresis with mass spectrometric detection. It was found the cells preferably took up D-Ser over L-Ser. After 120 min incubation, D-Ser percentage ([D-Ser]/([D-Ser] + [L-Ser]) in the culture media changed from 50% to 9% while inside the cells it increased from 13% to 67%. Small neutral amino acids such as threonine impaired D-Ser uptake. Ser release was studied by using PC-12 cells preloaded with D-Ser. KCl, Glu, and Gly evoked Ser release. Interestingly, while depolarization by KCl evoked release of Ser as a D-Ser/L-Ser mixture of 1:1 ratio, the stereoisomeric composition of Ser released due to Glu exposure varied with the exposure time, ranging from 73% D-Ser (i.e., [D-Ser] > [L-Ser]) at 2 min to 44% (i.e., [D-Ser] < [L-Ser]) at 14 min, clearly indicating a stereochemical preference for D-Ser in Ser release from neuronal cells evoked by Glu-receptor activation.
Collapse
Affiliation(s)
- Xiangtang Li
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
| | - Cassandra McCullum
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
| | - Shulin Zhao
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
- College
of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
| | - Hankun Hu
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
- Zhongnan
Hospital, Wuhan University, Wuhan 430071, China
| | - Yi-Ming Liu
- Department
of Chemistry and Biochemistry, Jackson State University, 1400 Lynch
Street, Jackson, Mississippi 39217, United States
| |
Collapse
|
22
|
Abstract
The potential of flavoproteins as targets of pharmacological treatments is immense. In this review we present an overview of the current research progress on medical interventions based on flavoproteins with a special emphasis on cancer, infectious diseases, and neurological disorders.
Collapse
Affiliation(s)
- Esther Jortzik
- Interdisciplinary Research Center, Justus Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
23
|
Ohnuma T, Sakai Y, Maeshima H, Higa M, Hanzawa R, Kitazawa M, Hotta Y, Katsuta N, Takebayashi Y, Shibata N, Arai H. No correlation between plasma NMDA-related glutamatergic amino acid levels and cognitive function in medicated patients with schizophrenia. Int J Psychiatry Med 2013; 44:17-27. [PMID: 23356091 DOI: 10.2190/pm.44.1.b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Disrupted glutamatergic neurotransmission and cognitive functions are key components in the pathophysiology of schizophrenia. Changes in levels of serum/plasma glutamatergic amino acids, such as glutamate, glycine, and L- and D-serine may be possible clinical markers. Following our recent findings that peripheral blood levels of endogenous glycine, alanine, and especially D-serine may reflect the degree/change in symptoms in schizophrenia, here we investigated whether these plasma amino acid levels may also reflect the status of cognitive functions in schizophrenia. METHODS One hundred eight Japanese patients with schizophrenia were evaluated with cognitive assessment batteries at the time that plasma glutamatergic amino acid levels were measured using high-performance liquid chromatography. For analyzing cognitive functions, batteries for reflection prefrontal cortex cognitive functions, verbal fluency tests, the Stroop test, and the digit span forward and backward tests were administered. RESULTS Results failed to show a relationship between any plasma glutamatergic amino acid level and cognitive batteries. CONCLUSIONS Our results suggest that plasma glutamatergic amino acid levels may be significant biological markers that reflect the condition or a dramatic change at the time of testing, especially in severely affected patients, but they do not reflect cognitive function.
Collapse
Affiliation(s)
- Tohru Ohnuma
- Department of Psychiatry, Juntendo University, School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Mohd Zain Z, Ab Ghani S, O’Neill RD. Amperometric microbiosensor as an alternative tool for investigation of d-serine in brain. Amino Acids 2012; 43:1887-94. [DOI: 10.1007/s00726-012-1365-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/06/2012] [Indexed: 12/23/2022]
|
26
|
Pernot P, Maucler C, Tholance Y, Vasylieva N, Debilly G, Pollegioni L, Cespuglio R, Marinesco S. d-Serine diffusion through the blood-brain barrier: effect on d-serine compartmentalization and storage. Neurochem Int 2012; 60:837-45. [PMID: 22465696 DOI: 10.1016/j.neuint.2012.03.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/08/2012] [Accepted: 03/13/2012] [Indexed: 11/17/2022]
Abstract
d-Serine is a co-agonist of N-methyl-d-aspartate (NMDA) receptors. It has been implicated in the etiology of schizophrenia and has shown efficacy as an adjuvant to reduce positive and negative symptoms of schizophrenia. In addition, d-serine can modulate cognition in animals when administered alone. However, the neurochemical effects of exogenous d-serine on extra- and intra-cellular d-serine brain levels are poorly understood. In this study, we used both high performance liquid chromatography (HPLC) and enzyme-based microelectrode biosensors to quantify d-serine in the rat brain. We demonstrated levels of 2.3-2.8μM in the extracellular medium, 4μM in plasma and 188pmol/mg in brain tissue samples. An intraperitoneal (i.p.) d-serine injection (1g/kg) produced a slow increase in extracellular d-serine concentration in the cortex despite a surge in d-serine up to 13mM in the plasma, indicating poor diffusion through the blood-brain barrier. Using the respective volume fractions of blood, extracellular and intracellular spaces published in the literature, we estimated that d-serine intracellular stores represented more than 99% of total d-serine. These intracellular stores almost doubled 3h after d-serine administration. Overall, our data indicate that d-serine administration increases brain extra- and intra-cellular concentrations despite weak diffusion through the blood-brain barrier. These results pave the way for a better understanding of the neurochemical mechanisms by which d-serine administration modulates cognition.
Collapse
Affiliation(s)
- Pierre Pernot
- Lyon Neuroscience Research Center, Plate-forme technologique AniRA-Neurochem, Team WAKE, Lyon F-69000, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Armagan G, Kanıt L, Yalcin A. D-serine treatment induces oxidative stress in rat brain. Drug Chem Toxicol 2011; 34:129-38. [DOI: 10.3109/01480545.2010.494183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Ohnuma T, Arai H. Significance of NMDA receptor-related glutamatergic amino acid levels in peripheral blood of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:29-39. [PMID: 20828596 DOI: 10.1016/j.pnpbp.2010.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 11/18/2022]
Abstract
Hypo-function of N-methyl d-aspartate (NMDA) receptors is strongly involved in the brain pathophysiology of schizophrenia. Several excitatory amino acids, such as endogenous glutamate, glycine, serine and alanine, which are involved in glutamate neurotransmission via NMDA receptors, were studied to further understand the pathophysiology of schizophrenia and to find a biological marker for this disease, particularly in peripheral blood. In this literature review, we connect several earlier clinical studies and several studies of excitatory amino acid levels in peripheral blood in a historical context. Finally, we join these results and our previous studies, the Juntendo University Schizophrenia Projects (JUSP), which investigated plasma glutamatergic amino acid levels in detail, and considered whether these amino acid levels may be diagnostic, therapeutic, or symptomatic biological markers. This review concludes that peripheral blood levels of endogenous glycine and alanine could be a symptomatic marker in schizophrenia, while peripheral blood levels of exogenous glycine and alanine in augmentation therapies could be therapeutic markers. Noteworthy peripheral blood levels of endogenous d-serine could reflect its brain levels, and may prove to be a useful diagnostic and therapeutic marker in schizophrenia. In addition, measurements of new endogenous molecules, such as glutathione, are promising. Finally, for future therapies with glutamatergic agents still being examined in animal studies, the results of these biological marker studies may lay the foundation for the development of next-generation antipsychotics.
Collapse
Affiliation(s)
- Tohru Ohnuma
- Department of Psychiatry, Juntendo University Schizophrenia Projects, Juntendo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
29
|
Hatano T, Ohnuma T, Sakai Y, Shibata N, Maeshima H, Hanzawa R, Suzuki T, Arai H. Plasma alanine levels increase in patients with schizophrenia as their clinical symptoms improve-Results from the Juntendo University Schizophrenia Projects (JUSP). Psychiatry Res 2010; 177:27-31. [PMID: 20226539 DOI: 10.1016/j.psychres.2010.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 09/30/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
Abstract
UNLABELLED Since oral administration of d-alanine, an agonist that binds to the glycine site of N-methyl-d-aspartate (NMDA) receptors, improves the positive and cognitive symptoms of patients with schizophrenia, measurement of endogenous plasma alanine levels could serve as a clinical marker for schizophrenia severity and improvement. Mean plasma alanine levels were compared in healthy controls and patients with schizophrenia during the clinical course of the disease. METHODS eighty-one Japanese patients with schizophrenia and 50 age- and gender-matched healthy controls were studied. Plasma alanine levels were measured twice, during the acute stage and during the remission stage, using high-performance liquid chromatography. On admission, lower plasma alanine levels in patients with schizophrenia were accompanied by more severe schizophrenic symptoms, especially positive symptoms. The plasma alanine levels in patients with schizophrenia increased significantly from the time of admission to discharge, when they were significantly higher than control levels. An increase in plasma alanine levels from the acute stage to the remission stage of schizophrenia was correlated with improvement in symptoms. Drug-naïve patients did not show a significant difference in plasma alanine levels when compared with healthy controls. The measurement of plasma alanine levels may be a therapeutic marker for schizophrenia.
Collapse
Affiliation(s)
- Tokiko Hatano
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|
31
|
Potential pathophysiological role of D-amino acid oxidase in schizophrenia: immunohistochemical and in situ hybridization study of the expression in human and rat brain. J Neural Transm (Vienna) 2009; 116:1335-47. [PMID: 19685198 DOI: 10.1007/s00702-009-0289-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 07/27/2009] [Indexed: 11/26/2022]
Abstract
D-Amino acid oxidase (DAO) is a peroxisomal flavoenzyme that catalyzes oxidative deamination of a wide range of D-amino acids. Among the possible substrates of DAO in vivo, D-serine is proposed to be a neuromodulator of the N-methyl-D-aspartate (NMDA) type glutamate receptor. The gene for DAO was reported to be associated with schizophrenia. Since DAO is expected to be one of the key enzymes in the regulation of NMDA neurotransmission, the modulation of the enzyme activity is expected to be therapeutical for neuronal disorders. In search of the pathophysiological role of DAO, we analyzed the distribution of DAO mRNA and protein in the rat and human brain. In rat, the distribution of DAO mRNA was newly detected in choroid plexus (CP) epithelial cells in addition to glial cells of pons, medulla oblongata, and especially Bergmann glia of cerebellum. Moreover, to investigate how DAO expression level is altered in schizophrenia, we performed immunohistochemistry in the human brain. In agreement with the results in the rat brain, the immunoreactivity for DAO was detected in glial cells of rhombencephalon and in CP. Furthermore, higher level of DAO expression was observed in schizophrenic CP epithelial cells than that in non-schizophrenic cases. These results suggest that an increase in DAO expression in parts of the brain is involved in aberrant D-amino acid metabolism. In particular, gene expression of DAO in CP suggests that DAO may regulate D-amino acid concentration by modulating the cerebrospinal fluid and may be regarded as a potential therapeutic target for schizophrenia.
Collapse
|
32
|
Labrie V, Duffy S, Wang W, Barger SW, Baker GB, Roder JC. Genetic inactivation of D-amino acid oxidase enhances extinction and reversal learning in mice. Learn Mem 2008; 16:28-37. [PMID: 19117914 DOI: 10.1101/lm.1112209] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activation of the N-methyl-D-aspartate receptor (NMDAR) glycine site has been shown to accelerate adaptive forms of learning that may benefit psychopathologies involving cognitive and perseverative disturbances. In this study, the effects of increasing the brain levels of the endogenous NMDAR glycine site agonist D-serine, through the genetic inactivation of its catabolic enzyme D-amino acid oxidase (DAO), were examined in behavioral tests of learning and memory. In the Morris water maze task (MWM), mice carrying the hypofunctional Dao1(G181R) mutation demonstrated normal acquisition of a single platform location but had substantially improved memory for a new target location in the subsequent reversal phase. Furthermore, Dao1(G181R) mutant animals exhibited an increased rate of extinction in the MWM that was similarly observed following pharmacological administration of D-serine (600 mg/kg) in wild-type C57BL/6J mice. In contextual and cued fear conditioning, no alterations were found in initial associative memory recall; however, extinction of the contextual fear memory was facilitated in mutant animals. Thus, an augmented level of D-serine resulting from reduced DAO activity promotes adaptive learning in response to changing conditions. The NMDAR glycine site and DAO may be promising therapeutic targets to improve cognitive flexibility and inhibitory learning in psychiatric disorders such as schizophrenia and anxiety syndromes.
Collapse
Affiliation(s)
- Viviane Labrie
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto M5G 1X5, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Ohnuma T, Sakai Y, Maeshima H, Hatano T, Hanzawa R, Abe S, Kida S, Shibata N, Suzuki T, Arai H. Changes in plasma glycine, L-serine, and D-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo University Schizophrenia Projects (JUSP). Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1905-12. [PMID: 18835577 DOI: 10.1016/j.pnpbp.2008.07.022] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 07/19/2008] [Accepted: 07/27/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Based on the hypothesis of NMDA receptor hypofunction in schizophrenia, plasma glycine, L-serine, and D-serine levels have been studied, since they could serve as biological markers. However, changes over time in the levels of these amino acids in schizophrenic patients have not been investigated. To clarify the mean plasma glycine, L-serine, and D-serine levels in patients with schizophrenia, levels of these amino acids were compared between healthy controls and patients with schizophrenia. The plasma levels of these amino acids during the clinical course of schizophrenia were also compared. METHODS Eighty-nine Japanese patients with schizophrenia and 50 age- and gender-matched healthy controls were studied. Plasma glycine, L-serine, and D-serine levels and their ratios were measured twice, during the acute stage and during the remission stage, using high-performance liquid chromatography. RESULTS The admission plasma glycine, L-serine, and D-serine levels of schizophrenic patients were higher than those of healthy controls. There were no significant differences between drug-naïve patients and healthy controls in the admission levels of the plasma amino acids, but chronically medicated patients had higher admission plasma glycine and D-serine levels. Only the D-serine level and the D-/L-serine ratio were markedly significantly increased in schizophrenic patients from the time of admission to the time of discharge as their clinical symptoms improved. In addition, the increase in the plasma D-serine levels of drug-naïve patients was correlated with improvements in positive symptoms. CONCLUSIONS Plasma amino acid levels, especially D-serine levels, could be useful as a "therapeutic" or "clinical state" marker in patients with acute schizophrenia.
Collapse
Affiliation(s)
- Tohru Ohnuma
- Juntendo University Schizophrenia Projects (JUSP), Department of Psychiatry, Juntendo University, School of Medicine, 2-1-1 Hongo Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Song Y, Feng Y, Lu X, Zhao S, Liu CW, Liu YM. D-Amino acids in rat brain measured by liquid chromatography/tandem mass spectrometry. Neurosci Lett 2008; 445:53-7. [PMID: 18775473 PMCID: PMC2585614 DOI: 10.1016/j.neulet.2008.08.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/23/2008] [Accepted: 08/22/2008] [Indexed: 11/29/2022]
Abstract
Previous work has established that D-amino acids including D-serine (D-Ser) and D-aspartic acid (D-Asp) fulfill specific biological functions in the brain. In this work, the levels and anatomical distribution of d-amino acids in rat brain were determined by using an advantageous liquid chromatography/tandem mass spectrometric analytical method. The study was focused on D-Ser, D-Asp, and D-glutamic acid (D-Glu) because of the significance of L-Asp, L-Glu, and D-Ser in the nervous system. Prenatal, postnatal pups, and 90-day old rats were studied. Results indicated that D-Asp and D-Ser occurred in rat brain at the microg/g tissue level. However, D-Glu was not detected (< 110 ng/g tissue). Throughout the developmental stages d-Asp content in rat brain decreased rapidly from 9.42% of total Asp in 5-day prenatal rats to an undetectable level (< 150 ng/g tissue) in 90-day old rats. In contrast, D-Ser level increased gradually throughout the developmental stages. D-Ser percentage (D-Ser/(D-Ser + L-Ser)) changed from 4.94% in 5-day prenatal rats to 13.7% in 90-day old rats. Regional levels of D-Ser were found to be significantly higher in cortex, striatum, and hippocampus than in thalamus. D-Ser was not detected in cerebellum (< 172ng/g tissue).
Collapse
Affiliation(s)
- Yaru Song
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217, USA
| | - Yangzheng Feng
- Department of Pediatrics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Xin Lu
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- College of Chemistry and Chemical Engineering, Guangxi Normal University, Guilin 541004, China
| | - Cheng-Wei Liu
- Department of Anatomy, Guilin Medical College, Guilin 541004, China
| | - Yi-Ming Liu
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch St., Jackson, MS 39217, USA
| |
Collapse
|
35
|
Miller MM, Popova LB, Meleshkevitch EA, Tran PV, Boudko DY. The invertebrate B(0) system transporter, D. melanogaster NAT1, has unique d-amino acid affinity and mediates gut and brain functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:923-31. [PMID: 18718864 PMCID: PMC2676678 DOI: 10.1016/j.ibmb.2008.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/09/2008] [Accepted: 07/20/2008] [Indexed: 05/16/2023]
Abstract
The CG3252 gene product, DmNAT1, represents the first Nutrient Amino acid Transporter cloned from Drosophila. It absorbs a broader set of neutral amino acids versus earlier characterized insect NATs and mammalian NATs-B(0) system transporters from the Sodium Neurotransmitter symporter Family (SNF, a.k.a. solute carrier family 6, SLC6). In addition to B(0)-specific l-substrates, DmNAT1 equally or more effectively transports d-amino acids with sub-millimolar affinities and 1:1 sodium:amino acid transport stoichiometry. DmNAT1 is strongly transcribed in the absorptive and secretory regions of the larval alimentary canal and larval brain, revealing its roles in the primary absorption and redistribution of large neutral l-amino acids as well as corresponding d-isomers. The absorption of d-amino acids via DmNAT1 may benefit the acquisition of fermented and symbiotic products, and may support the unique capacity of fruit fly larvae to utilize a diet with substitution of essential amino acids by d-isomers. It also suggests a remarkable adaptive plasticity of NAT-SLC6 mechanisms via alterations of a few identifiable sites in the substrate-binding pocket. The strong transcription in the brain suggests roles for DmNAT1 in neuronal nutrition and clearance of l-neutral amino acids from the fly brain. In addition, neuronal DmNAT1 may absorb synaptic d-serine and modulate NMDA receptor-coupled signal transduction. The characterization of the first invertebrate B(0)-like transporter extends the biological roles of the SLC6 family, revealing adaptations for the absorption of d-isomers of the essential amino acids. These findings suggest that some members of the NAT-SLC6 subfamily are evolving specific properties which contribute to nutrient symbiotic relationships and neuronal functions.
Collapse
Affiliation(s)
- Melissa M. Miller
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080
| | - Lyudmila B. Popova
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080
- A.N. Belozersky Institute, Moscow State University, Moscow, Russia
| | - Ella A. Meleshkevitch
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080
| | - Philip V. Tran
- Dept of Biology, University of North Florida, Jacksonville, FL 32224
| | - Dmitri Y. Boudko
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL 32080
| |
Collapse
|
36
|
Ferraris D, Duvall B, Ko YS, Thomas AG, Rojas C, Majer P, Hashimoto K, Tsukamoto T. Synthesis and biological evaluation of D-amino acid oxidase inhibitors. J Med Chem 2008; 51:3357-9. [PMID: 18507366 DOI: 10.1021/jm800200u] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
D-amino acid oxidase (DAAO) catalyzes the oxidation of D-amino acids including d-serine, a full agonist at the glycine site of the NMDA receptor. A series of benzo[ d]isoxazol-3-ol derivatives were synthesized and evaluated as DAAO inhibitors. Among them, 5-chloro-benzo[ d]isoxazol-3-ol (CBIO) potently inhibited DAAO with an IC50 in the submicromolar range. Oral administration of CBIO in conjunction with d-serine enhanced the plasma and brain levels of d-serine in rats compared to the oral administration of d-serine alone.
Collapse
|
37
|
Csapó J, Varga-Visi E, Lóki K, Albert C, Salamon S. The influence of extrusion on loss and racemization of amino acids. Amino Acids 2008; 34:287-92. [PMID: 17245615 DOI: 10.1007/s00726-006-0484-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
The influence of the operation conditions (temperature and residence time) of a thermic treatment on the total amount (free and protein-bound) of amino acid enantiomers of dry fullfat soya was investigated. Total amino acid content was determined using conventional ion-exchange amino acid analysis of total hydrolysates and chiral amino acid analysis was performed by HPLC after precolumn derivatization with o-phthaldialdehyde and 1-thio-beta-D-glucose tetraacetate. Contrary to corn that was investigated previously, notable racemization was detected even at lower temperatures. At 140 degrees C the ratio of the D-enantiomer was 0.87% for glutamic acid, 2.81% for serine, and 1.92% for phenylalanine; at 220 degrees C the ratios of the D-enantiomer of the above amino acids were 1.43, 4.61, and 4.68%, respectively. The concentration of several L-amino acids decreased. At 220 degrees C there was 10% less L-glutamic acid, 17% less L-serine, 5% less L-phenylalanine, 6.6% less L-aspartic, acid and 21% less L-lysine than in the control; their loss can be assigned to different degrees of L - D conversion. While nearly complete transformation of L-phenylalanine can be attributed to racemization, the main cause of the loss of L-lysine is not racemization. The treatments in the same order of magnitude resulted in the formation of more D-amino acids and greater extent of racemization of amino acids in fullfat soya than that of maize.
Collapse
Affiliation(s)
- J Csapó
- Faculty of Animal Science, Institute of Chemistry, University of Kaposvár, Kaposvár, Hungary.
| | | | | | | | | |
Collapse
|
38
|
Shikano N, Nakajima S, Kotani T, Ogura M, Sagara JI, Iwamura Y, Yoshimoto M, Kubota N, Ishikawa N, Kawai K. Transport of d-[1-14C]-amino acids into Chinese hamster ovary (CHO-K1) cells: implications for use of labeled d-amino acids as molecular imaging agents. Nucl Med Biol 2007; 34:659-65. [PMID: 17707806 DOI: 10.1016/j.nucmedbio.2007.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Revised: 04/28/2007] [Accepted: 05/10/2007] [Indexed: 10/22/2022]
Abstract
INTRODUCTION The fact that d-amino acids have been found in various tissues and are involved in various functions is a clue to how to develop new imaging agents. We examined d-amino acid transport mechanisms in Chinese hamster ovary (CHO-K1) cells because CHO-K1 cells are widely used in biomedical studies and are thought to be useful for expression of genes involved in metabolism of D-amino acids. METHODS Uptake experiments were performed. CHO-K1 cells cultured in 60-mm plastic culture dishes under ordinary culture conditions were incubated with 18.5 kBq of radiolabeled amino acid in 2 ml of phosphate-buffered-saline-based uptake solution at 37 degrees C. The following radiolabeled amino acid tracers were used: D-[1-(14)C]-alanine, L-[1-(14)C]-alanine, D-[1-(14)C]-serine, L-[1-(14)C]-serine, D-[1-(14)C]-methionine, L-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine, L-[1-(14)C]-phenylalanine, D-[1-(14)C]-leucine, L-[1-(14)C]-leucine, D-[1-(14)C]-valine, L-[1-(14)C]-valine, D-[1-(14)C]-tyrosine, L-[1-(14)C]-tyrosine, D-[1-(14)C]-glutamic acid, L-[1-(14)C]-glutamic acid, D-[1-(14)C]-lysine, L-[1-(14)C]-lysine, D-[1-(14)C]-arginine and L-[L-(14)C]-arginine. We tested the inhibitory effects of the following compounds (1.0 mM) on transport: 2-(methylamino)isobutyric acid (a specific inhibitor of system A, in Na(+)-containing uptake solution) and 2-amino-bicyclo[2,2,1]heptane-2-carboxylic acid (a specific inhibitor of system L, in Na(+)-free uptake solution). RESULTS D-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine and D-[1-(14)C]-tyrosine accumulated mainly via system L. D-[1-(14)C]-alanine and D-[1-(14)C]-serine accumulated primarily via system ASC. High uptake of D-[1-(14)C]-alanine, D-[1-(14)C]-methionine, D-[1-(14)C]-phenylalanine and D-[1-(14)C]-leucine was observed. The uptake of radiolabeled serine, valine, tyrosine, glutamic acid and arginine into CHO-K1 was highly stereoselective for l-isomers. CONCLUSIONS We observed high uptake of D-[1-(14)C]-alanine via system ASC (most likely alanine-serine-cysteine-selective amino acid transporter-1) and high uptake of D-[1-(14)C]-methionine and D-[1-(14)C]-phenylalanine via system L (most likely L-type amino acid transporter-1).
Collapse
Affiliation(s)
- Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Smith DF, Jakobsen S. Stereoselective neuroimaging in vivo. Eur Neuropsychopharmacol 2007; 17:507-22. [PMID: 17368004 DOI: 10.1016/j.euroneuro.2007.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 01/17/2007] [Accepted: 02/06/2007] [Indexed: 01/08/2023]
Abstract
Stereoselectivity is a basic property of many neuronal processes due to the spatial features of molecules involved in neurotransmission. Today, neuroimaging procedures are available for studying stereoselectivity in the living brain. Mirror-image radiotracers are the molecular tools that are used, together with single photon emission tomography (SPECT) and positron emission tomography (PET), for studying stereoselective neuronal mechanisms. This review presents the findings obtained in those studies of cholinergic, noradrenergic, dopaminergic, serotonergic, glutamatergic, opioid, cannabinoid, and second messenger neurotransmission.
Collapse
Affiliation(s)
- Donald F Smith
- Center for Psychiatric Research, Psychiatric Hospital of Aarhus University, 8240 Risskov, Denmark.
| | | |
Collapse
|
40
|
Makrides V, Bauer R, Weber W, Wester HJ, Fischer S, Hinz R, Huggel K, Opfermann T, Herzau M, Ganapathy V, Verrey F, Brust P. Preferred transport of O-(2-[18F]fluoroethyl)-d-tyrosine (d-FET) into the porcine brain. Brain Res 2007; 1147:25-33. [PMID: 17343835 DOI: 10.1016/j.brainres.2007.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/29/2007] [Accepted: 02/02/2007] [Indexed: 11/21/2022]
Abstract
Amino acids are valuable tracers for brain tumor imaging with positron emission tomography (PET). In this study the transport of O-(2-[(18)F]fluoroethyl)-D-tyrosine (D-FET) across the blood-brain barrier (BBB) was studied with PET in anesthetized piglets and patients after subtotal resection of brain tumors and compared with O-(2-[(18)F]fluoroethyl)-L-tyrosine (L-FET) and 3-O-methyl-6-[(18)F]fluoro-L-DOPA (L-OMFD). In piglets, compartmental modeling of PET data was used to calculate the rate constants for the blood-brain (K(1)) and the brain-blood (k(2)) transfer of D-FET, L-FET and L-OMFD. In patients standardized uptake values (SUVs) were calculated in brain cortex and lesions. Additionally, affinity determinations on various amino acid transporters (LAT1, LAT2, PAT1, XPCT) were performed in vitro using unlabeled D-FET, L-FET and L-OMFD. The initial brain uptake of D-FET in piglets was more than two-fold higher than that of l-FET, whereas the initial brain uptake of D-FET in patients was similar to that of L-FET. Calculation of K(1) and k(2) from the brain uptake curves and the plasma input data in piglets revealed about 4- and 2-fold higher values for D-FET compared to L-FET and L-OMFD, respectively. The distribution volume of D-FET in the piglet brain was slightly higher than that of L-FET as it was also found for most other organs. In brain tumor patients, initial D-FET uptake in the brain was similar to that of L-FET but showed faster tracer washout. L-FET uptake remained rather constant and provided a better delineation of residual tumor than D-FET. In conclusion, our data indicate considerable differences of stereoselective amino acid transport at the BBB in different species. Therefore, the results from animal experiments concerning BBB amino acid transport may not be transferable to humans.
Collapse
|
41
|
Mileusnic R, Lancashire C, Clark J, Rose SPR. Protection against Aβ-induced memory loss by tripeptide D-Arg-L-Glu-L-Arg. Behav Pharmacol 2007; 18:231-8. [PMID: 17426487 DOI: 10.1097/fbp.0b013e32814fcde9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The molecular and cellular mechanisms underlying the memory deficits in Alzheimer's disease are increasingly thought to be associated with faulty processing of amyloid precursor protein. Following our earlier findings that it is possible to use the tripeptide RER (NH2-D-Arg-L-Glu-L-Arg-COOH, derived from the external domain of amyloid precursor protein) to rescue memory in animal models, we report here that the diasteromeric (D/L) form of the acetylated tripeptide RER protects against Abeta-induced memory loss for a passive avoidance task in young chicks and enhances retention for a weak version of the task when injected peripherally up to 12 h before training. The tripeptide readily crosses the blood-brain barrier, binds to membrane receptor sites in the brain and is without adverse effects on general behaviour. We discuss this finding in the context of other studies of the importance of peptides containing D-amino acids, and conclude that these RER-related peptides may form the basis for a potential therapeutic agent in the early stages of Alzheimer's disease.
Collapse
Affiliation(s)
- Radmila Mileusnic
- Department of Biological Sciences, the Open University, Milton Keynes, UK.
| | | | | | | |
Collapse
|
42
|
Scolari MJ, Acosta GB. D-serine: a new word in the glutamatergic neuro-glial language. Amino Acids 2007; 33:563-74. [PMID: 17245616 DOI: 10.1007/s00726-006-0481-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 11/22/2006] [Indexed: 01/07/2023]
Abstract
Gliotransmission is a process in which astrocytes are dynamic elements that influence synaptic transmission and synaptogenesis. The best-known gliotransmitters are glutamate and ATP. However, in the past decade, it has been demonstrated that D-serine, a D-amino acid, acts as a gliotransmitter in glutamatergic synapses. The physiological relevance of D-serine is sustained by the way in which it modulates the action of glutamatergic neurotransmission, neuronal migration and long-term potentiation (LTP). In addition, the synthesis and degradation mechanisms of D-serine have been proposed as potential therapeutic targets for the treatment of Alzheimer's disease, schizophrenia and related disorders. In the present review, detailed information is provided about the physiological and physiopathological relevance of D-serine, including metabolic and regulation aspects.
Collapse
Affiliation(s)
- M J Scolari
- Instituto de Investigaciones Farmacológicas (ININFA-CONICET-UBA), Buenos Aires, Argentina
| | | |
Collapse
|
43
|
Song Y, Feng Y, LeBlanc MH, Zhao S, Liu YM. Assay of Trace d-Amino Acids in Neural Tissue Samples by Capillary Liquid Chromatography/Tandem Mass Spectrometry. Anal Chem 2006; 78:8121-8. [PMID: 17134148 DOI: 10.1021/ac061183w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sensitive chiral capillary HPLC-MS/MS method well suited for the determination of amino acid enantiomers in biological samples was developed. The method involved precolumn derivatization of the sample with 7-fluoro-4-nitrobenzoxadiazole (NBD-F). After derivatization, NBD-amino acids were stacked on a C18 reversed-phase extraction microcolumn, thus enriching and cleaning up the analytes. Various chiral stationary phases (CSPs) including cyclodextrin-bonded silica, Pirkle-type, vancomycin, and teicoplanin-bonded silica particles were evaluated for resolving NBD-F tagged amino acid enantiomers with mobile phases compatible with MS detection. It was found that only teicoplanin aglycon CSP provided sufficient resolution of NBD-Asp and NBD-Ser enantiomers to quantify trace levels of D-Asp and D-Ser in tissue samples. MS/MS detection of NBD-amino acid derivatives was very sensitive and selective. The high selectivity allowed the use of a stable isotope-labeled analyte analogue (i.e., L-aspartic acid-2,3,3-d3) as internal standard for the quantitation to improve assay reproducibility and reliability. Neural tissue samples dissected from rat brain and the central nervous system (CNS) of Aplysia californica, a widely used neuronal model, were analyzed to determine the chirality of glutamic acid (Glu), aspartic acid (Asp), and serine (Ser). The former two are major excitatory amino acids in the brain, and the last one has been recently identified as a neuromodulator. Both D-Ser and D-Asp were detected in rat brain. While the D-Asp level decreased rapidly through the developmental stages of the rat, the D-Ser level increased steadily from 82.3 microg/g of wet tissue in 3-day prenatal rats to 241.3 microg/g of wet tissue in 90-day-old rats. Interestingly, no D-Ser was detected in the CNS of Aplysia, a "primitive" invertebrate. However, the D-Asp level in this animal was found to be high. In a particular connective nerve sample, D-Asp was at 323.2 microg/g of wet tissue and constituted 60.2% of total Asp. D-Glu was not detected either in rat brain or in Aplysia's CNS.
Collapse
Affiliation(s)
- Yaru Song
- Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA
| | | | | | | | | |
Collapse
|