1
|
Doorduin J. Imaging neuroglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:277-291. [PMID: 40122630 DOI: 10.1016/b978-0-443-19104-6.00016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Imaging can help us understand the role neuroglia plays in health and during the course of neurologic disorders. In vivo microscopy has had a great impact on our understanding of how neuroglia behaves during health and disease. While initially the technique was hindered by the limited penetration depth in brain tissue, recent advancements lead to increasing possibilities for imaging of deeper brain structures, even at super-resolution. Unfortunately, in vivo microscopy cannot be applied in a clinical setting and thus cannot be used to study neuroglia in patient populations. However, noninvasive imaging techniques like positron emission tomography (PET) and magnetic resonance imaging (MRI) can. PET has provided valuable information on the involvement of neuroglia in neurologic disorders. To more specifically image microglia and astrocytes, many new PET biomarkers have been defined for which PET tracers are continuously developed, evaluated, and improved. A cell-type specific PET tracer with favorable imaging characteristics can have a huge impact on neuroglia research. While being less sensitive than PET, MRI is a more accessible imaging technique. Initially, only general neuroinflammation processes could be imaged with MRI, but newly developed methods and sequences allow for increasing cell-type specificity. Overall, while each imaging method comes with limitations, improvements are continuously made, all with the aim to truly understand the role that neuroglia play in health and disease.
Collapse
Affiliation(s)
- Janine Doorduin
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
2
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
3
|
Parsi S, Zhu C, Motlagh NJ, Kim D, Küllenberg EG, Kim HH, Gillani RL, Chen JW. Basic Science of Neuroinflammation and Involvement of the Inflammatory Response in Disorders of the Nervous System. Magn Reson Imaging Clin N Am 2024; 32:375-384. [PMID: 38555147 PMCID: PMC10987041 DOI: 10.1016/j.mric.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neuroinflammation is a key immune response observed in many neurologic diseases. Although an appropriate immune response can be beneficial, aberrant activation of this response recruits excessive proinflammatory cells to cause damage. Because the central nervous system is separated from the periphery by the blood-brain barrier (BBB) that creates an immune-privileged site, it has its own unique immune cells and immune response. Moreover, neuroinflammation can compromise the BBB causing an influx of peripheral immune cells and factors. Recent advances have brought a deeper understanding of neuroinflammation that can be leveraged to develop more potent therapies and improve patient selection.
Collapse
Affiliation(s)
- Sepideh Parsi
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cindy Zhu
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Negin Jalali Motlagh
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daeki Kim
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Enrico G Küllenberg
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyung-Hwan Kim
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca L Gillani
- Department of Neurology, Neuroimmunology and Neuro-Infectious Diseases Division, Massachusetts Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John W Chen
- Institute for Innovation in Imaging, Neurovascular Research Unit, Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
de Groot DMG, Linders L, Kayser R, Nederlof R, de Esch C, Slieker RC, Kuper CF, Wolterbeek A, de Groot VJ, Veltien A, Heerschap A, van Waarde A, Dierckx RAJO, de Vries EFJ. Perinatal exposure to the immune-suppressant di-n-octyltin dichloride affects brain development in rats. Toxicol Mech Methods 2024; 34:283-299. [PMID: 37946400 DOI: 10.1080/15376516.2023.2281610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Disruption of the immune system during embryonic brain development by environmental chemicals was proposed as a possible cause of neurodevelopmental disorders. We previously found adverse effects of di-n-octyltin dichloride (DOTC) on maternal and developing immune systems of rats in an extended one-generation reproductive toxicity study according to the OECD 443 test guideline. We hypothesize that the DOTC-induced changes in the immune system can affect neurodevelopment. Therefore, we used in-vivo MRI and PET imaging and genomics, in addition to behavioral testing and neuropathology as proposed in OECD test guideline 443, to investigate the effect of DOTC on structural and functional brain development. Male rats were exposed to DOTC (0, 3, 10, or 30 mg/kg of diet) from 2 weeks prior to mating of the F0-generation until sacrifice of F1-animals. The brains of rats, exposed to DOTC showed a transiently enlarged volume of specific brain regions (MRI), altered specific gravity, and transient hyper-metabolism ([18F]FDG PET). The alterations in brain development concurred with hyper-responsiveness in auditory startle response and slight hyperactivity in young adult animals. Genomics identified altered transcription of key regulators involved in neurodevelopment and neural function (e.g. Nrgrn, Shank3, Igf1r, Cck, Apba2, Foxp2); and regulators involved in cell size, cell proliferation, and organ development, especially immune system development and functioning (e.g. LOC679869, Itga11, Arhgap5, Cd47, Dlg1, Gas6, Cml5, Mef2c). The results suggest the involvement of immunotoxicity in the impairment of the nervous system by DOTC and support the hypothesis of a close connection between the immune and nervous systems in brain development.
Collapse
Affiliation(s)
- Didima M G de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Louisa Linders
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Reinier Kayser
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Rianne Nederlof
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Celine de Esch
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Roderick C Slieker
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - C Frieke Kuper
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andre Wolterbeek
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - V Jeroen de Groot
- Department of Toxicology and Applied Pharmacology, TNO Nutrition and Food Research (as part of TNO Quality of Life), Zeist, the Netherlands
| | - Andor Veltien
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Arend Heerschap
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
6
|
Abou-El-Hassan H, Bernstock JD, Chalif JI, Yahya T, Rezende RM, Weiner HL, Izzy S. Elucidating the neuroimmunology of traumatic brain injury: methodological approaches to unravel intercellular communication and function. Front Cell Neurosci 2023; 17:1322325. [PMID: 38162004 PMCID: PMC10756680 DOI: 10.3389/fncel.2023.1322325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
The neuroimmunology of traumatic brain injury (TBI) has recently gained recognition as a crucial element in the secondary pathophysiological consequences that occur following neurotrauma. Both immune cells residing within the central nervous system (CNS) and those migrating from the periphery play significant roles in the development of secondary brain injury. However, the precise mechanisms governing communication between innate and adaptive immune cells remain incompletely understood, partly due to a limited utilization of relevant experimental models and techniques. Therefore, in this discussion, we outline current methodologies that can aid in the exploration of TBI neuroimmunology, with a particular emphasis on the interactions between resident neuroglial cells and recruited lymphocytes. These techniques encompass adoptive cell transfer, intra-CNS injection(s), selective cellular depletion, genetic manipulation, molecular neuroimaging, as well as in vitro co-culture systems and the utilization of organoid models. By incorporating key elements of both innate and adaptive immunity, these methods facilitate the examination of clinically relevant interactions. In addition to these preclinical approaches, we also detail an emerging avenue of research that seeks to leverage human biofluids. This approach enables the investigation of how resident and infiltrating immune cells modulate neuroglial responses after TBI. Considering the growing significance of neuroinflammation in TBI, the introduction and application of advanced methodologies will be pivotal in advancing translational research in this field.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rafael M. Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Howard L. Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
den Boer JA, de Vries EJ, Borra RJ, Waarde AV, Lammertsma AA, Dierckx RA. Role of Brain Imaging in Drug Development for Psychiatry. Curr Rev Clin Exp Pharmacol 2022; 17:46-71. [DOI: 10.2174/1574884716666210322143458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
Background:
Over the last decades, many brain imaging studies have contributed to
new insights in the pathogenesis of psychiatric disease. However, in spite of these developments,
progress in the development of novel therapeutic drugs for prevalent psychiatric health conditions
has been limited.
Objective:
In this review, we discuss translational, diagnostic and methodological issues that have
hampered drug development in CNS disorders with a particular focus on psychiatry. The role of
preclinical models is critically reviewed and opportunities for brain imaging in early stages of drug
development using PET and fMRI are discussed. The role of PET and fMRI in drug development
is reviewed emphasizing the need to engage in collaborations between industry, academia and
phase I units.
Conclusion:
Brain imaging technology has revolutionized the study of psychiatric illnesses, and
during the last decade, neuroimaging has provided valuable insights at different levels of analysis
and brain organization, such as effective connectivity (anatomical), functional connectivity patterns
and neurochemical information that may support both preclinical and clinical drug development.
Since there is no unifying pathophysiological theory of individual psychiatric syndromes and since
many symptoms cut across diagnostic boundaries, a new theoretical framework has been proposed
that may help in defining new targets for treatment and thus enhance drug development in CNS diseases.
In addition, it is argued that new proposals for data-mining and mathematical modelling as
well as freely available databanks for neural network and neurochemical models of rodents combined
with revised psychiatric classification will lead to new validated targets for drug development.
Collapse
Affiliation(s)
| | - Erik J.F. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J.H. Borra
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A. Lammertsma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudi A. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Yamamoto Y, Tago T, Toyohara J, Saito Y, Yamamoto F. Radiosynthesis and in Vivo and ex Vivo Evaluation of Isomeric [ 11C]methoxy Analogs of Nimesulide as Brain Cyclooxygenase-2-Targeted Imaging Agents. Biol Pharm Bull 2022; 45:94-103. [PMID: 34980783 DOI: 10.1248/bpb.b21-00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies identified that nimesulide analogs which bear a methoxy substituent at the para-position of the phenyl ring could be potential radiotracer candidates for detecting disorders related to cyclooxygenase-2 (COX-2) expression and activity in vivo using positron emission tomography (PET) in the brain. The present study was conducted to evaluate the in vivo characteristics of 11C-labeled para-methoxy nimesulide ([11C]1d) as a brain COX-2-targeted imaging agent compared to other isomeric methoxy analogs of nimesulide ([11C]1b and [11C]1c). [11C]1b-d were synthesized with reasonable yield and purity by the methylation of the O-desmethyl precursor with [11C]methyl triflate in the presence of NaOH at room temperature. We performed in vivo biodistribution analysis, brain PET imaging, ex vivo autoradiography, and metabolite analysis in mice. The uptake of [11C]1b-d was lower in the brain than in other tissues, including in the blood, and both [11C]1c and [11C]1d were rapidly metabolized. However, [11C]1d showed a small, but significant, specific signal and heterogeneous distribution in the brain. In vivo evaluation suggested that [11C]1d might correlate with COX-2 expression in the brain. Given its instability in vivo, [11C]1d seems unsuitable as a brain-COX-2 radioimaging agent. Further structural refinement of these radiotracers is necessary to enhance their uptake in the brain and to achieve sufficient metabolic stability.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University.,Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Tetsuro Tago
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology
| | - Yohei Saito
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | - Fumihiko Yamamoto
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
10
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
11
|
Ghazanfari N, van Waarde A, Dierckx RAJO, Doorduin J, de Vries EFJ. Is cyclooxygenase-1 involved in neuroinflammation? J Neurosci Res 2021; 99:2976-2998. [PMID: 34346520 PMCID: PMC9542093 DOI: 10.1002/jnr.24934] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Purpose: Reactive microglia are an important hallmark of neuroinflammation. Reactive microglia release various inflammatory mediators, such as cytokines, chemokines, and prostaglandins, which are produced by enzymes like cyclooxygenases (COX). The inducible COX‐2 subtype has been associated with inflammation, whereas the constitutively expressed COX‐1 subtype is generally considered as a housekeeping enzyme. However, recent evidence suggests that COX‐1 can also be upregulated and may play a prominent role in the brain during neuroinflammation. In this review, we summarize the evidence that supports this involvement of COX‐1. Methods: Five databases were used to retrieve relevant studies that addressed COX‐1 in the context of neuroinflammation. The search resulted in 32 articles, describing in vitro, in vivo, post mortem, and in vivo imaging studies that specifically investigated the COX‐1 isoform under such conditions. Results: Reviewed literature generally indicated that the overexpression of COX‐1 was induced by an inflammatory stimulus, which resulted in an increased production of prostaglandin E2. The pharmacological inhibition of COX‐1 was shown to suppress the induction of inflammatory mediators like prostaglandin E2. Positron emission tomography (PET) imaging studies in animal models confirmed the overexpression of COX‐1 during neuroinflammation. The same imaging method, however, could not detect any upregulation of COX‐1 in patients with Alzheimer's disease. Conclusion: Taken together, studies in cultured cells and living rodents suggest that COX‐1 is involved in neuroinflammation. Most postmortem studies on human brains indicate that the concentration of COX‐1‐expressing microglial cells is increased near sites of inflammation. However, evidence for the involvement of COX‐1 in neuroinflammation in the living human brain is still largely lacking.
Collapse
Affiliation(s)
- Nafiseh Ghazanfari
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
12
|
|
13
|
Kumar JSD, Prabhakaran J, Molotkov A, Sattiraju A, Kim J, Doubrovin M, Mann JJ, Mintz A. Radiosynthesis and evaluation of [ 18F]FMTP, a COX-2 PET ligand. Pharmacol Rep 2020; 72:1433-1440. [PMID: 32632914 DOI: 10.1007/s43440-020-00124-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND The upregulation of cyclooxygenase-2 (COX-2) is involved in neuroinflammation associated with many neurological diseases as well as cancers of the brain. Outside the brain, inflammation and COX-2 induction contribute to the pathogenesis of pain, arthritis, acute allograft rejection, and in response to infections, tumors, autoimmune disorders, and injuries. Herein, we report the radiochemical synthesis and evaluation of [18F]6-fluoro-2-(4-(methylsulfonyl)phenyl)-N-(thiophen-2-ylmethyl)pyrimidin-4-amine ([18F]FMTP), a high-affinity COX-2 inhibitor, by cell uptake and PET imaging studies. METHODS The radiochemical synthesis of [18F]FMTP was optimized using chlorine to fluorine displacement method, by reacting [18F]fluoride/K222/K2CO3 with the precursor molecule. Cellular uptake studies of [18F]FMTP was performed in COX-2 positive BxPC3 and COX-2 negative PANC-1 cell lines with unlabeled FMTP as well as celecoxib to define specific binding agents. Dynamic microPET image acquisitionwas performed in anesthetized nude mice (n = 3), lipopolysaccharide (LPS) induced neuroinflammation mice (n = 4), and phosphate-buffered saline (PBS) administered control mice (n = 4) using a Trifoil microPET/CT for a scan period of 60 min. RESULTS A twofold higher binding of [18F]FMTP was found in COX-2 positive BxPC3 cells compared with COX-2 negative PANC-1 cells. The radioligand did not show specific binding to COX-2 negative PANC-1 cells. MicroPET imaging in wild-type mice indicated blood-brain barrier (BBB) penetration and fast washout of [18F]FMTP in the brain, likely due to the low constitutive COX-2 expression in the normal brain. In contrast, a ~ twofold higher uptake of the radioligand was found in LPS-induced mice brain than PBS treated control mice. CONCLUSIONS Specific binding to COX-2 in BxPC3 cell lines, BBB permeability, and increased brain uptake in neuroinflammation mice qualifies [18F]FMTP as a potential PET tracer for studying inflammation.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.
| | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.,Department of Psychiatry, Columbia University Medical Center, Manhattan, NY, USA
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Anirudh Sattiraju
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Jongho Kim
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Mikhail Doubrovin
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, Manhattan, NY, USA.,Department of Psychiatry, Columbia University Medical Center, Manhattan, NY, USA.,Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, Manhattan, NY, USA.
| |
Collapse
|
14
|
Berdyyeva T, Xia C, Taylor N, He Y, Chen G, Huang C, Zhang W, Kolb H, Letavic M, Bhattacharya A, Szardenings AK. PET Imaging of the P2X7 Ion Channel with a Novel Tracer [ 18F]JNJ-64413739 in a Rat Model of Neuroinflammation. Mol Imaging Biol 2020; 21:871-878. [PMID: 30632003 DOI: 10.1007/s11307-018-01313-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The P2X7 receptor, an adenosine triphosphate (ATP)-gated purinoreceptor, has emerged as one of the key players in neuroinflammatory processes. Therefore, developing a positron emission tomography (PET) tracer for imaging of P2X7 receptors in vivo presents a promising approach to diagnose, monitor, and study neuroinflammation in a variety of brain disorders. To fulfill the goal of developing a P2X7 PET ligand as a biomarker of neuroinflammation, [18F]JNJ-64413739 has been recently disclosed. PROCEDURES We evaluated [18F]JNJ-64413739 in a rat model of neuroinflammation induced by an intracerebral injection of lipopolysaccharide (LPS). In vivo brain uptake was determined by PET imaging. Upregulation of neuroinflammatory biomarkers was determined by quantitative polymerase chain reaction (qPCR). Distribution of the tracer in the brain was determined by ex vivo autoradiography (ARG). The specificity of [18F]JNJ-64413739 was confirmed by performing blocking experiments with the P2X7 antagonist JNJ-54175446. RESULTS Brain regions of rats injected with LPS had a significantly increased uptake (34 % ± 3 % s.e.m., p = 0.036, t test, standardized uptake value measured over the entire scanning period) of [18F]JNJ-64413739 relative to the corresponding brain regions of control animals injected with phosphate-buffered saline (PBS). The uptake in the contralateral regions and cerebellum was not significantly different between the groups of animals. The increase in uptake of [18F]JNJ-64413739 at the LPS-injected site observed by PET imaging was concordant with ex vivo ARG, upregulation of neuroinflammatory biomarkers, and elevated P2X7 expression levels. CONCLUSIONS While further work is needed to study [18F]JNJ-64413739 in other types of neuroinflammation, the current results favorably characterize [18F]JNJ-64413739 as a potential PET tracer of central neuroinflammation.
Collapse
Affiliation(s)
- Tamara Berdyyeva
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| | - Chunfang Xia
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Natalie Taylor
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yingbo He
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Gang Chen
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Chaofeng Huang
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Wei Zhang
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Hartmuth Kolb
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael Letavic
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Anindya Bhattacharya
- Janssen Research & Development LLC, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | | |
Collapse
|
15
|
Kiseleva MM, Vaulina DD, Sivak KV, Alexandrov AG, Kuzmich NN, Viktorov NB, Kuznetsova OF, Gomzina NA. Radiosynthesis of a Novel
11
C‐Labeled Derivative of 4’‐
O
‐Methylhonokiol and Its Preliminary Evaluation in an LPS Rat Model of Neuroinflammation. ChemistrySelect 2020. [DOI: 10.1002/slct.201904788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mariia M Kiseleva
- Research Center of the University Hospital Centre of Québec CityLaval University 2705, boulevard Laurier Québec, QC Canada G1 V 4G2
- Department of Science and Engineering, Mineral, Metallurgical, and Materials EngineeringLaval University 2325 Rue de l'Université Québec, QC Canada QC G1 V 0 A6
| | - Daria D Vaulina
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| | - Konstantin V Sivak
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
| | - Andrey G Alexandrov
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
| | - Nikolay N Kuzmich
- Laboratory of pharmaceuticals' safety, Department of pharmaceuticals' preclinical trialsWHO National Influenza Centre of Russia 15/17 Professor Popov street Saint-Petersburg 197376 Russian Federation
- Institute of Biotechnology and Translational medicine, I. M. SechenovFirst Moscow State Medical University, 8 build.2 Trubetskaya street Moscow 119991 Russian Federation
| | - Nikolai B Viktorov
- Department of organic chemistry, Faculty of chemical and biotechnologiesSaint-Petersburg State Institute of Technology, 26 Moskovsky prospect Saint-Petersburg 190013 Russian Federation
| | - Olga F Kuznetsova
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| | - Natalia A Gomzina
- Laboratory of radiochemistry, N.P. Bechtereva Institute of Human BrainRussian Academy of Science 9, Pavlov street Saint-Petersburg 197376, Russian Federation
| |
Collapse
|
16
|
Yadav AK, Reinhardt CJ, Arango AS, Huff HC, Dong L, Malkowski MG, Das A, Tajkhorshid E, Chan J. An Activity-Based Sensing Approach for the Detection of Cyclooxygenase-2 in Live Cells. Angew Chem Int Ed Engl 2020; 59:3307-3314. [PMID: 31854058 PMCID: PMC7416425 DOI: 10.1002/anie.201914845] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 01/05/2023]
Abstract
Cyclooxygenase-2 (COX-2) overexpression is prominent in inflammatory diseases, neurodegenerative disorders, and cancer. Directly monitoring COX-2 activity within its native environment poses an exciting approach to account for and illuminate the effect of the local environments on protein activity. Herein, we report the development of CoxFluor, the first activity-based sensing approach for monitoring COX-2 within live cells with confocal microscopy and flow cytometry. CoxFluor strategically links a natural substrate with a dye precursor to engage both the cyclooxygenase and peroxidase activities of COX-2. This catalyzes the release of resorufin and the natural product, as supported by molecular dynamics and ensemble docking. CoxFluor enabled the detection of oxygen-dependent changes in COX-2 activity that are independent of protein expression within live macrophage cells.
Collapse
Affiliation(s)
- Anuj K Yadav
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher J Reinhardt
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andres S Arango
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hannah C Huff
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Liang Dong
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Michael G Malkowski
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Aditi Das
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emad Tajkhorshid
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
17
|
Yadav AK, Reinhardt CJ, Arango AS, Huff HC, Dong L, Malkowski MG, Das A, Tajkhorshid E, Chan J. An Activity‐Based Sensing Approach for the Detection of Cyclooxygenase‐2 in Live Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Anuj K. Yadav
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Christopher J. Reinhardt
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Andres S. Arango
- Center for Biophysics and Quantitative Biology Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Hannah C. Huff
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Liang Dong
- Department of Structural Biology Jacobs School of Medicine and Biomedical Sciences University at Buffalo Buffalo NY 14203 USA
| | - Michael G. Malkowski
- Department of Structural Biology Jacobs School of Medicine and Biomedical Sciences University at Buffalo Buffalo NY 14203 USA
| | - Aditi Das
- Center for Biophysics and Quantitative Biology Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Department of Comparative Biosciences University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Emad Tajkhorshid
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
- Center for Biophysics and Quantitative Biology Department of Biochemistry University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jefferson Chan
- Department of Chemistry Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
18
|
Morse SV, Boltersdorf T, Chan TG, Gavins FNE, Choi JJ, Long NJ. In vivo delivery of a fluorescent FPR2/ALX-targeted probe using focused ultrasound and microbubbles to image activated microglia. RSC Chem Biol 2020. [DOI: 10.1039/d0cb00140f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Targeted imaging agent labels activated microglia when delivered into the brain with focused ultrasound and microbubbles – a tool to investigate inflammation in neurological disorders.
Collapse
Affiliation(s)
| | - Tamara Boltersdorf
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London
- UK
| | - Tiffany G. Chan
- Department of Bioengineering
- Imperial College London
- London
- UK
- Department of Chemistry
| | | | - James J. Choi
- Department of Bioengineering
- Imperial College London
- London
- UK
| | - Nicholas J. Long
- Department of Chemistry
- Imperial College London
- Molecular Sciences Research Hub
- London
- UK
| |
Collapse
|
19
|
Uddin MJ, Wilson AJ, Crews BC, Malerba P, Uddin MI, Kingsley PJ, Ghebreselasie K, Daniel CK, Nickels ML, Tantawy MN, Jashim E, Manning HC, Khabele D, Marnett LJ. Discovery of Furanone-Based Radiopharmaceuticals for Diagnostic Targeting of COX-1 in Ovarian Cancer. ACS OMEGA 2019; 4:9251-9261. [PMID: 31172046 PMCID: PMC6545551 DOI: 10.1021/acsomega.9b01093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 05/03/2023]
Abstract
In vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer. We report the discovery of 3-(4-fluorophenyl)-5,5-dimethyl-4-(p-tolyl)furan-2(5H)-one (FDF), a furanone-based novel COX-1-selective inhibitor that exhibits adequate in vivo stability, plasma half-life, and pharmacokinetic properties for use as an imaging agent. We describe a novel synthetic scheme in which a Lewis acid-catalyzed nucleophilic aromatic deiodo[18F]fluorination reaction is utilized for the radiosynthesis of [18F]FDF. [18F]FDF binds efficiently to COX-1 in vivo and enables sensitive detection of ovarian cancer in subcutaneous and peritoneal xenograft models in mice. These results provide the proof of principle for COX-1-targeted imaging of ovarian cancer and identify [18F]FDF as a promising lead compound for further preclinical and clinical development.
Collapse
Affiliation(s)
- Md. Jashim Uddin
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: . Phone: 615-484-8674. Fax: 615.343-0704 (M.J.U.)
| | - Andrew J. Wilson
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Brenda C. Crews
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Paola Malerba
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department
of Pharmacy & Pharmaceutical Sciences, University of Bari “A. Moro”, Via Orabona 4, 70125 Bari, Italy
| | - Md. Imam Uddin
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
| | - Philip J. Kingsley
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kebreab Ghebreselasie
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Cristina K. Daniel
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael L. Nickels
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mohammed N. Tantawy
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Elma Jashim
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Martin Luther
King Jr. Academic Magnet School of Health Sciences and Engineering, 613 17th Avenue North, Nashville, Tennessee 37203, United States
| | - H. Charles Manning
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Dineo Khabele
- Department of Obstetrics & Gynecology, Women’s
Reproductive
Health Research Center, and Department of Ophthalmology and Visual Sciences,
Vanderbilt Eye Institute, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Department
of Obstetrics and Gynecology, University
of Kansas School of Medicine, Kansas
City, Kansas 66160, United States
| | - Lawrence J. Marnett
- A. B.
Hancock, Jr., Memorial Laboratory for Cancer Research, Department
of Biochemistry, Chemistry and Pharmacology, Vanderbilt Institute
of Chemical Biology, Vanderbilt-Ingram Cancer Center,
and Department of Radiology
and Radiological Sciences, Vanderbilt Institute of Imaging Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- E-mail: (L.J.M.)
| |
Collapse
|
20
|
Gurram B, Li M, Fan J, Wang J, Peng X. Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1796-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Liu J, Cheng K, Yang C, Zhu J, Shen C, Zhang X, Liu X, Yang G. Application of Triarylboron Substituted with Cyclic Arginine-Glycine-Aspartic Acid Motifs as a Multivalent Two-Photon Fluorescent Probe for Tumor Imaging in Vivo. Anal Chem 2019; 91:6340-6344. [PMID: 30977997 DOI: 10.1021/acs.analchem.9b01324] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Detection of cancer in its early stages is difficult, and this is a major issue that impairs the timely diagnosis and treatment of tumors. Integrin αVβ3 is expressed on tumoral endothelial cells, as well as other tumor cells. By functionalizing the triarylboron (TAB) compound with multiple cyclic arginine-glycine-aspartic acid (cRGD) motifs, which specifically bind to integrin αVβ3, a multivalent two-photon fluorescent probe TAB-3-cRGD was designed and chemically synthesized. Through cell imaging experiments, we showed that TAB-3-cRGD can selectively bind to integrin αVβ3 on the cell surface and can effectively distinguish normal cells from tumor cells overexpressing integrin αVβ3. Using a mouse model, we also showed that TAB-3-cRGD could target the tumor site in vivo, offering a promising tool for cancer detection.
Collapse
Affiliation(s)
- Jun Liu
- Sichuan Key Laboratory of Medical Imaging , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Chemistry, School of Preclinical Medicine , North Sichuan Medical College , Nanchong , Sichuan 637000 , China
| | - Kai Cheng
- Sichuan Key Laboratory of Medical Imaging , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Chemistry, School of Preclinical Medicine , North Sichuan Medical College , Nanchong , Sichuan 637000 , China
| | - Chenwu Yang
- Sichuan Key Laboratory of Medical Imaging , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Chemistry, School of Preclinical Medicine , North Sichuan Medical College , Nanchong , Sichuan 637000 , China
| | - Jiang Zhu
- Sichuan Key Laboratory of Medical Imaging , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Chemistry, School of Preclinical Medicine , North Sichuan Medical College , Nanchong , Sichuan 637000 , China
| | - Chengyi Shen
- Sichuan Key Laboratory of Medical Imaging , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Chemistry, School of Preclinical Medicine , North Sichuan Medical College , Nanchong , Sichuan 637000 , China
| | - Xiaoming Zhang
- Sichuan Key Laboratory of Medical Imaging , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Chemistry, School of Preclinical Medicine , North Sichuan Medical College , Nanchong , Sichuan 637000 , China.,Department of Radiology , Affiliated Hospital of North Sichuan Medical College , Nanchong , Sichuan 637000 , China
| | - Xuan Liu
- School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , Hunan 411201 , China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry , University of Chinese Academy of Sciences, Chinese Academy of Sciences , Beijing 100190 , China
| |
Collapse
|
22
|
Guan Q, Shi L, Li C, Gao X, Wang K, Liang X, Li P, Zhu X. A Fluorescent Cocktail Strategy for Differentiating Tumor, Inflammation, and Normal Cells by Detecting mRNA and H 2O 2. ACS Biomater Sci Eng 2019; 5:1023-1033. [PMID: 33405793 DOI: 10.1021/acsbiomaterials.8b01470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accurately distinguishing tumors from noncancerous inflammation and normal tissues is hugely significent for tumor diagnosis and therapy. However, tumor and inflammatory tissues have similar pathologic characteristics in their microenvironment, making differentiation very difficult. Here, a fluorescent cocktail nanoparticle capable of simultaneously detecting intracellular mRNA and H2O2 was designed to differentiate tumors from nontumor cells. To detect targeted mRNA in living cells, a DNA probe was generated using the fluorescence resonance energy transfer (FRET) principle. A pH-responsive amphiphilic polymer was synthesized to realize the transportation of the DNA probe. In addition, the polymer was conjugated with a coumarin-boronic acid ester (Cou-BE) H2O2 probe. According to the change in the fluorescence of Cou-BE, tumor and inflammatory cells could be distinguished from normal cells owing to their high concentration of H2O2. Because of the different concentrations of tumor-related mRNA in tumor and nontumor cells, the fluorescence intensity of the DNA probe-loaded nanoparticles inside tumor cells was different from that inside inflammatory cells. Therefore, our fluorescent cocktail strategy could discriminate simultaneously tumor, inflammation, and normal cells through the cooperative detection of intracellular mRNA and H2O2, which demonstrated potential application value in biomedical research and clinical diagnosis.
Collapse
Affiliation(s)
- Qinghua Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Leilei Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunting Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xihui Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Peiyong Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
23
|
Cortes-Salva MY, Shrestha S, Singh P, Morse CL, Jenko KJ, Montero Santamaria JA, Zoghbi SS, Innis RB, Pike VW. 2-(4-Methylsulfonylphenyl)pyrimidines as Prospective Radioligands for Imaging Cyclooxygenase-2 with PET-Synthesis, Triage, and Radiolabeling. Molecules 2018; 23:molecules23112850. [PMID: 30400142 PMCID: PMC6278313 DOI: 10.3390/molecules23112850] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cyclooxygenase 2 (COX-2) is an inducible enzyme responsible for the conversion of arachidonic acid into the prostaglandins, PGG2 and PGH2. Expression of this enzyme increases in inflammation. Therefore, the development of probes for imaging COX-2 with positron emission tomography (PET) has gained interest because they could be useful for the study of inflammation in vivo, and for aiding anti-inflammatory drug development targeting COX-2. Nonetheless, effective PET radioligands are still lacking. We synthesized eleven COX-2 inhibitors based on a 2(4-methylsulfonylphenyl)pyrimidine core from which we selected three as prospective PET radioligands based on desirable factors, such as high inhibitory potency for COX-2, very low inhibitory potency for COX-1, moderate lipophilicity, and amenability to labeling with a positron-emitter. These inhibitors, namely 6-methoxy-2-(4-(methylsulfonyl)phenyl-N-(thiophen-2ylmethyl)pyrimidin-4-amine (17), the 6-fluoromethyl analogue (20), and the 6-(2-fluoroethoxy) analogue (27), were labeled in useful yields and with high molar activities by treating the 6-hydroxy analogue (26) with [11C]iodomethane, [18F]2-fluorobromoethane, and [d2-18F]fluorobromomethane, respectively. [11C]17, [18F]20, and [d2-18F]27 were readily purified with HPLC and formulated for intravenous injection. These methods allow these radioligands to be produced for comparative evaluation as PET radioligands for measuring COX-2 in healthy rhesus monkey and for assessing their abilities to detect inflammation.
Collapse
Affiliation(s)
- Michelle Y Cortes-Salva
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Stal Shrestha
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Prachi Singh
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Kimberly J Jenko
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Jose A Montero Santamaria
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018; 24:1399-1412. [DOI: 10.1177/1352458518791680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Positron emission tomography (PET) gives an opportunity to quantitate the expression of specific molecular targets in vivo and longitudinally in brain and thus enhances our possibilities to understand and follow up multiple sclerosis (MS)-related pathology. For successful PET imaging, one needs a relevant target molecule within the brain, to which a blood–brain barrier–penetrating specific radioligand will bind. 18-kDa translocator protein (TSPO)-binding radioligands have been used to detect activated microglial cells at different stages of MS, and remyelination has been measured using amyloid PET. Several PET ligands for the detection of other inflammatory targets, besides TSPO, have been developed but not yet been used for imaging MS patients. Finally, synaptic density evaluation has been successfully tested in human subjects and gives opportunities for the evaluation of the development of cortical and deep gray matter pathology in MS. This review will discuss PET imaging modalities relevant for MS today.
Collapse
Affiliation(s)
- Heidi Högel
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Eero Rissanen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| | - Laura Airas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland/Division of Clinical Neurosciences, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
25
|
Tietz O, Marshall A, Bergman C, Wuest M, Wuest F. Impact of structural alterations on the radiopharmacological profile of 18F-labeled pyrimidines as cyclooxygenase-2 (COX-2) imaging agents. Nucl Med Biol 2018; 62-63:9-17. [PMID: 29800798 DOI: 10.1016/j.nucmedbio.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/19/2018] [Accepted: 05/02/2018] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Non-invasive imaging of COX-2 in cancer represents a powerful tool for assessing COX-2-mediated effects on chemoprevention and radiosensitization using potent and selective COX-2 inhibitors as an emerging class of anticancer drugs. Careful assessment of the pharmacokinetic profile of radiolabeled COX-2 inhibitors is of crucial importance for the development of suitable radiotracers for COX-2 imaging in vivo. The delicate balance between the selection of typical COX-2 pharmacophores and the resulting physicochemical characteristics of the COX-2 inhibitor represents a formidable challenge for the search of radiolabeled COX-2 imaging agents. Several pyrimidine-based COX-2 inhibitors demonstrated favorable in vitro and in vivo COX-2 imaging properties in various COX-2 expressing cancer cell lines. Here, we describe a comparative radiopharmacological study of three 18F-labeled COX-2 inhibitors based on a pyrimidine scaffold. The objective of this study was to investigate how subtle structural alterations influence the pharmacokinetic profile of lead compound [18F]1a ([18F]Pyricoxib) to afford 18F-labeled pyrimidine-based COX-2 inhibitors with improved COX-2 imaging properties in vivo. METHODS Radiosynthesis of radiotracers was accomplished through reaction with 4-[18F]fluorobenzyl amine on a methyl-sulfone labeling precursor ([18F]1a and [18F]2a) or late-stage radiofluorination using a iodyl-containing labeling precursor ([18F]3a). Radiopharmacological profile of 18F-labeled pyrimidine-based COX-2 inhibitors [18F]1a, [18F]2a and [18F]3a was studied in COX-2-expressing human HCA-7 colorectal cancer cell line, including cellular uptake studies in HCA-7 cells and dynamic PET imaging studies in HCA-7 xenografts. RESULTS Cellular uptake of radiotracers [18F]2a and [18F]3a in HCA-7 cells was 450% and 300% radioactivity/mg protein, respectively, after 90 min incubation, compared to 600% radioactivity/mg protein for radiotracer [18F]1a. Dynamic PET imaging studies revealed a tumor SUV of 0.53 ([18F]2a) and 0.54 ([18F]3a) after 60 min p.i. with a tumor-to-muscle ratio of ~1. Tumor SUV for [18F]1a (60 min p.i.) was 0.76 and a tumor-to-muscle ratio of ~1.5. Pyricoxib analogues [18F]2a and [18F]3a showed distinct pharmacokinetic profiles in comparison to lead compound [18F]1a with a significantly improved lung clearance pattern. Replacing the 4-[18F]fluorobenzyl amine motif in radiotracer [18F]1a with a 4-[18F]fluorobenzyl alcohol motif in radiotracer [18F]3a resulted in re-routing of the metabolic pathway as demonstrated by a more rapid liver clearance and higher initial kidney uptake and more rapid kidney clearance compared to radiotracers [18F]1a and [18F]2a. Moreover, radiotracer [18F]3a displayed favorable rapid brain uptake and retention. CONCLUSION The radiopharmacological profile of three 18F-labeled COX-2 inhibitors based on a pyrimidine scaffold were evaluated in COX-2 expressing human colorectal cancer cell line HCA-7 and HCA-7 xenografts in mice. Despite the overall structural similarity and comparable COX-2 inhibitory potency of all three radiotracers, subtle structural alterations led to significantly different in vitro and in vivo metabolic profiles. ADVANCES IN KNOWLEDGE Among all tested pyrimidine-based 18F-labeled COX-2 inhibitors, lead compound [18F]1a remains the most suitable radiotracer for assessing COX-2 expression in vivo. Radiotracer [18F]3a showed significantly improved first pass pulmonary passage in comparison to radiotracer [18F]1a and might represents a promising lead compound for the development of radiotracers for PET imaging of COX-2 in neuroinflammation.
Collapse
Affiliation(s)
- Ole Tietz
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Alison Marshall
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Cody Bergman
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Melinda Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H1, Canada.
| |
Collapse
|
26
|
Kuchar M, Neuber C, Belter B, Bergmann R, Lenk J, Wodtke R, Kniess T, Steinbach J, Pietzsch J, Löser R. Evaluation of Fluorine-18-Labeled α1(I)-N-Telopeptide Analogs as Substrate-Based Radiotracers for PET Imaging of Melanoma-Associated Lysyl Oxidase. Front Chem 2018; 6:121. [PMID: 29755969 PMCID: PMC5932954 DOI: 10.3389/fchem.2018.00121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence suggests an unequivocal role of lysyl oxidases as key players of tumor progression and metastasis, which renders this enzyme family highly attractive for targeted non-invasive functional imaging of tumors. Considering their function in matrix remodeling, malignant melanoma appears as particularly interesting neoplasia in this respect. For the development of radiotracers that enable PET imaging of the melanoma-associated lysyl oxidase activity, substrates derived from the type I collagen α1 N-telopeptide were labeled with fluorine-18 using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) as prosthetic reagent. With regards to potential crosslinking to tumor-associated collagen in vivo, their interaction with triple-helical type I collagen was studied by SPR. A mouse model of human melanoma was established on the basis of the A375 cell line, for which the expression of the oncologically relevant lysyl oxidase isoforms LOX and LOXL2 was demonstrated in Western blot and immunohistochemical experiments. The radiopharmacological profiles of the peptidic radiotracers were evaluated in normal rats and A375 melanoma-bearing mice by ex vivo metabolite analysis, whole-body biodistribution studies and dynamic PET imaging. Out of three 18F-labeled telopeptide analogs, the one with the most favorable substrate properties has shown favorable tumor uptake and tumor-to-muscle ratio. Lysyl oxidase-mediated tumor uptake was proven by pharmacological inhibition using β-aminopropionitrile and by employing negative-control analogs of impeded or abolished targeting capability. The latter were obtained by substituting the lysine residue by ornithine and norleucine, respectively. Comparing the tumor uptake of the lysine-containing peptide with that of the non-functional analogs indicate the feasibility of lysyl oxidase imaging in melanoma using substrate-based radiotracers.
Collapse
Affiliation(s)
- Manuela Kuchar
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Birgit Belter
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jens Lenk
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Robert Wodtke
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Torsten Kniess
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Unversität Dresden, Dresden, Germany
| |
Collapse
|
27
|
Gurram B, Zhang S, Li M, Li H, Xie Y, Cui H, Du J, Fan J, Wang J, Peng X. Celecoxib Conjugated Fluorescent Probe for Identification and Discrimination of Cyclooxygenase-2 Enzyme in Cancer Cells. Anal Chem 2018; 90:5187-5193. [PMID: 29587478 DOI: 10.1021/acs.analchem.7b05337] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme overexpressed in most types of cancers and has been used for an excellent targetable biomarker. Celecoxib is an effective inhibitor of COX-2, used in anti-inflammation. Herein we report a one and two-photon fluorescence probe (NP-C6-CXB) for COX-2, based on the conjugation of naphthalamide with Celecoxib, by using flexible hexylene linker. NP-C6-CXB is nonfluorescent in buffer solution and normal cells, while it shows bright fluorescence in solutions and cancer cells in the presence of COX-2 with an excellent selectivity. Interestingly, NP-C6-CXB can discriminate cancer cells (MCF-7) from normal cells (COS-7) in the single culture medium under confocal microscopy. Due to the selective binding affinity of NP-C6-CXB with a COX-2 enzyme, the intensity is proportional to the level of COX-2 enzyme in cancer cells. In vivo and in vitro experiments proved that NP-C6-CXB is a potential tool for identification of tumor and might be used in surgical resection of COX-2 expressed tumors.
Collapse
Affiliation(s)
- Bhaskar Gurram
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Shuangzhe Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Miao Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Yahui Xie
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Hongyan Cui
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| |
Collapse
|
28
|
Molecular modeling and preclinical evaluation of radioiodinated tenoxicam for inflammatory disease diagnosis. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5770-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Tronel C, Largeau B, Santiago Ribeiro MJ, Guilloteau D, Dupont AC, Arlicot N. Molecular Targets for PET Imaging of Activated Microglia: The Current Situation and Future Expectations. Int J Mol Sci 2017; 18:ijms18040802. [PMID: 28398245 PMCID: PMC5412386 DOI: 10.3390/ijms18040802] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Microglia, as cellular mediators of neuroinflammation, are implicated in the pathogenesis of a wide range of neurodegenerative diseases. Positron emission tomography (PET) imaging of microglia has matured over the last 20 years, through the development of radiopharmaceuticals targeting several molecular biomarkers of microglial activation and, among these, mainly the translocator protein-18 kDa (TSPO). Nevertheless, current limitations of TSPO as a PET microglial biomarker exist, such as low brain density, even in a neurodegenerative setting, expression by other cells than the microglia (astrocytes, peripheral macrophages in the case of blood brain barrier breakdown), genetic polymorphism, inducing a variation for most of TSPO PET radiopharmaceuticals’ binding affinity, or similar expression in activated microglia regardless of its polarization (pro- or anti-inflammatory state), and these limitations narrow its potential interest. We overview alternative molecular targets, for which dedicated radiopharmaceuticals have been proposed, including receptors (purinergic receptors P2X7, cannabinoid receptors, α7 and α4β2 nicotinic acetylcholine receptors, adenosine 2A receptor, folate receptor β) and enzymes (cyclooxygenase, nitric oxide synthase, matrix metalloproteinase, β-glucuronidase, and enzymes of the kynurenine pathway), with a particular focus on their respective contribution for the understanding of microglial involvement in neurodegenerative diseases. We discuss opportunities for these potential molecular targets for PET imaging regarding their selectivity for microglia expression and polarization, in relation to the mechanisms by which microglia actively participate in both toxic and neuroprotective actions in brain diseases, and then take into account current clinicians’ expectations.
Collapse
Affiliation(s)
- Claire Tronel
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
| | | | - Maria Joao Santiago Ribeiro
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Denis Guilloteau
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Anne-Claire Dupont
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| | - Nicolas Arlicot
- INSERM U930, Université François Rabelais de Tours, 10 boulevard Tonnelé, 37032 Tours, France.
- CHRU de Tours, 37044 Tours, France.
| |
Collapse
|
30
|
Poutiainen P, Jaronen M, Quintana FJ, Brownell AL. Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 2016; 9:85. [PMID: 27695400 PMCID: PMC5023680 DOI: 10.3389/fnmol.2016.00085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022] Open
Abstract
Non-invasive molecular imaging techniques can enhance diagnosis to achieve successful treatment, as well as reveal underlying pathogenic mechanisms in disorders such as multiple sclerosis (MS). The cooperation of advanced multimodal imaging techniques and increased knowledge of the MS disease mechanism allows both monitoring of neuronal network and therapeutic outcome as well as the tools to discover novel therapeutic targets. Diverse imaging modalities provide reliable diagnostic and prognostic platforms to better achieve precision medicine. Traditionally, magnetic resonance imaging (MRI) has been considered the golden standard in MS research and diagnosis. However, positron emission tomography (PET) imaging can provide functional information of molecular biology in detail even prior to anatomic changes, allowing close follow up of disease progression and treatment response. The recent findings support three major neuroinflammation components in MS: astrogliosis, cytokine elevation, and significant changes in specific proteins, which offer a great variety of specific targets for imaging purposes. Regardless of the fact that imaging of astrocyte function is still a young field and in need for development of suitable imaging ligands, recent studies have shown that inflammation and astrocyte activation are related to progression of MS. MS is a complex disease, which requires understanding of disease mechanisms for successful treatment. PET is a precise non-invasive imaging method for biochemical functions and has potential to enhance early and accurate diagnosis for precision therapy of MS. In this review we focus on modulation of different receptor systems and inflammatory aspect of MS, especially on activation of glial cells, and summarize the recent findings of PET imaging in MS and present the most potent targets for new biomarkers with the main focus on experimental MS research.
Collapse
Affiliation(s)
- Pekka Poutiainen
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| | - Merja Jaronen
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Francisco J. Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| | - Anna-Liisa Brownell
- Athinoula A Martinos Biomedical Imaging Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolCharlestown, MA, USA
| |
Collapse
|
31
|
Erfani M, Sharifzadeh S, Doroudi A, Shafiei M. Labeling and evaluation of99mTc-tricarbonyl-meloxicam as a preferential COX-2 inhibitor for inflammation imaging. J Labelled Comp Radiopharm 2016; 59:284-90. [DOI: 10.1002/jlcr.3396] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/14/2016] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Mostafa Erfani
- Radiation Application Research School; Nuclear Science and Technology Research Institute (NSTRI); P.O. Box: 14395-836, Tehran Iran
| | - Somayeh Sharifzadeh
- School of Pharmacy; Ahvaz Jundishapur University of Medical Sciences; P.O. Box: 61357-33184 Ahvaz Iran
| | - Alireza Doroudi
- School of Pharmacy; Ahvaz Jundishapur University of Medical Sciences; P.O. Box: 61357-33184 Ahvaz Iran
| | - Mohammad Shafiei
- Radiation Application Research School; Nuclear Science and Technology Research Institute (NSTRI); P.O. Box: 14395-836, Tehran Iran
| |
Collapse
|
32
|
Radiopharmaceuticals for PET imaging of neuroinflammation. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2016. [DOI: 10.1016/j.mednuc.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
33
|
Janssen B, Vugts DJ, Funke U, Molenaar GT, Kruijer PS, van Berckel BNM, Lammertsma AA, Windhorst AD. Imaging of neuroinflammation in Alzheimer's disease, multiple sclerosis and stroke: Recent developments in positron emission tomography. Biochim Biophys Acta Mol Basis Dis 2015; 1862:425-41. [PMID: 26643549 DOI: 10.1016/j.bbadis.2015.11.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022]
Abstract
Neuroinflammation is thought to play a pivotal role in many diseases affecting the brain, including Alzheimer's disease, multiple sclerosis and stroke. Neuroinflammation is characterised predominantly by microglial activation, which can be visualised using positron emission tomography (PET). Traditionally, translocator protein 18kDa (TSPO) is the target for imaging of neuroinflammation using PET. In this review, recent preclinical and clinical research using PET in Alzheimer's disease, multiple sclerosis and stroke is summarised. In addition, new molecular targets for imaging of neuroinflammation, such as monoamine oxidases, adenosine receptors and cannabinoid receptor type 2, are discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Bieneke Janssen
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | - Danielle J Vugts
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Uta Funke
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | - Ger T Molenaar
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; BV Cyclotron VU, Amsterdam, The Netherlands
| | | | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties. Bioorg Med Chem 2015; 23:6807-14. [DOI: 10.1016/j.bmc.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
|
35
|
Laube M, Gassner C, Sharma SK, Günther R, Pigorsch A, König J, Köckerling M, Wuest F, Pietzsch J, Kniess T. Diaryl-Substituted (Dihydro)pyrrolo[3,2,1-hi]indoles, a Class of Potent COX-2 Inhibitors with Tricyclic Core Structure. J Org Chem 2015; 80:5611-24. [PMID: 25909690 DOI: 10.1021/acs.joc.5b00537] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new compound class of diaryl-substituted heterocycles with tricyclic dihydropyrrolo[3,2,1-hi]indole and pyrrolo[3,2,1-hi]indole core structures has been designed and was synthesized by a modular sequence of Friedel-Crafts acylation, amide formation, and McMurry cyclization. This synthesis route represents a novel and versatile access toward dihydropyrrolo[3,2,1-hi]indoles and is characterized by good chemical yields and high modularity. From a set of 19 derivatives, 11 candidates were selected for determination of their COX inhibition potency and were found to be selective inhibitors with high affinity to COX-2 (IC50 ranging from 20-2500 nM and negligible inhibition of COX-1). The binding mode of the novel inhibitors in the active side of COX-2 was calculated in silico using the protein-ligand docking program GOLD by application of the molecular structures of two compounds derived from X-ray crystallography. Two novel compounds with high affinity to COX-2 (6k = 70 nM, 8e = 60 nM) have a fluoro substituent, making them promising candidates for the development of (18)F-radiolabeled COX-2 inhibitors for imaging purposes with positron emission tomography (PET).
Collapse
Affiliation(s)
- Markus Laube
- †Helmholtz-Zentrum Dresden-Rossendorf, Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,‡Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Cemena Gassner
- †Helmholtz-Zentrum Dresden-Rossendorf, Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,‡Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Sai Kiran Sharma
- §Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Robert Günther
- ∥Helmholtz-Zentrum Dresden-Rossendorf, Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Research Site Leipzig, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Arne Pigorsch
- ○Department of Inorganic Solid State Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Jonas König
- ○Department of Inorganic Solid State Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Martin Köckerling
- ○Department of Inorganic Solid State Chemistry, Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Wuest
- §Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada T6G 1Z2
| | - Jens Pietzsch
- †Helmholtz-Zentrum Dresden-Rossendorf, Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany.,‡Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Torsten Kniess
- †Helmholtz-Zentrum Dresden-Rossendorf, Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
36
|
Wang B, Fan J, Wang X, Zhu H, Wang J, Mu H, Peng X. A Nile blue based infrared fluorescent probe: imaging tumors that over-express cyclooxygenase-2. Chem Commun (Camb) 2015; 51:792-5. [DOI: 10.1039/c4cc08915d] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The free Niblue-C6-IMC exists in a folded conformation where fluorescence is quenched, and when it binds to COX-2 in the Golgi apparatus of cancer cells, it is forced to adopt the unfolded state, and then fluorescence is turned on. Niblue-C6-IMC was proved to specifically target COX-2 by native polyacrylamide gel electrophoresis analysis.
Collapse
Affiliation(s)
- Benhua Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- High-tech District
- China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- High-tech District
- China
| | - Xianwu Wang
- Department School of Life Science and Biotechnology
- Dalian University of Technology
- Ganjingzi District
- China
| | - Hao Zhu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- High-tech District
- China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology
- Dalian University of Technology
- Ganjingzi District
- China
| | - Huiying Mu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- High-tech District
- China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- High-tech District
- China
| |
Collapse
|
37
|
Faria DDP, Copray S, Buchpiguel C, Dierckx R, de Vries E. PET imaging in multiple sclerosis. J Neuroimmune Pharmacol 2014; 9:468-82. [PMID: 24809810 DOI: 10.1007/s11481-014-9544-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/21/2014] [Indexed: 01/03/2023]
Abstract
Positron emission tomography (PET) is a non-invasive technique for quantitative imaging of biochemical and physiological processes in animals and humans. PET uses probes labeled with a radioactive isotope, called PET tracers, which can bind to or be converted by a specific biological target and thus can be applied to detect and monitor different aspects of diseases. The number of applications of PET imaging in multiple sclerosis is still limited. Clinical studies using PET are basically focused on monitoring changes in glucose metabolism and the presence of activated microglia/macrophages in sclerotic lesions. In preclinical studies, PET imaging of targets for other processes, like demyelination and remyelination, has been investigated and may soon be translated to clinical applications. Moreover, more PET tracers that could be relevant for MS are available now, but have not been studied in this context yet. In this review, we summarize the PET imaging studies performed in multiple sclerosis up to now. In addition, we will identify potential applications of PET imaging of processes or targets that are of interest to MS research, but have yet remained largely unexplored.
Collapse
Affiliation(s)
- Daniele de Paula Faria
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Pacelli A, Greenman J, Cawthorne C, Smith G. Imaging COX-2 expression in cancer using PET/SPECT radioligands: current status and future directions. J Labelled Comp Radiopharm 2014; 57:317-22. [PMID: 24470172 DOI: 10.1002/jlcr.3160] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/29/2013] [Indexed: 12/21/2022]
Abstract
The role of cyclooxygenase (COX)-2 as a driving force in early tumourigenesis and the current interest in the combination of COX-2 inhibitors with standard therapy in clinical trials creates an urgent need to establish clinically relevant diagnostic tests for COX-2 expression. Molecular imaging using small-molecule probes radiolabelled for both positron emission tomography (PET) and single photon emission computed tomography (SPECT) offers the potential to meet this need, providing a minimally invasive readout for the whole disease burden. This review summarises current approaches to the radiolabelling of small-molecule COX-2 inhibitors and their analogues for PET and SPECT imaging, and gives an overview of their biological evaluation and likely success of clinical application.
Collapse
Affiliation(s)
- A Pacelli
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK
| | | | | | | |
Collapse
|
39
|
Laube M, Tondera C, Sharma SK, Bechmann N, Pietzsch FJ, Pigorsch A, Köckerling M, Wuest F, Pietzsch J, Kniess T. 2,3-Diaryl-substituted indole based COX-2 inhibitors as leads for imaging tracer development. RSC Adv 2014. [DOI: 10.1039/c4ra05650g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of 2,3-diaryl-substituted indoles containing a fluorine or methoxy group was synthesized via Fischer indole synthesis, McMurry cyclization, or Bischler–Möhlau reaction to identify potential leads for PET radiotracer development.
Collapse
Affiliation(s)
- Markus Laube
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Christoph Tondera
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Sai Kiran Sharma
- Department of Oncology
- Cross Cancer Institute
- University of Alberta
- Edmonton, Canada T6G 1Z2
| | - Nicole Bechmann
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Franz-Jacob Pietzsch
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Centre for Translational Bone, Joint, and Soft Tissue Research
| | - Arne Pigorsch
- Department of Inorganic Solid State Chemistry
- Institute of Chemistry
- University of Rostock
- 18059 Rostock, Germany
| | - Martin Köckerling
- Department of Inorganic Solid State Chemistry
- Institute of Chemistry
- University of Rostock
- 18059 Rostock, Germany
| | - Frank Wuest
- Department of Oncology
- Cross Cancer Institute
- University of Alberta
- Edmonton, Canada T6G 1Z2
| | - Jens Pietzsch
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
- Department of Chemistry and Food Chemistry
| | - Torsten Kniess
- Department Radiopharmaceutical and Chemical Biology
- Institute of Radiopharmaceutical Cancer Research
- Helmholtz-Zentrum Dresden-Rossendorf
- 01328 Dresden, Germany
| |
Collapse
|
40
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
41
|
Zhang H, Fan J, Wang J, Dou B, Zhou F, Cao J, Qu J, Cao Z, Zhao W, Peng X. Fluorescence Discrimination of Cancer from Inflammation by Molecular Response to COX-2 Enzymes. J Am Chem Soc 2013; 135:17469-75. [DOI: 10.1021/ja4085308] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | | | - Fan Zhou
- Key Laboratories of Optoelectronic
Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | | | - Junle Qu
- Key Laboratories of Optoelectronic
Devices and Systems of Ministry of Education, Shenzhen University, Shenzhen 518060, People’s Republic of China
| | | | | | | |
Collapse
|
42
|
Ji B, Kumata K, Onoe H, Kaneko H, Zhang MR, Seki C, Ono M, Shukuri M, Tokunaga M, Minamihisamatsu T, Suhara T, Higuchi M. Assessment of radioligands for PET imaging of cyclooxygenase-2 in an ischemic neuronal injury model. Brain Res 2013; 1533:152-62. [PMID: 23973859 DOI: 10.1016/j.brainres.2013.08.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/29/2013] [Accepted: 08/14/2013] [Indexed: 12/12/2022]
Abstract
Cyclooxygenase-2 (COX-2) plays crucial roles in progressive neuronal death in ischemic brain injury. In the present study, we evaluated two radiolabeled COX-2 selective inhibitors, [11C]celecoxib and [11C]rofecoxib, as positron emission tomography (PET) tracers for COX-2 imaging in normal and ischemic mouse brains. We also took advantage of our newly-generated antibody highly selective for mouse COX-2 to prove accumulation of the radioligands in regions enriched with COX-2. In vitro autoradiography demonstrated specific binding of high-concentration [11C]rofecoxib but not [11C]celecoxib to the cerebellum and brain stem of normal brains wherein COX-2 immunoreactivity in neurons was most abundantly observed. Meanwhile, both of these radioligands failed to detect COX-2 expression in PET assays despite their excellent brain permeability. Hypoperfusion-induced ischemia caused marked necrotic neuron death accompanied by gliosis and enhancement of neuronal COX-2 immunoreactivity in the hippocampus. Correspondingly, in vitro autoradiographic binding of [11C]rofecoxib was increased in the injured hippocampus compared to the uninjured contralateral region, but failed in living brains of ischemia model likewise. Our work provides the rationale for monitoring COX-2 as a biomarker reflecting ischemic brain injuries and demonstrates that [11C]rofecoxib, not [11C]celecoxib, is useful for in vitro assays of COX-2, but its affinity would be insufficient for in vivo PET visualization.
Collapse
Affiliation(s)
- Bin Ji
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage-ku, Chiba, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu C, Li F, Niu G, Chen X. PET imaging of inflammation biomarkers. Theranostics 2013; 3:448-66. [PMID: 23843893 PMCID: PMC3706689 DOI: 10.7150/thno.6592] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 05/24/2013] [Indexed: 01/04/2023] Open
Abstract
Inflammation plays a significant role in many disease processes. Development in molecular imaging in recent years provides new insight into the diagnosis and treatment evaluation of various inflammatory diseases and diseases involving inflammatory process. Positron emission tomography using (18)F-FDG has been successfully applied in clinical oncology and neurology and in the inflammation realm. In addition to glucose metabolism, a variety of targets for inflammation imaging are being discovered and utilized, some of which are considered superior to FDG for imaging inflammation. This review summarizes the potential inflammation imaging targets and corresponding PET tracers, and the applications of PET in major inflammatory diseases and tumor associated inflammation. Also, the current attempt in differentiating inflammation from tumor using PET is also discussed.
Collapse
|
44
|
Laube M, Kniess T, Pietzsch J. Radiolabeled COX-2 inhibitors for non-invasive visualization of COX-2 expression and activity--a critical update. Molecules 2013; 18:6311-55. [PMID: 23760031 PMCID: PMC6269837 DOI: 10.3390/molecules18066311] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/16/2013] [Accepted: 05/24/2013] [Indexed: 01/21/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a key player in inflammation. Its overexpression is directly associated with various inflammatory diseases and, additionally, with several processes of carcinogenesis. The development of new selective COX-2 inhibitors (COXIBs) for use in cancer treatment is in the focus of the medicinal chemistry research field. For this purpose, a set of methods is available to determine COX-2 expression and activity in vitro and ex vivo but it is still a problem to functionally characterize COX-2 in vivo. This review focusses on imaging agents targeting COX-2 which have been developed for positron emission tomography (PET) and single photon emission computed tomography (SPECT) since 2005. The literature reveals that different radiochemical methods are available to synthesize COXIBs radiolabeled with fluorine-18, carbon-11, and isotopes of radioiodine. Unfortunately, most of the compounds tested did not show sufficient stability in vivo due to de[18F]fluorination or de[11C]methylation or they failed to bind specifically in the target region. So, suitable stability in vivo, matching lipophilicity for the target compartment and both high affinity and selectivity for COX-2 were identified as prominent criteria for radiotracer development. Up to now, it is not clear what approach and which model is the most suited to evaluate COX-2 targeting imaging agents in vivo. However, for proof of principle it has been shown that some radiolabeled compounds can bind specifically in COX-2 overexpressing tissue which gives hope for future work in this field.
Collapse
Affiliation(s)
- Markus Laube
- Department Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; E-Mails: (T.K.); (J.P.)
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-351-260-2810; Fax: +49-351-260-2915
| | - Torsten Kniess
- Department Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; E-Mails: (T.K.); (J.P.)
| | - Jens Pietzsch
- Department Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany; E-Mails: (T.K.); (J.P.)
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
45
|
Huang HL, Yeh CN, Lee WY, Huang YC, Chang KW, Lin KJ, Tien SF, Su WC, Yang CH, Chen JT, Lin WJ, Fan SS, Yu CS. [123I]Iodooctyl fenbufen amide as a SPECT tracer for imaging tumors that over-express COX enzymes. Biomaterials 2013; 34:3355-65. [PMID: 23384791 DOI: 10.1016/j.biomaterials.2013.01.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 01/09/2013] [Indexed: 11/27/2022]
Abstract
This study is concerned with the development of an agent for single photon emission computer tomography (SPECT) for imaging inflammation and tumor progression. [(123)I]Iodooctyl fenbufen amide ([(123)I]IOFA) was prepared from the precursor N-octyl-4-oxo-4-(4'-(trimethylstannyl)biphenyl-4-yl)butanamide with a radiochemical yield of 15%, specific activity of 37 GBq/μmol, and radiochemical purity of 95%. Analysis of the binding of [(123)I]IOFA to COX-1 and COX-2 enzymes by using HPLC and a gel filtration column showed a selectivity ratio of 1:1.3. An assay for the competitive inhibition of substrate transfer showed that IOFA exhibited a comparable IC(50) value compared to fenbufen. In the normal rat liver, a lower level and homogeneous pattern of [(123)I]IOFA radioactivity was observed by SPECT. In contrast, in the rat liver with thioacetamide-induced cholangiocarcinoma, a higher uptake and heterogeneous pattern of [(123)I]IOFA radioactivity was seen as hot spots in tumor lesions by SPECT imaging. Importantly, elevated COX-1 and COX-2 expressions from immunostaining were found in the bile ducts of tumor rats but not of normal rats. Therefore, [(123)I]IOFA was found to exhibit the potential for imaging tumors that over-express COX.
Collapse
Affiliation(s)
- Ho-Lien Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu 300, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tietz O, Sharma SK, Kaur J, Way J, Marshall A, Wuest M, Wuest F. Synthesis of three 18F-labelled cyclooxygenase-2 (COX-2) inhibitors based on a pyrimidine scaffold. Org Biomol Chem 2013; 11:8052-64. [DOI: 10.1039/c3ob41935e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
47
|
Jacobs AH, Tavitian B. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 2012; 32:1393-415. [PMID: 22549622 PMCID: PMC3390799 DOI: 10.1038/jcbfm.2012.53] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 12/23/2022]
Abstract
Inflammation is a highly dynamic and complex adaptive process to preserve and restore tissue homeostasis. Originally viewed as an immune-privileged organ, the central nervous system (CNS) is now recognized to have a constant interplay with the innate and the adaptive immune systems, where resident microglia and infiltrating immune cells from the periphery have important roles. Common diseases of the CNS, such as stroke, multiple sclerosis (MS), and neurodegeneration, elicit a neuroinflammatory response with the goal to limit the extent of the disease and to support repair and regeneration. However, various disease mechanisms lead to neuroinflammation (NI) contributing to the disease process itself. Molecular imaging is the method of choice to try to decipher key aspects of the dynamic interplay of various inducers, sensors, transducers, and effectors of the orchestrated inflammatory response in vivo in animal models and patients. Here, we review the basic principles of NI with emphasis on microglia and common neurologic disease mechanisms, the molecular targets which are being used and explored for imaging, and molecular imaging of NI in frequent neurologic diseases, such as stroke, MS, neurodegeneration, epilepsy, encephalitis, and gliomas.
Collapse
Affiliation(s)
- Andreas H Jacobs
- European Institute for Molecular Imaging (EIMI) at the Westfalian Wilhelms-University of Münster (WWU), Münster, Germany.
| | | |
Collapse
|
48
|
Kniess T, Laube M, Bergmann R, Sehn F, Graf F, Steinbach J, Wuest F, Pietzsch J. Radiosynthesis of a ¹⁸F-labeled 2,3-diarylsubstituted indole via McMurry coupling for functional characterization of cyclooxygenase-2 (COX-2) in vitro and in vivo. Bioorg Med Chem 2012; 20:3410-21. [PMID: 22560838 DOI: 10.1016/j.bmc.2012.04.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 11/18/2022]
Abstract
The radiosynthesis of 3-(4-[(18)F]fluorophenyl)-2-(4-methylsulfonylphenyl)-1H-indole [(18)F]-3 as potential PET radiotracer for functional characterization of cyclooxygenase-2 (COX-2) in vitro and in vivo is described. [(18)F]-3 was prepared by McMurry cyclization of a (18)F-labeled intermediate with low valent titanium and zinc via a two-step procedure in a remote controlled synthesizer unit including HPLC purification and solid phase extraction. In this way [(18)F]-3 was synthesized in 80 min synthesis time in 10% total decay corrected yield from [(18)F]fluoride in radiochemical purity >98% and a specific activity of 74-91 GBq/μmol (EOS). [(18)F]-3 was evaluated in vitro using pro-inflammatory stimulated THP-1 and COX-2 expressing tumor cell lines (FaDu, A2058, HT-29), where the radiotracer uptake was shown to be consistent with up regulated COX-2 expression. The stability of [(18)F]-3 was determined by incubation in rat whole blood and plasma in vitro and by metabolite analysis of arterial blood samples in vivo, showing with 75% of original compound after 60 min an acceptable high metabolic stability. However, no substantial tumor accumulation of [(18)F]-3 could be observed by dynamic small animal PET studies on HT-29 tumor-bearing mice in vivo. This may be due to the only moderate COX-1/COX-2 selectivity of 3 as demonstrated by both cellular and enzymatic cyclooxygenase inhibition assay in vitro. Nevertheless, the new approach first using McMurry cyclization in (18)F-chemistry gives access to (18)F-labeled diarylsubstituted heterocycles that hold promise as radiolabeled COX-2 inhibitors.
Collapse
Affiliation(s)
- Torsten Kniess
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Higuchi M, Maeda J, Ji B, Tokunaga M, Zhang MR, Maruyama M, Ono M, Fukumura T, Suhara T. PET applications in animal models of neurodegenerative and neuroinflammatory disorders. Curr Top Behav Neurosci 2012; 11:45-64. [PMID: 22016108 DOI: 10.1007/7854_2011_167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Studies on hereditary neurological disorders such as familial Alzheimer's disease (AD) have revealed abnormalities of pathogenic proteins causative of neurodegeneration, while molecular initiators of sporadic neuropsychiatric conditions remain unidentified. Such disorders are characterized by collections of molecular abnormalities that may be critically involved in synaptic dysfunctions and other deteriorations in neurons. Diverse classes of radiochemicals designed for positron emission tomographic (PET) imaging facilitate delineation of mechanistic links among key molecules in these processes by tracking their spatiotemporal correlations. This assay technique is of particular utility when applied to rodent and nonhuman primate models given their suitability for invasive genetic and pharmacological interventions. In addition, the detection of neurochemical and neuropathological changes by PET can be examined in laboratory animals when combined with invasive antemortem and postmortem investigations such as in vivo microdialysis, electrophysiological and histopathological techniques. This review primarily covers the use of small animal models of brain disorders using PET to elucidate etiological molecular cascades to facilitate in turn the search for diagnostic and therapeutic agents applicable to AD and related disorders in humans.
Collapse
Affiliation(s)
- Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Yamamoto Y, Toyohara J, Ishiwata K, Sano K, Yamamoto F, Mukai T, Maeda M. ¹¹C-labeled analogs of indomethacin esters and amides for brain cyclooxygenase-2 imaging: radiosynthesis, in vitro evaluation and in vivo characteristics in mice. Chem Pharm Bull (Tokyo) 2011; 59:938-46. [PMID: 21804236 DOI: 10.1248/cpb.59.938] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is great potential in the use of positron emission tomography (PET) and suitable radiotracers for the study of cyclooxygenase type 2 (COX-2) enzyme in living subjects. In the present study, we prepared and evaluated five ¹¹C-labeled ester and amide analogs derived from indomethacin as potential PET imaging agents for the in vivo visualization of the brain COX-2 enzyme. Five ¹¹C-labeled COX-2 inhibitors, with different lipophilicities and moderate COX-2 inhibitory activity, were prepared by treatment of the corresponding O-desmethyl precursors with [¹¹C]methyl triflate and purified by HPLC (radiochemical yields of 55-71%, radiochemical purity of >93%, and the specific activities of 22-331 GBq/µmol). In mice, radioactivity in the brain for all radiotracers was low, with very low brain-to-blood ratios. A clear inverse relationship was observed between brain uptake at 1 min postinjection and the lipophilicity (experimental log P₇.₄) of the studied ¹¹C-radiotracers. Pretreatment of mice with cyclosporine A to block P-glycoproteins caused a significant increase in brain uptake of radioactivity following injection of the ¹¹C-radiotracer compared to control. HPLC analysis showed that each radiotracer was rapidly metabolized, and a few metabolites, which were more polar than the original radiotracers, were found in both plasma and brain. No specific binding of the tracers towards the COX-2 enzyme in the brain was clearly revealed by in vivo blocking study. Further structural refinement of the tracer agent is necessary for better enhancement of brain uptake and for sufficient metabolic stability.
Collapse
Affiliation(s)
- Yumi Yamamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Japan
| | | | | | | | | | | | | |
Collapse
|