1
|
India Aldana S, Demateis D, Valvi D, Just AC, Gutiérrez-Avila I, Estrada-Gutierrez G, Téllez Rojo MM, Wright RO, Baccarelli AA, Wu H, Keller KP, Wilson A, Colicino E. Windows of susceptibility to air pollution during and surrounding pregnancy in relation to longitudinal maternal measures of adiposity and lipid profiles. ENVIRONMENTAL RESEARCH 2025; 274:121198. [PMID: 39986430 PMCID: PMC12048285 DOI: 10.1016/j.envres.2025.121198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Pregnancy is a critical window for long-term metabolic programming of fetal effects stemming from airborne particulate matter ≤2.5 μm (PM2.5) exposure. Yet, little is known about long-term metabolic effects of PM2.5 exposure during and surrounding pregnancy in mothers. We assessed potential critical windows of PM2.5 exposure during and surrounding pregnancy with maternal adiposity and lipid measures later in life. We included 517 pregnant women from the PROGRESS cohort with adiposity [body mass index (BMI), waist circumference (WC), % body fat] and lipids [total cholesterol, high-density-lipoprotein (HDL), low-density-lipoprotein (LDL)] measured repeatedly at 4, 6 and 8 years post-delivery. Monthly average PM2.5 exposure was estimated at each participant's address using a validated spatiotemporal model. We employed distributed lag interaction models (DLIMs) adjusting for socio-demographics and clinical covariates. We found that a 1 μg/m3 increase in PM2.5 exposure throughout mid-/late-pregnancy was associated with higher WC at 6-years post-delivery, peaking at 6 months of gestation: 0.04 cm (95%CI: 0.01, 0.06). We also identified critical windows of PM2.5 exposure during and surrounding pregnancy associated with higher LDL and lower HDL both measured at 4 years post-delivery with peaks at pre-conception for LDL [0.17 mg/dL (95%CI: 0.00, 0.34)] and at the 11th month after conception for HDL [-0.07 mg/dL (95%CI: -0.11, -0.02)]. Stratified analyses by fetal sex indicated stronger associations with adiposity measures in mothers carrying a male, while with lipids in mothers carrying a female fetus. Stratified analyses also indicated potential stronger deleterious lagged effects in women with folic acid intake lower than 600mcg/day during pregnancy.
Collapse
Affiliation(s)
- Sandra India Aldana
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Danielle Demateis
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guadalupe Estrada-Gutierrez
- Department of Immunobiochemistry, Research Division, National Institute of Perinatology, Mexico City, Mexico
| | - Martha María Téllez Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Kayleigh P Keller
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Wang L, Lin Z, Lin Y, Wu Q, Zhong G, Chen L. Metformin and Risks of Aortic Aneurysm and Aortic Dissection: A Mendelian Randomization Study. Rev Cardiovasc Med 2025; 26:27734. [PMID: 40351677 PMCID: PMC12059729 DOI: 10.31083/rcm27734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/12/2024] [Accepted: 12/24/2024] [Indexed: 05/14/2025] Open
Abstract
Background Previous research has suggested that metformin may inhibit the dilation of an abdominal aortic aneurysm (AAA); however, these findings are controversial. Additionally, limited reporting exists on the relationships between metformin and thoracic aortic aneurysm (TAA) and aortic dissection (AD). Therefore, this study aimed to assess the potential relationship between metformin and the risk of aortic aneurysm (AA)/AD using the Mendelian randomization (MR) analysis. Methods Genome-wide association studies and FinnGen summary data were utilized for the MR analysis. The causal relationship between metformin and AA/AD was primarily assessed using the inverse-variance weighted (IVW) method. Sensitivity analyses were conducted to detect heterogeneity and pleiotropy. Results The results indicated a negative correlation between metformin treatment and the risk of both AA and AD, with odds ratios(ORs) reported as follows: OR = 0.010, 95% confidence interval (CI):0.000-0.212, p = 0.003 for AA, OR = 0.004, 95% CI: 0.000-0.220, p = 0.007 for abdominal aortic aneurysm (AAA); OR = 0.017, 95% CI: 0.000-0.815, p = 0.039 for thoracic aortic aneurysm (TAA); and OR = 0.001, 95% CI: 0.000-0.531, p = 0.032 for AD using the IVW method. These findings suggested that metformin might act as a protective factor against the occurrence of AA/AD. Furthermore, sensitivity analyses validated the robustness of these findings. Conclusions This MR analysis identified a potential genetic causal relationship between metformin use and the risks of AA/AD, suggesting that metformin could serve as a protective agent in decreasing the incidences of these conditions.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, 350000 Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, 350000 Fuzhou, Fujian, China
| | - Ziyan Lin
- Union College of Clinical Medicine, Fujian Medical University, 350000 Fuzhou, Fujian, China
| | - Yuzuo Lin
- Union College of Clinical Medicine, Fujian Medical University, 350000 Fuzhou, Fujian, China
| | - Qingtong Wu
- Union College of Clinical Medicine, Fujian Medical University, 350000 Fuzhou, Fujian, China
| | - Guodong Zhong
- Department of Pathology, Fujian Province Second People’s Hospital: The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, 350000 Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, 350000 Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, 350000 Fuzhou, Fujian, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350000 Fuzhou, Fujian, China
| |
Collapse
|
3
|
Ren J, Chen X, Wang T, Liu C, Wang K. Regenerative therapies for myocardial infarction: exploring the critical role of energy metabolism in achieving cardiac repair. Front Cardiovasc Med 2025; 12:1533105. [PMID: 39991634 PMCID: PMC11842438 DOI: 10.3389/fcvm.2025.1533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Cardiovascular diseases are the most lethal diseases worldwide, of which myocardial infarction is the leading cause of death. After myocardial infarction, in order to ensure normal blood supply to the heart, the remaining cardiomyocytes compensate for the loss of cardiomyocytes mainly by working at high capacity rather than by proliferating to produce new cardiomyocytes. This is partly due to the extremely limited ability of the adult heart to repair itself. A growing body of research suggests that the loss of cardiac regenerative capacity is closely related to metabolic shifts in energy sources. Currently, a large number of studies have focused on changes in metabolic levels before and after the proliferation window of cardiomyocytes, so it is crucial to search for relevant factors in metabolic pathways to regulate the cell cycle in cardiomyocyte progression. This paper presents a review of the role of myocardial energy metabolism in regenerative repair after cardiac injury. It aims to elucidate the effects of myocardial metabolic shifts on cardiomyocyte proliferation in adult mammals and to point out directions for cardiac regeneration research and clinical treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jiahao Ren
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinzhe Chen
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Cuiyun Liu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
4
|
Ong LT, Sia CH. Interactions between antidiabetes medications and heart-brain axis. Curr Opin Endocrinol Diabetes Obes 2025; 32:34-43. [PMID: 39639832 DOI: 10.1097/med.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW The heart - brain axis (HBA) is the physiological interactions between the cardiovascular and nervous systems through autonomic nerves, hormones, and cytokines. Patients diagnosed with diabetes mellitus have an increased risk of the cardiovascular and neurological diseases. However, recent evidence demonstrated that different antidiabetic drugs may delay cognitive impairment and improve cardiovascular outcomes. This review examines the impact of antidiabetic drugs on the HBA in patients with diabetes. RECENT FINDINGS Metformin improves the cardiovascular and cognitive outcomes through adenosine 5'-monophosphate-activated protein kinase activation. Sodium-glucose cotransporter-2 inhibitors reduce inflammation, oxidative stress by inhibiting the NLRP3 inflammasome thereby reducing the incidence of heart failure and formation of beta-amyloid and neurofibrillary tangles in the brain. Dipeptidyl peptidase-4 inhibitors exhibit neuroprotective effects in Alzheimer's disease by reducing amyloid-beta and tau pathology and inflammation but may exacerbate heart failure risk due to increased sympathetic activity and prolonged β-adrenergic stimulation. Glucagon-like peptide-1 receptor agonists exhibit neuroprotective effects in Alzheimer's and Parkinson's diseases by reducing neuroinflammation, but may increase sympathetic activity, potentially elevating heart rate and blood pressure, despite their cardioprotective benefits. SUMMARY Antidiabetes medications have the potential to improve cardiovascular and cognitive outcomes; however, additional studies are required to substantiate these effects.
Collapse
Affiliation(s)
- Leong Tung Ong
- Department of Cardiology, National University Heart Centre, Singapore
| | | |
Collapse
|
5
|
Moka MK, George M, Sriram DK. Advancing Longevity: Exploring Antiaging Pharmaceuticals in Contemporary Clinical Trials Amid Aging Dynamics. Rejuvenation Res 2024; 27:220-233. [PMID: 39162996 DOI: 10.1089/rej.2024.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Aging is an inevitable biological process that significantly impacts human health, leading to a decline in cellular function and an increase in cellular damage. This study elucidates the burgeoning potential of antiaging pharmaceuticals in mitigating the thriving burden of chronic conditions linked to advancing age. It underscores the pivotal role of these pharmacotherapeutic agents in fostering longevity free from debilitating age-related afflictions, notably cardiovascular disorders, neoplastic processes, and neurodegenerative pathologies. While commendable strides have been made evident in preclinical models, it is crucial to thoroughly investigate their effectiveness and safety in human groups. In addition, ethical concerns about fair access, societal impacts, and careful resource distribution are significant in discussions about developing and using antiaging medications. By approaching the development and utilization of antiaging medications with diligence and foresight, we can strive toward a future where individuals can enjoy extended lifespans free from the debilitating effects of age-related ailments.
Collapse
Affiliation(s)
| | - Melvin George
- Department of Clinical Research, Hindu Mission Hospital, Tambaram, India
| | - D K Sriram
- Department of Diabetology and Endocrinology, Hindu Mission Hospital, Tambaram, India
| |
Collapse
|
6
|
India Aldana S, Demateis D, Valvi D, Just AC, Gutiérrez-Avila I, Estrada-Gutierrez G, Téllez Rojo MM, Wright RO, Baccarelli AA, Wu H, Keller KP, Wilson A, Colicino E. Windows of Susceptibility to Air Pollution During and Surrounding Pregnancy in Relation to Longitudinal Maternal Measures of Adiposity and Lipid Profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.23.24317830. [PMID: 39649614 PMCID: PMC11623712 DOI: 10.1101/2024.11.23.24317830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Pregnancy is a critical window for long-term metabolic programming of fetal effects stemming from airborne particulate matter ≤2.5μm (PM 2.5 ) exposure. Yet, little is known about long-term metabolic effects of PM 2.5 exposure during and surrounding pregnancy in mothers. We assessed potential critical windows of PM 2.5 exposure during and surrounding pregnancy with maternal adiposity and lipid measures later in life. We included 517 pregnant women from the PROGRESS cohort with adiposity [body mass index (BMI), waist circumference (WC), % body fat] and lipids [total cholesterol, high-density-lipoprotein (HDL), low-density-lipoprotein (LDL)] measured repeatedly at 4, 6 and 8 years post-delivery. Monthly average PM 2.5 exposure was estimated at each participant's address using a validated spatiotemporal model. We employed distributed lag interaction models (DLIMs) adjusting for socio-demographics and clinical covariates. We found that a 1 μg/m 3 increase in PM 2.5 exposure throughout mid-/late-pregnancy was associated with higher WC at 6-years post-delivery, peaking at 6 months of gestation: 0.04 cm (95%CI: 0.01, 0.06). We also identified critical windows of PM 2.5 exposure during and surrounding pregnancy associated with higher LDL and lower HDL both measured at 4 years post-delivery with peaks at pre-conception for LDL [0.17 mg/dL (95%CI: 0.00, 0.34)] and at the 11 th month after conception for HDL [-0.07 mg/dL (95%CI: -0.11, -0.02)]. Stratified analyses by fetal sex indicated stronger associations with adiposity measures in mothers carrying a male, whereas stronger associations were observed with lipids in mothers carrying a female fetus. Stratified analyses also indicated potential stronger deleterious lagged effects in women with folic acid intake lower than 600mcg/day during pregnancy.
Collapse
|
7
|
Wang J, Chen Y, Cong J, Wang W. Metformin regulates cellulase production in Trichoderma reesei via calcium signaling and mitochondrial function. Microb Cell Fact 2024; 23:314. [PMID: 39574147 PMCID: PMC11580550 DOI: 10.1186/s12934-024-02593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Trichoderma reesei is renowned for its cellulase-producing ability and is used for biofuel production from lignocellulose. In plants and fungi, cellulase production is induced by cellulose and suppressed by glucose; however, whether metformin can enhance cellulase production and mitochondrial function in T. reesei remains unclear. Metformin reduces blood glucose levels by inhibiting hepatic gluconeogenesis; therefore, it is worth investigating whether metformin transmission modulates cellulase biosynthesis in T. reesei. RESULTS Metformin increased cellulase production and the transcription of cellulase-related genes. It also enhanced the concentrations of Ca2+ in the cytosol and mitochondria and regulated the transcription levels of cellulase-related genes by modulating calcium homeostasis in T. reesei QM6a. In addition, metformin was identified as an antioxidant that can enhance cellulase activity by reducing reactive oxygen species (ROS). Our results demonstrated that metformin influences the state of mitochondria by enhancing mitochondrial activity and membrane potential to promote cellulase production. CONCLUSION Collectively, these results indicate that metformin enhances cellulase production, scavenges ROS, and protects mitochondrial activity in T. reesei.
Collapse
Affiliation(s)
- Jiajia Wang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yumeng Chen
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiawei Cong
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Wang
- The State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
8
|
Vogt J, Wolf L, Hoelzle LE, Feger M, Föller M. AMP-dependent kinase stimulates the expression of αKlotho. FEBS Open Bio 2024; 14:1691-1700. [PMID: 39090792 PMCID: PMC11452301 DOI: 10.1002/2211-5463.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024] Open
Abstract
Renal αKlotho along with fibroblast growth factor 23 regulates phosphate and vitamin D metabolism. Its cleavage yields soluble Klotho controlling intracellular processes. αKlotho has anti-inflammatory and antioxidant effects and is nephro- and cardioprotective. AMP-dependent kinase (AMPK) is a nephro- and cardioprotective energy sensor. Given that both αKlotho and AMPK have beneficial effects in similar organs, we studied whether AMPK regulates αKlotho gene expression in Madin-Darby canine kidney, normal rat kidney 52E, and human kidney 2 cells. Using quantitative real-time PCR and western blotting, we measured αKlotho expression upon pharmacological manipulation or siRNA-mediated knockdown of AMPKα. AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) enhanced αKlotho expression, an effect reduced in the presence of AMPK inhibitor compound C or siRNA targeting AMPK catalytic α-subunits (α1 and α2). Similarly, AMPK activators metformin and phenformin upregulated αKlotho transcripts. Taken together, our results suggest that AMPK is a powerful inducer of αKlotho and could thereby contribute to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Julia Vogt
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Lisa Wolf
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Ludwig E. Hoelzle
- Institute of Animal Science, University of HohenheimStuttgartGermany
| | - Martina Feger
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| | - Michael Föller
- Department of PhysiologyUniversity of HohenheimStuttgartGermany
| |
Collapse
|
9
|
Salmen T, Pietrosel VA, Reurean-Pintilei D, Iancu MA, Cimpeanu RC, Bica IC, Dumitriu-Stan RI, Potcovaru CG, Salmen BM, Diaconu CC, Cretoiu SM, Stoian AP. Assessing Cardiovascular Target Attainment in Type 2 Diabetes Mellitus Patients in Tertiary Diabetes Center in Romania. Pharmaceuticals (Basel) 2024; 17:1249. [PMID: 39338411 PMCID: PMC11434711 DOI: 10.3390/ph17091249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION Type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD) share a bidirectional link, and the innovative antidiabetic molecules GLP-1 Ras and SGLT-2is have proven cardiac and renal benefits, respectively. This study aimed to evaluate CV risk categories, along with lipid-lowering and antidiabetic treatments, in patients with T2DM from a real-life setting in Romania. MATERIAL AND METHODS A cross-sectional evaluation was conducted on 405 consecutively admitted patients with T2DM in an ambulatory setting, assessing them according to the 2019 ESC/EAS guidelines for moderate, high, and very high CV risk categories. RESULTS The average age of the group was 58 ± 9.96 years, with 38.5% being female. The mean HbA1C level was 7.2 ± 1.7%. Comorbidities included HBP in 88.1% of patients, with a mean SBP and DBP of 133.2 ± 13.7 mm Hg and 79.9 ± 9 mm Hg, respectively, and obesity in 66.41%, with a mean BMI of 33 ± 6.33 kg/m2. The mean LDL-C levels varied by CV risk category: 90.1 ± 34.22 mg/dL in very high risk, 98.63 ± 33.26 mg/dL in high risk, and 105 ± 37.1 mg/dL in moderate risk. Prescribed treatments included metformin (100%), statins (77.5%), GLP-1 Ras (29.4%), and SGLT-2is (29.4%). CONCLUSIONS In Romania, patients with T2DM often achieve glycemic control targets but fail to meet composite targets that include glycemic, BP, and lipid control. Additionally, few patients benefit from innovative glucose-lowering therapies with proven cardio-renal benefits or from statins.
Collapse
Affiliation(s)
- Teodor Salmen
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Delia Reurean-Pintilei
- Department of Medical-Surgical and Complementary Sciences, Faculty of Medicine and Biological Sciences, "Ștefan cel Mare" University, 720229 Suceava, Romania
- Department of Diabetes, Nutrition and Metabolic Diseases, Consulted Medical Centre, 700544 Iasi, Romania
| | - Mihaela Adela Iancu
- Department of Internal, Family and Occupational Medicine, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | | | - Ioana-Cristina Bica
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | | | - Bianca-Margareta Salmen
- Doctoral School, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Anca Pantea Stoian
- Diabetes, Nutrition and Metabolic Diseases Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
10
|
Asar TO, Al-Abbasi FA, Sheikh RA, Zeyadi MAM, Nadeem MS, Naqvi S, Kumar V, Anwar F. Metformin's dual impact on Gut microbiota and cardiovascular health: A comprehensive analysis. Biomed Pharmacother 2024; 178:117128. [PMID: 39079259 DOI: 10.1016/j.biopha.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/25/2024] Open
Abstract
Cardiovascular diseases (CVD) cause significant global morbidity, mortality and public health burden annually. CVD alters richness, diversity, and composition of Gut microbiota along with RAS and histopathological differences. Present study explores Metformin role in mitigating doxorubicin induced cardiovascular toxicity/remodeling. Animals were divided into 4 groups with n=6: Group I (N. Control) free access to diet and water; Group II (MET. Control) on oral Metformin (250 mg/kg) daily; Group III (DOX. Control) alternate day intraperitoneal Doxorubicin (3 mg/kg) totaling 18 mg/kg; Group IV (DOX. MET. Control) received both daily oral Metformin (250 mg/kg) and alternate day Doxorubicin (3 mg/kg). Gut microbial analysis was made from stool before animals were sacrificed for biochemical and histopathological analysis. Significant alterations were observed in ɑ and β-diversity with new genus from Firmicutes, specifically Clostridia_UCG-014, Eubacterium ruminantium, and Tunicibacter, were prevalent in both the DOX. Control and DOX.MET groups. Proteobacteria, represented by Succinivibrio, were absent in all groups. Additionally, Parabacteroides from the Bacteroidia phylum was absent in all groups except the N. control. In the DOX.MET Control group, levels of Angiotensin II ( 7.75± 0.49 nmol/min, p<0.01) and Renin (2.60±0.26 ng/ml/hr) were significantly reduced. Conversely, levels of CK-MB, Fibrinogen, Troponin, CRP ( p < 0.0001), and TNFɑ (p < 0.05) were elevated. Histopathological examination revealed substantial cardiac changes, including Fibrinogen and fat deposition and eosinophilic infiltration, as well as liver damage characterized by binucleated cells and damaged hepatocytes, along with altered renal tissues in the DOX.MET.Control group. The findings suggest that MET. significantly modifies gut microbiota, particularly impacting the Firmicutes and Proteobacteria phyla. The reduction in Angiotensin II levels, alongside increased inflammatory markers and myocardial damage, highlights the complex interactions and potential adverse effects associated with MET therapy on cardiovascular health.
Collapse
Affiliation(s)
- Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | | | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences, SHUATS, Prayagraj, India.
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
11
|
Gonzalez Moret YA, Lo KB, Tan IJ. Metformin in Systemic Lupus Erythematosus: Investigating Cardiovascular Impact and Nephroprotective Effects in Lupus Nephritis. ACR Open Rheumatol 2024; 6:497-503. [PMID: 38896398 PMCID: PMC11319915 DOI: 10.1002/acr2.11698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is characterized by widespread organ inflammation. Metformin, commonly used for diabetes mellitus type 2, has been explored for its anti-inflammatory potential in SLE. This study investigates the association of metformin use on renal and cardiovascular outcomes in patients with SLE. METHODS This is a retrospective study. We used the multicenter research network (TriNetX) database from 88 health care organizations globally. Patients with SLE aged 18 and above, admitted between January 1, 2014, and April 21, 2024, were included. Propensity score matching compared patients with SLE on metformin with those not on metformin, considering demographics, laboratory results, comorbidities, and baseline medication use. The study assessed outcomes, including lupus nephritis (LN), chronic kidney disease (CKD), and major adverse cardiovascular events (MACEs) at one and five years after SLE diagnosis. RESULTS We identified 9,178 patients with SLE on metformin and 78,983 patients with SLE not on metformin. After propensity score matching, patients with SLE on metformin had higher levels of hemoglobin A1C, whereas patients not on metformin had higher levels of urea nitrogen. When comparing both groups, the risk of developing LN (risk ratio [RR] = 1.70 [1.17-2.41]; P = 0.004), CKD (RR = 1.27 [1.07-1.52]; P = 0.007), and MACEs (RR = 1.21 [1.00-1.46]; P = 0.04) was significantly higher among patients not on metformin at one year after SLE diagnosis. After five years, the risk of LN and CKD was also higher in patients with SLE not on metformin. MACE risk was no longer significant after five years of diagnosis between both groups. CONCLUSION Patients with SLE not on metformin have a higher risk of developing LN, CKD, and MACEs compared with patients treated with metformin. Metformin's anti-inflammatory potential offers promise as a complementary therapy for SLE. Nonetheless, further research and clinical trials are needed to clarify its mechanisms, optimal dosage, and long-term effects.
Collapse
Affiliation(s)
- Yurilu A. Gonzalez Moret
- Jefferson Einstein Hospital, Philadelphia, Pennsylvania, and Sidney Kimmel College of Medicine of Thomas Jefferson UniversityPhiladelphiaPennsylvania
| | - Kevin Bryan Lo
- Jefferson Einstein Hospital, Philadelphia, Pennsylvania, and Brigham and Women's HospitalBostonMassachusetts
| | - Irene J. Tan
- Jefferson Einstein Hospital, Philadelphia, Pennsylvania, and Sidney Kimmel College of Medicine of Thomas Jefferson UniversityPhiladelphiaPennsylvania
| |
Collapse
|
12
|
Bailey CJ. Metformin: Therapeutic profile in the treatment of type 2 diabetes. Diabetes Obes Metab 2024; 26 Suppl 3:3-19. [PMID: 38784991 DOI: 10.1111/dom.15663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Metformin (dimethyl-biguanide) can claim its origins in the use of Galega officinalis as a plant treatment for symptoms ascribed to diabetes. Since the first clinical use of metformin as a glucose-lowering agent in 1957, this medicine has emerged as a first-line pharmacological option to support lifestyle interventions in the management of type 2 diabetes (T2D). It acts through multiple cellular pathways, principally in the gut, liver and muscle, to counter insulin resistance and lower blood glucose without weight gain or risk of overt hypoglycaemia. Other effects include improvements in lipid metabolism, decreased inflammation and lower long-term cardiovascular risk. Metformin is conveniently combined with other diabetes medications, can be prescribed in prediabetes to reduce the risk of progression to T2D, and is used in some regions to assist glycaemic control in pregnancy. Consistent with its diversity of actions, established safety profile and cost-effectiveness, metformin is being assessed for further possible clinical applications. The use of metformin requires adequate renal function for drug elimination, and may cause initial gastrointestinal side effects, which can be moderated by taking with meals or using an extended-release formulation. Thus, metformin serves as a valuable therapeutic resource for use throughout the natural history of T2D.
Collapse
|
13
|
Bahardoust M, Mousavi S, Yariali M, Haghmoradi M, Hadaegh F, Khalili D, Delpisheh A. Effect of metformin (vs. placebo or sulfonylurea) on all-cause and cardiovascular mortality and incident cardiovascular events in patients with diabetes: an umbrella review of systematic reviews with meta-analysis. J Diabetes Metab Disord 2024; 23:27-38. [PMID: 38932855 PMCID: PMC11196519 DOI: 10.1007/s40200-023-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/09/2023] [Indexed: 06/28/2024]
Abstract
Purpose The current umbrella review aimed to evaluate the effect of metformin on all-cause mortality (ACM), cardiovascular mortality, and cardiovascular disease (CVD) incidence in DM patients. Methods PubMed, Scopus, Cochrane, Google Scholar, and Web of Science databases were searched with special keywords. Related studies were included after screening by two independent investigators based on title and full texts. The AMSTAR2 checklist was used to assess the quality of studies, and Cochran tests were used to assess the heterogeneity between studies. Overall, seventeen systematic reviews and meta-analysis studies were included. The results revealed that the risk of ACM in patients who received metformin was lower than in patients who did not receive metformin. (OR: 0.80, 95% CI:0.744,0.855); also, the risk of CVD mortality in metformin patients was lower than in the other two groups (placebo and other anti-diabetic drugs) (OR: 0.771, 95% CI:0.688,0.853, P:0.001). The risk of CVD in metformin users was also lower than in the other two groups (OR: 0.828, 95% CI:0.781,0.785). Summary This comprehensive review showed that the risk of ACM, death due to CVD, and incidents of CVD in DM who use metformin was lower than the patients who received a placebo only or other diabetic drugs, which can guide clinicians in medical decision-making. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01309-y.
Collapse
Affiliation(s)
- Mansour Bahardoust
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Mousavi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Yariali
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Meisam Haghmoradi
- Department of Orthopedic Surgery, Urmia University of Medical Sciences, Urmia, Iran
| | - Farzad Hadaegh
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Khalili
- Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Delpisheh
- Department of Epidemiology, School of Public Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Safety Promotion and Injury Prevention Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Shahid Beheshti University of Medical Sciences, Tehran Province, Velenjak7 ،th Floor, Bldg No.2 SBUMS, Arabi Ave, Tehran, Tehran, Iran
| |
Collapse
|
14
|
Xu M, Li LP, He X, Lu XZ, Bi XY, Li Q, Xue XR. Metformin induction of heat shock factor 1 activation and the mitochondrial unfolded protein response alleviate cardiac remodeling in spontaneously hypertensive rats. FASEB J 2024; 38:e23654. [PMID: 38717442 DOI: 10.1096/fj.202400070r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 06/07/2024]
Abstract
Heart failure and cardiac remodeling are both characterized by mitochondrial dysfunction. Healthy mitochondria are required for adequate contractile activity and appropriate regulation of cell survival. In the mammalian heart, enhancement of the mitochondrial unfolded protein response (UPRmt) is cardioprotective under pressure overload conditions. We explored the UPRmt and the underlying regulatory mechanism in terms of hypertension-induced cardiac remodeling and the cardioprotective effect of metformin. Male spontaneously hypertensive rats and angiotensin II-treated neonatal rat cardiomyocytes were used to induce cardiac hypertrophy. The results showed that hypertension induced the formation of aberrant mitochondria, characterized by a reduced mtDNA/nDNA ratio and swelling, as well as lower levels of mitochondrial complexes I to V and inhibition of the expression of one protein subunit of each of complexes I to IV. Such changes eventually enlarged cardiomyocytes and increased cardiac fibrosis. Metformin treatment increased the mtDNA/nDNA ratio and regulated the UPRmt, as indicated by increased expression of activating transcription factor 5, Lon protease 1, and heat shock protein 60, and decreased expression of C/EBP homologous protein. Thus, metformin improved mitochondrial ultrastructure and function in spontaneously hypertensive rats. In vitro analyses revealed that metformin reduced the high levels of angiotensin II-induced mitochondrial reactive oxygen species in such animals and stimulated nuclear translocation of heat shock factor 1 (HSF1). Moreover, HSF1 small-interfering RNA reduced the metformin-mediated improvements in mitochondrial morphology and the UPRmt by suppressing hypertrophic signals and cardiomyocyte apoptosis. These results suggest that HSF1/UPRmt signaling contributes to the beneficial effects of metformin. Metformin-mediated targeting of mitochondrial protein homeostasis and modulation of HSF1 levels have potential therapeutic implications in terms of cardiac remodeling.
Collapse
Affiliation(s)
- Man Xu
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Li-Peng Li
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| | - Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xing-Zhu Lu
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University Medical School, Xi'an, Shaanxi, China
| | - Xue-Yuan Bi
- Department of Pharmacy, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Li
- Department of Science and Education, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, China
| | - Xiao-Rong Xue
- Department of Pharmacy, Xi'an People's Hospital (Xi'an Fourth Hospital), Northwest University Affiliated People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
15
|
Wei ZX, Cai XX, Fei YD, Wang Q, Hu XL, Li C, Hou JW, Yang YL, Chen TZ, Xu XL, Wang YP, Li YG. Zbtb16 increases susceptibility of atrial fibrillation in type 2 diabetic mice via Txnip-Trx2 signaling. Cell Mol Life Sci 2024; 81:88. [PMID: 38349408 PMCID: PMC10864461 DOI: 10.1007/s00018-024-05125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, and recent epidemiological studies suggested type 2 diabetes mellitus (T2DM) is an independent risk factor for the development of AF. Zinc finger and BTB (broad-complex, tram-track and bric-a-brac) domain containing 16 (Zbtb16) serve as transcriptional factors to regulate many biological processes. However, the potential effects of Zbtb16 in AF under T2DM condition remain unclear. Here, we reported that db/db mice displayed higher AF vulnerability and Zbtb16 was identified as the most significantly enriched gene by RNA sequencing (RNA-seq) analysis in atrium. In addition, thioredoxin interacting protein (Txnip) was distinguished as the key downstream gene of Zbtb16 by Cleavage Under Targets and Tagmentation (CUT&Tag) assay. Mechanistically, increased Txnip combined with thioredoxin 2 (Trx2) in mitochondrion induced excess reactive oxygen species (ROS) release, calcium/calmodulin-dependent protein kinase II (CaMKII) overactivation, and spontaneous Ca2+ waves (SCWs) occurrence, which could be inhibited through atrial-specific knockdown (KD) of Zbtb16 or Txnip by adeno-associated virus 9 (AAV9) or Mito-TEMPO treatment. High glucose (HG)-treated HL-1 cells were used to mimic the setting of diabetic in vitro. Zbtb16-Txnip-Trx2 signaling-induced excess ROS release and CaMKII activation were also verified in HL-1 cells under HG condition. Furthermore, atrial-specific Zbtb16 or Txnip-KD reduced incidence and duration of AF in db/db mice. Altogether, we demonstrated that interrupting Zbtb16-Txnip-Trx2 signaling in atrium could decrease AF susceptibility via reducing ROS release and CaMKII activation in the setting of T2DM.
Collapse
Affiliation(s)
- Zhi-Xing Wei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xing-Xing Cai
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yu-Dong Fei
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qian Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Liang Hu
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Cheng Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian-Wen Hou
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Li Yang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Tai-Zhong Chen
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiao-Lei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yue-Peng Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yi-Gang Li
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
16
|
Kamel AM, Ismail B, Abdel Hafiz G, Sabry N, Farid S. Effect of Metformin on Oxidative Stress and Left Ventricular Geometry in Nondiabetic Heart Failure Patients: A Randomized Controlled Trial. Metab Syndr Relat Disord 2024; 22:49-58. [PMID: 37816240 DOI: 10.1089/met.2023.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Introduction: There is an increasing interest in using metformin in cardiovascular diseases and its potential new roles. Only two randomized controlled trials investigated the effect of metformin in nondiabetic heart failure (HF) patients. However, none of these studies assess the role of metformin in reducing oxidative stress. We hypothesized that metformin might improve oxidative stress and left ventricular remodeling in nondiabetic HF patients with reduced ejection fraction (HFrEF). Methods and Methods: Seventy HFrEF patients (EF 37% ± 8%; median age 66 years) were randomized to metformin (n = 35) or standard of care (SOC) for HF (n = 35) for 6 months in addition to standard therapy. Outcomes included the difference in the change (Δ) in total antioxidant capacity (TAC) and malondialdehyde (MDA), both assessed colorimetrically and left ventricular mass index (LVMI) assessed through transthoracic echocardiography. Results: Compared with the SOC, metformin treatment increased TAC [Δ = 0.12 mmol/L, confidence intervals (95% CIs): 0.03-0.21; P = 0.007]. TAC increased significantly only in the metformin group (0.90 ± 0.08 mmol/L at baseline vs. 1.04 ± 0.99 mmol/L at 6 months, P < 0.05). Metformin therapy preserved LVMI (Δ = -23 g/m2, 95% CI: -42.91 to -4.92; P = 0.014) and reduced fasting plasma glucose (Δ = -6.16, 95% CI: -12.31 to -0.02, P = 0.047) compared with the SOC. Results did not change after adjusting for baseline values. Changes in MDA left ventricular ejection fraction (LVEF) and blood pressure were not significantly different between groups. Conclusion: Metformin treatment in HF patients with reduced LVEF improved TAC and prevented the increase in LVMI compared with the SOC. These effects of metformin warrant further research in HF patients without diabetes to explore the potential benefits of metformin. Trial Registration Number: This protocol was registered in ClinicalTrials.gov under the number NCT05177588.
Collapse
Affiliation(s)
- Ahmed M Kamel
- Clinical Pharmacy Department, Faculty of Pharmacy Cairo University, Cairo, Egypt
| | - Batool Ismail
- Ministry of Interior, Agouza Police Hospital, Cairo, Egypt
| | | | - Nirmeen Sabry
- Clinical Pharmacy Department, Faculty of Pharmacy Cairo University, Cairo, Egypt
| | - Samar Farid
- Clinical Pharmacy Department, Faculty of Pharmacy Cairo University, Cairo, Egypt
| |
Collapse
|
17
|
Shu Y, Li W, Hu Q, Xiong D. Bibliometrics and visual analysis of metformin and gut microbiota from 2012 to 2022: A systematic review. Medicine (Baltimore) 2023; 102:e36478. [PMID: 38115325 PMCID: PMC10727597 DOI: 10.1097/md.0000000000036478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Metformin is an old drug used for the treatment of type 2 diabetes mellitus and can play a variety of roles by regulating the gut microbiota. The number of research articles on metformin in the gut microbiota has increased annually; however, no bibliometric tools have been used to analyze the research status and hot trends in this field. This study presents a bibliometric analysis of publications on metformin and gut microbiota. METHODS We searched the Web of Science core collection database on June 8, 2023, for papers related to metformin and gut microbiota from 2012 to 2022. We used Microsoft Excel 2021, VOSviewer1.6.19, CiteSpace 6.2.4, and R software package "bibliometrix" 4.0.0 to analyze the countries, institutions, authors, journals, citations, and keywords of the included publications. RESULTS We included 517 papers, and the trend in publications increased over the last 11 years. The 517 articles were from 57 countries, including 991 institutions and 3316 authors, and were published in 259 journals. China led all countries (233 papers) and the most influential institution was the Chinese Academy of Sciences (16 papers). PLOS ONE (19 papers) was the most popular journal, and Nature (1598 citations) was the most cited journal. Li and Kim were the 2 most published authors (six papers each), and Cani (272 co-citations) was the most co-cited author. "Metabolites," "aging," and "intestinal barrier" were emerging topics in this field. CONCLUSIONS This bibliometric study comprehensively summarizes the research trends and progress of metformin and gut microbiota, and provides new research topics and trends for studying the effects of metformin on gut microbiota in different diseases.
Collapse
Affiliation(s)
- Yang Shu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Weidong Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daqian Xiong
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Chen Y, Huang S, Cui Z, Sun X, Tang Y, Zhang H, Chen Z, Jiang R, Zhang W, Li X, Chen J, Liu B, Jiang Y, Wei K, Mao Z. Impaired end joining induces cardiac atrophy in a Hutchinson-Gilford progeria mouse model. Proc Natl Acad Sci U S A 2023; 120:e2309200120. [PMID: 37967221 PMCID: PMC10666128 DOI: 10.1073/pnas.2309200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) present with a number of premature aging phenotypes, including DNA damage accumulation, and many of them die of cardiovascular complications. Although vascular pathologies have been reported, whether HGPS patients exhibit cardiac dysfunction and its underlying mechanism is unclear, rendering limited options for treating HGPS-related cardiomyopathy. In this study, we reported a cardiac atrophy phenotype in the LmnaG609G/G609G mice (hereafter, HGPS mice). Using a GFP-based reporter system, we demonstrated that the efficiency of nonhomologous end joining (NHEJ) declined by 50% in HGPS cardiomyocytes in vivo, due to the attenuated interaction between γH2AX and Progerin, the causative factor of HGPS. As a result, genomic instability in cardiomyocytes led to an increase of CHK2 protein level, promoting the LKB1-AMPKα interaction and AMPKα phosphorylation, which further led to the activation of FOXO3A-mediated transcription of atrophy-related genes. Moreover, inhibiting AMPK enlarged cardiomyocyte sizes both in vitro and in vivo. Most importantly, our proof-of-concept study indicated that isoproterenol treatment significantly reduced AMPKα and FOXO3A phosphorylation in the heart, attenuated the atrophy phenotype, and extended the mean lifespan of HGPS mice by ~21%, implying that targeting cardiac atrophy may be an approach to HGPS treatment.
Collapse
Affiliation(s)
- Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Shiqi Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Yansong Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Hongjie Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Rui Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Xue Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Jiayu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Baohua Liu
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen518055, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao266071, China
| |
Collapse
|
19
|
Saha S, Fang X, Green CD, Das A. mTORC1 and SGLT2 Inhibitors-A Therapeutic Perspective for Diabetic Cardiomyopathy. Int J Mol Sci 2023; 24:15078. [PMID: 37894760 PMCID: PMC10606418 DOI: 10.3390/ijms242015078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Diabetic cardiomyopathy is a critical diabetes-mediated co-morbidity characterized by cardiac dysfunction and heart failure, without predisposing hypertensive or atherosclerotic conditions. Metabolic insulin resistance, promoting hyperglycemia and hyperlipidemia, is the primary cause of diabetes-related disorders, but ambiguous tissue-specific insulin sensitivity has shed light on the importance of identifying a unified target paradigm for both the glycemic and non-glycemic context of type 2 diabetes (T2D). Several studies have indicated hyperactivation of the mammalian target of rapamycin (mTOR), specifically complex 1 (mTORC1), as a critical mediator of T2D pathophysiology by promoting insulin resistance, hyperlipidemia, inflammation, vasoconstriction, and stress. Moreover, mTORC1 inhibitors like rapamycin and their analogs have shown significant benefits in diabetes and related cardiac dysfunction. Recently, FDA-approved anti-hyperglycemic sodium-glucose co-transporter 2 inhibitors (SGLT2is) have gained therapeutic popularity for T2D and diabetic cardiomyopathy, even acknowledging the absence of SGLT2 channels in the heart. Recent studies have proposed SGLT2-independent drug mechanisms to ascertain their cardioprotective benefits by regulating sodium homeostasis and mimicking energy deprivation. In this review, we systematically discuss the role of mTORC1 as a unified, eminent target to treat T2D-mediated cardiac dysfunction and scrutinize whether SGLT2is can target mTORC1 signaling to benefit patients with diabetic cardiomyopathy. Further studies are warranted to establish the underlying cardioprotective mechanisms of SGLT2is under diabetic conditions, with selective inhibition of cardiac mTORC1 but the concomitant activation of mTORC2 (mTOR complex 2) signaling.
Collapse
Affiliation(s)
- Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Xianjun Fang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Christopher D. Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298, USA; (S.S.); (X.F.); (C.D.G.)
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
20
|
Chen M, Qin Y, Fan WT, Yan J, Hong F, Huang WH, Liu YL. Three-Dimensional Stretchable Sensor-Hydrogel Integrated Platform for Cardiomyocyte Culture and Mechanotransduction Monitoring. Anal Chem 2023; 95:12859-12866. [PMID: 37589391 DOI: 10.1021/acs.analchem.3c02151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Cardiomyocytes are responsible for generating contractile force to pump blood throughout the body and are very sensitive to mechanical forces and can initiate mechano-electric coupling and mechano-chemo-transduction. Remarkable progress has been made in constructing heart tissue by engineered three-dimensional (3D) culture models and in recording the electrical signals of cardiomyocytes. However, it remains a severe challenge for real-time acquiring of the transient biochemical information in cardiomyocyte mechano-chemo-transduction. Herein, we reported a multifunctional platform by integrating a 3D stretchable electrochemical sensor with collagen hydrogel for the culture, electrical stimulation, and electrochemical monitoring of cardiomyocytes. The 3D stretchable electrochemical sensor was prepared by assembling functionalized conductive polymer PEDOT:PSS on an elastic scaffold, which showed excellent electrochemical sensing performance and stability under mechanical deformations. The integration of a 3D stretchable electrochemical sensor with collagen hydrogel provided an in vivo-like microenvironment for cardiomyocyte culture and promoted cell orientation via in situ electrical stimulation. Furthermore, this multifunctional platform allowed real-time monitoring of stretch-induced H2O2 release from cardiomyocytes under their normal and pathological conditions, as well as pharmacological interventions.
Collapse
Affiliation(s)
- Ming Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Qin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Ting Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Hong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yan-Ling Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Stevenson-Hoare J, Leonenko G, Escott-Price V. Comparison of long-term effects of metformin on longevity between people with type 2 diabetes and matched non-diabetic controls. BMC Public Health 2023; 23:804. [PMID: 37131166 PMCID: PMC10155360 DOI: 10.1186/s12889-023-15764-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/26/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Metformin, a medication for type 2 diabetes, has been linked to many non-diabetes health benefits including increasing healthy lifespan. Previous work has only examined the benefits of metformin over periods of less than ten years, which may not be long enough to capture the true effect of this medication on longevity. METHODS We searched medical records for Wales, UK, using the Secure Anonymised Information Linkage dataset for type 2 diabetes patients treated with metformin (N = 129,140) and sulphonylurea (N = 68,563). Non-diabetic controls were matched on sex, age, smoking, and history of cancer and cardiovascular disease. Survival analysis was performed to examine survival time after first treatment, using a range of simulated study periods. FINDINGS Using the full twenty-year period, we found that type 2 diabetes patients treated with metformin had shorter survival time than matched controls, as did sulphonylurea patients. Metformin patients had better survival than sulphonylurea patients, controlling for age. Within the first three years, metformin therapy showed a benefit over matched controls, but this reversed after five years of treatment. INTERPRETATION While metformin does appear to confer benefits to longevity in the short term, these initial benefits are outweighed by the effects of type 2 diabetes when patients are observed over a period of up to twenty years. Longer study periods are therefore recommended for studying longevity and healthy lifespan. EVIDENCE BEFORE THIS STUDY Work examining the non-diabetes outcomes of metformin therapy has suggested that there metformin has a beneficial effect on longevity and healthy lifespan. Both clinical trials and observational studies broadly support this hypothesis, but tend to be limited in the length of time over which they can study patients or participants. ADDED VALUE OF THIS STUDY By using medical records we are able to study individuals with Type 2 diabetes over a period of two decades. We are also able to account for the effects of cancer, cardiovascular disease, hypertension, deprivation, and smoking on longevity and survival time following treatment. IMPLICATIONS OF ALL THE AVAILABLE EVIDENCE We confirm that there is an initial benefit to longevity of metformin therapy, but this benefit does not outweigh the negative effect on longevity of diabetes. Therefore, we suggest that longer study periods are required for inference to be made about longevity in future research.
Collapse
Affiliation(s)
- Joshua Stevenson-Hoare
- MRC Centre for Neuropsychiatric Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Ganna Leonenko
- Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Valentina Escott-Price
- MRC Centre for Neuropsychiatric Medicine and Clinical Neuroscience, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
22
|
Yang T, Zhang D. Research progress on the effects of novel hypoglycemic drugs in diabetes combined with myocardial ischemia/reperfusion injury. Ageing Res Rev 2023; 86:101884. [PMID: 36801379 DOI: 10.1016/j.arr.2023.101884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Acute myocardial infarction (AMI) reperfusion is associated with ischemia/reperfusion (I/R) injury, which leads to enlarged myocardial infarction size, poor healing of the infarcted myocardium, and poor left ventricular remodeling, thus increasing the risk of major adverse cardiovascular events (MACEs). Diabetes increases myocardial susceptibility to I/R injury, decreases myocardial responsiveness to cardioprotective strategies, exacerbates myocardial I/R injury, and expands the infarct size of AMI, thereby increasing the incidence of malignant arrhythmias and heart failure. Currently, evidence regarding pharmacological interventions for diabetes combined with AMI and I/R injury is lacking. Traditional hypoglycemic drugs have a limited role in the prevention and treatment of diabetes combined with I/R injury. Current evidence suggests that novel hypoglycemic drugs may exert a preventive effect on diabetes combined with myocardial I/R injury, especially glucagon-like peptide-1 receptor agonists (GLP-1 RA) and sodium-dependent glucose transporter protein 2 inhibitors (SGLT2i), which may increase coronary blood flow, reduce acute thrombosis, attenuate I/R injury, decrease myocardial infarction size, inhibit structural and functional remodeling of the ischemic heart, improve cardiac function, and reduce the occurrence of MACEs of diabetes patients combined with AMI via mechanisms such as reduction of inflammatory response, inhibition of oxidative stress, and improvement of vascular endothelial function. This paper will systematically elaborate the protective role and molecular mechanisms of GLP-1 RA and SGLT2i in diabetes combined with myocardial I/R injury, aiming to provide clinical assistance.
Collapse
Affiliation(s)
- Tiangui Yang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| | - Daqing Zhang
- Department of Cardiology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
23
|
Mohri T, Okamoto S, Nishioka Y, Myojin T, Kubo S, Higashino T, Okada S, Akai Y, Noda T, Ishii H, Imamura T. Risk of Lactic Acidosis in Hospitalized Diabetic Patients Prescribed Biguanides in Japan: A Retrospective Total-Population Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5300. [PMID: 37047916 PMCID: PMC10093879 DOI: 10.3390/ijerph20075300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Patient data from the National Database of Health Insurance Claims and Specific Health Checkups of Japan (NDB) are used to assess the effect of biguanide administration on rates of lactic acidosis (LA) in hospitalized diabetes mellitus (DM) patients. In this retrospective cohort study (from April 2013 to March 2016), we compare DM inpatients prescribed biguanides to DM inpatients who were not prescribed biguanides to quantify the association between biguanides and incidence of LA. In total, 8,111,848 DM patient records are retrieved from the NDB. Of the 528,768 inpatients prescribed biguanides, 782 develop LA. Of the 1,967,982 inpatients not prescribed biguanides, 1310 develop LA. The rate ratio of inpatients who develop LA and are administered biguanides to those who developed LA without receiving biguanides is 1.44 (95% CI, 1.32-1.58). Incidence rates and rate ratios for both sexes are elevated in the group prescribed biguanides for patients aged 70 years and older, markedly in those 80 years and older: 40.12 and 6.31 (95% CI, 4.75-8.39), respectively, for men and 34.96 and 5.40 (95% CI, 3.91-7.46), respectively, for women. Biguanides should be used conservatively in patients older than 70 years, particularly for those with comorbidities, and with caution in patients 80 years and older.
Collapse
Affiliation(s)
- Takako Mohri
- Department of Diabetes and Endocrinology, Nara Medical University Hospital, Nara 634-8522, Japan
| | - Sawako Okamoto
- Department of Public Health, Health Management and Policy, Nara Medical University, Nara 634-8521, Japan
- Education Development Center, Nara Medical University, Nara 634-8521, Japan
| | - Yuichi Nishioka
- Department of Public Health, Health Management and Policy, Nara Medical University, Nara 634-8521, Japan
| | - Tomoya Myojin
- Department of Public Health, Health Management and Policy, Nara Medical University, Nara 634-8521, Japan
| | - Shinichiro Kubo
- Department of Public Health, Health Management and Policy, Nara Medical University, Nara 634-8521, Japan
| | - Tsuneyuki Higashino
- Healthcare and Wellness Division, Mitsubishi Research Institute Inc., Tokyo 100-8141, Japan
| | - Sadanori Okada
- Department of Diabetes and Endocrinology, Nara Medical University Hospital, Nara 634-8522, Japan
| | - Yasuhiro Akai
- Department of Community-Based Medicine, Nara Medical University, Nara 634-8521, Japan
| | - Tatsuya Noda
- Department of Public Health, Health Management and Policy, Nara Medical University, Nara 634-8521, Japan
| | - Hitoshi Ishii
- Department of Doctor-Patient Relationships, Nara Medical University, Nara 634-8521, Japan
| | - Tomoaki Imamura
- Department of Public Health, Health Management and Policy, Nara Medical University, Nara 634-8521, Japan
| |
Collapse
|
24
|
Van J, Hahn Y, Silverstein B, Li C, Cai F, Wei J, Katiki L, Mehta P, Livatova K, DelPozzo J, Kobayashi T, Huang Y, Kobayashi S, Liang Q. Metformin Inhibits Autophagy, Mitophagy and Antagonizes Doxorubicin-Induced Cardiomyocyte Death. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2023; 2:37-51. [PMID: 38487671 PMCID: PMC10939033 DOI: 10.53941/ijddp.0201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The antidiabetic drug metformin has been shown to reduce cardiac injury under various pathological conditions, including anticancer drug doxorubicin (DOX)-induced cardiotoxicity, which makes metformin a prime candidate for repurposing. However, the mechanisms that mediate the cardioprotective effects of metformin remain highly controversial. In this study, we tested a prevailing hypothesis that metformin activates autophagy/mitophagy to reduce DOX cardiotoxicity. FVB/N mice and H9C2 cardiac myoblasts were treated with metformin, respectively. Autophagy/mitophagy was determined by Western blot analysis of microtubule-associated protein light chain 3, form-II (LC3-II), a well-established marker of autophagic vesicles. Although metformin had minimal effects on basal LC3-II levels, it significantly inhibited the accumulation of LC3-II levels by the lysosomal protease inhibitors pepstatin A and E64d in both total cell lysates and mitochondrial fractions. Also, dual fluorescent autophagy/mitophagy reporters demonstrated that metformin slowed the degradation rate of autophagic cargos or mitochondrial fragments in the lysosomes. These surprising results suggest that metformin inhibits rather than stimulates autophagy/mitophagy, sharply contrasting the popular belief. In addition, metformin diminished DOX-induced autophagy/mitophagy as well as cardiomyocyte death. Together, these results suggest that the cardioprotective effects of metformin against DOX cardiotoxicity may be mediated by its ability to inhibit autophagy and mitophagy, although the underlying molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Jennifer Van
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Younghee Hahn
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Brett Silverstein
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Cairong Li
- Clinical Medical College, Hubei University of Science and Technology, Xianning 332306, China
| | - Fei Cai
- Clinical Medical College, Hubei University of Science and Technology, Xianning 332306, China
| | - Jia Wei
- Department of Cardiology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Lokesh Katiki
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Puja Mehta
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Katherine Livatova
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Jaclyn DelPozzo
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Tamayo Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Yuan Huang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 10001, United States
| |
Collapse
|
25
|
Zhang L, Zhang X, Guan L, Zhou D, Ge J. AMPK/mTOR-mediated therapeutic effect of metformin on myocardial ischaemia reperfusion injury in diabetic rat. Acta Cardiol 2023; 78:64-71. [PMID: 34994666 DOI: 10.1080/00015385.2021.2024701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND The autophagy associated signalling pathways such as AMPK/mTOR previously were suggested to play a crucial role in protecting from ischaemia-reperfusion injury (IRI). The objective of this study was to evaluate the effect of metformin (DMBG) on autophagy during myocardial IRI with diabetes mellitus (DM). METHODS The DM rat model was established using streptozocin, and further induced ischaemia model via transitory ligation of the left anterior coronary artery and following reperfusion. The model rats were treated with 400 mg/kg/day DMBG for 1 week. Autophagosomes were investigated using transmission electron microscopy. Autophagy-associated signalling pathways were detected by western blot. RESULTS The myocardial infarct size was shown to significantly increase in the DM rats exposed to IRI compared to negative control, but decrease in DMBG treated. The mature autophagosomes were elevated in infarction and marginal zones of DM + IRI + DMBG compared to DM + IRI. Furthermore, the increasing protein levels of LC3-II, BECLIN 1, autophagy related 5 (ATG5) and AMP-activated protein kinase suggested activated autophagy-associated intracellular signalling AMPK and mTOR pathways upon DMBG treated. CONCLUSIONS Taken together, the outcomes determinate a novel mechanism that DMBG could activate autophagy process to provide a cardio-protective effect against DM induced myocardial IRI.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| |
Collapse
|
26
|
Metformin enhances neural precursor cells migration and functional recovery after ischemic stroke in mice. Exp Brain Res 2023; 241:505-515. [PMID: 36611122 DOI: 10.1007/s00221-023-06547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Resident neural precursor cells (NPCs) activation is a promising therapeutic strategy for brain repair. This strategy involves stimulating multiple stages of NPCs development, including proliferation, self-renewal, migration, and differentiation. Metformin, an FDA-approved diabetes drug, has been shown to promote the proliferation and differentiation of NPCs. However, it is still unclear whether metformin promotes the migration of NPCs. EVOS living cell imaging system was used for observing the migration for primary NPCs dynamically in vitro after metformin treatment. For in vivo study, a mouse model of ischemic stroke was established through middle cerebral artery occlusion (MCAO). To label the proliferating cell in subventricular zone, BrdU was injected intraperitoneally into the mice. After co-staining with BrdU and doublecortin (DCX), a marker for NPCs, the migration of Brdu and DCX double positive NPCs was detected along the rostral migratory stream (RMS) and around the infarct area using frozen brain sections. Finally, the rotarod test, corner test and beam walking were performed to evaluate the motor functions of the mice after stroke in different groups. The results showed that metformin enhanced NPCs migration in vivo and in vitro by promoting F-actin assembly and lamellipodia formation. What's more, metformin treatment also significantly reduced the infarct volume and alleviated functional dysfunction after stroke. Mechanistically, metformin promoted NPCs migration via up-regulating the CDC42 expression. Taken together, metformin represents an optimal candidate agent for neural repair that is capable of not only expanding the adult NPC population but also subsequently driving them toward the destination for neuronal differentiation.
Collapse
|
27
|
Choday S, Ravi N, Parisapogu A, Ojinna BT, Sherpa ML. Effects of Sodium-Glucose Cotransporter Inhibitor Use in Type 2 Diabetes Mellitus Patients With Heart Failure. Cureus 2023; 15:e34687. [PMID: 36909046 PMCID: PMC9994637 DOI: 10.7759/cureus.34687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023] Open
Abstract
The advances in the development of sodium-glucose cotransporter 2 inhibitors (SGLT2i) have expanded the variety of favorable approaches to treating diabetes mellitus. It is possible to have an improvement in insulin resistance and natriuresis by inhibiting the reabsorption of sodium and glucose at the proximal tubules in the kidney, and a decrease in cardiovascular mortality in patients with diabetes mellitus (DM). In addition, SGLT2i provides renoprotection by reducing intraglomerular higher blood pressure. The usage of SGLT2i also provides hemodynamic and metabolic benefits. SGLT2i demonstrates large cardiovascular benefits in patients both with and without diabetes, as well as in existing heart failure patients. These SGLT2i have direct and indirect effects on the kidney, likely contributing to stated cardiovascular benefits. Here we review the literature on the direct effects of SGLT2 inhibitors in diabetic patients with heart failure (HF). We assume that the benefit in cardiac cells modulated by SGLT2i is due to the inhibition of sodium transporters affecting intracellular sodium homeostasis. In conclusion, the sodium transporters in cardiac cells provide, at least partly, an example of the clinical benefits of SGLT2i observed in HF patients.
Collapse
Affiliation(s)
- Silpa Choday
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Niriksha Ravi
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Blessing T Ojinna
- Internal Medicine and Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,General Medicine, University of Nigeria Nsukka, College of Medicine, Enugu, NGA
| | - Mingma L Sherpa
- Internal Medicine and Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
28
|
Chen PC, Hong CT, Chen WT, Chan L, Chien LN. Metformin Adherence Reduces the Risk of Dementia in Patients With Diabetes: A Population-based Cohort Study. Endocr Pract 2023; 29:247-253. [PMID: 36657564 DOI: 10.1016/j.eprac.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Metformin is widely used as the first-line drug for type 2 diabetes mellitus and has numerous benefits apart from lowering blood glucose. However, metformin-retained regimen is challenged by newly launching, powerful glucose-lowering antiglycemic agents. This population-based cohort study examined the association between metformin adherence and the risk of dementia and Parkinson's disease (PD). METHODS Diabetic patients with metformin-included combination antiglycemic therapy were identified from the National Health Insurance Research Database and categorized into metformin-adherent and -nonadherent groups according to the medical record of the first year prescription. Patients contraindicated with metformin, severe diabetic complications, and poor drug compliance were excluded. The study outcome was the diagnosis of dementia or PD. RESULTS A total of 31 384 matched pairs were included after using propensity score matching and both groups were followed up for an average of 5 years. Metformin adherence was associated with a significantly lower risk of dementia (adjusted hazard risk ratio = 0.72, P < .001) but not PD (adjusted hazard risk ratio = 0.97, P = .825). Subgroup analysis revealed that the risk of dementia was significantly reduced in metformin-adherent patients, both male and female, aged >65 or ≤ 65 years, and with or without concurrent insulin treatment. This effect was not influenced by concurrent insulin treatment, which may eliminate the bias caused by the severity of diabetes mellitus. CONCLUSION Despite the launching of numerous new oral antiglycemic agents, metformin may provide further benefit on lowering risk of dementia beyond conventional glycemic control according to the real-world evidence.
Collapse
Affiliation(s)
- Po-Chih Chen
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Wan-Ting Chen
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei City, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.
| | - Li-Nien Chien
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei City, Taiwan; Graduate Institute of Data Science, College of Management, Taipei Medical University, Taipei, Taiwan; School of Health Care Administration, College of Management, Taipei Medical University, Taipei City, Taiwan; Master of Public Health Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
29
|
Elton AC, Cedarstrom V, Quraishi A, Wuertz B, Murray K, Markowski TW, Seabloom D, Ondrey FG. Metabolic and Metabolomic Effects of Metformin in Murine Model of Pulmonary Adenoma Formation. Nutr Cancer 2023; 75:1014-1027. [PMID: 36688306 DOI: 10.1080/01635581.2023.2165692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epidemiologic studies of diabetic patients treated with metformin identified significantly lower incidences of cancer. From this, there is growing interest in the use of metformin to treat and prevent cancer. Studies have investigated chemopreventive mechanisms including alterations in calorie intake, cancer metabolism, and cell signaling. Repurposing the drug is challenging due to its metabolic effects and non-uniform effects on different types of cancer. In our previously published studies, we observed that benzo[a]pyrene treated mice receiving metformin significantly reduced lung adenomas; however, mice had reduced weight gain. In this study, we compared chemoprevention diets with and without metformin to evaluate the effects of diet vs. effects of metformin. We also performed tandem mass spectrometry on mouse serum to assess metabolomic alterations associated with metformin treatment. In metformin cohorts, the rate of weight gain was reduced, but weights did not vary between diets. There was no weight difference between diets without metformin. Interestingly, caloric intake was increased in metformin treated mice. Metabolomic analysis revealed metabolite alterations consistent with metformin treatment. Based on these results, we conclude that previous reductions in lung adenomas may have been occurred from anticancer effects of metformin rather than a potentially toxic effect such as calorie restriction.
Collapse
Affiliation(s)
- Andrew C Elton
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Vannesa Cedarstrom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Arman Quraishi
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Beverly Wuertz
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kevin Murray
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd W Markowski
- Center for Mass Spectrometry & Proteomics, Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Donna Seabloom
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Frank G Ondrey
- Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,AeroCore, Department of Otolaryngology - Head and Neck Surgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
30
|
Tsygankova OV, Evdokimova NE, Veretyuk VV, Latyntseva LD, Ametov AS. Insulin resistance and heart failure with preserved ejection fraction. Pathogenetic and therapeutic crossroads. DIABETES MELLITUS 2022. [DOI: 10.14341/dm12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Insulin resistance, which is a fundamental pathogenetic factor of prediabetes, is closely associated with abdominal obesity on the one hand and the development of cardiovascular diseases, heart failure (HF), on the other. The pathogenetic role of insulin resistance is multifaceted and consists in the acceleration of atherosclerosis, the formation of left ventricular myocardial hypertrophy, including through mechanisms that do not depend on blood pressure, as well as the development of its diastolic dysfunction. The latter is the starting point for starting HF with preserved ejection fraction (HFpEF).Compared with patients with HF with reduced ejection fraction, the presence of HFpEF determines a higher frequency of hospitalizations not due to decompensation of heart failure, but due to concomitant diseases, such as destabilization of the course of arterial hypertension, decompensation of type 2 diabetes mellitus, curation of which, in general, has a greater impact in terms of improving prognosis. Thus, in patients with prediabetes and HFpEF, the correction of insulin resistance as the underlying cause and trigger of cardiometabolic disorders can potentially improve not only insulin-glucose homeostasis, but also the parameters of myocardial diastolic function. This literature review is devoted to the accumulated experience of using metformin as a «strategic» antidiabetic drug in HFpEF and considering potential new points of its application as a protector of the cardiovascular system.
Collapse
Affiliation(s)
- O. V. Tsygankova
- Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences; Novosibirsk State Medical University
| | - N. E. Evdokimova
- Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | | | - L. D. Latyntseva
- Research Institutе of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences
| | - A. S. Ametov
- Russian Medical Academy of Continuing Professional Education
| |
Collapse
|
31
|
Huang Y, Lou X, Jiang C, Ji X, Tao X, Sun J, Bao Z. Gut microbiota is correlated with gastrointestinal adverse events of metformin in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2022; 13:1044030. [PMID: 36465607 PMCID: PMC9714661 DOI: 10.3389/fendo.2022.1044030] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/03/2022] [Indexed: 11/18/2022] Open
Abstract
Aim Gastrointestinal discomfort is the most common adverse event in metformin treatment for type 2 diabetes. The mechanism of action of metformin is associated with gut microbiota. However, the gut microbial community structure related to metformin-induced gastrointestinal adverse events remains unclear. This study aimed to investigate it. Methods 50 patients with newly diagnosed diabetes were treated with metformin 1500mg/d for 12 weeks. The patients were divided into two groups according to whether gastrointestinal adverse events occurred (group B) or did not occur (group A) after treatment. The fecal bacterial communities and short-chain fatty acids (SCFAs) were sequenced and compared. 70 diabetes mice were randomly divided into 8 groups and treated with metformin (Met), clindamycin (Clin) and/or SCFA, which were the Met+/Clin+, Met+/Clin-, Met-/Clin+, Met-/Clin-, Met+/SCFA+, Met+/SCFA-, Met-/SCFA+ and Met-/SCFA- group. After 4 weeks of metformin treatment, blood glucose, food intake, fecal SCFAs, gut microbiota and gut hormones were measured. Results Metformin increased the abundance of Phascolarctobacterium, Intestinimonas and Clostridium III. Functional prediction analysis showed that the propanoate metabolism pathway was significantly up-regulated. The concentrations of acetic acid and propanoic acid in feces were significantly increased. The abundance of Clostridium sensu stricto, Streptococcus and Akkermansia induced by metformin in group B was higher than that in group A. The propanoate metabolism pathway and propanoic acid in feces were significantly up-regulated in group B. In the animal experiments, the food intake decreased and glucose control increased in metformin groups compared with those in the control groups. The total GLP-1 level in the Met+/Clin- group was significantly higher than that in the Met-/Clin- group, while there was no statistical difference between the Met-/Clin- and Met+/Clin+ group. The total GLP-1 level in the Met-/SCFA+ group was significantly higher than that in the Met-/SCFA-group, while the levels of total GLP-1 and active GLP-1 in the Met+/SCFA- group and the Met+/SCFA+ group were significantly higher than those in the Met-/SCFA-group. Conclusions Our data suggest that metformin promotes the secretion of intestinal hormones such as GLP-1 by increasing the abundance of SCFA-producing bacteria, which not only plays an anti-diabetic role, but also may causes gastrointestinal adverse events.
Collapse
Affiliation(s)
- Yuxin Huang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xudan Lou
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Cuiping Jiang
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xueying Ji
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoming Tao
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Jiao Sun
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
32
|
de Alwis N, Binder NK, Mangwiro YTM, Pritchard N, Beard S, Kaitu'u-Lino TJ, Brownfoot F, Hannan NJ. The effect of metformin on cardiovascular markers in female mice consuming a high fat diet. Obes Res Clin Pract 2022; 16:524-532. [PMID: 36333189 DOI: 10.1016/j.orcp.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 08/06/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Metformin, widely used to treat diabetes, is now considered a candidate therapeutic for treatment of cardiovascular disease. This study aimed to assess whether metformin's non-glycaemic effects could mitigate cardiovascular disease indices in female mice consuming a high fat diet (HFD). METHODS Four-week old female Arc:Arc(S) mice were placed on a standard (std) chow diet or Western-style HFD (22% fat, 0.15% cholesterol). At ∼8 months, the mice were administered 150 mg/kg metformin or vehicle (control) via intraperitoneal injection for 11 days. Blood pressure was measured (tail cuff plethysmography) at Day 9 and 11 of treatment. On Day 11, mice were weighed and culled. The mesenteric arcade and kidneys were collected for assessment of vascular reactivity (wire myography), and assessment of expression of cardiometabolic markers (qPCR), respectively. RESULTS The HFD fed female mice were significantly heavier than those receiving the std diet at 1-12 weeks on diet, and at cull. Mice on a std diet with metformin treatment were significantly heavier at cull than the mice on a std diet administered the control treatment. Metformin treatment did not alter the weight of the mice receiving the HFD. Neither the HFD (compared to the std diet), nor metformin treatment (compared to control treatment) altered blood pressure, vascular reactivity, or expression of cardiometabolic markers in the kidney. CONCLUSION Consumption of a Western-style HFD (without high salt/sugar levels) did not alter the cardiovascular markers measured. Further studies are required to establish the non-glycaemic, cardio-protective effects of metformin in high-risk cohorts.
Collapse
Affiliation(s)
- Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Yeukai T M Mangwiro
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Natasha Pritchard
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia; Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia; Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Fiona Brownfoot
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia; Translational Obstetrics Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia; Mercy Perinatal, Mercy Hospital for Women, Heidelberg 3084, Victoria, Australia.
| |
Collapse
|
33
|
Uwimana A, Ma C, Chen S, Ma X. Metformin therapy as a strategy to compensate anti-VEGF resistance in patients with diabetic macular edema. Medicine (Baltimore) 2022; 101:e31266. [PMID: 36281139 PMCID: PMC9592524 DOI: 10.1097/md.0000000000031266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diabetic macular edema (DME) is the complication of diabetic retinopathy, the leading cause of vision loss among diabetic patients. Metformin is the main antidiabetic treatment. It is preferable for its great anti-angiogenic and anti-inflammatory effects. Anti-vascular endothelial growth factor (VEGF) therapy is the preferable treatment for DME despite its lack of convincing results in some patients. To assess whether the combination of metformin and anti-VEGF drugs may decrease the risk of anti-VEGF resistance among DME patients. We included DME patients with a central retinal thickness (CRT) ≥ 250 μm who consecutively underwent at least 3 anti-VEGF therapies from January 1, 2020, to December 30, 2021. Anti-VEGF resistance was defined as persistent macular edema with decreased CRT ≤ 25% after 3 anti-VEGF injections. 109 patients were considered for this research, of whom 65 (59.6%) were resistant to anti-VEGF therapy. The mean CRT of the non-metformin group decreased from 344.88 ± 129.48 to 318.29 ± 123.23 (20.85%) and from 415.64 ± 144.26 to 277.11 ± 99.25 (31.51%) (P = .031) in the metformin group. Moreover, the metformin group had fewer resistant patients than the non-metformin, 24 (45.3%) versus 41 (73.2%). Furthermore, a considerable gain in visual acuity was observed in both groups, with a BCVA gain of 40.41% in the metformin group and 39.9% in the non-metformin group. Metformin may be combined with an anti-VEGF drug to minimize the risk of anti-VEGF resistance among DME patients. Moreover, it can serve to design effective therapeutic deliveries.
Collapse
Affiliation(s)
- Alexandre Uwimana
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Cong Ma
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shengyao Chen
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiang Ma
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Xiang Ma, Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Xigang District, Dalian 116044, China (e-mail: )
| |
Collapse
|
34
|
Nageeb MM, Saadawy SF, Attia SH. Breast milk mesenchymal stem cells abate cisplatin-induced cardiotoxicity in adult male albino rats via modulating the AMPK pathway. Sci Rep 2022; 12:17554. [PMID: 36266413 PMCID: PMC9585145 DOI: 10.1038/s41598-022-22095-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023] Open
Abstract
Myocardial injury influenced by cisplatin (Cis) is a compelling reason to hunt out a treatment modality to overcome such a threat in cisplatin-treated patients. Breast Milk mesenchymal stem cells (Br-MSCs) are a non-invasive, highly reproducible source of stem cells. Herein, we investigate Br-MSCs' role in cardiotoxicity induced by cisplatin. Rats were divided into; control, Cis-treated (received 12 mg/kg single intraperitoneal injection), BrMSCs-treated (received single intraperitoneal injection of 0.5 ml sterilized phosphate-buffered saline containing 2 × 107 cells of Br-MSCs); metformin-treated (received 250 mg/kg/day orally) and BrMSCs + metformin + Cis treated groups. At the experiment end, serum creatine kinase (CK-MB) and cardiac troponin T (cTnT) activates were estimated, cardiac malondialdehyde (MDA), superoxide dismutase (SOD), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) levels were measured, cardiac expression of Bax and Bcl-2 and AMP-activated protein kinase (AMPK), as well as heart histopathology, were evaluated. Study results showed that Cis explored acute cardiotoxicity evidenced by deteriorated cardiac indices, induction of oxidative stress, and inflammation with myocardium histological alterations. Treatment with Br-MSCs restored heart function and structure deteriorated by Cis injection. The antioxidant/anti-inflammatory/anti-apoptotic results of Br-MSCs were supported by AMPK activation denoting their protective role against cisplatin-induced cardiac injury. These results were superior when metformin was added to the treatment protocol.
Collapse
Affiliation(s)
- Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
35
|
Yen FS, Wei JCC, Shih YH, Hsu CY, Hsu CC, Hwu CM. Metformin Use before Influenza Vaccination May Lower the Risks of Influenza and Related Complications. Vaccines (Basel) 2022; 10:1752. [PMID: 36298617 PMCID: PMC9609450 DOI: 10.3390/vaccines10101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Older adults are more likely to have influenza and respond less well to the flu vaccine. We conducted this study to investigate whether pre-influenza vaccination metformin use had an effect on influenza and relevant complications in older adults with type 2 diabetes mellitus. Propensity score matching was used to identify 28,169 pairs of metformin users and nonusers from Taiwan's National Health Insurance Research Database from 1 January 2000 to 31 December 2018. We used Cox proportional hazards models to calculate the risks of hospitalization for influenza, pneumonia, cardiovascular disease, ventilation, and mortality between metformin users and nonusers. Compared with metformin nonusers, the aHRs (95% CI) for metformin users at risk of hospitalization for influenza, pneumonia, cardiovascular disease, invasive mechanical ventilation, death due to cardiovascular disease, and all-cause mortality were 0.60 (0.34, 1.060), 0.63 (0.53, 0.76), 0.41 (0.36, 0.47), 0.56 (0.45, 0.71), 0.49 (0.33, 0.73), and 0.44 (0.39, 0.51), respectively. Higher cumulative duration of metformin use was associated with lower risks of these outcomes than no use of metformin. This cohort study demonstrated that pre-influenza vaccination metformin use was associated with lower risks of hospitalizations for influenza, pneumonia, cardiovascular disease, mechanical ventilation, and mortality compared to metformin nonusers.
Collapse
Affiliation(s)
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ying-Hsiu Shih
- Management Office for Health Data, China Medical University Hospital, Taichung 40201, Taiwan
- College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chung Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chih-Cheng Hsu
- Institute of Population Health Sciences, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 35053, Taiwan
- Department of Health Services Administration, China Medical University, Taichung 40402, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan 33024, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Miaoli County 35053, Taiwan
| | - Chii-Min Hwu
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei 11121, Taiwan
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 11121, Taiwan
| |
Collapse
|
36
|
Kamel AM, Sabry N, Farid S. Effect of metformin on left ventricular mass and functional parameters in non-diabetic patients: a meta-analysis of randomized clinical trials. BMC Cardiovasc Disord 2022; 22:405. [PMID: 36088302 PMCID: PMC9464374 DOI: 10.1186/s12872-022-02845-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Left ventricular hypertrophy is a common finding in patients with ischemic heart disease and is associated with mortality in patients with cardiovascular disease (CVD). Metformin, an antidiabetic drug, has been shown to reduce oxidative stress and left ventricular mass index (LVMI) in animal hypertrophy models. We summarized evidence regarding the effect of metformin on LVMI and LVEF. METHODS Electronic databases were searched for randomized clinical trials (RCTs) that used metformin in non-diabetic patients with or without pre-existing CVD. The standardized mean change using change score standardization (SMCC) was calculated for each study. The random-effects model was used to pool the SMCC across studies. Meta-regression analysis was used to assess the association of heart failure (HF), metformin dose, and duration with the SMCC. RESULTS Data synthesis from nine RCTs (754 patients) showed that metformin use resulted in higher reduction in LVMI after 12 months (SMCC = -0.63, 95% CI - 1.23; - 0.04, p = 0.04) and an overall higher reduction in LVMI (SMCC = -0.5, 95% CI - 0.84; - 0.16, p < 0.01). These values equate to absolute values of 11.3 (95% CI 22.1-0.72) and 8.97 (95% CI 15.06-2.87) g/m2, respectively. The overall improvement in LVEF was also higher in metformin users after excluding one outlier (SMCC = 0.26, 95% CI 0.03-0.49, P = 0.03) which translates to a higher absolute improvement of 2.99% (95% CI 0.34; 5.63). Subgroup analysis revealed a favorable effect for metformin on LVEF in patients who received > 1000 mg/day (SMCC = 0.28, 95% CI 0.04; 0.52, P = 0.04), and patients with HF (SMCC = 0.23; 95% CI 0.1; 0.36; P = 0.004). These values translate to a higher increase of 2.64% and 3.21%, respectively. CONCLUSION Results suggest a favorable effect for metformin on LVMI and LVEF in patients with or without pre-existing CVD. Additional trials are needed to address the long-term effect of metformin. Registration The study was registered on the PROSPERO database with the registration number CRD42021239368 ( https://www.crd.york.ac.uk/prospero ).
Collapse
Affiliation(s)
- Ahmed M Kamel
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Nirmeen Sabry
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Samar Farid
- Clinical Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
37
|
Yen FS, Wei JCC, Chiu LT, Hsu CC, Hwu CM. Cardiovascular outcomes of metformin use in patients with type 2 diabetes and chronic obstructive pulmonary disease. Front Pharmacol 2022; 13:919881. [PMID: 36071848 PMCID: PMC9441545 DOI: 10.3389/fphar.2022.919881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: To know whether metformin use has different influence on cardiovascular risks in patients with type 2 diabetes mellitus (T2DM) and chronic obstructive pulmonary disease (COPD) as compared with metformin no-use. Methods: This study employed a retrospective cohort study design. Using propensity score matching, we recruited 55 ,224 pairs of metformin users and nonusers from Taiwan's National Health Insurance Research Database between 1 January 2000, and 31 December 2017. Cox proportional-hazards models with robust standard error estimates were used to compare the risks of cardiovascular outcomes. Results: The mean study period of metformin users and nonusers was 11.04 (5.46) and 12.30 (4.85) years, respectively. Compared with the nonuse of metformin, the adjusted hazard ratios (95% CI) of metformin use for composited cardiovascular events, stroke, coronary artery disease, and heart failure were 0.51 (0.48-0.53), 0.62 (0.59-0.64), 0.48 (0.46-0.50), and 0.61 (0.57-0.65), respectively. The longer cumulative duration of metformin use had even lower adjusted hazard ratios compared with metformin nonuse. Conclusion: In patients with coexisting T2DM and COPD, metformin use was associated with significantly lower risks of CVD; moreover, longer duration of metformin use was associated with a lower risk of CVD. A well-designed prospective study is required to verify the results.
Collapse
Affiliation(s)
| | - James Cheng-Chung Wei
- Division of Allergy, Immunology and Rheumatology Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lu-Ting Chiu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Cheng Hsu
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin County, Taiwan
| | - Chii-Min Hwu
- Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang-Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| |
Collapse
|
38
|
Wan J, Xu S, Li J, Yu M, Zhang K, Wei G, Su Z. Facile synthesis of multifunctional pharmaceutical carbon dots for targeted bioimaging and chemotherapy of tumors. NANOSCALE 2022; 14:11359-11368. [PMID: 35894806 DOI: 10.1039/d2nr03321f] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Drug-derived carbon dots (CDs) not only have excellent photoluminescence properties of CDs, but also maintain pharmacological effects of original drugs, so as to realize extended applications for both bioimaging and chemotherapy. In this work, metformin (Met)-derived CDs (Met-CDs) as multifunctional nanocarriers with tumor cell imaging and cancer therapy are synthesized using Met and citric acid as precursors. The created Met-CDs exhibit obvious resistance to photobleaching, significant pH sensitivity in acidic environments, good pH stability in alkaline environments, and high temperature sensitivity. In addition, we further investigate the biological activity of Met-CDs using diabetic cell models, which demonstrate the ability of Met-CDs to treat diabetes and reduce the production of reactive oxygen species in diseased cells. Subsequently, human alveolar adenocarcinoma basal epithelial cells (A549) are cultured in both normal glucose and low glucose media, and different concentrations of Met and Met-CDs are added to investigate the effect of Met-CDs on A549 cells. Finally, we successfully utilize the prepared Met-CDs to image live A549 cells in vitro in normal glucose medium. The Met-CDs prepared in this work reveal high potential to be used as both fluorescent probes and drug agents for tumor therapy, realizing controllable integrated diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Jiafeng Wan
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| | - Shiqing Xu
- Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jing Li
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengliu Yu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Kai Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, 100029 Beijing, China.
| |
Collapse
|
39
|
Xu B, Dai W, Liu L, Han H, Zhang J, Du X, Pei X, Fu X. Metformin ameliorates polycystic ovary syndrome in a rat model by decreasing excessive autophagy in ovarian granulosa cells via the PI3K/AKT/mTOR pathway. Endocr J 2022; 69:863-875. [PMID: 35228471 DOI: 10.1507/endocrj.ej21-0480] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common gynecological disease accompanied by a variety of clinical features, including anovulation, hyperandrogenism, and ovarian abnormalities, resulting in infertility. PCOS affects approximately 6%-15% of all reproductive-age women worldwide. Metformin, a popular drug used to treat PCOS in patients, has beneficial effects in reducing hyperandrogenism and inducing ovulation; however, the mechanisms by which metformin ameliorates PCOS are not clear. Hence, we aimed to explore the mechanisms of metformin in treating PCOS. In the present study, we first treated a letrozole-induced PCOS rat model with metformin, detected the pathological recovery of PCOS, and then assessed the effects of metformin on H2O2-induced autophagy in ovarian granulosa cells (GCs) by detecting the level of oxidative stress and the expression of autophagy-associated proteins and key proteins in the PI3K/AKT/mTOR pathway. We demonstrated that metformin ameliorated PCOS in a rat model by downregulating autophagy in GCs, and metformin decreased the levels of oxidative stress and autophagy in H2O2-induced GCs and affected the PI3K/AKT/mTOR signaling pathway. Taken together, our results indicate that metformin ameliorates PCOS in a rat model by decreasing excessive autophagy in GCs via the PI3K/AKT/mTOR pathway, and this study provides evidence for targeted reduction of excessive autophagy of ovarian granulosa cells and improvement of PCOS.
Collapse
Affiliation(s)
- Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Jingjing Zhang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
40
|
Su H, Lu D, Shen M, Feng L, Xu C. Evaluating the cardioprotective effect of metformin on myocardial ischemia-reperfusion injury using dynamic 18F-FDG micro-PET/CT imaging. BMC Cardiovasc Disord 2022; 22:310. [PMID: 35811313 PMCID: PMC9272551 DOI: 10.1186/s12872-022-02750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The molecular mechanisms of protective effect of metformin (Met) on ischemic myocardium have not been fully understood. This study aims to evaluate the cardioprotective effect of metformin on myocardial ischemia-reperfusion injury (MIRI) in rat models at different time points using dynamic 18F-FDG micro-PET/CT imaging. METHODS The I/R injury model in SD rats was established by ligation of left anterior descending coronary artery near the pulmonary arch root for 30 min. SD rats (n = 12) were randomly divided into 2 groups: Control group (n = 6) without any intervention and Met group (n = 6) with oral administration of metformin (50 mg/kg) twice a day. Gated 18F-FDG (40Mbq) micro-PET/CT imaging was performed for 10 min at different time points (day 1st, day 7th, day 14th and day 30th after operation). Volumes of interest were drawn to identify different myocardium regions (ischemia center, peri-ischemia area and remote area). Standardized uptake values (SUVs) (SUVmean and SUVmax) were analyzed to evaluate the FDG uptake activity, and then the center/remote ratio was calculated. In addition, the left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and LV ejection fraction (LVEF) were obtained. On the 30th day, all rats were scarified and myocardial ischemia was analyzed by HE staining and confirmed by pathology. RESULTS In the Control group, the center/remote ratio showed no obvious change trend at each time point after reperfusion, while the LV EDV increased gradually over time, and they were significantly negatively correlated (r = - 0.507, p < 0.05). In the Met group, the center/remote ratio gradually increased with time, there was no significant correlation between center/remote ratio and LV EDV (r = - 0.078, p > 0.05). On the 30th day, the center/remote ratio of the Met group was significantly higher than that of the Control group (0.81 ± 0.06 vs. 0.65 ± 0.09, p < 0.05), while LV EDV in Met group was significantly lower than in Control group (358.21 ± 22.62 vs. 457.53 ± 29.91, p < 0.05). There was no significant difference of LVEF between Met group and Control group at different time points after reperfusion (p < 0.05). HE staining showed that the myocardial infarction and fibrosis in ischemic center area of the Control group was more serious than that of the Met group. CONCLUSIONS Met could attenuate the severity of MIRI, delay and prevent the progress of LV remodeling. The cardioprotective progress could be dynamically assessed by 18F-FDG micro-PET/CT imaging.
Collapse
Affiliation(s)
- Hang Su
- Department of Nuclear Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Diyu Lu
- Department of Nuclear Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Mingkui Shen
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Chuangye Xu
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Nanshan District, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
41
|
Naghdi A, Goodarzi MT, Karimi J, Hashemnia M, Khodadadi I. Effects of curcumin and metformin on oxidative stress and apoptosis in heart tissue of type 1 diabetic rats. J Cardiovasc Thorac Res 2022; 14:128-137. [PMID: 35935389 PMCID: PMC9339728 DOI: 10.34172/jcvtr.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Introduction: Hyperglycemia enhances oxidative stress and apoptosis and induces damages in heart tissue. Based on antioxidant properties of curcumin and metformin, we hypothesized that these agents may exhibit cardioprotective effects by attenuating oxidative stress and modulating expression of the genes involved in apoptosis in type-1 diabetes.
Methods: Thirty-six male rats were randomly divided into six groups; (N): control; (D): streptozotocin-induced diabetic rats; (D+Cur50) and (D+Cur150): diabetic rats treated with 50 and 150 milligram of curcumin per kilogram of body weight (mg/kg.bw), respectively; (D+Met300) and (D+Met500): diabetic rats received 300 and 500 mg/kg.bw of metformin, respectively. Heart tissues were dissected and gene expression levels of Bax, Bcl-2, and caspase-3 were analyzed. Total anti-oxidant capacity (TAC), total oxidant status (TOS), and malondialdehyde (MDA) level, and activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) were measured.
Results: Enhancement in TOS, OSI, and MDA levels as well as increased in the activity of CAT and reduction in SOD and GPx activities were observed in diabetic group (D) compared with control rats. Treatment of diabetic animals with either curcumin or metformin normalized TOS, OSI, and MDA levels and restored CAT, SOD, and GPx activities. Diabetes caused extensive damages in heart tissue of rats (group D) and increased expression of caspase-3 and Bax genes and enhanced ratio of Bax/Bcl-2 expression compared with controls. Treatment with curcumin or metformin mitigated histopathological changes and dampened apoptosis by normalizing Bax and caspase-3 expression.
Conclusion: Curcumin and metformin modulated diabetes-induced cardiac damage probably by reducing oxidative stress.
Collapse
Affiliation(s)
- Atefeh Naghdi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taghi Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Jamshid Karimi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Iraj Khodadadi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
42
|
Schernthaner G, Brand K, Bailey CJ. Metformin and the heart: Update on mechanisms of cardiovascular protection with special reference to comorbid type 2 diabetes and heart failure. Metabolism 2022; 130:155160. [PMID: 35143848 DOI: 10.1016/j.metabol.2022.155160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022]
Abstract
Metformin has been in clinical use for the management of type 2 diabetes for more than 60 years and is supported by a vast database of clinical experience: this includes evidence for cardioprotection from randomised trials and real-world studies. Recently, the position of metformin as first choice glucose-lowering agent has been supplanted to some extent by the emergence of newer classes of antidiabetic therapy, namely the sodium-glucose co-transporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists. These agents have benefitted through support from large cardiovascular outcomes trials with more modern trial designs than earlier studies conducted to assess metformin. Nevertheless, clinical research on metformin continues to further assess its many potentially advantageous effects. Here, we review the evidence for improved cardiovascular outcomes with metformin in the context of the current era of diabetes outcomes trials. Focus is directed towards the potentially cardioprotective actions of metformin in patients with type 2 diabetes and heart failure (HF), now recognised as the most common complication of diabetes.
Collapse
|
43
|
Song Y, Wu Z, Zhao P. The Function of Metformin in Aging-Related Musculoskeletal Disorders. Front Pharmacol 2022; 13:865524. [PMID: 35392559 PMCID: PMC8982084 DOI: 10.3389/fphar.2022.865524] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022] Open
Abstract
Metformin is a widely accepted first-line hypoglycemic agent in current clinical practice, and it has been applied to the clinic for more than 60 years. Recently, researchers have identified that metformin not only has an efficient capacity to lower glucose but also exerts anti-aging effects by regulating intracellular signaling molecules. With the accelerating aging process and mankind’s desire for a long and healthy life, studies on aging have witnessed an unprecedented boom. Osteoporosis, sarcopenia, degenerative osteoarthropathy, and frailty are age-related diseases of the musculoskeletal system. The decline in motor function is a problem that many elderly people have to face, and in serious cases, they may even fail to self-care, and their quality of life will be seriously reduced. Therefore, exploring potential treatments to effectively prevent or delay the progression of aging-related diseases is essential to promote healthy aging. In this review, we first briefly describe the origin of metformin and the aging of the movement system, and next review the evidence associated with its ability to extend lifespan. Furthermore, we discuss the mechanisms related to the modulation of aging in the musculoskeletal system by metformin, mainly its contribution to bone homeostasis, muscle aging, and joint degeneration. Finally, we analyze the protective benefits of metformin in aging-related diseases of the musculoskeletal system.
Collapse
Affiliation(s)
- Yanhong Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Zajda A, Sikora J, Huttunen KM, Markowicz-Piasecka M. Structural Comparison of Sulfonamide-Based Derivatives That Can Improve Anti-Coagulation Properties of Metformin. Int J Mol Sci 2022; 23:ijms23084132. [PMID: 35456961 PMCID: PMC9029893 DOI: 10.3390/ijms23084132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/13/2023] Open
Abstract
Due to its high efficiency, good safety profile, and potential cardio-protective properties, metformin, a dimethyl biguanide, is the first-line medication in antihyperglycemic treatment for type 2 diabetic patients. The aim of our present study was to assess the effects of eight new sulfonamide-based derivatives of metformin on selected plasma parameters and vascular hemostasis, as well as on endothelial and smooth muscle cell function. The compounds with an alkyl chain (1–3), trifluoromethyl substituent (4), or acetyl group (5) significantly elevated glucose utilization in human umbilical endothelial cells (HUVECs), similarly to metformin. Our novel findings showed that metformin analogues 1–3 presented the most beneficial properties because of their greatest safety profile in the WST-1 cell viability assay, which was also proved in the further HUVEC integrity studies using RTCA DP. Compounds 1–3 did not affect either HUVEC or aortal smooth muscle cell (AoSMC) viability up to 3.0 mM. Importantly, these compounds beneficially affected some of the coagulation parameters, including factor X and antithrombin III activity. In contrast to the above-mentioned metformin analogues, derivatives 4 and 5 exerted more profound anticoagulation effects; however, they were also more cytotoxic towards HUVECs, as IC50 values were 1.0–1.5 mM. In conclusion, the chemical modification of a metformin scaffold into sulfonamides possessing alkyl substituents results in the formation of novel derivatives with potential bi-directional activity including anti-hyperglycemic properties and highly desirable anti-coagulant activity.
Collapse
Affiliation(s)
- Agnieszka Zajda
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland;
| | - Joanna Sikora
- Department of Bioinorganic Chemistry, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonranta 1C, P.O. Box 1627, 70211 Kuopio, Finland;
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego1, 90-151 Lodz, Poland;
- Correspondence: ; Tel.: +48-42-677-92-50
| |
Collapse
|
45
|
Shao Y, Wang M, Zhu Y, Li X, Liu J. Association of metformin treatment with enhanced effect of anti-VEGF agents in diabetic macular edema patients. Acta Diabetol 2022; 59:553-559. [PMID: 35034186 DOI: 10.1007/s00592-021-01833-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/25/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the effect of metformin combined with anti-VEGF agents in patients with diabetic macular edema (DME). METHODS This study was a prospective, nonrandomized case-control study. Patients were included in with a diagnosis of DME who received anti-VEGF agents injection. Basic information, medical history, best-corrected visual acuity (BCVA), central macular thickness (CMT), the number of intravitreal injections, panretinal photocoagulation (PRP), and macular grid photocoagulation treatment during the 6-month follow-up, were recorded for each patient. RESULTS A total of 50 DME patients were collected (24 patients with a history of oral metformin ≥ 6 months and 26 patients who had not taken metformin). The BCVA and the CMT were significantly improved after anti-VEGF treatment in two groups (F1 = 19.35, F2 = 26.78; F1 = 65.45, F2 = 76.23; P < 0.05). The BCVA in the metformin group was better than that in non-metformin group at every point after treatment (F = 34.45, P < 0.05). The CMT in metformin group decreased much more than that in non-metformin group during the follow-up period (F = 87.05, P < 0.05). The injection numbers decreased in the metformin group compared with the non-metformin group (t = 5.14, P < 0.05). However, there was no difference in PRP and macular grid photocoagulation therapy between the two groups during the 6-month follow-up. CONCLUSION Metformin can enhance the therapeutic effect of anti-VEGF agents on DME patients to improve their visual acuity, improve the structure of the macular area, and reduce the number of intravitreal injections 90.
Collapse
Affiliation(s)
- Yan Shao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Manqiao Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yimeng Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China
- Eye Institute and School of Optometry, Tianjin, China
- Tianjin Medical University Eye Hospital, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China.
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China.
- Eye Institute and School of Optometry, Tianjin, China.
- Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Juping Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin, China.
- Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin, China.
- Eye Institute and School of Optometry, Tianjin, China.
- Tianjin Medical University Eye Hospital, Tianjin, China.
| |
Collapse
|
46
|
Ye H, He Y, Zheng C, Wang F, Yang M, Lin J, Xu R, Zhang D. Type 2 Diabetes Complicated With Heart Failure: Research on Therapeutic Mechanism and Potential Drug Development Based on Insulin Signaling Pathway. Front Pharmacol 2022; 13:816588. [PMID: 35308248 PMCID: PMC8927800 DOI: 10.3389/fphar.2022.816588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 01/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and heart failure (HF) are diseases characterized by high morbidity and mortality. They often occur simultaneously and increase the risk of each other. T2DM complicated with HF, as one of the most dangerous disease combinations in modern medicine, is more common in middle-aged and elderly people, making the treatment more difficult. At present, the combination of blood glucose control and anti-heart failure is a common therapy for patients with T2DM complicated with HF, but their effect is not ideal, and many hypoglycemic drugs have the risk of heart failure. Abnormal insulin signaling pathway, as a common pathogenic mechanism in T2DM and HF, could lead to pathological features such as insulin resistance (IR), myocardial energy metabolism disorders, and vascular endothelial disorders. The therapy based on the insulin signaling pathway may become a specific therapeutic target for T2DM patients with HF. Here, we reviewed the mechanisms and potential drugs of insulin signaling pathway in the treatment of T2DM complicated with HF, with a view to opening up a new perspective for the treatment of T2DM patients with HF and the research and development of new drugs.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Wang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- State Key Laboratory of Innovation Medicine and High Efficiency and Energy Saving Pharmaceutical Equipment, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
47
|
Feng J, Wang X, Ye X, Ares I, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Martínez MA. Mitochondria as an important target of metformin: The mechanism of action, toxic and side effects, and new therapeutic applications. Pharmacol Res 2022; 177:106114. [DOI: 10.1016/j.phrs.2022.106114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
|
48
|
Janjusevic M, Fluca AL, Gagno G, Pierri A, Padoan L, Sorrentino A, Beltrami AP, Sinagra G, Aleksova A. Old and Novel Therapeutic Approaches in the Management of Hyperglycemia, an Important Risk Factor for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23042336. [PMID: 35216451 PMCID: PMC8878509 DOI: 10.3390/ijms23042336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperglycemia is considered one of the main risk factors for atherosclerosis, since high glucose levels trigger multiple pathological processes, such as oxidative stress and hyperproduction of pro-inflammatory mediators, leading to endothelial dysfunction. In this context, recently approved drugs, such as glucagon-like-peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2i), could be considered a powerful tool for to reduce glucose concentration and cardiovascular risk. Interestingly, many patients with type 2 diabetes mellitus (T2DM) and insulin resistance have been found to be deficient in vitamin D. Recent studies pointed out the unfavorable prognostic values of T2DM and vitamin D deficiency in patients with cardiac dysfunction, either when considered individually or together, which shed light on the role of vitamin D in general health status. New evidence suggests that SGLT2i could adversely affect the production of vitamin D, thereby increasing the risk of fractures, which are common in patients with T2DM. Therefore, given the biological effects of vitamin D as an anti-inflammatory mediator and a regulator of endothelial function and calcium equilibrium, these new findings should be taken into consideration as well. The aim of this review is to gather the latest advancements regarding the use of antidiabetic and antiplatelet drugs coupled with vitamin D supplementation to control glucose levels, therefore reducing the risk of coronary artery disease (CAD).
Collapse
Affiliation(s)
- Milijana Janjusevic
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandra Lucia Fluca
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Alessandro Pierri
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Laura Padoan
- Cardiology and Cardiovascular Physiopathology, Azienda Ospedaliero-Universitaria S. Maria Della Misericordia, 06156 Perugia, Italy;
| | - Annamaria Sorrentino
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | | | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
| | - Aneta Aleksova
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Deparment of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (M.J.); (A.L.F.); (G.G.); (A.P.); (A.S.); (G.S.)
- Correspondence: or ; Tel.: +39-3405507762; Fax: +39-040-3994878
| |
Collapse
|
49
|
Robichaud S, Rasheed A, Pietrangelo A, Doyoung Kim A, Boucher DM, Emerton C, Vijithakumar V, Gharibeh L, Fairman G, Mak E, Nguyen MA, Geoffrion M, Wirka R, Rayner KJ, Ouimet M. Autophagy Is Differentially Regulated in Leukocyte and Nonleukocyte Foam Cells During Atherosclerosis. Circ Res 2022; 130:831-847. [PMID: 35137605 DOI: 10.1161/circresaha.121.320047] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Atherosclerosis is characterized by an accumulation of foam cells within the arterial wall, resulting from excess cholesterol uptake and buildup of cytosolic lipid droplets (LDs). Autophagy promotes LD clearance by freeing stored cholesterol for efflux, a process that has been shown to be atheroprotective. While the role of autophagy in LD catabolism has been studied in macrophage-derived foam cells, this has remained unexplored in vascular smooth muscle cell (VSMC)-derived foam cells that constitute a large fraction of foam cells within atherosclerotic lesions. OBJECTIVE We performed a comparative analysis of autophagy flux in lipid-rich aortic intimal populations to determine whether VSMC-derived foam cells metabolize LDs similarly to their macrophage counterparts. METHODS AND RESULTS Atherosclerosis was induced in GFP-LC3 transgenic mice by PCSK9 (proprotein convertase subtilisin/kexin type 9)-adeno-associated viral injection and Western diet feeding. Using flow cytometry of aortic digests, we observed a significant increase in dysfunctional autophagy of VSMC-derived foam cells during atherogenesis relative to macrophage-derived foam cells. Using cell culture models of lipid-loaded VSMC and macrophage, we show that autophagy-mediated cholesterol efflux from VSMC foam cells was poor relative to macrophage foam cells, and largely occurs when HDL (high-density lipoprotein) is used as a cholesterol acceptor, as opposed to apoA-1 (apolipoproteinA-1). This was associated with the predominant expression of ABCG1 in VSMC foam cells. Using metformin, an autophagy activator, cholesterol efflux to HDL was significantly increased in VSMC, but not in macrophage, foam cells. CONCLUSIONS These data demonstrate that VSMC and macrophage foam cells perform cholesterol efflux by distinct mechanisms, and that autophagy flux is highly impaired in VSMC foam cells, but can be induced by pharmacological means. Further investigation is warranted into targeting autophagy specifically in VSMC foam cells, the predominant foam cell subtype of advanced atherosclerotic plaques, to promote reverse cholesterol transport and resolution of the atherosclerotic plaque.
Collapse
Affiliation(s)
- Sabrina Robichaud
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Adil Rasheed
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Antonietta Pietrangelo
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Anne Doyoung Kim
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Dominique M Boucher
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Christina Emerton
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Viyashini Vijithakumar
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Lara Gharibeh
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Garrett Fairman
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Esther Mak
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Michele Geoffrion
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
| | - Robert Wirka
- University of North Carolina School of Medicine, Chapel Hill (R.W.)
| | - Katey J Rayner
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| | - Mireille Ouimet
- University of Ottawa Heart Institute, ON (S.R., A.R., A.P., A.D.K., D.M.B., C.E., V.V., L.G., G.F., E.M., M.-A.N., M.G., K.J.R., M.O.)
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, ON (S.R., A.R., A.P., A.D.K., D.M.B., V.V., L.G., G.F., M.-A.N., K.J.R., M.O.)
| |
Collapse
|
50
|
Zhang X, Ogihara T, Zhu M, Gantumur D, Li Y, Mizoi K, Kamioka H, Tsushima Y. Effect of metformin on 18F-fluorodeoxyglucose uptake and positron emission tomographic imaging. Br J Radiol 2022; 95:20200810. [PMID: 34705528 PMCID: PMC8822544 DOI: 10.1259/bjr.20200810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Metformin is widely used to treat diabetes, but induces changes in glucose uptake in both normal organs and tumors. Here, we review the effects of metformin on the uptake of 18F-fludeoxyglucose (18F-FDG) in tissues and tumors, and its influence on 18F-FDG positron emission tomographic imaging (18F-FDG PET), as well as the mechanisms involved. This is an important issue, because metformin has diverse effects on tissue uptake of 18F-FDG, and this can affect the quality and interpretation of PET images. Metformin increases glucose uptake in the gastrointestinal tract, cerebral white matter, and the kidney, while regions of the cerebrum associated with memory show decreased glucose uptake, and the myocardium shows no change. Hepatocellular carcinoma and breast cancer show increased glucose uptake after metformin administration, while thyroid cancer shows decreased uptake, and colon and pancreatic cancers show no change. A high-energy diet increases 18F-FDG uptake, but this effect is blocked by metformin. Withdrawal of metformin 48 h before PET image acquisition is widely recommended. However, based on our review of the literature, we propose that the differentiation of metformin discontinuation could be reasonable. But future clinical trials are still needed to support our viewpoint.
Collapse
Affiliation(s)
| | | | - Min Zhu
- Weifang Community Health Service Center, Pudong New District, Shanghai, China
| | - Dolgormaa Gantumur
- Department of Hepatobiliary and Pancreatic Surgery, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Yang Li
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Department of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Gunma, Japan
| | | | | |
Collapse
|