1
|
Alptekin A, Khan MB, Parvin M, Chowdhury H, Kashif S, Selina FA, Bushra A, Kelleher J, Ghosh S, Williams D, Blumling E, Ara R, Bosomtwi A, Frank JA, Dhandapani KM, Arbab AS. Effects of low-intensity pulsed focal ultrasound-mediated delivery of endothelial progenitor-derived exosomes in tMCAo stroke. Front Neurol 2025; 16:1543133. [PMID: 40271117 PMCID: PMC12014438 DOI: 10.3389/fneur.2025.1543133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction Exosomes from different sources have been used for therapeutic purposes to target stroke and other disorders. However, exosomes from endothelial progenitor cells (EPCs) have not been tested in any stroke model, and in vivo bio-distribution study is lacking. Targeted delivery of IV-administered exosomes has been a significant challenge. Delivery of exosomes to the brain is a daunting task, and a blood-brain barrier (BBB)-penetrable peptide is being considered. However, the next step in practical treatment will be delivering naïve (unmodified) exosomes to the stroke site without destroying host tissues or disrupting BBB, or the membranes of the delivery vehicles. Low-intensity-pulsed focused ultrasound (LIPFUS) is approved for clinical use in the musculoskeletal, transcranial brain, and physiotherapy clinics. The objectives of the proposed studies were to determine whether LIPFUS-mediated increased delivery of EPC-derived exosomes enhances stroke recovery and functional improvement in mice with transient middle cerebral artery occlusion (tMCAo) stroke. Methods To enhance exosome delivery to the stroke area, we utilized LIPFUS. We evaluated stroke volume using MRI at different time points and conducted behavioral studies parallel to MRI to determine recovery. Ultimately, we studied brain tissue using immunohistochemistry to assess the extent of stroke and tissue regeneration. Results and Discussion In vivo, imaging showed a higher accumulation of EPC exosomes following LIPFUS without any damage to the underlying brain tissues, increased leakage of albumin, or accumulation of CD45+ cells. Groups of mice (14-16 months old) were treated with Vehicle (PBS), LIPFUS only, EPC-exosomes only, and LIPFUS+EPC-exosomes. LIPFUS + EPC exosomes groups showed a significantly decreased stroke volume on day 7, decreased FluoroJade+ cells, and significantly higher numbers of neovascularization in and around the stroke areas compared to that of other groups.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mohammad B. Khan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Mahrima Parvin
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hasanul Chowdhury
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Sawaiz Kashif
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Fowzia A. Selina
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Anika Bushra
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Justin Kelleher
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santu Ghosh
- Department of Biostatistics, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Dylan Williams
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Emily Blumling
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roxan Ara
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Asamoah Bosomtwi
- Small Animal Imaging Core, GCC, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Joseph A. Frank
- Laboratory of Diagnostic Radiology Research, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Ali S. Arbab
- Tumor Angiogenesis Laboratory, GCC, Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Verkhratsky A, Sofroniew MV. Neuroglia in stroke. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:101-111. [PMID: 40148039 DOI: 10.1016/b978-0-443-19102-2.00009-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Stroke, ischemic or hemorrhagic, triggers a complex and coordinated glial response, which, to a large extent, defines the progression and outcome of this focal damage of the nervous tissue. Massive cell death in the infarction core results in a release of damage-associated molecular patterns, which, together with blood-borne factors entering the brain through either ruptured vessels or through compromised blood-brain barrier, trigger reactive gliosis. Microglia are the first to migrate toward the lesion, proliferate, and phagocytose cellular debris in and around the infarct core. Reactive astrogliosis occurs around the margins of the infarct core and is characterized by astrocytic proliferation, morphologic remodeling with loss of territorial domain segregation, and transcriptional reprogramming into wound repair astrocytes that form a periinfarct border that protects the healthy tissue and assists postlesional regeneration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
| |
Collapse
|
3
|
Wang S, Pan Y, Zhang C, Zhao Y, Wang H, Ma H, Sun J, Zhang S, Yao J, Xie D, Zhang Y. Transcriptome Analysis Reveals Dynamic Microglial-Induced A1 Astrocyte Reactivity via C3/C3aR/NF-κB Signaling After Ischemic Stroke. Mol Neurobiol 2024; 61:10246-10270. [PMID: 38713438 DOI: 10.1007/s12035-024-04210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
Microglia and astrocytes are key players in neuroinflammation and ischemic stroke. A1 astrocytes are a subtype of astrocytes that are extremely neurotoxic and quickly kill neurons. Although the detrimental A1 astrocytes are present in many neurodegenerative diseases and are considered to accelerate neurodegeneration, their role in the pathophysiology of ischemic stroke is poorly understood. Here, we combined RNA-seq, molecular and immunological techniques, and behavioral tests to investigate the role of A1 astrocytes in the pathophysiology of ischemic stroke. We found that astrocyte phenotypes change from a beneficial A2 type in the acute phase to a detrimental A1 type in the chronic phase following ischemic stroke. The activated microglial IL1α, TNF, and C1q prompt commitment of A1 astrocytes. Inhibition of A1 astrocytes induction attenuates reactive gliosis and ameliorates morphological and functional defects following ischemic stroke. The crosstalk between astrocytic C3 and microglial C3aR contributes to the formation of A1 astrocytes and morphological and functional defects. In addition, NF-κB is activated following ischemic stroke and governs the formation of A1 astrocytes via direct targeting of inflammatory cytokines and chemokines. Taken together, we discovered that A2 astrocytes and A1 astrocytes are enriched in the acute and chronic phases of ischemic stroke respectively, and that the C3/C3aR/NF-κB signaling leads to A1 astrocytes induction. Therefore, the C3/C3aR/NF-κB signaling is a novel therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Song Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- Beijing Clinical Research Institute, Beijing, 100050, China.
| | - Yuhualei Pan
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
- Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Chengjie Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yushang Zhao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Huan Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Huixuan Ma
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Song Zhang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Jingyi Yao
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- Beijing Clinical Research Institute, Beijing, 100050, China
| | - Dan Xie
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
4
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
5
|
Hao X, Lin L, Sun C, Li C, Wang J, Jiang M, Yao Z, Yang Y. Inhibition of Notch1 signal promotes brain recovery by modulating glial activity after stroke. J Stroke Cerebrovasc Dis 2024; 33:106578. [PMID: 38636320 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/21/2022] [Accepted: 05/15/2022] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Notch1 signaling inhibiton with N-[N-(3,5-difluorophenacetyl)-1-alanyl]-S-phenylglycine t-butylester] (DAPT) treatment could promote brain recovery and the intervention effect is different between striatum (STR) and cortex (CTX), which might be accounted for different changes of glial activities, but the in-depth mechanism is still unknown. The purpose of this study was to identify whether DAPT could modulate microglial subtype shifts and astroglial-endfeet aquaporin-4 (AQP4) mediated waste solute drainage. METHODS Sprague-Dawley rats (n=10) were subjected to 90min of middle cerebral artery occlusion (MCAO) and were treated with DAPT (n=5) or act as control with no treatment (n=5). Two groups of rats underwent MRI scans at 24h and 4 week, and sacrificed at 4 week after stroke for immunofluorescence (IF). RESULTS Compared with control rats, MRI data showed structural recovery in ipsilateral STR but not CTX. And IF showed decreased pro-inflammatory M1 microglia and increased anti-inflammatory M2 microglia in striatal lesion core and peri-lesions of STR, CTX. Meanwhile, IF showed decreased AQP4 polarity in ischemic brain tissue, however, AQP4 polarity in striatal peri-lesions of DAPT treated rats was higher than that in control rats but shows no difference in cortical peri-lesions between control and treated rats. CONCLUSIONS The present study indicated that DAPT could promote protective microglia subtype shift and striatal astrocyte mediated waste solute drainage, that the later might be the major contributor of waste solute metabolism and one of the accounts for discrepant recovery of STR and CTX.
Collapse
Affiliation(s)
- Xiaozhu Hao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Luyi Lin
- Department of Radiology, Shanghai cancer center, Fudan University, Shanghai 200032, China
| | - Chengfeng Sun
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chanchan Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Min Jiang
- Institutes of Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yanmei Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
6
|
Zhou J, Fangma Y, Chen Z, Zheng Y. Post-Stroke Neuropsychiatric Complications: Types, Pathogenesis, and Therapeutic Intervention. Aging Dis 2023; 14:2127-2152. [PMID: 37199575 PMCID: PMC10676799 DOI: 10.14336/ad.2023.0310-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/19/2023] Open
Abstract
Almost all stroke survivors suffer physical disabilities and neuropsychiatric disturbances, which can be briefly divided into post-stroke neurological diseases and post-stroke psychiatric disorders. The former type mainly includes post-stroke pain, post-stroke epilepsy, and post-stroke dementia while the latter one includes post-stroke depression, post-stroke anxiety, post-stroke apathy and post-stroke fatigue. Multiple risk factors are related to these post-stroke neuropsychiatric complications, such as age, gender, lifestyle, stroke type, medication, lesion location, and comorbidities. Recent studies have revealed several critical mechanisms underlying these complications, namely inflammatory response, dysregulation of the hypothalamic pituitary adrenal axis, cholinergic dysfunction, reduced level of 5-hydroxytryptamine, glutamate-mediated excitotoxicity and mitochondrial dysfunction. Moreover, clinical efforts have successfully given birth to many practical pharmaceutic strategies, such as anti-inflammatory medications, acetylcholinesterase inhibitors, and selective serotonin reuptake inhibitors, as well as diverse rehabilitative modalities to help patients physically and mentally. However, the efficacy of these interventions is still under debate. Further investigations into these post-stroke neuropsychiatric complications, from both basic and clinical perspectives, are urgent for the development of effective treatment strategies.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Correspondence should be addressed to: Prof. Zhong Chen () and Dr. Yanrong Zheng (), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Mang J, Xu Z, Qi Y, Zhang T. Favoring the cognitive-motor process in the closed-loop of BCI mediated post stroke motor function recovery: challenges and approaches. Front Neurorobot 2023; 17:1271967. [PMID: 37881517 PMCID: PMC10595019 DOI: 10.3389/fnbot.2023.1271967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/08/2023] [Indexed: 10/27/2023] Open
Abstract
The brain-computer interface (BCI)-mediated rehabilitation is emerging as a solution to restore motor skills in paretic patients after stroke. In the human brain, cortical motor neurons not only fire when actions are carried out but are also activated in a wired manner through many cognitive processes related to movement such as imagining, perceiving, and observing the actions. Moreover, the recruitment of motor cortexes can usually be regulated by environmental conditions, forming a closed-loop through neurofeedback. However, this cognitive-motor control loop is often interrupted by the impairment of stroke. The requirement to bridge the stroke-induced gap in the motor control loop is promoting the evolution of the BCI-based motor rehabilitation system and, notably posing many challenges regarding the disease-specific process of post stroke motor function recovery. This review aimed to map the current literature surrounding the new progress in BCI-mediated post stroke motor function recovery involved with cognitive aspect, particularly in how it refired and rewired the neural circuit of motor control through motor learning along with the BCI-centric closed-loop.
Collapse
Affiliation(s)
- Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - YingBin Qi
- Department of Neurology, Jilin Province People's Hospital, Changchun, China
| | - Ting Zhang
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
9
|
Li Z, Chen Z, Peng J. Neural stem cell-derived exosomal FTO protects neuron from microglial inflammatory injury by inhibiting microglia NRF2 mRNA m6A modification. J Neurogenet 2023; 37:103-114. [PMID: 37812019 DOI: 10.1080/01677063.2023.2259995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
Ischemic stroke (IS) can cause neuronal cell loss and function defects. Exosomes derived from neural stem cells (NSC-Exos) improve neural plasticity and promote neural function repair following IS. However, the potential mechanism remains unclear. In this study, NSC-Exos were characterized and co-cultured with microglia. We found that NSC-Exos increased NRF2 expression in oxygen-glucose deprivation/reoxygenation and LPS-induced microglia and converted microglia from M1 pro-inflammatory phenotype to M2 anti-inflammatory phenotype. NSC-Exos reduced m6A methylation modification of nuclear factor erythroid 2-related factor 2 (NRF2) mRNA via obesity-associated gene (FTO). Furthermore, NSC-Exos reduced the damage to neurons caused by microglia's inflammatory response. Finally, the changes in microglia polarization and neuron damage caused by FTO knockdown in NSE-Exos were attenuated by NRF2 overexpression in microglia. These findings revealed that NSC-Exos promotes NRF2 expression and M2 polarization of microglial via transferring FTO, thereby resulting in neuroprotective effects.
Collapse
Affiliation(s)
- Zhiyong Li
- Medical Quality Management Department, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Zhenggang Chen
- Neurosurgery Department, The First Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China
| | - Jun Peng
- Neurosurgery Department, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, Hainan, China
| |
Collapse
|
10
|
Reyner-Parra D, Bonet C, Seara TM, Huguet G. Traveling waves in a model for cortical spreading depolarization with slow-fast dynamics. CHAOS (WOODBURY, N.Y.) 2023; 33:083154. [PMID: 38060797 DOI: 10.1063/5.0160509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/30/2023] [Indexed: 12/18/2023]
Abstract
Cortical spreading depression and spreading depolarization (CSD) are waves of neuronal depolarization that spread across the cortex, leading to a temporary saturation of brain activity. They are associated with various brain disorders such as migraine and ischemia. We consider a reduced version of a biophysical model of a neuron-astrocyte network for the initiation and propagation of CSD waves [Huguet et al., Biophys. J. 111(2), 452-462, 2016], consisting of reaction-diffusion equations. The reduced model considers only the dynamics of the neuronal and astrocytic membrane potentials and the extracellular potassium concentration, capturing the instigation process implicated in such waves. We present a computational and mathematical framework based on the parameterization method and singular perturbation theory to provide semi-analytical results on the existence of a wave solution and to compute it jointly with its velocity of propagation. The traveling wave solution can be seen as a heteroclinic connection of an associated system of ordinary differential equations with a slow-fast dynamics. The presence of distinct time scales within the system introduces numerical instabilities, which we successfully address through the identification of significant invariant manifolds and the implementation of the parameterization method. Our results provide a methodology that allows to identify efficiently and accurately the mechanisms responsible for the initiation of these waves and the wave propagation velocity.
Collapse
Affiliation(s)
- David Reyner-Parra
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Carles Bonet
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
| | - Teresa M Seara
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
- Institut de Matemàtiques de la UPC - Barcelona Tech (IMTech), Pau Gargallo 14, 08028 Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Gemma Huguet
- Departament de Matemàtiques, Universitat Politècnica de Catalunya, Avda. Diagonal 647, 08028 Barcelona, Spain
- Institut de Matemàtiques de la UPC - Barcelona Tech (IMTech), Pau Gargallo 14, 08028 Barcelona, Spain
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| |
Collapse
|
11
|
Tu WJ, Shao A, Huang Y. Editorial: The role of astrocytes in stroke. Front Cell Neurosci 2023; 17:1205798. [PMID: 37265580 PMCID: PMC10230023 DOI: 10.3389/fncel.2023.1205798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Wen-Jun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Geriatrics Innovation Center, Weifang People's Hospital, Weifang, China
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Xiong Y, Fu Y, Li Z, Zheng Y, Cui M, Zhang C, Huang XY, Jian Y, Chen BH. Laquinimod Inhibits Microglial Activation, Astrogliosis, BBB Damage, and Infarction and Improves Neurological Damage after Ischemic Stroke. ACS Chem Neurosci 2023. [PMID: 37161270 DOI: 10.1021/acschemneuro.2c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Glial activation is involved in neuroinflammation and blood-brain barrier (BBB) damage, which plays a key role in ischemic stroke-induced neuronal damage; therefore, regulating glial activation is an important way to inhibit ischemic brain injury. Effects of laquinimod (LAQ) include inhibiting axonal damage and neuroinflammation in multiple neuronal injury diseases. However, whether laquinimod can exert neuroprotective effects after ischemic stroke remains unknown. In this study, we investigated the effect of LAQ on glial activation, BBB damage, and neuronal damage in an ischemic stroke model. Adult ICR mice were used to create a photothrombotic stroke (PT) model. LAQ was administered orally at 30 min after ischemic injury. Neurobehavioral tests, Evans Blue, immunofluorescence, TUNEL, Nissl staining, and western blot were performed to evaluate the neurofunctional outcome. Quantification of immunofluorescence was evaluated by unbiased stereology. LAQ post-treatment significantly reduced infarction and improved forepaw function at 5 days after PT. Interestingly, LAQ treatment significantly promoted anti-inflammatory microglial activation. Moreover, LAQ treatment reduced astrocyte activation, glial scar formation, and BBB breakdown in ischemic brains. Therefore, this study demonstrated that LAQ post-treatment restricted microglial polarization, astrogliosis, and glial scar and improved BBB damage and behavioral function. LAQ may serve as a novel target to develop new therapeutic agents for ischemic stroke.
Collapse
Affiliation(s)
- Ye Xiong
- The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yanqiong Fu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Zhuoli Li
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yu Zheng
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Maiyin Cui
- Department of Rehabilitation and Traditional Chinese Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang, P. R. China
| | - Chan Zhang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Xin Yi Huang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| | - Yong Jian
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, P. R. China
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
13
|
Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, Meem AFK, Akter A, Emran TB, Cavalu S, Sharma R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3201644. [PMID: 36046684 PMCID: PMC9423989 DOI: 10.1155/2022/3201644] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/18/2022]
Abstract
Based on the diverse physiological influence, the impact of glial cells has become much more evident on neurological illnesses, resulting in the origins of many diseases appearing to be more convoluted than previously happened. Since neurological disorders are often random and unknown, hence the construction of animal models is difficult to build, representing a small fraction of people with a gene mutation. As a result, an immediate necessity is grown to work within in vitro techniques for examining these illnesses. As the scientific community recognizes cell-autonomous contributions to a variety of central nervous system illnesses, therapeutic techniques involving stem cells for treating neurological diseases are gaining traction. The use of stem cells derived from a variety of sources is increasingly being used to replace both neuronal and glial tissue. The brain's energy demands necessitate the reliance of neurons on glial cells in order for it to function properly. Furthermore, glial cells have diverse functions in terms of regulating their own metabolic activities, as well as collaborating with neurons via secreted signaling or guidance molecules, forming a complex network of neuron-glial connections in health and sickness. Emerging data reveals that metabolic changes in glial cells can cause morphological and functional changes in conjunction with neuronal dysfunction under disease situations, highlighting the importance of neuron-glia interactions in the pathophysiology of neurological illnesses. In this context, it is required to improve our understanding of disease mechanisms and create potential novel therapeutics. According to research, synaptic malfunction is one of the features of various mental diseases, and glial cells are acting as key ingredients not only in synapse formation, growth, and plasticity but also in neuroinflammation and synaptic homeostasis which creates critical physiological capacity in the focused sensory system. The goal of this review article is to elaborate state-of-the-art information on a few glial cell types situated in the central nervous system (CNS) and highlight their role in the onset and progression of neurological disorders.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Yamin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Md. Taslim Sarker
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 Uttar Pradesh, India
| |
Collapse
|
14
|
Higo N. Motor Cortex Plasticity During Functional Recovery Following Brain Damage. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although brain damage causes functional impairment, it is often followed by partial or total recovery of function. Recovery is believed to occur primarily because of brain plasticity. Both human and animal studies have significantly contributed to uncovering the neuronal basis of plasticity. Recent advances in brain imaging technology have enabled the investigation of plastic changes in living human brains. In addition, animal experiments have revealed detailed changes at the neural and genetic levels. In this review, plasticity in motor-related areas of the cerebral cortex, which is one of the most well-studied areas of the neocortex in terms of plasticity, is reviewed. In addition, the potential of technological interventions to enhance plasticity and promote functional recovery following brain damage is discussed. Novel neurorehabilitation technologies are expected to be established based on the emerging research on plasticity from the last several decades.
Collapse
|
15
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, Feng D, Qu Y. The Specific Role of Reactive Astrocytes in Stroke. Front Cell Neurosci 2022; 16:850866. [PMID: 35321205 PMCID: PMC8934938 DOI: 10.3389/fncel.2022.850866] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
17
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
18
|
Conti E, Scaglione A, de Vito G, Calugi F, Pasquini M, Pizzorusso T, Micera S, Allegra Mascaro AL, Pavone FS. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity. Neurorehabil Neural Repair 2021; 36:107-118. [PMID: 34761714 DOI: 10.1177/15459683211056656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. An ischemic stroke is followed by the remapping of motor representation and extensive changes in cortical excitability involving both hemispheres. Although stimulation of the ipsilesional motor cortex, especially when paired with motor training, facilitates plasticity and functional restoration, the remapping of motor representation of the single and combined treatments is largely unexplored. Objective. We investigated if spatio-temporal features of motor-related cortical activity and the new motor representations are related to the rehabilitative treatment or if they can be specifically associated to functional recovery. Methods. We designed a novel rehabilitative treatment that combines neuro-plasticizing intervention with motor training. In detail, optogenetic stimulation of peri-infarct excitatory neurons expressing Channelrhodopsin 2 was associated with daily motor training on a robotic device. The effectiveness of the combined therapy was compared with spontaneous recovery and with the single treatments (ie optogenetic stimulation or motor training). Results. We found that the extension and localization of the new motor representations are specific to the treatment, where most treatments promote segregation of the motor representation to the peri-infarct region. Interestingly, only the combined therapy promotes both the recovery of forelimb functionality and the rescue of spatio-temporal features of motor-related activity. Functional recovery results from a new excitatory/inhibitory balance between hemispheres as revealed by the augmented motor response flanked by the increased expression of parvalbumin positive neurons in the peri-infarct area. Conclusions. Our findings highlight that functional recovery and restoration of motor-related neuronal activity are not necessarily coupled during post-stroke recovery. Indeed the reestablishment of cortical activation features of calcium transient is distinctive of the most effective therapeutic approach, the combined therapy.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Alessandro Scaglione
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Giuseppe de Vito
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Francesco Calugi
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Maria Pasquini
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tommaso Pizzorusso
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy.,National Institute of Optics, 9327National Research Council, Florence, Italy
| |
Collapse
|
19
|
Zhang Z, Sun GY, Ding S. Glial Cell Line-Derived Neurotrophic Factor and Focal Ischemic Stroke. Neurochem Res 2021; 46:2638-2650. [PMID: 33591443 PMCID: PMC8364922 DOI: 10.1007/s11064-021-03266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
Focal ischemic stroke (FIS) is a leading cause of human debilitation and death. Following the onset of a FIS, the brain experiences a series of spatiotemporal changes which are exemplified in different pathological processes. One prominent feature of FIS is the development of reactive astrogliosis and glial scar formation in the peri-infarct region (PIR). During the subacute phase, astrocytes in PIR are activated, referred to as reactive astrocytes (RAs), exhibit changes in morphology (hypotrophy), show an increased proliferation capacity, and altered gene expression profile, a phenomenon known as reactive astrogliosis. Subsequently, the morphology of RAs remains stable, and proliferation starts to decline together with the formation of glial scars. Reactive astrogliosis and glial scar formation eventually cause substantial tissue remodeling and changes in permanent structure around the PIR. Glial cell line-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line and regarded as a potent survival neurotrophic factor. Under normal conditions, GDNF is expressed in neurons but is upregulated in RAs after FIS. This review briefly describes properties of GDNF, its receptor-mediated signaling pathways, as well as recent studies regarding the role of RAs-derived GDNF in neuronal protection and brain recovery. These results provide evidence suggesting an important role of RA-derived GDNF in intrinsic brain repair and recovery after FIS, and thus targeting GDNF in RAs may be effective for stroke therapy.
Collapse
Affiliation(s)
- Zhe Zhang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
20
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Akhoundzadeh K, Shafia S. Association between GFAP-positive astrocytes with clinically important parameters including neurological deficits and/or infarct volume in stroke-induced animals. Brain Res 2021; 1769:147566. [PMID: 34237322 DOI: 10.1016/j.brainres.2021.147566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022]
Abstract
The effect of GFAP-positive astrocytes, as positive or negative factors on stroke complications such as infarct volume and neurological deficits is currently under debate. This review was aimed to evaluate and compare the frequency of studies that showed a positive or negative relationship between astrocyte activation with the improvement of neurological deficits and/or the decrease of infarct volume. In addition, we reviewed two possible causes of differences in results including timepoint of stroke and stroke severity. Time of GFAP assessment was considered as time point and type of stroke induction and duration of stroke as stroke severity. According to our review in the most relevant English-language studies in the PubMed, Web of Science, and Google Scholar databases from 2005 to 2020, the majority of studies (77 vs. 28) showed a negative coincidence or correlation between GFAP-positive cells with neurological improvement as well as between GFAP-positive cells with infarct volume reduction. In most reviewed studies, GFAP expression was reported as a marker related to or coinciding with worse neurological function, or greater infarct volume. However, there were also studies that showed helpful effects of GFAP-positive cells on neurological function or stroke lesion. Although there are some elucidations that the difference in these findings is due to the time point of stroke and stroke severity, our review did not confirm these interpretations.
Collapse
Affiliation(s)
| | - Sakineh Shafia
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
22
|
Patabendige A, Singh A, Jenkins S, Sen J, Chen R. Astrocyte Activation in Neurovascular Damage and Repair Following Ischaemic Stroke. Int J Mol Sci 2021; 22:4280. [PMID: 33924191 PMCID: PMC8074612 DOI: 10.3390/ijms22084280] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Transient or permanent loss of tissue perfusion due to ischaemic stroke can lead to damage to the neurovasculature, and disrupt brain homeostasis, causing long-term motor and cognitive deficits. Despite promising pre-clinical studies, clinically approved neuroprotective therapies are lacking. Most studies have focused on neurons while ignoring the important roles of other cells of the neurovascular unit, such as astrocytes and pericytes. Astrocytes are important for the development and maintenance of the blood-brain barrier, brain homeostasis, structural support, control of cerebral blood flow and secretion of neuroprotective factors. Emerging data suggest that astrocyte activation exerts both beneficial and detrimental effects following ischaemic stroke. Activated astrocytes provide neuroprotection and contribute to neurorestoration, but also secrete inflammatory modulators, leading to aggravation of the ischaemic lesion. Astrocytes are more resistant than other cell types to stroke pathology, and exert a regulative effect in response to ischaemia. These roles of astrocytes following ischaemic stroke remain incompletely understood, though they represent an appealing target for neurovascular protection following stroke. In this review, we summarise the astrocytic contributions to neurovascular damage and repair following ischaemic stroke, and explore mechanisms of neuroprotection that promote revascularisation and neurorestoration, which may be targeted for developing novel therapies for ischaemic stroke.
Collapse
Affiliation(s)
- Adjanie Patabendige
- Brain Barriers Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2321, Australia;
- Priority Research Centre for Stroke and Brain Injury, and Priority Research Centre for Brain & Mental Health, University of Newcastle, Callaghan, NSW 2321, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Institute of Infection & Global Health, University of Liverpool, Liverpool L7 3EA, UK
| | - Ayesha Singh
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| | - Stuart Jenkins
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Neural Tissue Engineering: Keele (NTEK), Keele University, Staffordshire ST5 5BG, UK
| | - Jon Sen
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK; (S.J.); (J.S.)
- Clinical Informatics and Neurosurgery Fellow, The Cleveland Clinic, 33 Grosvenor Square, London SW1X 7HY, UK
| | - Ruoli Chen
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK;
| |
Collapse
|
23
|
Rahman Z, Dandekar MP. Crosstalk between gut microbiome and immunology in the management of ischemic brain injury. J Neuroimmunol 2021; 353:577498. [PMID: 33607506 DOI: 10.1016/j.jneuroim.2021.577498] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
Ischemic brain injury is a serious neurological complication, which accrues an immense activation of neuroinflammatory responses. Several lines of research suggested the interconnection of gut microbiota perturbation with the activation of proinflammatory mediators. Intestinal microbial communities also interchange information with the brain through various afferent and efferent channels and microbial by-products. Herein, we discuss the different microelements of gut microbiota and its connection with the host immune system and how change in immune-microbial signatures correlates with the stroke incidence and post-injury neurological sequelae. The activated inflammatory cells increase the production of proinflammatory cytokines, chemokines, proteases and adhesive proteins that are involved in the systemic inflammation, blood brain barrier disruption, gut dysbiosis and aggravation of ischemic brain injury. We suggest that fine-tuning of commensal gut microbiota (eubiosis) may regulate the activation of CNS resident cells like microglial, astrocytes, mast cells and natural killer cells.
Collapse
Affiliation(s)
- Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, India.
| |
Collapse
|
24
|
Woo YH, Martinez LR. Cryptococcus neoformans-astrocyte interactions: effect on fungal blood brain barrier disruption, brain invasion, and meningitis progression. Crit Rev Microbiol 2021; 47:206-223. [PMID: 33476528 DOI: 10.1080/1040841x.2020.1869178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cryptococcus neoformans is an opportunistic, neurotropic, and encapsulated fungus that causes life-threatening cryptococcal meningitis (CM), especially in regions of the world where AIDS is endemic. The polysaccharide capsule of C. neoformans is the fungus major virulent factor, being copiously released during infection and causing immunosuppressive defects in the host. Although the capsular material is commonly associated with reactive astrocytes in fatal CM, little is known about the molecular and cellular interactions among astroglia and C. neoformans. As astrocytes also make up the neurovascular unit at the blood-brain barrier (BBB), which C. neoformans must transverse to colonize the central nervous system and cause CM; these cells may play a significant regulatory role in the prevention and progression of infection. For example, astrocytes are implicated in neurological disease including the regulation of cerebral intracranial pressure, immune function, and water homeostasis. Hence, in this review, we provide a general overview of astroglia biology and discuss the current knowledge on C. neoformans-astrocyte interactions including their involvement in the development of CM. This "gliocentric view" of cerebral cryptococcosis suggests that therapeutic interventions particularly targeting at preserving the neuroprotective function of astrocytes may be used in preventing and managing C. neoformans BBB transmigration, brain invasion, colonization, and meningitis.
Collapse
Affiliation(s)
- Yeon Hwa Woo
- Department of Metallurgical, Materials and Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX, USA
| | - Luis R Martinez
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Liu M, Beckett TL, Thomason LAM, Dorr A, Stefanovic B, McLaurin J. Covert strokes prior to Alzheimer's disease onset accelerate peri-lesional pathology but not cognitive deficits in an inducible APP mouse model. Brain Res 2021; 1754:147233. [PMID: 33412147 DOI: 10.1016/j.brainres.2020.147233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
It is estimated that up to 1 in 3 healthy middle-aged adults will have had a covert stroke during their lifetime. Furthermore, post-stroke, survivors are more than twice as likely to develop dementia. In the present study, we aimed to model the impact of focal subclinical ischemia prior to the onset of AD pathogenesis in a preclinical model. We utilized endothelin-1 to induce ischemia in an iducible transgenic mouse model of Alzheimer's disease, APPsi:tTA, allowing for temporal control of APP gene expression. We induced the focal subclinical ischemic events in the absence of APP expression, thus prior to AD onset. T2 structural magnetic resonance imaging confirmed the volume and location of focal subclinical ischemic lesions to the medial prefrontal cortex. Following recovery from surgery and 7 weeks of APP expression, we found that two subclinical ischemic lesions resulted in a significant localized increase in amyloid load and in microglial activation proximal to the lesion. However, no differences were found in astrogliosis. A battery of behaviour tests was conducted, in which no significant differences were detected in activities of daily living and cognitive function between stroked and sham cohorts. Overall, our results demonstrated that APP expression was the sole driving force behind behavioural deficits. In conclusion, our results suggest that a history of two subclinical strokes prior to AD onset does not worsen early disease trajectory in a mouse model.
Collapse
Affiliation(s)
- Mingzhe Liu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
| | - Tina L Beckett
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Adrienne Dorr
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bojana Stefanovic
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| |
Collapse
|
26
|
Gao QS, Zhang YH, Xue H, Wu ZY, Li C, Zhao P. Brief inhalation of sevoflurane can reduce glial scar formation after hypoxic-ischemic brain injury in neonatal rats. Neural Regen Res 2021; 16:1052-1061. [PMID: 33269750 PMCID: PMC8224129 DOI: 10.4103/1673-5374.300456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Previous studies have demonstrated that sevoflurane postconditioning can provide neuroprotection after hypoxic-ischemic injury and improve learning and memory function in developing rodent brains. The classical Rice-Vannucci model was used to induce hypoxic-ischemic injury, and newborn (postnatal day 7) rats were treated with 2.4% sevoflurane for 30 minutes after hypoxic-ischemic injury. Our results showed that sevoflurane postconditioning significantly improved the learning and memory function of rats, decreased astrogliosis and glial scar formation, increased numbers of dendritic spines, and protected the histomorphology of the hippocampus. Mechanistically, sevoflurane postconditioning decreased expression of von Hippel-Lindau of hypoxia-inducible factor-1α and increased expression of DJ-1. Injection of 1.52 μg of the hypoxia-inducible factor-1α inhibitor YC-1 (Lificiguat) into the left lateral ventricle 30 minutes before hypoxic-ischemic injury reversed the neuroprotection induced by sevoflurane. This finding suggests that sevoflurane can effectively alleviate astrogliosis in the hippocampus and reduce learning and memory impairments caused by glial scar formation after hypoxic-ischemic injury. The underlying mechanism may be related to upregulated DJ-1 expression, reduced ubiquitination of hypoxia-inducible factor-1α, and stabilized hypoxia-inducible factor-1α expression. This study was approved by the Laboratory Animal Care Committee of China Medical University, China (approval No. 2016PS337K) on November 9, 2016.
Collapse
Affiliation(s)
- Qiu-Shi Gao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ya-Han Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zi-Yi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Chang Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
27
|
Wen SJ, Zheng XM, Liu LF, Li NN, Mao HA, Huang L, Yuan QL. Effects of primary microglia and astrocytes on neural stem cells in in vitro and in vivo models of ischemic stroke. Neural Regen Res 2021; 16:1677-1685. [PMID: 33510055 PMCID: PMC8328755 DOI: 10.4103/1673-5374.306093] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Transplantation of neural stem cells (NSCs) can protect neurons in animal stroke models; however, their low rates of survival and neuronal differentiation limit their clinical application. Glial niches, an important location of neural stem cells, regulate survival, proliferation and differentiation of neural stem cells. However, the effects of activated glial cells on neural stem cells remain unclear. In the present study, we explored the effects of activated astrocytes and microglia on neural stem cells in vitro stroke models. We also investigated the effects of combined transplantation of neural stem cells and glial cells after stroke in rats. In a Transwell co-culture system, primary cultured astrocytes, microglia or mixed glial cells were exposed to glutamate or H2O2 and then seeded in the upper inserts, while primary neural stem cells were seeded in the lower uncoated wells and cultured for 7 days. Our results showed that microglia were conducive to neurosphere formation and had no effects on apoptosis within neurospheres, while astrocytes and mixed glial cells were conducive to neurosphere differentiation and reduced apoptosis within neurospheres, regardless of their pretreatment. In contrast, microglia and astrocytes induced neuronal differentiation of neural stem cells in differentiation medium, regardless of their pretreatment, with an exception of astrocytes pretreated with H2O2. Rat models of ischemic stroke were established by occlusion of the middle cerebral artery. Three days later, 5 × 105 neural stem cells with microglia or astrocytes were injected into the right lateral ventricle. Neural stem cell/astrocyte-treated rats displayed better improvement of neurological deficits than neural stem cell only-treated rats at 4 days after cell transplantation. Moreover, neural stem cell/microglia-, and neural stem cell/astrocyte-treated rats showed a significant decrease in ischemic volume compared with neural stem cell-treated rats. These findings indicate that microglia and astrocytes exert different effects on neural stem cells, and that co-transplantation of neural stem cells and astrocytes is more conducive to the recovery of neurological impairment in rats with ischemic stroke. The study was approved by the Animal Ethics Committee of Tongji University School of Medicine, China (approval No. 2010-TJAA08220401) in 2010.
Collapse
Affiliation(s)
- Sheng-Jun Wen
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi-Min Zheng
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Fen Liu
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na-Na Li
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hai-An Mao
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liang Huang
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiong-Lan Yuan
- Department of Neurology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Zhang N, Zhang Z, He R, Li H, Ding S. GLAST-CreER T2 mediated deletion of GDNF increases brain damage and exacerbates long-term stroke outcomes after focal ischemic stroke in mouse model. Glia 2020; 68:2395-2414. [PMID: 32497340 DOI: 10.1002/glia.23848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Focal ischemic stroke (FIS) is a leading cause of human death. Glial scar formation largely caused by reactive astrogliosis in peri-infarct region (PIR) is the hallmark of FIS. Glial cell-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line supernatant and is a potent survival neurotrophic factor. Here, using CreERT2 -LoxP recombination technology, we generated inducible and astrocyte-specific GDNF conditional knockout (cKO), that is, GLAST-GDNF-/- cKO mice to investigate the effect of reactive astrocytes (RAs)-derived GDNF on neuronal death, brain damage, oxidative stress and motor function recovery after photothrombosis (PT)-induced FIS. Under non-ischemic conditions, we found that adult GLAST-GDNF-/- cKO mice exhibited significant lower numbers of Brdu+, Ki67+ cells, and DCX+ cells in the dentate gyrus (DG) in hippocampus than GDNF floxed (GDNFf/f ) control (Ctrl) mice, indicating endogenous astrocytic GDNF can promote adult neurogenesis. Under ischemic conditions, GLAST-GDNF-/- cKO mice had a significant increase in infarct volume, hippocampal damage and FJB+ degenerating neurons after PT as compared with the Ctrl mice. GLAST-GDNF-/- cKO mice also had lower densities of Brdu+ and Ki67+ cells in the PIR and exhibited larger behavioral deficits than the Ctrl mice. Mechanistically, GDNF deficiency in astrocytes increased oxidative stress through the downregulation of glucose-6-phosphate dehydrogenase (G6PD) in RAs. In summary, our study indicates that RAs-derived endogenous GDNF plays important roles in reducing brain damage and promoting brain recovery after FIS through neural regeneration and suggests that promoting anti-oxidant mechanism in RAs is a potential strategy in stroke therapy.
Collapse
Affiliation(s)
- Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Zhe Zhang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Rui He
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Hailong Li
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Zheng RF, Du YW, Zeng C, Wang HF, Xing JG, Xu M. Total flavones of Dracocephalum moldavica L. protect astrocytes against H 2O 2-induced apoptosis through a mitochondria-dependent pathway. BMC Complement Med Ther 2020; 20:78. [PMID: 32164676 PMCID: PMC7076740 DOI: 10.1186/s12906-020-2846-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 02/09/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The active components of Dracocephalum moldavica L. (TFDM) can inhibit myocardial ischemia by inhibiting oxidative stress. However, the effects of TFDM on astrocytes have not been investigated in vitro. The current study aimed to explore whether TFDM protects astrocytes against H2O2-induced apoptosis through a mitochondria-dependent pathway. METHODS The human glioma cell line U87 was used to investigate the ability of TFDM to protect astrocytes against H2O2-induced apoptosis. The cell counting kit-8 assay and flow cytometry were used to detect cell viability, apoptosis, MMP, Ca2+ influx and reactive oxygen species (ROS). Lactate dehydrogenase (LDH) and malonic dialdehyde (MDA) levels were measured by ELISA. In addition, protein and mRNA expression changes were detected by Western blotting and qRT-PCR. RESULTS TFDM (0.78~200 μg/ml) had limited cytotoxic effects on the viability of U87 cells. Compared with the model group (treated with H2O2 only), cells treated with medium- and high-dose TFDM exhibited reduced MDA concentrations (P < 0.05) and ROS production (P < 0.05) and decreased MMP (P < 0.05) and reduced apoptosis (P < 0.05). The percentage of annexin V-FITC-stained cells was markedly suppressed by TFDM, confirming its anti-apoptotic properties. WB results showed that protein expression of Bcl-2-associated X protein (BAX), Caspase-3, Caspase-9, Caspase-12, and B-cell leukemia/lymphoma 2 (Bcl2) was reduced in the TFDM group compared with that in the model group (P < 0.05) and that expression of these proteins was normalized by TFDM treatment in a dose-dependent manner. According to RT-qPCR results, TFDM pretreatment resulted in reduced mRNA expression of BAX, Caspase-9, Caspase-12, p38MAPK, and CaMKII and increased mRNA expression of mTOR compared with the model group. CONCLUSIONS The current study revealed the protective effects of TFDM on U87 cells under oxidative stress conditions through the inhibition of a mitochondria-dependent pathway that is associated with the CaMKII/P38MAPK/ERK1/2 and PI3K/AKT/mTOR pathways.
Collapse
Affiliation(s)
- Rui-Fang Zheng
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, 140 Xinhua South Road, Urumchi, 830004, Xinjiang, China
| | - Yan-Wen Du
- Xinjiang Medical University, Urumchi, 830000, Xinjiang, China.,Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, 140 Xinhua South Road, Urumchi, 830004, Xinjiang, China
| | - Cheng Zeng
- Xinjiang Medical University, Urumchi, 830000, Xinjiang, China.,Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, 140 Xinhua South Road, Urumchi, 830004, Xinjiang, China
| | - Hui-Fang Wang
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, P.O. Box 076, Nanjing, 210009, China
| | - Jian-Guo Xing
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, 140 Xinhua South Road, Urumchi, 830004, Xinjiang, China.
| | - Ming Xu
- Department of Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, P.O. Box 076, Nanjing, 210009, China.
| |
Collapse
|
30
|
Kang YW, Kim YS, Park JY, Chu GE, Yang YC, Choi BY, Cho WG. Hypoxia-induced apoptosis of astrocytes is mediated by reduction of Dicer and activation of caspase-1. Cell Biol Int 2020; 44:1394-1404. [PMID: 32129540 DOI: 10.1002/cbin.11335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/01/2020] [Indexed: 12/13/2022]
Abstract
Hypoxia is a condition in which the whole body or a region of the body is deprived of oxygen supply. The brain is very sensitive to the lack of oxygen and cerebral hypoxia can rapidly cause severe brain damage. Astrocytes are essential for the survival and function of neurons. Therefore, protecting astrocytes against cell death is one of the main therapeutic strategies for treating hypoxia. Hence, the mechanism of hypoxia-induced astrocytic cell death should be fully elucidated. In this study, astrocytes were exposed to hypoxic conditions using a hypoxia work station or the hypoxia mimetic agent cobalt chloride (CoCl2 ). Both the hypoxic gas mixture (1% O2 ) and chemical hypoxia-induced apoptotic cell death in T98G glioblastoma cells and mouse primary astrocytes. Reactive oxygen species were generated in response to the hypoxia-mediated activation of caspase-1. Active caspase-1 induced the classical caspase-dependent apoptosis of astrocytes. In addition, the microRNA processing enzyme Dicer was cleaved by caspase-3 during hypoxia. Knockdown of Dicer using antisense oligonucleotides induced apoptosis of T98G cells. Taken together, these results suggest that astrocytic cell death during hypoxia is mediated by the reactive oxygen species/caspase-1/classical caspase-dependent apoptotic pathway. In addition, the decrease in Dicer levels by active caspase-3 amplifies this apoptotic pathway via a positive feedback loop. These findings may provide a new target for therapeutic interventions in cerebral hypoxia.
Collapse
Affiliation(s)
- Yeo Wool Kang
- Department of Anatomy, Yonsei University Wonju Medical College, 20, Ilsan-ro, Wonju-si, Gangwon-do, 26426, Korea
| | - Yoon Suk Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University-Mirae Campus, 1 yonseidae-gil, Wonju, Gangwon-do, 26493, Korea
| | - Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Ga-Eul Chu
- Department of Anatomy, Yonsei University Wonju Medical College, 20, Ilsan-ro, Wonju-si, Gangwon-do, 26426, Korea
| | - Young Chul Yang
- Department of Anatomy, Yonsei University Wonju Medical College, 20, Ilsan-ro, Wonju-si, Gangwon-do, 26426, Korea
| | - Byung Young Choi
- Department of Anatomy, Yonsei University Wonju Medical College, 20, Ilsan-ro, Wonju-si, Gangwon-do, 26426, Korea
| | - Won Gil Cho
- Department of Anatomy, Yonsei University Wonju Medical College, 20, Ilsan-ro, Wonju-si, Gangwon-do, 26426, Korea
| |
Collapse
|
31
|
Bell AH, Miller SL, Castillo-Melendez M, Malhotra A. The Neurovascular Unit: Effects of Brain Insults During the Perinatal Period. Front Neurosci 2020; 13:1452. [PMID: 32038147 PMCID: PMC6987380 DOI: 10.3389/fnins.2019.01452] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The neurovascular unit (NVU) is a relatively recent concept in neuroscience that broadly describes the relationship between brain cells and their blood vessels. The NVU incorporates cellular and extracellular components involved in regulating cerebral blood flow and blood-brain barrier function. The NVU within the adult brain has attracted strong research interest and its structure and function is well described, however, the NVU in the developing brain over the fetal and neonatal period remains much less well known. One area of particular interest in perinatal brain development is the impact of known neuropathological insults on the NVU. The aim of this review is to synthesize existing literature to describe structure and function of the NVU in the developing brain, with a particular emphasis on exploring the effects of perinatal insults. Accordingly, a brief overview of NVU components and function is provided, before discussion of NVU development and how this may be affected by perinatal pathologies. We have focused this discussion around three common perinatal insults: prematurity, acute hypoxia, and chronic hypoxia. A greater understanding of processes affecting the NVU in the perinatal period may enable application of targeted therapies, as well as providing a useful basis for research as it expands further into this area.
Collapse
Affiliation(s)
- Alexander H. Bell
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Margie Castillo-Melendez
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Monash Newborn, Monash Children’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Dal-Cim T, Poluceno GG, Lanznaster D, de Oliveira KA, Nedel CB, Tasca CI. Guanosine prevents oxidative damage and glutamate uptake impairment induced by oxygen/glucose deprivation in cortical astrocyte cultures: involvement of A 1 and A 2A adenosine receptors and PI3K, MEK, and PKC pathways. Purinergic Signal 2019; 15:465-476. [PMID: 31520282 DOI: 10.1007/s11302-019-09679-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022] Open
Abstract
Glial cells are involved in multiple cerebral functions that profoundly influence brain tissue viability during ischemia, and astrocytes are the main source of extracellular purines as adenosine and guanosine. The endogenous guanine-based nucleoside guanosine is a neuromodulator implicated in important processes in the brain, such as modulation of glutamatergic transmission and protection against oxidative and inflammatory damage. We evaluated if the neuroprotective effect of guanosine is also observed in cultured cortical astrocytes subjected to oxygen/glucose deprivation (OGD) and reoxygenation. We also assessed the involvement of A1 and A2A adenosine receptors and phosphatidylinositol-3 kinase (PI3K), MAPK, and protein kinase C (PKC) signaling pathways on the guanosine effects. OGD/reoxygenation decreased cell viability and glutamate uptake and increased reactive oxygen species (ROS) production in cultured astrocytes. Guanosine treatment prevented these OGD-induced damaging effects. Dipropyl-cyclopentyl-xanthine (an adenosine A1 receptor antagonist) and 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl] benzenepropanoic acid hydrochloride (an adenosine A2A receptor agonist) abolished guanosine-induced protective effects on ROS production, glutamate uptake, and cell viability. The PI3K pathway inhibitor 2-morpholin-4-yl-8-phenylchromen-4-one, the extracellular-signal regulated kinase kinase (MEK) inhibitor 2'-amino-3'-methoxyflavone, or the PKC inhibitor chelerythrine abolished the guanosine effect of preventing OGD-induced cells viability reduction. PI3K inhibition partially prevented the guanosine effect of reducing ROS production, whereas MEK and PKC inhibitions prevented the guanosine effect of restoring glutamate uptake. The total immunocontent of the main astrocytic glutamate transporter glutamate transporter-1 (GLT-1) was not altered by OGD and guanosine. However, MEK and PKC inhibitions also abolished the guanosine effect of increasing cell-surface expression of GLT-1 in astrocytes subjected to OGD. Then, guanosine prevents oxidative damage and stimulates astrocytic glutamate uptake during ischemic events via adenosine A1 and A2A receptors and modulation of survival signaling pathways, contributing to microenvironment homeostasis that culminates in neuroprotection.
Collapse
Affiliation(s)
- Tharine Dal-Cim
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Gabriela G Poluceno
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Débora Lanznaster
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Karen A de Oliveira
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Claudia B Nedel
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Carla I Tasca
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Trindade, Florianopolis, SC, 88040-900, Brazil.
- Programa de Pós-graduação em Neurociências, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
- Programa de Pós-graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
33
|
Guo M, Ma X, Feng Y, Han S, Dong Q, Cui M, Zhao Y. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes. FASEB J 2019; 33:11123-11136. [PMID: 31298941 DOI: 10.1096/fj.201900402rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Astrocyte function is an important contributor to cellular viability during brain hypoxia and ischemia. Levels of the hypoxia-inducible transcription factors (HIFs) HIF-1 and HIF-2 are increased in hypoxic conditions and impact the neuroprotective properties of astrocytes. For example, HIF-2 induces levels of erythropoietin (EPO), a neuroprotectant, by astrocytes. In contrast, HIF-1 activity in astrocytes diminishes the viability of neurons in cocultures during hypoxia. Thus, HIF-1 and HIF-2 may have opposing effects on astrocytes. In this study, we explore the balance of HIF-1 and HIF-2 signaling in astrocytes during chronic (1-7 d) hypoxia while altering the degree of hypoxia and glucose availability. In addition, we investigate the effects of these conditions on neuron apoptosis. During exposure to chronic moderate hypoxia (2% O2) and plentiful glucose (10 mM), HIF-2 and EPO abundance increases from d 1 to 7. Similarly, pretreatment with moderate hypoxia markedly increases the abundance of HIF-2 and EPO when astrocytes are subsequently exposed to severe hypoxia (0.5% O2; 24 h) in 10 mM glucose, which inhibits neuron apoptosis in coculture. Although HIF-1 targets the expression increase during the 7 d in chronic moderate hypoxia (2% O2) and limited glucose (2 mM), further exposure to severe hypoxia (0.5% O2; 24 h) induces a decrease of most HIF-1 targets in astrocytes. Notably, in astrocyte exposure to 2% O2 prior to 0.5% O2, the expression of iNOS, an HIF-1-regulated protein, keeps increasing when glucose is limited, whereas EPO and VEGF abundance is suppressed, inducing increased apoptosis of neurons in coculture under limited glucose (2 mM). Thus, both hypoxic severity and glucose abundance regulate the balance of HIF-1 and HIF-2 activity in astrocytes, leading to diverse effects on neurons. These results could have important implications on the adaptive or pathologic role of astrocytes during chronic hypoxia and ischemia.-Guo, M., Ma, X., Feng, Y., Han, S., Dong, Q., Cui, M., Zhao, Y. In chronic hypoxia, glucose availability and hypoxic severity dictate the balance between HIF-1 and HIF-2 in astrocytes.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoye Ma
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| | - Yiwei Feng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Sida Han
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Ministry of Education (MOE) Frontiers Center for Brain Science, Huashan Hospital, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yanxin Zhao
- Department of Neurology, The 10th People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Nrf2 Plays an Essential Role in Long-Term Brain Damage and Neuroprotection of Korean Red Ginseng in a Permanent Cerebral Ischemia Model. Antioxidants (Basel) 2019; 8:antiox8080273. [PMID: 31382635 PMCID: PMC6721128 DOI: 10.3390/antiox8080273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemia is a devastating disease with a high incidence of death and disability; however, effective therapeutics remain limited. The transcriptional factor Nrf2 has been shown to play a pivotal role in the endogenous defense against brain oxidative stress and inflammation, and therefore represents a promising target for stroke intervention. However, the long-term effects of Nrf2 and the standardized Korean red ginseng (ginseng), a potent Nrf2 natural inducer, on permanent cerebral ischemic damage have not yet been reported. Wildtype (WT) and Nrf2-/- adult mice were pretreated with either vehicle or ginseng, and were subjected to permanent distal middle cerebral artery occlusion (pdMCAO). The infarct volume, the reactive astrocytes and microglia, and the water regulatory protein aquaporin 4 (AQP4) were examined at 28 days after stroke. When compared with the WT matched controls, the Nrf2 disruption significantly enlarged the infarct volume (40.4 ± 10.1%) and exacerbated the progression of reactive gliosis and AQP4 protein levels after pdMCAO. In contrast, ginseng significantly reduced the infarct volume and attenuated the reactive gliosis and AQP4 in the ischemic WT mice (47.3 ± 6.9%), but not in the Nrf2-/- mice (25.5 ± 5.6%). In conclusion, Nrf2 plays an important role in the long-term recovery of permanent cerebral ischemic damage and the neuroprotection of ginseng.
Collapse
|
35
|
Wilbanks B, Maher LJ, Rodriguez M. Glial cells as therapeutic targets in progressive multiple sclerosis. Expert Rev Neurother 2019; 19:481-494. [PMID: 31081705 DOI: 10.1080/14737175.2019.1614443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Multiple sclerosis is a serious demyelinating disease of the central nervous system (CNS) with treatments generally restricted to immunosuppression to reduce attack rate and for symptom management. Glial cells may be useful targets for future CNS regenerative therapies to reverse disease. Areas covered: In this review, the authors cover currently available multiple sclerosis treatments and examine potential upcoming therapies targeting glial cells. The potential for new therapeutic approaches in the treatment of progressive multiple sclerosis is examined. Expert opinion: Microglia, astrocytes, and oligodendrocytes are each promising targets for the disease-altering treatment of multiple sclerosis. Though challenging, the opportunities presented have great potential for CNS regeneration and further investigation of glial cells in therapy is warranted. Patient-specific combinatorial therapy targeting the three glial cell types is expected to be the future of MS treatment.
Collapse
Affiliation(s)
- Brandon Wilbanks
- a Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - L J Maher
- a Department of Biochemistry and Molecular Biology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| | - Moses Rodriguez
- b Departments of Neurology and Immunology , Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
36
|
Optogenetic Stimulation Enhanced Neuronal Plasticities in Motor Recovery after Ischemic Stroke. Neural Plast 2019; 2019:5271573. [PMID: 31007684 PMCID: PMC6441501 DOI: 10.1155/2019/5271573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/01/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022] Open
Abstract
Motor capability recovery after ischemic stroke involves dynamic remodeling processes of neural connectomes in the nervous system. Various neuromodulatory strategies combining direct stimulating interventions with behavioral trainings for motor recovery after ischemic stroke have been developed. However, the effectiveness of these interventions varies widely due to unspecific activation or inhibition of undefined neuronal subtypes. Optogenetics is a functional and structural connection-based approach that can selectively activate or inhibit specific subtype neurons with a higher precision, and it has been widely applied to build up neuronal plasticities of the nervous system, which shows a great potential in restoring motor functions in stroke animal models. Here, we reviewed neurobiological mechanisms of enhanced brain plasticities underlying motor recovery through the optogenetic stimulation after ischemic stroke. Several brain sites and neural circuits that have been previously proven effective for motor function rehabilitation were identified, which would be helpful for a more schematic understanding of effective neuronal connectomes in the motor function recovery after ischemic stroke.
Collapse
|
37
|
Lim HJ, Park JH, Jo C, Yoon K, Koh YH. Cigarette smoke extracts and cadmium induce COX-2 expression through γ-secretase-mediated p38 MAPK activation in C6 astroglia cells. PLoS One 2019; 14:e0212749. [PMID: 30794693 PMCID: PMC6386363 DOI: 10.1371/journal.pone.0212749] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/10/2019] [Indexed: 12/26/2022] Open
Abstract
Exposure to cigarette smoke has been implicated in the progression of cerebrovascular and neurological disorders like stroke through inflammation and blood-brain barrier disruption. In this study, we investigated the signaling cascade activated by cigarette smoke extracts (CSE) and cadmium (Cd) resulting in the COX-2 induction in C6 rat astroglia cells. CSE or Cd induced Notch1 cleavage and activated p38 MAPK and CREB signaling pathways in C6 astroglia cells. Knockdown of nicastrin using siRNA or γ-secretase inhibitors, DAPT and L-685,486, reduced Notch1 cleavage and phosphorylation of p38 MAPK and CREB, while phosphorylation of ERK and JNK remained unaffected. Additionally, the blockage of γ-secretase activity did not show any effect on the phosphorylation of AKT, another upstream activator of CREB, indicating that γ-secretase-mediated CREB activation occurs via p38 MAPK. γ-secretase inhibitor also inhibited the CSE and Cd-mediated increase in the expression of COX-2. Furthermore, recombinant overexpression of Notch1 intracellular domain resulted in an increase in the expression of COX-2. Notch signaling induced by CSE and Cd induced apoptosis in C6 cells. Our results demonstrate that CSE exposure activated the p38 MAPK and CREB-mediated induction in COX-2 expression in astrocytes via γ-secretase-mediated Notch1 signaling. Our data provides novel insights into the potential mechanism of pro-inflammatory response activated by exposure to cigarette smoke.
Collapse
Affiliation(s)
- Hyun Joung Lim
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Jung Hyun Park
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Keejung Yoon
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Jangan-gu, Suwon-si, Gyeonggi-do, Korea
| | - Young Ho Koh
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
38
|
Astrocyte Signaling in the Neurovascular Unit After Central Nervous System Injury. Int J Mol Sci 2019; 20:ijms20020282. [PMID: 30642007 PMCID: PMC6358919 DOI: 10.3390/ijms20020282] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
Astrocytes comprise the major non-neuronal cell population in the mammalian neurovascular unit. Traditionally, astrocytes are known to play broad roles in central nervous system (CNS) homeostasis, including the management of extracellular ion balance and pH, regulation of neurotransmission, and control of cerebral blood flow and metabolism. After CNS injury, cell–cell signaling between neuronal, glial, and vascular cells contribute to repair and recovery in the neurovascular unit. In this mini-review, we propose the idea that astrocytes play a central role in organizing these signals. During CNS recovery, reactive astrocytes communicate with almost all CNS cells and peripheral progenitors, resulting in the promotion of neurogenesis and angiogenesis, regulation of inflammatory response, and modulation of stem/progenitor response. Reciprocally, changes in neurons and vascular components of the remodeling brain should also influence astrocyte signaling. Therefore, understanding the complex and interdependent signaling pathways of reactive astrocytes after CNS injury may reveal fundamental mechanisms and targets for re-integrating the neurovascular unit and augmenting brain recovery.
Collapse
|
39
|
Fang M, Zhong L, Jin X, Cui R, Yang W, Gao S, Lv J, Li B, Liu T. Effect of Inflammation on the Process of Stroke Rehabilitation and Poststroke Depression. Front Psychiatry 2019; 10:184. [PMID: 31031649 PMCID: PMC6470379 DOI: 10.3389/fpsyt.2019.00184] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
A considerable body of evidence has shown that inflammation plays an important role in the process of stroke rehabilitation and development of poststroke depression (PSD). However, the specific molecular and cellular mechanisms involved remain unclear. In this review, we summarize how neuroinflammation affects stroke rehabilitation and PSD. We mainly focus on the immune/inflammatory response, involving astrocytes, microglia, monocyte-derived macrophages, cytokines (tumor necrosis factor alpha, interleukin 1), and microRNAs (microRNA-124, microRNA 133b). This review provides new insights into the effect of inflammation on the process of stroke rehabilitation and PSD and potentially offer new therapeutic targets of stroke and PSD.
Collapse
Affiliation(s)
- Meidan Fang
- Department of General Surgery, Second Hospital of Jilin University, Changchun, China
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Xin Jin
- Department of Oncology and Hematology, Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Shuohui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jing Lv
- Chang Chun University of Chinese Medicine, Changchun, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
| | - Tongjun Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Verkhratsky A, Ho MS, Vardjan N, Zorec R, Parpura V. General Pathophysiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:149-179. [PMID: 31583588 PMCID: PMC7188602 DOI: 10.1007/978-981-13-9913-8_7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Astroglial cells are involved in most if not in all pathologies of the brain. These cells can change the morpho-functional properties in response to pathology or innate changes of these cells can lead to pathologies. Overall pathological changes in astroglia are complex and diverse and often vary with different disease stages. We classify astrogliopathologies into reactive astrogliosis, astrodegeneration with astroglial atrophy and loss of function, and pathological remodelling of astrocytes. Such changes can occur in neurological, neurodevelopmental, metabolic and psychiatric disorders as well as in infection and toxic insults. Mutation in astrocyte-specific genes leads to specific pathologies, such as Alexander disease, which is a leukodystrophy. We discuss changes in astroglia in the pathological context and identify some molecular entities underlying pathology. These entities within astroglia may repent targets for novel therapeutic intervention in the management of brain pathologies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
- Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia
- Celica BIOMEDICAL, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
41
|
Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, Jackson WS, Petzold GC. Stroke target identification guided by astrocyte transcriptome analysis. Glia 2018; 67:619-633. [DOI: 10.1002/glia.23544] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Cordula Rakers
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Melvin Schleif
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Nelli Blank
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Hana Matušková
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| | - Thomas Ulas
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | - Kristian Händler
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Toni Schumacher
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Khalid Tai
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
| | - Joachim L. Schultze
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Genomics and Immunoregulation; LIMES-Institute, University of Bonn; Germany
| | | | - Gabor C. Petzold
- German Center for Neurodegenerative Diseases (DZNE); Bonn Germany
- Department of Neurology; University Hospital Bonn; Bonn Germany
| |
Collapse
|
42
|
The Antiapoptosis Effect of Geum japonicum Thunb. var. chinense Extracts on Cerebral Ischemia Reperfusion Injury via PI3K/Akt Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7290170. [PMID: 30538763 PMCID: PMC6261079 DOI: 10.1155/2018/7290170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/14/2018] [Accepted: 10/31/2018] [Indexed: 01/22/2023]
Abstract
Geum japonicum Thunb. var. chinense (GJ) is a type of wild vegetable found in China and other Asian countries; it has been reported that its extracts possess a neuroprotective effect against cerebral ischemia reperfusion (CIR) injury. The aim of this study is to explore the effect GJ extracts on transient focal CIR injury and neurons apoptosis and to clarify its possible underlying mechanisms in vivo. Our results indicated that pretreatment with GJ extracts significantly ameliorated the infarct volume, decreased neurological deficits, lessened neural cells apoptosis, downregulated GFAP activity level, and increased surviving neurons. Moreover, GJ extracts preadministration increased Bcl-2 levels and attenuated the increase in the expressions of Bax and it also lowered the cleaved caspase-3 activity in ischemic cortex tissues which was caused by CIR and increased the expression of PI3K and p-Akt. The above effects of high dose of GJ (GJ-H) group were much better than those of low dose of GJ (GJ-L), which indicated that GJ extracts may be helpful in the suppression of CIR injury with a dose-dependent manner.
Collapse
|
43
|
A genetic deficiency in folic acid metabolism impairs recovery after ischemic stroke. Exp Neurol 2018; 309:14-22. [DOI: 10.1016/j.expneurol.2018.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023]
|
44
|
Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, Ma RY, Liao NS. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 2018; 73:562-570. [PMID: 29959050 DOI: 10.1016/j.bbi.2018.06.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/02/2018] [Accepted: 06/22/2018] [Indexed: 01/08/2023] Open
Abstract
Acute ischemic stroke is followed by a complex interplay between the brain and the immune system in which ischemia-reperfusion leads to a detrimental inflammatory response that causes brain injury. In the brain, IL-15 is expressed by astrocytes, neurons and microglia. Previous study showed that ischemia-reperfusion induces expression of IL-15 by astrocytes. Transgenic over-expression of IL-15 in astrocytes aggravates ischemia-reperfusion brain damage by increasing the levels and promoting the effector functions of CD8+ T and NK cells. Treatment of neonatal rats with IL-15 neutralizing antibody before hypoxia-ischemia induction reduces the infarct volume. However, as stroke-induced inflammatory responses differ between neonate and adult brain, the effects of IL-15 blockade on the injury and immune response arising from stroke in adult animals has remained unclear. In this study, we examined the effect of post-ischemia/reperfusion IL-15 blockade on the pathophysiology of cerebral ischemia-reperfusion in adult mice. Using a cerebral ischemia-reperfusion model, we compared infarct size and the infiltrating immune cells in the brain of wild type (WT) mice and Il15-/- mice lacking NK and memory CD8+ T cells. We also evaluated the effects of IL-15 neutralizing antibody treatment on brain infarct volume, motor function, and the status of brain-infiltrating immune cells in WT mice. Il15-/- mice show a smaller infarct volume and lower numbers of activated brain-infiltrating NK, CD8+ T, and CD4+ T cells compared to WT mice after cerebral ischemia-reperfusion. Post-ischemia/reperfusion IL-15 blockade reduces infarct size and improves motor and locomotor activity. Furthermore, IL-15 blockade reduces the effector function of NK, CD8+ T, and CD4+ T cells in the ischemia-reperfusion brain of WT mice. Ablation of IL-15 responses after cerebral ischemia-reperfusion ameliorates brain injury in adult mice. Therefore, targeting IL-15 is a potential effective therapy for ischemic stroke.
Collapse
Affiliation(s)
- Gilbert Aaron Lee
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Yu Chen
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shin-Yi Mau
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wan-Zhen Huang
- Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chieh Kao
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruo-Yu Ma
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Nan-Shih Liao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
45
|
Park J, Kim JH, Suk K, Han HS, Ohk B, Kim DG. Selective Brain Hypothermia Augmenting Neuroprotective Effects of Decompressive Craniectomy for Permanent Middle Cerebral Artery Infarction in a Rat Model. World Neurosurg 2018; 121:e181-e190. [PMID: 30261392 DOI: 10.1016/j.wneu.2018.09.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/07/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the combined effects of a decompressive craniectomy and prolonged selective brain hypothermia on large hemispheric infarction in a rat model. METHODS Permanent middle cerebral artery infarction using an endovascular occlusion technique was created in rats assigned to 4 groups. Normothermia was maintained without a craniectomy in group A (n = 20) as the control, prolonged (>44 hours), selective brain hypothermic treatment was performed on group B (n = 20), a craniectomy was performed on group C (n = 18), and prolonged, selective brain hypothermic treatment using a cooling coil implanted in the craniectomy site was combined with a craniectomy for group D (n = 18). RESULTS Group B and C exhibited a significantly reduced infarct volume when compared with the control. Furthermore, group D showed a significantly reduced infarct volume when compared with group C, plus a significantly improved neurologic score. These results for group D were associated with an increased neuronal cell count and reduced hyperactive microglia and hypertrophic astrocytes in the cortical penumbra (P < 0.01). Moreover, a greater preservation of normal-appearing axonal bundles and the blood-brain barrier was observed in the core infarct region at the caudoputamen. CONCLUSIONS A decompressive craniectomy reduced the infarct volume and improved the neurologic outcomes in a rat model of middle cerebral artery infarction. Furthermore, when combined with prolonged selective brain hypothermia, significant additional benefits were observed for the neurologic outcomes, infarct volume, and degree of neuroinflammation.
Collapse
Affiliation(s)
- Jaechan Park
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Jong-Heon Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyung Soo Han
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Boram Ohk
- Clinical Trial Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Dong Gyu Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Yamamoto K, Mifflin S. Inhibition of glial glutamate transporter GLT1 in the nucleus of the solitary tract attenuates baroreflex control of sympathetic nerve activity and heart rate. Physiol Rep 2018; 6:e13877. [PMID: 30230240 PMCID: PMC6144441 DOI: 10.14814/phy2.13877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/02/2023] Open
Abstract
The astrocytic glutamate transporter (GLT1) plays an important role in the maintenance of extracellular glutamate concentration below neurotoxic levels in brain. However, the functional role of GLT1 within the nucleus of the solitary tract (NTS) in the regulation of cardiovascular function remains unclear. We examined the effect of inhibiting GLT1 in the subpostremal NTS on mean arterial pressure (MAP), renal sympathetic nerve activity (RSNA) and heart rate (HR) in anesthetized, artificially ventilated rats. It was found that dihydrokainate (DHK; inhibitor of GLT1, 5 mmol/L, 100 nL) injections into the NTS (n = 6) decreased MAP (50 ± 10 mmHg, mean ± SD), RSNA (89 ± 14%) and HR (37 ± 6 bpm). Pretreatment with kynurenate (KYN; glutamate receptor antagonist, 5 mmol/L, 30 μL) topically applied to the dorsal surface of the brainstem (n = 4) attenuated the responses to NTS injections of DHK (P < 0.01). The effect of DHK on arterial baroreflex function was examined using i.v. infusions of phenylephrine and nitroprusside. DHK reduced baroreflex response range (maximum-minimum) of RSNA by 91 ± 2% and HR by 83 ± 5% (n = 6, P < 0.001). These results indicate that inhibition of GLT1 within the NTS decreases MAP, RSNA, and HR by the activation of ionotropic glutamate receptors. As a result, baroreflex control of RSNA and HR was dramatically attenuated. The astrocytic glutamate transporter in the NTS plays an important role in the maintenance and regulation of cardiovascular function.
Collapse
Affiliation(s)
- Kenta Yamamoto
- Department of Physiology and AnatomyUniversity of North Texas Health Science CentreFort WorthTexas
- Faculty of Pharmaceutical SciencesTeikyo Heisei UniversityTokyoJapan
| | - Steve Mifflin
- Department of Physiology and AnatomyUniversity of North Texas Health Science CentreFort WorthTexas
| |
Collapse
|
47
|
Villalba H, Shah K, Albekairi TH, Sifat AE, Vaidya B, Abbruscato TJ. Potential role of myo-inositol to improve ischemic stroke outcome in diabetic mouse. Brain Res 2018; 1699:166-176. [PMID: 30165043 DOI: 10.1016/j.brainres.2018.08.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Brain edema is one of the critical factors causing hightened disability and mortality in stroke patients, which is exaggerated further in diabetic patients. Organic osmolytes could play a critical role in the maintenance of cytotoxic edema. The present study was aimed to assess the role of myo-inositol, an organic osmolyte, on stroke outcome in diabetic and non-diabetic animals. In situ brain perfusion and acute brain slice methods were used to assess transport of myo-inositol across the blood-brain barrier and uptake by brain cells using non-diabetic (C57BL/6) and diabetic (streptozotocin-induced) mice, respectively. In vitro studies were conducted to assess the role of myo-inositol during and after ischemia utilizing oxygen glucose deprivation (OGD) and reperfusion. Further, the expression of transporters, such as SGLT6, SMIT1 and AQP4 were measured using immunofluorescence. Therapeutic efficacy of myo-inositol was evaluated in a transient middle cerebral artery occlusion (tMCAO) mouse model using non-diabetic (C57BL/6) and diabetic (db/db) mice. Myo-inositol release from and uptake in astrocytes and altered expression of myo-inositol transporters at different OGD timepoints revealed the role of myo-inositol and myo-inositol transporters during ischemia reperfusion. Further, hyperglycemic conditions reduced myo-inositol uptake in astrocytes. Interestingly, in in-vivo tMCAO, infarct and edema ratios following 24 h reperfusion decreased in myo-inositol treated mice. These results were supported by improvement in behavioral outcomes in open-field test, corner test and neurological score in both non-diabetic and db/db animals. Our data suggest that myo-inositol and myo-inositol transporters may provide neuroprotection during/following stroke both in non-diabetic and diabetic conditions.
Collapse
Affiliation(s)
- Heidi Villalba
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Kaushik Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thamer H Albekairi
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ali E Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
48
|
Sun C, Fukushi Y, Wang Y, Yamamoto S. Astrocytes Protect Neurons in the Hippocampal CA3 Against Ischemia by Suppressing the Intracellular Ca 2+ Overload. Front Cell Neurosci 2018; 12:280. [PMID: 30197589 PMCID: PMC6118169 DOI: 10.3389/fncel.2018.00280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/09/2018] [Indexed: 01/22/2023] Open
Abstract
In the hippocampus, delayed neuronal death is normally seen in neurons of the CA1 region but not in those of the CA3 region. Astrocytes have been reported to play multiple supporting or pathological roles in neuronal functioning. While evidence indicates that astrocytes could exert neuroprotective effects following ischemia, the possible underlying mechanisms remain unclear. We aimed to investigate the roles of astrocytes in the process of delayed neuronal death following transient forebrain ischemia. L-α-aminoadipic acid (L-α-AAA), an astrocyte-selective gliotoxin, was injected into the hippocampal CA3 region of rats through a cranial window to selectively damage astrocytes. Immunofluorescence staining of glial fibrillary acidic protein (GFAP) was used to evaluate the effect of L-α-AAA on astrocyte numbers. Three days after the L-α-AAA injection, transient forebrain ischemia was induced by a modification of the four-vessel occlusion procedure. Seven days after transient forebrain ischemia, hematoxylin-eosin staining was performed to reveal the morphology of hippocampal pyramidal neurons. In rats with ischemia and reperfusion, regional cerebral blood flow (rCBF) and change in intracellular Ca2+ concentration ([Ca2+]i) were separately measured in CA1 and CA3 regions. L-α-AAA injection significantly decreased the number of astrocytes in CA3, but did not affect the pattern of rCBF changes upon ischemia/reperfusion. Seven days after transient forebrain ischemia, in rats receiving L-α-AAA, delayed neuronal death comparable with that in CA1 was observed in the CA3 region. In addition, the pattern of increase in [Ca2+]i due to transient forebrain ischemia was completely changed in the hippocampal CA3. The loss of astrocytes induced a persistent increase in [Ca2+]i in the CA3 region following transient ischemia, similar to what is observed in the CA1 region. Our study indicates that astrocytes in the hippocampal CA3 region exert neuroprotective effects following transient forebrain ischemia and act by suppressing the intracellular Ca2+ overload. Furthermore, our study will most likely provide a new therapeutic strategy for brain ischemic diseases, targeted to astrocytes.
Collapse
Affiliation(s)
- Chuanqi Sun
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuko Fukushi
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yong Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Seiji Yamamoto
- Department of Innovative Medical Photonics, Preeminent Medical Photonics Education and Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
49
|
Martin-de-Saavedra MD, Navarro E, Moreno-Ortega AJ, Cunha MP, Buendia I, Hernansanz-Agustín P, León R, Cano-Abad MF, Martínez-Ruiz A, Martínez-Murillo R, Duchen MR, López MG. The APPswe/PS1A246E mutations in an astrocytic cell line leads to increased vulnerability to oxygen and glucose deprivation, Ca2+
dysregulation, and mitochondrial abnormalities. J Neurochem 2018; 145:170-182. [DOI: 10.1111/jnc.14293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/20/2017] [Accepted: 12/08/2017] [Indexed: 01/03/2023]
Affiliation(s)
- María Dolores Martin-de-Saavedra
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Department of Physiology; Northwestern University Feinberg School of Medicine; Chicago Illinois USA
| | - Elisa Navarro
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| | - Ana J. Moreno-Ortega
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - Mauricio P. Cunha
- Departamento de Bioquímica; Universidade Federal de Santa Catarina; Florianópolis Brazil
| | - Izaskun Buendia
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| | - Pablo Hernansanz-Agustín
- Servicio de Inmunología; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
- Departamento de Bioquímica; Facultad de Medicina; Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols; Madrid Spain
| | - Rafael León
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - María F. Cano-Abad
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología; Instituto de Investigación Sanitaria Princesa (IIS-IP); Hospital Universitario de la Princesa; Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV); Madrid Spain
| | | | - Michael R. Duchen
- Department of Cell and Developmental Biology; University College London; London UK
| | - Manuela G. López
- Instituto Teófilo Hernando; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología y Terapéutica; Facultad de Medicina; Instituto de Investigación Sanitaria Princesa (IIS-IP); Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
50
|
Conte C, Lee R, Sarkar M, Terman D. A mathematical model of recurrent spreading depolarizations. J Comput Neurosci 2017; 44:203-217. [PMID: 29210004 DOI: 10.1007/s10827-017-0675-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
A detailed biophysical model for a neuron/astrocyte network is developed in order to explore mechanisms responsible for the initiation and propagation of recurrent cortical spreading depolarizations. The model incorporates biophysical processes not considered in the earlier models. This includes a model for the Na+-glutamate transporter, which allows for a detailed description of reverse glutamate uptake. In particular, we consider the specific roles of elevated extracellular glutamate and K+ in the initiation, propagation and recurrence of spreading depolarizations.
Collapse
Affiliation(s)
- Cameron Conte
- Department of Mathematics, Ohio State University, Columbus, OH, USA
| | - Ray Lee
- Department of Mathematics, Ohio State University, Columbus, OH, USA
| | - Monica Sarkar
- Department of Mathematics, Ohio State University, Columbus, OH, USA
| | - David Terman
- Department of Mathematics, Ohio State University, Columbus, OH, USA.
| |
Collapse
|