1
|
Satofuka H, Suzuki H, Tanaka T, Li G, Kaneko MK, Kato Y. Development of an anti-human EphA2 monoclonal antibody Ea 2Mab-7 for multiple applications. Biochem Biophys Rep 2025; 42:101998. [PMID: 40236294 PMCID: PMC11999297 DOI: 10.1016/j.bbrep.2025.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/17/2025] Open
Abstract
Ephrin type A receptor 2 (EphA2) binds to membrane-bound ligands, ephrin A1, A2, and A5, eliciting bidirectional signaling. This signaling regulates many physiological processes, such as tissue development, homeostasis, and regeneration. The dysregulation of the EphA2-ephrins axis contributes to various diseases, including cancers. The high expression of EphA2 is observed in various cancers, which promotes cancer malignancy, whereas its levels are relatively low in most normal adult tissues. Therefore, EphA2 is a promising target for cancer therapy. We developed anti-human EphA2 monoclonal antibodies in this study using the Cell-Based Immunization and Screening method. Among them, a clone Ea2Mab-7 (IgG1, κ) exhibited a high affinity and sensitivity in flow cytometry. The dissociation constant values of Ea2Mab-7 for CHO/EphA2 and MDA-MB-231 cells were determined as 6.2 ± 1.3 × 10-9 M and 1.6 ± 0.4 × 10-9 M, respectively. Furthermore, Ea2Mab-7 can detect endogenous EphA2 in Western blot and immunohistochemistry. Therefore, the Ea2Mab-7 is highly versatile for basic research and is expected to contribute to clinical applications, such as antibody therapy and tumor diagnosis.
Collapse
Affiliation(s)
- Hiroyuki Satofuka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Guanjie Li
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Mika K. Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
2
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
3
|
Kim SM, Lee SY, Kim SI, Bae JY, Hong JT, Jo S, Kim JH, Chung HY, Kim TD. Developing CAR-T/NK cells that target EphA2 for non-small cell lung cancer treatment. Front Immunol 2025; 16:1448438. [PMID: 40181964 PMCID: PMC11966065 DOI: 10.3389/fimmu.2025.1448438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Chimeric antigen receptor (CAR) immunotherapy has revolutionized anticancer therapy, as it accurately targets cancer cells by recognizing specific antigens expressed in cancer cells. This innovative therapeutic strategy has attracted considerable attention. However, few therapeutics are available for treating non-small cell lung cancer (NSCLC), which accounts for most lung cancer cases and is one of the deadliest cancers with low survival rates. Methods In this study, we developed a new antibody targeting erythropoietin-producing hepatocellular carcinoma A2 (EphA2), which is highly expressed in NSCLC, and established CAR-T/ natural killer (NK) immune cells to verify its potential for immune cell therapy. The killing capacity, cytokine secretion and solid tumor growth inhibition of EphA2 CAR-T/NK cells were compared to normal T/NK cells. Results EphA2 CAR-T cells demonstrated superior killing capacity, enhanced cytokine secretion, and significant solid tumor growth inhibition. Additionally, they exhibited improved tumor infiltration in lung cancer models compared to normal T cells. The anticancer efficacy of the developed EphA2 CAR-NK cells was also confirmed, showcasing their potential as robust candidates for immune cell therapy. Discussion The findings of this study highlight the potential of CAR-T/NK cell therapy targeting EphA2 as an effective treatment for lung cancer, particularly NSCLC with high EphA2 expression. By leveraging the specific targeting capabilities of CAR-T cells and the unique properties of CAR-NK cells, this approach provides a promising therapeutic strategy to address the unmet needs in NSCLC treatment.
Collapse
MESH Headings
- Humans
- Receptor, EphA2/immunology
- Receptor, EphA2/antagonists & inhibitors
- Lung Neoplasms/therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Animals
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/transplantation
- Killer Cells, Natural/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- T-Lymphocytes/immunology
- Female
- Cytotoxicity, Immunologic
- Cytokines/metabolism
Collapse
Affiliation(s)
- Seok Min Kim
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Soo Yun Lee
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Seo In Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Ji Yeong Bae
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungbuk, Republic of Korea
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Chungbuk, Republic of Korea
| | - Seona Jo
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ji Hyun Kim
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Hyo-Young Chung
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju-si, Chungbuk, Republic of Korea
| | - Tae-Don Kim
- Center for Gene & Cell Therapy, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Lam PY, Omer N, Wong JKM, Tu C, Alim L, Rossi GR, Victorova M, Tompkins H, Lin C, Mehdi AM, Choo A, Elliott MR, Coleborn E, Sun J, Mercer T, Vittorio O, Dobson LJ, McLellan AD, Brooks A, Tuong ZK, Cheetham SW, Nicholls W, Souza‐Fonseca‐Guimaraes F. Enhancement of anti-sarcoma immunity by NK cells engineered with mRNA for expression of a EphA2-targeted CAR. Clin Transl Med 2025; 15:e70140. [PMID: 39763064 PMCID: PMC11705447 DOI: 10.1002/ctm2.70140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Paediatric sarcomas, including rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, represent a group of malignancies that significantly contribute to cancer-related morbidity and mortality in children and young adults. These cancers share common challenges, including high rates of metastasis, recurrence or treatment resistance, leading to a 5-year survival rate of approximately 20% for patients with advanced disease stages. Despite the critical need, therapeutic advancements have been limited over the past three decades. The advent of chimeric antigen receptor (CAR)-based immunotherapies offers a promising avenue for novel treatments. However, CAR-T cells have faced significant challenges and limited success in treating solid tumours due to issues such as poor tumour infiltration, immunosuppressive tumour microenvironments and off-target effects. In contrast, the adaptation of CAR technology for natural killer (NK) cells has demonstrated potential in both haematological and solid tumours, suggesting a new therapeutic strategy for paediatric sarcomas. METHODS This study developed and validated a novel CAR-NK cell therapy targeting the ephrin type-A receptor-2 (EphA2) antigen, which is highly expressed in various paediatric sarcomas. RESULTS CAR expression was successfully detected on the surface of NK cells post-electroporation, indicating successful transfection. Significantly, EphA2-specific CAR-NK cells demonstrated enhanced cytotoxic activity against several paediatric sarcoma cell lines in vitro, including those of rhabdomyosarcoma, Ewing sarcoma and osteosarcoma, compared to unmodified NK cells. Transient messenger RNA (mRNA) transfection of NK cells is a safe approach in genetic engineering, with further chemical modifications to mRNA enhancing stability of temporal EphA2-CAR expression in NK cells, thereby promoting prolonged protein expression. Additionally, in vivo EphA2-CAR-NK cells showed promising anti-cancer activity in rhabdomyosarcoma and osteosarcoma mouse models. CONCLUSIONS The study provides a foundational basis for the clinical evaluation of EphA2-targeted CAR-NK cell therapy across a spectrum of paediatric sarcomas. The enhanced anti-tumour effects observed in vitro/vivo suggests potential for improved therapeutic outcomes in hard-to-cure paediatric sarcomas. KEY POINTS Addressing unmet clinical needs in paediatric Sarcomas. Paediatric sarcomas, including rhabdomyosarcoma, Ewing sarcoma, and osteosarcoma, exhibit poor survival rates in advanced disease stages. The lack of significant therapeutic progress over the past three decades necessitates innovative treatment approaches. Advancing immunotherapy with CAR-NK cells. Natural killer (NK) cells modified with chimeric antigen receptors (CARs) represent a promising strategy to overcome the limitations of CAR-T cells, particularly in solid tumours. CAR-NK cells are associated with enhanced tumour targeting, reduced off-target effects, and improved safety profiles. EphA2 as a therapeutic target. EphA2, a receptor overexpressed in multiple paediatric sarcomas, is identified as a viable target for CAR-based immunotherapy due to its critical role in tumour progression and angiogenesis. Innovations in mRNA-based engineering. This study demonstrates the feasibility of transient mRNA transfection to engineer NK cells for CAR expression, offering a non-integrative and safer alternative to viral transduction. Enhancements in mRNA stability through chemical modifications, can further optimise protein expression. Preclinical efficacy of EphA2-CAR NK cells. EphA2-specific CAR-NK cells exhibit superior cytotoxicity against sarcoma cell lines in vitro and demonstrate significant anti-tumour activity in in vivo mouse models of rhabdomyosarcoma and osteosarcoma. Clinical translation potential. The findings establish a strong preclinical rationale for the clinical evaluation of EphA2-targeted CAR-NK therapy as a novel immunotherapeutic option for paediatric sarcomas. Future research directions: Combining EphA2-CAR NK cells with immune checkpoint inhibitors or other immunomodulatory agents could further enhance therapeutic outcomes and durability. Advanced preclinical models mimicking human tumour microenvironments are needed to refine and optimise this therapeutic approach.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptor, EphA2/genetics
- Humans
- Animals
- Sarcoma/therapy
- Sarcoma/immunology
- Sarcoma/genetics
- Mice
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Disease Models, Animal
Collapse
Affiliation(s)
- Pui Yeng Lam
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Natacha Omer
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
- Queensland Children's HospitalBrisbaneQueenslandAustralia
| | - Josh K. M. Wong
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Cui Tu
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Louisa Alim
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Gustavo R. Rossi
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Maria Victorova
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaQueenslandAustralia
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Hannah Tompkins
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Cheng‐Yu Lin
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Ahmed M. Mehdi
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
- Queensland Cyber Infrastructure Foundation Ltd (QCIF)Facility for Advanced BioinformaticsSt LuciaQueenslandAustralia
| | - Amos Choo
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Melissa R. Elliott
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Elaina Coleborn
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Jane Sun
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Timothy Mercer
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaQueenslandAustralia
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Orazio Vittorio
- School of Biomedical Sciences, Faculty of Medicine and HealthUniversity of New South WalesSydneyNew South WalesAustralia
| | - Lachlan J. Dobson
- Department of Microbiology and ImmunologyThe University of OtagoDunedinNew Zealand
| | | | - Andrew Brooks
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
| | - Zewen Kelvin Tuong
- Frazer Institute, Faculty of MedicineThe University of QueenslandWoolloongabbaQueenslandAustralia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | - Seth W. Cheetham
- Australian Institute for Bioengineering and NanotechnologyUniversity of QueenslandSt LuciaQueenslandAustralia
- BASE FacilityUniversity of QueenslandSt LuciaQueenslandAustralia
| | - Wayne Nicholls
- Queensland Children's HospitalBrisbaneQueenslandAustralia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| | | |
Collapse
|
5
|
Westhaus A, Barba-Sarasua E, Chen Y, Hsu K, Scott S, Knight M, Haase F, Mesa Mora S, Houghton BC, Roca-Pinilla R, Kalajdzic P, O'Neill G, Thrasher AJ, Santilli G, Lisowski L. Tailoring capsid-directed evolution technology for improved AAV-mediated CAR-T generation. Mol Ther 2024:S1525-0016(24)00811-6. [PMID: 39673125 DOI: 10.1016/j.ymthe.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/31/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T) therapies present options for patients diagnosed with certain leukemias. Recent advances of the technology included a method to integrate the CAR into the T cell receptor alpha constant (TRAC) locus to take advantage of the endogenous promoter and regulatory elements for CAR expression. This method used adeno-associated viral (AAV) vectors based on AAV6 to deliver the donor template encoding the CAR construct. Since the original publication, improvements have been made to this targeted CAR integration technique; however, none of those techniques focused on improving the AAV vector used to deliver the therapeutic cargo. The herein presented study developed a novel AAV capsid directed evolution platform that allows for specifically selecting for novel AAV capsid variants that enable more efficient targeted gene editing-mediated CAR construct integration into the TRAC locus in primary T cells. Using this new platform, we selected several novel AAVs that enable more efficient editing in T cells than AAV6. Two novel capsids, AAV-T1 and AAV-T2, were able to mediate 5-fold improvement for on-target knockin, which resulted in 5-fold reduction of the vector dose to produce highly cytolytic T cells against a brain tumor cell line.
Collapse
Affiliation(s)
- Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Elena Barba-Sarasua
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Yuyan Chen
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Kenneth Hsu
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Suzanne Scott
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Australian e-Health Research Centre, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Maddison Knight
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Florencia Haase
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Santiago Mesa Mora
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Benjamin C Houghton
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Ramon Roca-Pinilla
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Predrag Kalajdzic
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Geraldine O'Neill
- Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College, London, UK
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia; Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia; Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland.
| |
Collapse
|
6
|
Song KW, Scott BJ. CAR T-cell therapy for gliomas. Curr Opin Neurol 2024; 37:672-681. [PMID: 39498846 DOI: 10.1097/wco.0000000000001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW To review the landscape of chimeric antigen receptor T-cell (CAR T) therapy for gliomas as seen in recently published trials and discuss on-going challenges with new cancer immunotherapy treatments. RECENT FINDINGS Given how CAR T therapy has revolutionized the treatment of several hematologic malignancies, there has been increasing interest in using immunotherapy, and particularly CAR T therapy for gliomas. Within the past decade, several first in human trials have published early patient experiences showing treatment is generally well tolerated but with limited efficacy, which may be improving with newer evolutions in CAR T design to overcome known resistance mechanisms in glioma treatment. SUMMARY CAR T therapy is a promising avenue of treatment for high-grade gliomas, which have a universally poor prognosis as well as limited therapeutics. There are a growing number of CAR T clinical trials for CNS tumors and thus, an understanding of their treatment strategies, toxicity management, and overcoming resistance mechanisms will be important for both clinical practice and to identify areas for future research.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology, Stanford University School of Medicine
- Stanford Neuro-Immuno-Oncology (NIO) Program, Stanford, California, USA
| | - Brian J Scott
- Department of Neurology, Stanford University School of Medicine
- Stanford Neuro-Immuno-Oncology (NIO) Program, Stanford, California, USA
| |
Collapse
|
7
|
Ronsley R, Bertrand KC, Song EZ, Timpanaro A, Choe M, Tlais D, Vitanza NA, Park JR. CAR T cell therapy for pediatric central nervous system tumors: a review of the literature and current North American trials. Cancer Metastasis Rev 2024; 43:1205-1216. [PMID: 39251462 PMCID: PMC11554695 DOI: 10.1007/s10555-024-10208-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related death in children. Typical therapy for CNS tumors in children involves a combination of surgery, radiation, and chemotherapy. While upfront therapy is effective for many high-grade tumors, therapy at the time of relapse remains limited. Furthermore, for diffuse intrinsic pontine glioma (DIPG) and diffuse midline glioma (DMG), there are currently no curative therapies. Chimeric antigen receptor T (CAR T) cell therapy is a promising novel treatment avenue for these tumors. Here, we review the preclinical evidence for CAR T cell use in pediatric brain tumors, the preliminary clinical experience of CNS CAR T cell trials, toxicity associated with systemic and locoregional CAR T cell therapy for CNS tumors, challenges in disease response evaluation with CAR T cell therapy, and the knowledge gained from correlative biologic studies from these trials in the pediatric and young adult population.
Collapse
Affiliation(s)
- Rebecca Ronsley
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kelsey C Bertrand
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edward Z Song
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Andrea Timpanaro
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Michelle Choe
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana Tlais
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
- Division of Neuro-Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nicholas A Vitanza
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Julie R Park
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
8
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Zhang Y, Gu A, An Z, Huang S, Zhang C, Zhong X, Hu Y. B cells enhance EphA2 chimeric antigen receptor T cells cytotoxicity against glioblastoma via improving persistence. Hum Immunol 2024; 85:111093. [PMID: 39243423 DOI: 10.1016/j.humimm.2024.111093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy is a powerful adoptive immunotherapy against blood cancers, but the therapeutic effect was not efficient enough on solid tumors. B cells have been reported to play a critical role in regulating memory T differentiation and cytotoxic T development. However, as of yet the influence of such B cells on CAR T cells has not been discussed. In this study, using ephrin type-A receptor 2 (EphA2) specific CAR T cells, we cultured B cells successfully to stimulate CAR T cells in vitro, and investigated the cell differentiation and anti-tumor efficiency. We observed that EphA2-CAR T cells stimulated by B cells performed increased interferon γ (IFN γ) production and upregulated OX40 expression, as well as the enhanced anti-tumor activity and reduced PD-1 expression. The persistence of CAR T cells was enhanced after B cells stimulation for more than 7 days with the increased subset of central memory T cells (TCM). In addition, next generation sequencing was performed to explore the underlying mechanisms. The up-regulated genes clustered in, immune response activation, chemokine signaling pathway, calcium signaling pathway, cGMP-PKG signaling pathway and et al. which contributed to the upregulated anti-glioblastoma (GBM) activity of CAR T cells stimulated by B cell. Furthermore, MEF2C, CD40, SYK and TNFRSF13B were upregulated in CAR T cells after co-culturing with B cells. These genes functionally enriched in promoting lymphocytes proliferation and may contribute to the enhanced persistence of CAR T cells. In conclusion, these results indicated the critical role of B cells in prolonging CAR T cells longevity and enhancing anti-tumor activity, which paves the way for the therapeutic exploitation of EphA2-CAR T cells against GBM in the future.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Aiqin Gu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Zhijing An
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Shuai Huang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Can Zhang
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xiaosong Zhong
- The Clinical Center of Gene and Cell Engineering, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yi Hu
- Beijing Key Laboratory for Therapeutic Cancer Vaccines, Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
10
|
Acharya S, Basar R, Daher M, Rafei H, Li P, Uprety N, Ensley E, Shanley M, Kumar B, Banerjee PP, Melo Garcia L, Lin P, Mohanty V, Kim KH, Jiang X, Pan Y, Li Y, Liu B, Nunez Cortes AK, Zhang C, Fathi M, Rezvan A, Montalvo MJ, Cha SL, Reyes-Silva F, Shrestha R, Guo X, Kundu K, Biederstadt A, Muniz-Feliciano L, Deyter GM, Kaplan M, Jiang XR, Liu E, Jain A, Roszik J, Fowlkes NW, Solis Soto LM, Raso MG, Khoury JD, Lin P, Vega F, Varadarajan N, Chen K, Marin D, Shpall EJ, Rezvani K. CD28 Costimulation Augments CAR Signaling in NK Cells via the LCK/CD3ζ/ZAP70 Signaling Axis. Cancer Discov 2024; 14:1879-1900. [PMID: 38900051 PMCID: PMC11452288 DOI: 10.1158/2159-8290.cd-24-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Multiple factors in the design of a chimeric antigen receptor (CAR) influence CAR T-cell activity, with costimulatory signals being a key component. Yet, the impact of costimulatory domains on the downstream signaling and subsequent functionality of CAR-engineered natural killer (NK) cells remains largely unexplored. Here, we evaluated the impact of various costimulatory domains on CAR-NK cell activity, using a CD70-targeting CAR. We found that CD28, a costimulatory molecule not inherently present in mature NK cells, significantly enhanced the antitumor efficacy and long-term cytotoxicity of CAR-NK cells both in vitro and in multiple xenograft models of hematologic and solid tumors. Mechanistically, we showed that CD28 linked to CD3ζ creates a platform that recruits critical kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) and zeta-chain-associated protein kinase 70 (ZAP70), initiating a signaling cascade that enhances CAR-NK cell function. Our study provides insights into how CD28 costimulation enhances CAR-NK cell function and supports its incorporation in NK-based CARs for cancer immunotherapy. Significance: We demonstrated that incorporation of the T-cell-centric costimulatory molecule CD28, which is normally absent in mature natural killer (NK) cells, into the chimeric antigen receptor (CAR) construct recruits key kinases including lymphocyte-specific protein tyrosine kinase and zeta-chain-associated protein kinase 70 and results in enhanced CAR-NK cell persistence and sustained antitumor cytotoxicity.
Collapse
Affiliation(s)
- Sunil Acharya
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rafet Basar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - May Daher
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ping Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadima Uprety
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Emily Ensley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mayra Shanley
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bijender Kumar
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pinaki P. Banerjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luciana Melo Garcia
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Lin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xianli Jiang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuchen Pan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bin Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Karen Nunez Cortes
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyu Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohsen Fathi
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
- CellChorus, Inc., Houston, TX, USA
| | - Ali Rezvan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J. Montalvo
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Sophia L Cha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francia Reyes-Silva
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rejeena Shrestha
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingliang Guo
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kiran Kundu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander Biederstadt
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine III: Hematology and Oncology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Luis Muniz-Feliciano
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gary M. Deyter
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mecit Kaplan
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Ru Jiang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enli Liu
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Janos Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie W. Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D. Khoury
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Kua L, Ng CH, Tan JW, Tan HC, Seh CC, Wong F, Ong R, Rooney CM, Tan J, Chen Q, Horak ID, Tan KW, Low L. Novel OX40 and 4-1BB derived spacers enhance CD30 CAR activity and safety in CD30 positive lymphoma models. Mol Ther 2024; 32:3504-3521. [PMID: 38946142 PMCID: PMC11489532 DOI: 10.1016/j.ymthe.2024.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/26/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024] Open
Abstract
The chimeric antigen receptor (CAR) derived from the CD30 specific murine antibody, HRS-3, has produced promising clinical efficacy with a favorable safety profile in the treatment of relapsed or refractory CD30-positive lymphomas. However, persistence of the autologous CAR-T cells was brief, and many patients relapsed a year after treatment. The lack of persistence may be attributed to the use of a wild-type immunoglobulin (Ig)G1 spacer that can associate with Fc receptors. We first identified the cysteine-rich domain (CRD) 5 of CD30 as the primary binding epitope of HRS-3 and armed with this insight, attempted to improve the HRS-3 CAR functionality with a panel of novel spacer designs. We demonstrate that HRS-3 CARs with OX40 and 4-1BB derived spacers exhibited similar anti-tumor efficacy, circumvented interactions with Fc receptors, and secreted lower levels of cytokines in vitro than a CAR employing the IgG1 spacer. Humanization of the HRS-3 scFv coupled with the 4-1BB spacer preserved potent on-target, on-tumor efficacy, and on-target, off-tumor safety. In a lymphoma mouse model of high tumor burden, T cells expressing humanized HRS-3 CD30.CARs with the 4-1BB spacer potently killed tumors with low levels of circulating inflammatory cytokines, providing a promising candidate for future clinical development in the treatment of CD30-positive malignancies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Line, Tumor
- Disease Models, Animal
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Ki-1 Antigen/immunology
- Ki-1 Antigen/metabolism
- Lymphoma/therapy
- Lymphoma/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, OX40/metabolism
- Receptors, OX40/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Lindsay Kua
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Chee Hoe Ng
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Jin Wei Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | | | | | - Fiona Wong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Richard Ong
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Cancer and Hematology Centers, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joel Tan
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute for Molecular and Cellular Biology, A∗STAR Singapore 138673, Singapore
| | - Ivan D Horak
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Kar Wai Tan
- Tessa Therapeutics Ltd, Singapore 138673, Singapore
| | - Lionel Low
- Tessa Therapeutics Ltd, Singapore 138673, Singapore.
| |
Collapse
|
12
|
Talbot LJ, Chabot A, Ross AB, Beckett A, Nguyen P, Fleming A, Chockley PJ, Shepphard H, Wang J, Gottschalk S, DeRenzo C. Redirecting B7-H3.CAR T Cells to Chemokines Expressed in Osteosarcoma Enhances Homing and Antitumor Activity in Preclinical Models. Clin Cancer Res 2024; 30:4434-4449. [PMID: 39101835 PMCID: PMC11443211 DOI: 10.1158/1078-0432.ccr-23-3298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/15/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
PURPOSE Clinical efficacy of chimeric antigen receptor (CAR) T cells against pediatric osteosarcoma (OS) has been limited. One strategy to improve efficacy may be to drive chemokine-mediated homing of CAR T cells to tumors. We sought to determine the primary chemokines secreted by OS and evaluate the efficacy of B7-H3.CAR T cells expressing the cognate receptors. EXPERIMENTAL DESIGN We developed a pipeline to identify chemokines secreted by OS by correlating RNA-seq data with chemokine protein detected in media from fresh surgical specimens. We identified CXCR2 and CXCR6 as promising receptors for enhancing CAR T-cell homing against OS. We evaluated the homing kinetics and efficiency of CXCR2- and CXCR6.T cells and homing, cytokine production, and antitumor activity of CXCR2- and CXCR6.B7-H3.CAR T cells in vitro and in vivo. RESULTS T cells transgenically expressing CXCR2 or CXCR6 exhibited ligand-specific enhanced migration over T cells modified with nonfunctional control receptors. Differential homing kinetics were observed, with CXCR2.T-cell homing quickly and plateauing early, whereas CXCR6.T cells took longer to home but achieved a similar plateau. When expressed in B7-H3.CAR T cells, CXCR2- and CXCR6 modification conferred enhanced homing toward OS in vitro and in vivo. CXCR2- and CXCR6-B7-H3.CAR-treated mice experienced prolonged survival in a metastatic model compared with B7-H3.CAR T-cell-treated mice. CONCLUSIONS Our patient-based pipeline identified targets for chemokine receptor modification of CAR T cells targeting OS. CXCR2 and CXCR6 expression enhanced the homing and anti-OS activity of B7-H3.CAR T cells. These findings support clinical evaluation of CXCR-modified CAR T cells to improve adoptive cell therapy for patients with OS.
Collapse
MESH Headings
- Osteosarcoma/immunology
- Osteosarcoma/therapy
- Osteosarcoma/pathology
- Osteosarcoma/genetics
- Animals
- Humans
- Mice
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, CXCR6/genetics
- Receptors, CXCR6/metabolism
- Receptors, CXCR6/immunology
- B7 Antigens/genetics
- B7 Antigens/metabolism
- Xenograft Model Antitumor Assays
- Chemokines/metabolism
- Cell Line, Tumor
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Interleukin-8B/genetics
- Receptors, Interleukin-8B/metabolism
- Bone Neoplasms/immunology
- Bone Neoplasms/pathology
- Bone Neoplasms/therapy
- Cell Movement
Collapse
Affiliation(s)
- Lindsay J Talbot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ashley Chabot
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Aaron B Ross
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Alexandra Beckett
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew Fleming
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter J Chockley
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather Shepphard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cell Therapy, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
13
|
Kang X, Mita N, Zhou L, Wu S, Yue Z, Babu RJ, Chen P. Nanotechnology in Advancing Chimeric Antigen Receptor T Cell Therapy for Cancer Treatment. Pharmaceutics 2024; 16:1228. [PMID: 39339264 PMCID: PMC11435308 DOI: 10.3390/pharmaceutics16091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a groundbreaking treatment for hematological cancers, yet it faces significant hurdles, particularly regarding its efficacy in solid tumors and concerning associated adverse effects. This review provides a comprehensive analysis of the advancements and ongoing challenges in CAR-T therapy. We highlight the transformative potential of nanotechnology in enhancing CAR-T therapy by improving targeting precision, modulating the immune-suppressive tumor microenvironment, and overcoming physical barriers. Nanotechnology facilitates efficient CAR gene delivery into T cells, boosting transfection efficiency and potentially reducing therapy costs. Moreover, nanotechnology offers innovative solutions to mitigate cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Cutting-edge nanotechnology platforms for real-time monitoring of CAR-T cell activity and cytokine release are also discussed. By integrating these advancements, we aim to provide valuable insights and pave the way for the next generation of CAR-T cell therapies to overcome current limitations and enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Xuejia Kang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Nur Mita
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
- Faculty of Pharmacy, Mulawarman University, Samarinda 75119, Kalimantan Timur, Indonesia
| | - Lang Zhou
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Siqi Wu
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| | - Zongliang Yue
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA; (N.M.); (Z.Y.); (R.J.B.)
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA; (L.Z.); (S.W.)
| |
Collapse
|
14
|
Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Commun Signal 2024; 22:433. [PMID: 39252029 PMCID: PMC11382444 DOI: 10.1186/s12964-024-01811-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Bone sarcomas are malignant tumors of mesenchymal origin. Complete surgical resection is the cornerstone of multidisciplinary treatment. However, advanced, unresectable forms remain incurable. A crucial step towards addressing this challenge involves comprehending the molecular mechanisms underpinning tumor progression and metastasis, laying the groundwork for innovative precision medicine-based interventions. We previously showed that tyrosine kinase receptor Ephrin Type-A Receptor 2 (EphA2) is overexpressed in bone sarcomas. EphA2 is a key oncofetal protein implicated in metastasis, self-renewal, and chemoresistance. Molecular, genetic, biochemical, and pharmacological approaches have been developed to target EphA2 and its signaling pathway aiming to interfere with its tumor-promoting effects or as a carrier for drug delivery. This review synthesizes the main functions of EphA2 and their relevance in bone sarcomas, providing strategies devised to leverage this receptor for diagnostic and therapeutic purposes, with a focus on its applicability in the three most common bone sarcoma histotypes: osteosarcoma, chondrosarcoma, and Ewing sarcoma.
Collapse
Affiliation(s)
- Giorgia Giordano
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Cristina Tucciarello
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Alessandra Merlini
- Department of Oncology, University of Turin, 10043, Orbassano, TO, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy
| | - Ymera Pignochino
- Sarcoma Unit, Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, TO, Italy.
- Department of Clinical and Biological Sciences, University of Turin, 10043, Orbassano, TO, Italy.
| |
Collapse
|
15
|
Alqarni A, Jasim SA, Altalbawy FMA, Kaur H, Kaur I, Rodriguez-Benites C, Deorari M, Alwaily ER, Al-Ani AM, Redhee AH. Challenges and opportunities for cancer stem cell-targeted immunotherapies include immune checkpoint inhibitor, cancer stem cell-dendritic cell vaccine, chimeric antigen receptor immune cells, and modified exosomes. J Biochem Mol Toxicol 2024; 38:e23719. [PMID: 38764138 DOI: 10.1002/jbt.23719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 05/21/2024]
Abstract
Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.
Collapse
Affiliation(s)
- Abdullah Alqarni
- Department of Diagnostics Dental Sciences and Oral Biology, College of Dentistry, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Harpreet Kaur
- School of Basic and Applied Sciences, Shobhit University, Gangoh, India
- Department of Health and Allied Sciences, Arka Jain University, Jamshedpur, India
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, India
| | - Carlos Rodriguez-Benites
- Departamento Académico de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Enas R Alwaily
- Microbiology Research Group, College of Pharmacy, Al-Ayen University, Thi Qar, Iraq
| | - Ahmed M Al-Ani
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Ahmed H Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
16
|
Shaw TI, Wagner J, Tian L, Wickman E, Poudel S, Wang J, Paul R, Koo SC, Lu M, Sheppard H, Fan Y, O'Neill FH, Lau CC, Zhou X, Zhang J, Gottschalk S. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. Nat Commun 2024; 15:3732. [PMID: 38702309 PMCID: PMC11068777 DOI: 10.1038/s41467-024-47649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/09/2024] [Indexed: 05/06/2024] Open
Abstract
Immunotherapy with chimeric antigen receptor T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify cancer specific exon targets, here we analyze 1532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We find 2933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n = 148) or the alternatively spliced isoform (n = 9) level. Expression of selected alternatively spliced targets, including the EDB domain of fibronectin 1, and gene targets, such as COL11A1, are validated in pediatric patient derived xenograft tumors. We generate T cells expressing chimeric antigen receptors specific for the EDB domain or COL11A1 and demonstrate that these have antitumor activity. The full target list, explorable via an interactive web portal ( https://cseminer.stjude.org/ ), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Francis H O'Neill
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Ching C Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Connecticut Children's Medical Center, Hartford, CT, 06106, USA
- University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
17
|
Ezaki T, Tanaka T, Tamura R, Ohara K, Yamamoto Y, Takei J, Morimoto Y, Imai R, Kuranai Y, Akasaki Y, Toda M, Murayama Y, Miyake K, Sasaki H. Status of alternative angiogenic pathways in glioblastoma resected under and after bevacizumab treatment. Brain Tumor Pathol 2024; 41:61-72. [PMID: 38619734 PMCID: PMC11052834 DOI: 10.1007/s10014-024-00481-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 04/16/2024]
Abstract
Glioblastoma multiforme (GBM) acquires resistance to bevacizumab (Bev) treatment. Bev affects angiogenic factors other than vascular endothelial growth factor (VEGF), which are poorly understood. We investigated changes in angiogenic factors under and after Bev therapy, including angiopoietin-1 (ANGPT1), angiopoietin-2 (ANGPT2), placental growth factor (PLGF), fibroblast growth factor 2, and ephrin A2 (EphA2). Fifty-four GBM tissues, including 28 specimens from 14 cases as paired specimens from the same patient obtained in three settings: initial tumor resection (naïve Bev), tumors resected following Bev therapy (effective Bev), and recurrent tumors after Bev therapy (refractory Bev). Immunohistochemistry assessed their expressions in tumor vessels and its correlation with recurrent MRI patterns. PLGF expression was higher in the effective Bev group than in the naïve Bev group (p = 0.024) and remained high in the refractory Bev group. ANGPT2 and EphA2 expressions were higher in the refractory Bev group than in the naïve Bev group (p = 0.047 and 0.028, respectively). PLGF expression was higher in the refractory Bev group compared with the naïve Bev group for paired specimens (p = 0.036). PLGF was more abundant in T2 diffuse/circumscribe patterns (p = 0.046). This is the first study to evaluate angiogenic factors other than VEGF during effective and refractory Bev therapy in patient-derived specimens.
Collapse
Affiliation(s)
- Taketo Ezaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School, of Medicine Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa-shi, Chiba, 277-8567, Japan.
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, The Jikei University School of Medicine Daisan Hospital, 4-11-1 Izumi-Motomachi, Komae-Shi, Tokyo, 201-8601, Japan
| | - Jun Takei
- Department of Neurosurgery, The Jikei University School of Medicine Katsushika Medical Center, 6-41-2 Aoto, Katsushika-Ku, Tokyo, 125-8506, Japan
| | - Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Ryotaro Imai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuki Kuranai
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Keisuke Miyake
- Department of Neurological Surgery, Faculty of medicine, Kagawa University Graduate School of Medicine, 1750-1 Miki-Choho, Ikenobe, Kita-Gun, Kagawa, 761-0793, Japan
| | - Hikaru Sasaki
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
- Department of Neurosurgery, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-Shi, Chiba, 272-8513, Japan
| |
Collapse
|
18
|
Bell M, Lange S, Sejdiu BI, Ibanez J, Shi H, Sun X, Meng X, Nguyen P, Sutton M, Wagner J, Kc A, Langfitt D, Patil SL, Tan H, Pandey RV, Li Y, Yuan ZF, Anido AA, Ho M, Sheppard H, Vogel P, Yu J, Peng J, Chi H, Babu MM, Krenciute G, Gottschalk S. Modular chimeric cytokine receptors with leucine zippers enhance the antitumour activity of CAR T cells via JAK/STAT signalling. Nat Biomed Eng 2024; 8:380-396. [PMID: 38036617 PMCID: PMC11587785 DOI: 10.1038/s41551-023-01143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor. Here we show that replacement of the extracellular domains of heterodimeric cytokine receptors in T cells with two leucine zipper motifs provides optimal Janus kinase/signal transducer and activator of transcription signalling. Such chimeric cytokine receptors, which can be generated for common γ-chain receptors, interleukin-10 and -12 receptors, enabled T cells to survive cytokine starvation without induction of autonomous cell growth, and augmented the effector function of CAR T cells in vitro in the setting of chronic antigen exposure and in human tumour xenografts in mice. As a modular design, leucine zippers can be used to generate constitutively active cytokine receptors in effector immune cells.
Collapse
Affiliation(s)
- Matthew Bell
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Besian I Sejdiu
- Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibanez
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hao Shi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Sun
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaoxi Meng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Morgan Sutton
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Anil Kc
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deanna Langfitt
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sagar L Patil
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Haiyan Tan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ram Vinay Pandey
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuxin Li
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zuo-Fei Yuan
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Peter Vogel
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - M Madan Babu
- Center of Excellence for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Zhu C, Wu Q, Sheng T, Shi J, Shen X, Yu J, Du Y, Sun J, Liang T, He K, Ding Y, Li H, Gu Z, Wang W. Rationally designed approaches to augment CAR-T therapy for solid tumor treatment. Bioact Mater 2024; 33:377-395. [PMID: 38059121 PMCID: PMC10696433 DOI: 10.1016/j.bioactmat.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
Chimeric antigen receptor T cell denoted as CAR-T therapy has realized incredible therapeutic advancements for B cell malignancy treatment. However, its therapeutic validity has yet to be successfully achieved in solid tumors. Different from hematological cancers, solid tumors are characterized by dysregulated blood vessels, dense extracellular matrix, and filled with immunosuppressive signals, which together result in CAR-T cells' insufficient infiltration and rapid dysfunction. The insufficient recognition of tumor cells and tumor heterogeneity eventually causes cancer reoccurrences. In addition, CAR-T therapy also raises safety concerns, including potential cytokine release storm, on-target/off-tumor toxicities, and neuro-system side effects. Here we comprehensively review various targeting aspects, including CAR-T cell design, tumor modulation, and delivery strategy. We believe it is essential to rationally design a combinatory CAR-T therapy via constructing optimized CAR-T cells, directly manipulating tumor tissue microenvironments, and selecting the most suitable delivery strategy to achieve the optimal outcome in both safety and efficacy.
Collapse
Affiliation(s)
- Chaojie Zhu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Qing Wu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Tao Sheng
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Shi
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Xinyuan Shen
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Du
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jie Sun
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tingxizi Liang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaixin He
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
- ZJU-Pujian Research & Development Center of Medical Artificial Intelligence for Hepatobiliary and Pancreatic Disease, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
20
|
Wang L, Zhang H, Huang W, Han Z, Xu H, Gu Y. Development of a novel EphA2-targeting radioligand for SPECT imaging in different tumor models. Eur J Med Chem 2024; 265:116105. [PMID: 38154255 DOI: 10.1016/j.ejmech.2023.116105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The erythropoietin-producing hepatoma A2 receptor (EphA2) is a tyrosine kinase, which is overexpressed in tumors while having lower expression in normal tissues, making it an excellent target for tumor diagnosis and treatment. Peptide radiotracers offer unique advantages in tumor diagnosis and therapy and have been approved for clinical use. In this study, a high-affinity EPHA2-targeted radiotracer, 99mTc-HYNIC-PEG4-EPH-3, was developed and designed based on linear peptides. 99mTc-HYNIC-PEG4-EPH-3 exhibited superior water solubility and stability. And 99mTc-HYNIC-PEG4-EPH-3 could specifically target EphA2-expressing tumors, particularly with a tumor-to-non-target (T/NT) ratio >4.7 excluding kidneys. As a result of excellent biodistribution and tumor targeting capability of 99mTc-HYNIC-PEG4-EPH-3, it might be a promising candidate drug for clinical diagnosis of EphA2-overexpressing tumors.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Hao Zhang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Wenjing Huang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China.
| | - Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China.
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Gulou District, Nanjing, 211198, China.
| |
Collapse
|
21
|
Kowalczyk A, Zarychta J, Marszołek A, Zawitkowska J, Lejman M. Chimeric Antigen Receptor T Cell and Chimeric Antigen Receptor NK Cell Therapy in Pediatric and Adult High-Grade Glioma-Recent Advances. Cancers (Basel) 2024; 16:623. [PMID: 38339374 PMCID: PMC10854514 DOI: 10.3390/cancers16030623] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
High-grade gliomas (HGG) account for approximately 10% of central nervous system (CNS) tumors in children and 25% of CNS tumors in adults. Despite their rare occurrence, HGG are a significant clinical problem. The standard therapeutic procedure in both pediatric and adult patients with HGG is the surgical resection of the tumor combined with chemotherapy and radiotherapy. Despite intensive treatment, the 5-year overall survival in pediatric patients is below 20-30%. This rate is even lower for the most common HGG in adults (glioblastoma), at less than 5%. It is, therefore, essential to search for new therapeutic methods that can extend the survival rate. One of the therapeutic options is the use of immune cells (T lymphocytes/natural killer (NK) cells) expressing a chimeric antigen receptor (CAR). The objective of the following review is to present the latest results of preclinical and clinical studies evaluating the efficacy of CAR-T and CAR-NK cells in HGG therapy.
Collapse
Affiliation(s)
- Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.K.); (J.Z.)
| | - Anna Marszołek
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
22
|
Tang Y, Yang X, Hu H, Jiang H, Xiong W, Mei H, Hu Y. Elevating the potential of CAR-T cell therapy in solid tumors: exploiting biomaterials-based delivery techniques. Front Bioeng Biotechnol 2024; 11:1320807. [PMID: 38312512 PMCID: PMC10835794 DOI: 10.3389/fbioe.2023.1320807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/05/2023] [Indexed: 02/06/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells exhibit promising progress in addressing hematologic malignancies. However, CAR-T therapy for solid tumors remains limited, with no FDA-approved CAR-T products available for clinical use at present. Primary reasons include insufficient infiltration, accumulation, tumor immunosuppression of the microenvironment, and related side effects. Single utilization of CAR-T cannot effectively overcome these unfavorable obstacles. A probable effective pathway to achieve a better CAR-T therapy effect would be to combine the benefits of biomaterials-based technology. In this article, comprehensive biomaterials strategies to break through these obstacles of CAR-T cell therapy at the tumor sites are summarized, encompassing the following aspects: 1) generating orthotopic CAR-T cells; 2) facilitating CAR-T cell trafficking; 3) stimulating CAR-T cell expansion and infiltration; 4) improving CAR-T cell activity and persistence; 5) reprogramming the immunosuppressive microenvironments. Additionally, future requirements for the development of this field, with a specific emphasis on promoting innovation and facilitating clinical translation, are thoroughly discussed.
Collapse
Affiliation(s)
- Yuxiang Tang
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Xiaoyu Yang
- Department of Pharmacy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Hu
- School of Pharmacy, ChangZhou University, Changzhou, China
| | - Huiwen Jiang
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Wei Xiong
- Wuhan Sian Medical Technology Co., Ltd., Wuhan, China
| | - Heng Mei
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Yu Hu
- Tongji Medical College, Union Hospital, Institute of Hematology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| |
Collapse
|
23
|
Shaw TI, Wagner J, Tian L, Wickman E, Poudel S, Wang J, Paul R, Koo SC, Lu M, Sheppard H, Fan Y, O’Neil F, Lau CC, Zhou X, Zhang J, Gottschalk S. Discovery of immunotherapy targets for pediatric solid and brain tumors by exon-level expression. RESEARCH SQUARE 2024:rs.3.rs-3821632. [PMID: 38260279 PMCID: PMC10802740 DOI: 10.21203/rs.3.rs-3821632/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Immunotherapy with CAR T cells for pediatric solid and brain tumors is constrained by available targetable antigens. Cancer-specific exons (CSE) present a promising reservoir of targets; however, these have not been explored and validated systematically in a pan-cancer fashion. To identify CSE targets, we analyzed 1,532 RNA-seq datasets from 16 types of pediatric solid and brain tumors for comparison with normal tissues using a newly developed workflow. We found 2,933 exons in 157 genes encoding proteins of the surfaceome or matrisome with high cancer specificity either at the gene (n=148) or the alternatively spliced (AS) isoform (n=9) level. Expression of selected AS targets, including the EDB domain of FN1 (EDB), and gene targets, such as COL11A1, were validated in pediatric PDX tumors. We generated CAR T cells specific to EDB or COL11A1 and demonstrated that COL11A1-CAR T-cells have potent antitumor activity. The full target list, explorable via an interactive web portal (https://cseminer.stjude.org/), provides a rich resource for developing immunotherapy of pediatric solid and brain tumors using gene or AS targets with high expression specificity in cancer.
Collapse
Affiliation(s)
- Timothy I Shaw
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jessica Wagner
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth Wickman
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Suresh Poudel
- Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Paul
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Selene C. Koo
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Francis O’Neil
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Ching C. Lau
- The Jackson Laboratory Cancer Center, Farmington, CT, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
24
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
25
|
Mai S, Hodges A, Chen HM, Zhang J, Wang YL, Liu Y, Nakatsu F, Wang X, Fang J, Xu Y, Davidov V, Kang K, Pingali SR, Ganguly S, Suzuki M, Konopleva M, Prinzing B, Zu Y, Gottschalk S, Lu Y, Chen SH, Pan PY. LILRB3 Modulates Acute Myeloid Leukemia Progression and Acts as an Effective Target for CAR T-cell Therapy. Cancer Res 2023; 83:4047-4062. [PMID: 38098451 PMCID: PMC11932437 DOI: 10.1158/0008-5472.can-22-2483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/11/2023] [Accepted: 06/14/2023] [Indexed: 12/18/2023]
Abstract
Identifying novel cell surface receptors that regulate leukemia cell differentiation and can be targeted to inhibit cellular proliferation is crucial to improve current treatment modalities in acute myeloid leukemia (AML), especially for relapsed or chemotherapy-refractory leukemia. Leukocyte immunoglobulin-like receptor type B (LILRB) is an immunomodulatory receptor originally found to be expressed in myeloid cells. In this study, we found that LILRB receptors can be induced under inflammatory stimuli and chemotherapy treatment conditions. Blockade of LILRB3 inhibited leukemia cell proliferation and leukemia progression. In addition, treatment with LILRB3 blocking antibodies upregulated myeloid lineage differentiation transcription factors, including PU.1, C/EBP family, and IRF, whereas phosphorylation of proliferation regulators, for example, AKT, cyclin D1, and retinoblastoma protein, was decreased. Conversely, transcriptomic analysis showed LILRB3 activation by agonist antibodies may enhance leukemia survival through upregulation of cholesterol metabolism, which has been shown to promote leukemia cell survival. Moreover, LILRB3-targeted CAR T cells exhibited potent antitumor effects both in vitro and in vivo. Taken together, our results suggest that LILRB3 is a potentially potent target for multiple treatment modalities in AML. SIGNIFICANCE LILRB3 regulates differentiation and proliferation in acute myeloid leukemia and can be targeted with monoclonal antibodies and CAR T cells to suppress leukemia growth.
Collapse
Affiliation(s)
- Sunny Mai
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Alan Hodges
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
| | - Hui-Ming Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Jilu Zhang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Yi-Ling Wang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Yongbin Liu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Fumiko Nakatsu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Xiaoxuan Wang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Jing Fang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Yitian Xu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Vitaliy Davidov
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
| | - Kyeongah Kang
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Sai Ravi Pingali
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Division of Hematology, Medical Oncology and Hematology, Houston Methodist Hospital, Houston, TX
| | - Siddhartha Ganguly
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Division of Hematology, Medical Oncology and Hematology, Houston Methodist Hospital, Houston, TX
| | - Masataka Suzuki
- Center for Gene Therapy, Baylor College of Medicine, Houston, TX 77030
| | - Marina Konopleva
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Youli Zu
- Department of Pathology & Genomic Medicine, Houston Methodist Research Institute, Houston Texas 77030
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation & Cellular Therapy, St Jude Children’s Research Hospital, Memphis, Tennessee 38105
| | - Yong Lu
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
| | - Shu-Hsia Chen
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medical Science and Graduate School of Medical Sciences, New York, NY 10065
| | - Ping-Ying Pan
- Center for Immunotherapy, Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas 77030
- Texas A&M University System School of Medicine, Bryan, TX 77807
| |
Collapse
|
26
|
Bailey SR, Berger TR, Graham C, Larson RC, Maus MV. Four challenges to CAR T cells breaking the glass ceiling. Eur J Immunol 2023; 53:e2250039. [PMID: 36585889 DOI: 10.1002/eji.202250039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Cell-based therapies using chimeric antigen receptor T cells (CAR T) have had dramatic efficacy in the clinic and can even mediate curative responses in patients with hematologic malignancies. As living drugs, engineered cells can still be detected in some patients even years after the original infusion. The excitement around the cell therapy field continues to expand as recent reports have shown that CAR T cells can induce remission in patients with autoimmune disease. While these promising advances in the field garner hope for wide-spread utility of CAR T therapies across diseases, several roadblocks exist that currently limit the access and efficacy of this therapy in the clinic. Herein, we will discuss four major obstacles that the CAR T field faces, including toxicity, identifying tumor-specific antigens, improving function in solid tumors, and reducing manufacturing complexity and cost. CAR T cells have potential for a multitude of diseases, but these glass ceilings will need to be broken in order to improve clinical responses and make this potentially life-saving therapy accessible to a larger patient population.
Collapse
Affiliation(s)
- Stefanie R Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Trisha R Berger
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Charlotte Graham
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Chockley PJ, Ibanez-Vega J, Krenciute G, Talbot LJ, Gottschalk S. Synapse-tuned CARs enhance immune cell anti-tumor activity. Nat Biotechnol 2023; 41:1434-1445. [PMID: 36732477 PMCID: PMC10394118 DOI: 10.1038/s41587-022-01650-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023]
Abstract
Chimeric antigen receptor (CAR) technologies have been clinically implemented for the treatment of hematological malignancies; however, solid tumors remain resilient to CAR therapeutics. Natural killer (NK) cells may provide an optimal class of immune cells for CAR-based approaches due to their inherent anti-tumor functionality. In this study, we sought to tune CAR immune synapses by adding an intracellular scaffolding protein binding site to the CAR. We employ a PDZ binding motif (PDZbm) that enables additional scaffolding crosslinks that enhance synapse formation and NK CAR cell polarization. Combined effects of this CAR design result in increased effector cell functionality in vitro and in vivo. Additionally, we used T cells and observed similar global enhancements in effector function. Synapse-tuned CAR immune cells exhibit amplified synaptic strength, number and abundance of secreted cytokines, enhanced killing of tumor cells and prolonged survival in numerous different tumor models, including solid tumors.
Collapse
Affiliation(s)
- Peter J Chockley
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jorge Ibanez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lindsay J Talbot
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
28
|
Nehama D, Woodell AS, Maingi SM, Hingtgen SD, Dotti G. Cell-based therapies for glioblastoma: Promising tools against tumor heterogeneity. Neuro Oncol 2023; 25:1551-1562. [PMID: 37179459 PMCID: PMC10484163 DOI: 10.1093/neuonc/noad092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Indexed: 05/15/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive tumor with a devastating impact on quality-of-life and abysmal survivorship. Patients have very limited effective treatment options. The successes of targeted small molecule drugs and immune checkpoint inhibitors seen in various solid tumors have not translated to GBM, despite significant advances in our understanding of its molecular, immune, and microenvironment landscapes. These discoveries, however, have unveiled GBM's incredible heterogeneity and its role in treatment failure and survival. Novel cellular therapy technologies are finding successes in oncology and harbor characteristics that make them uniquely suited to overcome challenges posed by GBM, such as increased resistance to tumor heterogeneity, modularity, localized delivery, and safety. Considering these advantages, we compiled this review article on cellular therapies for GBM, focusing on cellular immunotherapies and stem cell-based therapies, to evaluate their utility. We categorize them based on their specificity, review their preclinical and clinical data, and extract valuable insights to help guide future cellular therapy development.
Collapse
Affiliation(s)
- Dean Nehama
- Department of Internal Medicine, Montefiore Medical Center, New York, New York, USA
| | - Alex S Woodell
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Spencer M Maingi
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
29
|
Wang M, Wang X, Jin X, Zhou J, Zhang Y, Yang Y, Liu Y, Zhang J. Cell-based and cell-free immunotherapies for glioblastoma: current status and future directions. Front Immunol 2023; 14:1175118. [PMID: 37304305 PMCID: PMC10248152 DOI: 10.3389/fimmu.2023.1175118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Glioblastoma (GBM) is among the most fatal and recurring malignant solid tumors. It arises from the GBM stem cell population. Conventional neurosurgical resection, temozolomide (TMZ)-dependent chemotherapy and radiotherapy have rendered the prognosis of patients unsatisfactory. Radiotherapy and chemotherapy can frequently induce non-specific damage to healthy brain and other tissues, which can be extremely hazardous. There is therefore a pressing need for a more effective treatment strategy for GBM to complement or replace existing treatment options. Cell-based and cell-free immunotherapies are currently being investigated to develop new treatment modalities against cancer. These treatments have the potential to be both selective and successful in minimizing off-target collateral harm in the normal brain. In this review, several aspects of cell-based and cell-free immunotherapies related to GBM will be discussed.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiaojie Wang
- Basic Medical School, Shenyang Medical College, Shenyang, Liaoning, China
| | - Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jingjing Zhou
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, the Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yiyuan Yang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
30
|
Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies - historical challenges and promising futures. Front Immunol 2023; 14:1190379. [PMID: 37304291 PMCID: PMC10248525 DOI: 10.3389/fimmu.2023.1190379] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Cancer is the leading cause of death worldwide. Cancer immunotherapy involves reinvigorating the patient's own immune system to fight against cancer. While novel approaches like Chimeric Antigen Receptor (CAR) T cells, bispecific T cell engagers, and immune checkpoint inhibitors have shown promising efficacy, Cytokine Release Syndrome (CRS) is a serious adverse effect and remains a major concern. CRS is a phenomenon of immune hyperactivation that results in excessive cytokine secretion, and if left unchecked, it may lead to multi-organ failure and death. Here we review the pathophysiology of CRS, its occurrence and management in the context of cancer immunotherapy, and the screening approaches that can be used to assess CRS and de-risk drug discovery earlier in the clinical setting with more predictive pre-clinical data. Furthermore, the review also sheds light on the potential immunotherapeutic approaches that can be used to overcome CRS associated with T cell activation.
Collapse
Affiliation(s)
- Deep Shah
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| | - Brian Soper
- Technical Information Services, The Jackson Laboratory, Bar Harbor, ME, United States
| | - Lindsay Shopland
- In vivo Services, The Jackson Laboratory, Sacramento, CA, United States
| |
Collapse
|
31
|
Beckett AN, Chockley P, Pruett-Miller SM, Nguyen P, Vogel P, Sheppard H, Krenciute G, Gottschalk S, DeRenzo C. CD47 expression is critical for CAR T-cell survival in vivo. J Immunother Cancer 2023; 11:jitc-2022-005857. [PMID: 36918226 PMCID: PMC10016274 DOI: 10.1136/jitc-2022-005857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND CD47 is an attractive immunotherapeutic target because it is highly expressed on multiple solid tumors. However, CD47 is also expressed on T cells. Limited studies have evaluated CD47-chimeric antigen receptor (CAR) T cells, and the role of CD47 in CAR T-cell function remains largely unknown. METHODS Here, we describe the development of CD47-CAR T cells derived from a high affinity signal regulatory protein α variant CV1, which binds CD47. CV1-CAR T cells were generated from human peripheral blood mononuclear cells and evaluated in vitro and in vivo. The role of CD47 in CAR T-cell function was examined by knocking out CD47 in T cells followed by downstream functional analyses. RESULTS While CV1-CAR T cells are specific and exhibit potent activity in vitro they lacked antitumor activity in xenograft models. Mechanistic studies revealed CV1-CAR T cells downregulate CD47 to overcome fratricide, but CD47 loss resulted in their failure to expand and persist in vivo. This effect was not limited to CV1-CAR T cells, since CD47 knockout CAR T cells targeting another solid tumor antigen exhibited the same in vivo fate. Further, CD47 knockout T cells were sensitive to macrophage-mediated phagocytosis. CONCLUSIONS These findings highlight that CD47 expression is critical for CAR T-cell survival in vivo and is a 'sine qua non' for successful adoptive T-cell therapy.
Collapse
Affiliation(s)
- Alex N Beckett
- Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Chockley
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, Tennessee, USA.,Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Phuong Nguyen
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Peter Vogel
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Heather Sheppard
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher DeRenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
32
|
Luksik AS, Yazigi E, Shah P, Jackson CM. CAR T Cell Therapy in Glioblastoma: Overcoming Challenges Related to Antigen Expression. Cancers (Basel) 2023; 15:cancers15051414. [PMID: 36900205 PMCID: PMC10000604 DOI: 10.3390/cancers15051414] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary brain tumor, yet prognosis remains dismal with current treatment. Immunotherapeutic strategies have had limited effectiveness to date in GBM, but recent advances hold promise. One such immunotherapeutic advance is chimeric antigen receptor (CAR) T cell therapy, where autologous T cells are extracted and engineered to express a specific receptor against a GBM antigen and are then infused back into the patient. There have been numerous preclinical studies showing promising results, and several of these CAR T cell therapies are being tested in clinical trials for GBM and other brain cancers. While results in tumors such as lymphomas and diffuse intrinsic pontine gliomas have been encouraging, early results in GBM have not shown clinical benefit. Potential reasons for this are the limited number of specific antigens in GBM, their heterogenous expression, and their loss after initiating antigen-specific therapy due to immunoediting. Here, we review the current preclinical and clinical experiences with CAR T cell therapy in GBM and potential strategies to develop more effective CAR T cells for this indication.
Collapse
|
33
|
Guzman G, Pellot K, Reed MR, Rodriguez A. CAR T-cells to treat brain tumors. Brain Res Bull 2023; 196:76-98. [PMID: 36841424 DOI: 10.1016/j.brainresbull.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
Tremendous success using CAR T therapy in hematological malignancies has garnered significant interest in developing such treatments for solid tumors, including brain tumors. This success, however, has yet to be mirrored in solid organ neoplasms. CAR T function has shown limited efficacy against brain tumors due to several factors including the immunosuppressive tumor microenvironment, blood-brain barrier, and tumor-antigen heterogeneity. Despite these considerations, CAR T-cell therapy has the potential to be implemented as a treatment modality for brain tumors. Here, we review adult and pediatric brain tumors, including glioblastoma, diffuse midline gliomas, and medulloblastomas that continue to portend a grim prognosis. We describe insights gained from different preclinical models using CAR T therapy against various brain tumors and results gathered from ongoing clinical trials. Furthermore, we outline the challenges limiting CAR T therapy success against brain tumors and summarize advancements made to overcome these obstacles.
Collapse
Affiliation(s)
- Grace Guzman
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | | | - Megan R Reed
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
34
|
Dianat-Moghadam H, Sharifi M, Salehi R, Keshavarz M, Shahgolzari M, Amoozgar Z. Engaging stemness improves cancer immunotherapy. Cancer Lett 2023; 554:216007. [PMID: 36396102 DOI: 10.1016/j.canlet.2022.216007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Intra-tumoral immune cells promote the stemness of cancer stem cells (CSCs) in the tumor microenvironment (TME). CSCs promote tumor progression, relapse, and resistance to immunotherapy. Cancer stemness induces the expression of neoantigens and neo-properties in CSCs, creating an opportunity for targeted immunotherapies. Isolation of stem-like T cells or retaining stemness in T clonotypes strategies produces exhaustion-resistance T cells with superior re-expansion capacity and long-lasting responses after adoptive cell therapies. Stem cells-derived NK cells may be the next generation of NK cell products for immunotherapy. Here, we have reviewed mechanisms by which stemness factors modulated the immunoediting of the TME and summarized the potentials of CSCs in the development of immunotherapy regimens, including CAR-T cells, CAR-NK cells, cancer vaccines, and monoclonal antibodies. We have discussed the natural or genetically engineered stem-like T cells and stem cell-derived NK cells with increased cytotoxicity to tumor cells. Finally, we have provided a perspective on approaches that may improve the therapeutic efficacy of these novel adoptive cell-based products in targeting immunosuppressive TME.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mehdi Shahgolzari
- Dental Implants Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zohreh Amoozgar
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
35
|
Huang Z, Dewanjee S, Chakraborty P, Jha NK, Dey A, Gangopadhyay M, Chen XY, Wang J, Jha SK. CAR T cells: engineered immune cells to treat brain cancers and beyond. Mol Cancer 2023; 22:22. [PMID: 36721153 PMCID: PMC9890802 DOI: 10.1186/s12943-022-01712-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023] Open
Abstract
Malignant brain tumors rank among the most challenging type of malignancies to manage. The current treatment protocol commonly entails surgery followed by radiotherapy and/or chemotherapy, however, the median patient survival rate is poor. Recent developments in immunotherapy for a variety of tumor types spark optimism that immunological strategies may help patients with brain cancer. Chimeric antigen receptor (CAR) T cells exploit the tumor-targeting specificity of antibodies or receptor ligands to direct the cytolytic capacity of T cells. Several molecules have been discovered as potential targets for immunotherapy-based targeting, including but not limited to EGFRvIII, IL13Rα2, and HER2. The outstanding clinical responses to CAR T cell-based treatments in patients with hematological malignancies have generated interest in using this approach to treat solid tumors. Research results to date support the astounding clinical response rates of CD19-targeted CAR T cells, early clinical experiences in brain tumors demonstrating safety and evidence for disease-modifying activity, and the promise for further advances to ultimately assist patients clinically. However, several variable factors seem to slow down the progress rate regarding treating brain cancers utilizing CAR T cells. The current study offers a thorough analysis of CAR T cells' promise in treating brain cancer, including design and delivery considerations, current strides in clinical and preclinical research, issues encountered, and potential solutions.
Collapse
Affiliation(s)
- Zoufang Huang
- grid.452437.3Department of Hematology, Ganzhou Key Laboratory of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Saikat Dewanjee
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Pratik Chakraborty
- grid.216499.10000 0001 0722 3459Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032 India
| | - Niraj Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| | - Abhijit Dey
- grid.412537.60000 0004 1768 2925Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700032 India
| | - Moumita Gangopadhyay
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat, Kolkata, West Bengal 700126 India
| | - Xuan-Yu Chen
- grid.264091.80000 0001 1954 7928Institute for Biotechnology, St. John’s University, Queens, New York, 11439 USA
| | - Jian Wang
- Department of Radiotherapy, the Affiliated Jiangyin People’s Hospital of Nantong University, Jiangyin, 214400 China
| | - Saurabh Kumar Jha
- grid.412552.50000 0004 1764 278XDepartment of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310 India ,grid.448792.40000 0004 4678 9721Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413 India ,grid.449906.60000 0004 4659 5193Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007 India
| |
Collapse
|
36
|
Abbott RC, Iliopoulos M, Watson KA, Arcucci V, Go M, Hughes-Parry HE, Smith P, Call MJ, Cross RS, Jenkins MR. Human EGFRvIII chimeric antigen receptor T cells demonstrate favorable safety profile and curative responses in orthotopic glioblastoma. Clin Transl Immunology 2023; 12:e1440. [PMID: 36890859 PMCID: PMC9986233 DOI: 10.1002/cti2.1440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 03/07/2023] Open
Abstract
Objectives Glioblastoma is a highly aggressive and fatal brain malignancy, and effective targeted therapies are required. The combination of standard treatments including surgery, chemotherapy and radiotherapy is not curative. Chimeric antigen receptor (CAR) T cells are known to cross the blood-brain barrier, mediating antitumor responses. A tumor-expressed deletion mutant of the epidermal growth factor receptor (EGFRvIII) is a robust CAR T cell target in glioblastoma. Here, we show our de novo generated, high-affinity EGFRvIII-specific CAR; GCT02, demonstrating curative efficacy in human orthotopic glioblastoma models. Methods The GCT02 binding epitope was predicted using Deep Mutational Scanning (DMS). GCT02 CAR T cell cytotoxicity was investigated in three glioblastoma models in vitro using the IncuCyte platform, and cytokine secretion with a cytometric bead array. GCT02 in vivo functionality was demonstrated in two NSG orthotopic glioblastoma models. The specificity profile was generated by measuring T cell degranulation in response to coculture with primary human healthy cells. Results The GCT02 binding location was predicted to be located at a shared region of EGFR and EGFRvIII; however, the in vitro functionality remained exquisitely EGFRvIII specific. A single CAR T cell infusion generated curative responses in two orthotopic models of human glioblastoma in NSG mice. The safety analysis further validated the specificity of GCT02 for mutant-expressing cells. Conclusion This study demonstrates the preclinical functionality of a highly specific CAR targeting EGFRvIII on human cells. This CAR could be an effective treatment for glioblastoma and warrants future clinical investigation.
Collapse
Affiliation(s)
- Rebecca C Abbott
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,The Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Melinda Iliopoulos
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Katherine A Watson
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Valeria Arcucci
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Margareta Go
- Structural Biology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Hannah E Hughes-Parry
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,The Department of Medical Biology University of Melbourne Parkville VIC Australia
| | - Pete Smith
- Myrio Therapeutics Blackburn North, Melbourne VIC Australia
| | - Melissa J Call
- The Department of Medical Biology University of Melbourne Parkville VIC Australia.,Structural Biology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Ryan S Cross
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Misty R Jenkins
- Immunology Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,The Department of Medical Biology University of Melbourne Parkville VIC Australia.,Department of Biochemistry and Chemistry Institute for Molecular Science, La Trobe University Bundoora VIC Australia
| |
Collapse
|
37
|
Wang Y, Zhang Z, Zhu Z, Wang P, Zhang J, Liu H, Li J. The significance of EphA2-regulated Wnt/β-catenin signal pathway in promoting the metastasis of HBV-related hepatocellular carcinoma. Mol Biol Rep 2023; 50:565-575. [PMID: 36350420 DOI: 10.1007/s11033-022-08045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is closely associated with the malignant progression of hepatocellular carcinoma (HCC). However, the mechanism involved in the HBV-related HCC development remains poorly understood. Hence, the aim of this study is to investigate the regulatory mechanism of EphA2-induced epithelial-mesenchymal transition (EMT) in the metastasis of HBV-related HCC cells. METHODS AND RESULTS The expression level of EphA2 was determined in HBV-related human HCC cells. Then, the effects of EphA2 silencing on the EMT-associated proteins, the Wnt/β-catenin signal pathway and the metastatic potential of HBV-related HCC cells were evaluated. Finally, the inhibitory role of Entecavir (a potent antiviral drug for HBV) on EphA2-induced EMT was explored. The present study revealed that the EphA2 expression level was increased in HBV-related HCC cells compared with non-related HCC cells. Following EphA2 knockdown, the downregulation of Vimentin, β-catenin and p-GSK-3βSer9 expressions, the upregulation of E-cadherin expression, and the suppressed migration and invasion ability of HBV-related HCC cells were found. Additionally, Entecavir was proved to have a significant inhibitory effect on EphA2-induced EMT via attenuating the Wnt/β-catenin signal pathway. CONCLUSIONS In this study, we found that EphA2-induced EMT was involved in the enhanced metastatic potential of HBV-related HCC cells through the activation of the Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Yidan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zhenting Zhang
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Zhengyan Zhu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Jinjuan Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Nankai University, Tianjin, 300170, China.
| | - Jianyu Li
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin, 300309, China.
| |
Collapse
|
38
|
Schmidts A, Srivastava AA, Ramapriyan R, Bailey SR, Bouffard AA, Cahill DP, Carter BS, Curry WT, Dunn GP, Frigault MJ, Gerstner ER, Ghannam JY, Kann MC, Larson RC, Leick MB, Nahed BV, Richardson LG, Scarfò I, Sun J, Wakimoto H, Maus MV, Choi BD. Tandem chimeric antigen receptor (CAR) T cells targeting EGFRvIII and IL-13Rα2 are effective against heterogeneous glioblastoma. Neurooncol Adv 2022; 5:vdac185. [PMID: 36751672 PMCID: PMC9896600 DOI: 10.1093/noajnl/vdac185] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T cells have achieved remarkable responses in patients with hematological malignancies; however, the potential of this therapeutic platform for solid tumors like glioblastoma (GBM) has been limited, due in large part to the targeting of single antigens in a heterogeneous disease. Strategies that allow CAR T cells to engage multiple antigens concomitantly may broaden therapeutic responses and mitigate the effects of immune escape. Methods Here we have developed a novel, dual-specific, tandem CAR T (TanCART) cell with the ability to simultaneously target both EGFRvIII and IL-13Rα2, two well-characterized tumor antigens that are frequently found on the surface of GBM cells but completely absent from normal brain tissues. We employed both standard immunological assays and multiple orthotopic preclinical models including patient-derived xenograft to demonstrate efficacy of this approach against heterogeneous tumors. Results Tandem CAR T cells displayed enhanced cytotoxicity in vitro against heterogeneous GBM populations, including patient-derived brain tumor cultures (P < .05). Compared to CAR T cells targeting single antigens, dual antigen engagement through the tandem construct was necessary to achieve long-term, complete, and durable responses in orthotopic murine models of heterogeneous GBM, including patient-derived xenografts (P < .05). Conclusions We demonstrate that TanCART is effective against heterogeneous tumors in the brain. These data lend further credence to the development of multi-specific CAR T cells in the treatment of GBM and other cancers.
Collapse
Affiliation(s)
- Andrea Schmidts
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ambike A Srivastava
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rishab Ramapriyan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie R Bailey
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - William T Curry
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew J Frigault
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth R Gerstner
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA (E.R.G.)
| | - Jack Y Ghannam
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Leland G Richardson
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Irene Scarfò
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Sun
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bryan D Choi
- Corresponding Author: Bryan D. Choi, MD, PhD, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, GRB 502, Boston, MA 02114, USA ()
| |
Collapse
|
39
|
Engineering naturally occurring CD7- T cells for the immunotherapy of hematological malignancies. Blood 2022; 140:2684-2696. [PMID: 35914226 PMCID: PMC9935551 DOI: 10.1182/blood.2021015020] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 12/30/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy targeting T-cell acute lymphoblastic leukemia (T-ALL) faces limitations such as antigen selection and limited T-cell persistence. CD7 is an attractive antigen for targeting T-ALL, but overlapping expression on healthy T cells leads to fratricide of CD7-CAR T cells, requiring additional genetic modification. We took advantage of naturally occurring CD7- T cells to generate CD7-CAR (CD7-CARCD7-) T cells. CD7-CARCD7- T cells exhibited a predominantly CD4+ memory phenotype and had significant antitumor activity upon chronic antigen exposure in vitro and in xenograft mouse models. Based on these encouraging results, we next explored the utility of CD7- T cells for the immunotherapy of CD19+ hematological malignancies. Direct comparison of nonselected (bulk) CD19-CAR and CD19-CARCD7- T cells revealed that CD19-CARCD7- T cells had enhanced antitumor activity compared with their bulk counterparts in vitro and in vivo. Lastly, to gain insight into the behavior of CD19-CAR T cells with low levels of CD7 gene expression (CD7lo) in humans, we mined single-cell gene and T-cell receptor (TCR) expression data sets from our institutional CD19-CAR T-cell clinical study. CD19-CARCD7lo T cells were present in the initial CD19-CAR T-cell product and could be detected postinfusion. Intriguingly, the only functional CD4+ CD19-CAR T-cell cluster observed postinfusion exhibited CD7lo expression. Additionally, samples from patients responsive to therapy had a higher proportion of CD7lo T cells than nonresponders (NCT03573700). Thus, CARCD7- T cells have favorable biological characteristics and may present a promising T-cell subset for adoptive cell therapy of T-ALL and other hematological malignancies.
Collapse
|
40
|
Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K. Glioma Stem Cells: Novel Data Obtained by Single-Cell Sequencing. Int J Mol Sci 2022; 23:14224. [PMID: 36430704 PMCID: PMC9694247 DOI: 10.3390/ijms232214224] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Glioma is the most common type of primary CNS tumor, composed of cells that resemble normal glial cells. Recent genetic studies have provided insight into the inter-tumoral heterogeneity of gliomas, resulting in the updated 2021 WHO classification of gliomas. Thorough understanding of inter-tumoral heterogeneity has already improved the prognosis and treatment outcomes of some types of gliomas. Currently, the challenge for researchers is to study the intratumoral cell heterogeneity of newly defined glioma subtypes. Cancer stem cells (CSCs) present in gliomas and many other tumors are an example of intratumoral heterogeneity of great importance. In this review, we discuss the modern concept of glioma stem cells and recent single-cell sequencing-driven progress in the research of intratumoral glioma cell heterogeneity. The particular emphasis was placed on the recently revealed variations of the cell composition of the subtypes of the adult-type diffuse gliomas, including astrocytoma, oligodendroglioma and glioblastoma. The novel data explain the inconsistencies in earlier glioma stem cell research and also provide insight into the development of more effective targeted therapy and the cell-based immunotherapy of gliomas. Separate sections are devoted to the description of single-cell sequencing approach and its role in the development of cell-based immunotherapies for glioma.
Collapse
Affiliation(s)
- Alisa Gisina
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Irina Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Yan Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Maxim Abakumov
- Drug Delivery Systems Laboratory, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexey Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Konstantin Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
41
|
Chatterjee A, Asija S, Yadav S, Purwar R, Goda JS. Clinical utility of CAR T cell therapy in brain tumors: Lessons learned from the past, current evidence and the future stakes. Int Rev Immunol 2022; 41:606-624. [PMID: 36191126 DOI: 10.1080/08830185.2022.2125963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
The unprecedented clinical success of Chimeric Antigen Receptor (CAR) T cell therapy in hematological malignancies has led researchers to study its role in solid tumors. Although, its utility in solid tumors especially in neuroblastoma has begun to emerge, preclinical studies of its efficacy in other solid tumors like osteosarcomas or gliomas has caught the attention of oncologist to be tried in clinical trials. Malignant high-grade brain tumors like glioblastomas or midline gliomas in children represent some of the most difficult malignancies to be managed with conventionally available therapeutics, while relapsed gliomas continue to have the most dismal prognosis due to limited therapeutic options. Innovative therapies such as CAR T cells could give an additional leverage to the treating oncologists by potentially improving outcomes and ameliorating the toxicity of the currently available therapies. Moreover, CAR T cell therapy has the potential to be integrated into the therapeutic paradigm for aggressive gliomas in the near future. In this review we discuss the challenges in using CAR T cell therapy in brain tumors, enumerate the completed and ongoing clinical trials of different types of CAR T cell therapy for different brain tumors with special emphasis on glioblastoma and also discuss the future role of CAR T cells in Brain tumors.
Collapse
Affiliation(s)
- Abhishek Chatterjee
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Sweety Asija
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Sandhya Yadav
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| | - Rahul Purwar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Jayant S Goda
- Department of Radiation Oncology, ACTREC, Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
42
|
Bunse L, Bunse T, Krämer C, Chih YC, Platten M. Clinical and Translational Advances in Glioma Immunotherapy. Neurotherapeutics 2022; 19:1799-1817. [PMID: 36303101 PMCID: PMC9723056 DOI: 10.1007/s13311-022-01313-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 02/06/2023] Open
Abstract
Gliomas are highly treatment refractory against immune checkpoint blockade, an immunotherapeutic modality that revolutionized therapy for many tumors. At the same time, technological innovation has dramatically accelerated the development of immunotherapeutic approaches such as personalized tumor-specific vaccine production, dendritic cell vaccine manufacture, patient-individual target selection and chimeric antigen receptor, and T cell receptor T cell manufacture. Here we review recent clinical and translational advances in glioma immunotherapy with a focus on targets and their cognate immune receptor derivates as well as concepts to improve intratumoral T cell effector functions.
Collapse
Affiliation(s)
- Lukas Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany
| | - Christopher Krämer
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yu-Chan Chih
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Michael Platten
- DKTK Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Mannheim, Germany.
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
43
|
Carnevale J, Shifrut E, Kale N, Nyberg WA, Blaeschke F, Chen YY, Li Z, Bapat SP, Diolaiti ME, O'Leary P, Vedova S, Belk J, Daniel B, Roth TL, Bachl S, Anido AA, Prinzing B, Ibañez-Vega J, Lange S, Haydar D, Luetke-Eversloh M, Born-Bony M, Hegde B, Kogan S, Feuchtinger T, Okada H, Satpathy AT, Shannon K, Gottschalk S, Eyquem J, Krenciute G, Ashworth A, Marson A. RASA2 ablation in T cells boosts antigen sensitivity and long-term function. Nature 2022; 609:174-182. [PMID: 36002574 PMCID: PMC9433322 DOI: 10.1038/s41586-022-05126-w] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 07/20/2022] [Indexed: 12/17/2022]
Abstract
The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.
Collapse
Affiliation(s)
- Julia Carnevale
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
| | - Eric Shifrut
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- The School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Department of Pathology Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Varda and Boaz Dotan Center for Advanced Therapies, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Nupura Kale
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yan Yi Chen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Sagar P Bapat
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Morgan E Diolaiti
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Patrick O'Leary
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shane Vedova
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Julia Belk
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Theodore L Roth
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Stefanie Bachl
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Alejandro Allo Anido
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Brooke Prinzing
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jorge Ibañez-Vega
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Shannon Lange
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dalia Haydar
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Marie Luetke-Eversloh
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Maelys Born-Bony
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Bindu Hegde
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Scott Kogan
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Tobias Feuchtinger
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Dr von Hauner Children's Hospital, University Hospital, LMU, Munich, Germany
| | - Hideho Okada
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, Stanford University, Stanford, CA, USA
| | - Kevin Shannon
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stephen Gottschalk
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
| | - Giedre Krenciute
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Alan Ashworth
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
44
|
Wang G, Wang W. Advanced Cell Therapies for Glioblastoma. Front Immunol 2022; 13:904133. [PMID: 36052072 PMCID: PMC9425637 DOI: 10.3389/fimmu.2022.904133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
The sheer ubiquity of Gioblastoma (GBM) cases would lead you to believe that there should have been many opportunities for the discovery of treatments to successfully render it into remission. Unfortunately, its persistent commonality is due in large part to the fact that it is the most treatment-resistant tumors in adults. That completely changes the treatment plan of attack. Long established and accepted treatment therapies such as surgical resection, radiation, and aggressive chemotherapy, (and any combination thereof) have only confirmed that the disease lives up to its treatment-resistant reputation. To add to the seemingly insurmountable task of finding a cure, GBM has also proven to be a very stubborn and formidable opponent to newer immunotherapies. Across the board, regardless of the therapy combination, the five-year survival rate of GBM patients is still very poor at a heartbreaking 5.6%. Obviously, the present situation cannot be tolerated or deemed acceptable. The grave situation calls for researchers to be more innovative and find more efficient strategies to discover new and successful strategies to treat GBM. Inspired by researchers worldwide attempting to control GBM, we provide in this review a comprehensive overview of the many diverse cell therapies currently being used to treat GBM. An overview of the treatments include: CAR T cells, CAR NK cells, gamma-delta T cells, NKT cells, dendritic cells, macrophages, as well stem cell-based strategies. To give you the complete picture, we will discuss the efficacy, safety, and developmental stages, the mechanisms of action and the challenges of each of these therapies and detail their potential to be the next-generation immunotherapeutic to eliminate this dreadful disease.
Collapse
Affiliation(s)
- Guangwen Wang
- BlueRock Therapeutics, Department of Process Development, Cambridge, MA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| | - Wenshi Wang
- Metagenomi Inc., Department of Cell Therapy, Emeryville, CA, United States
- *Correspondence: Wenshi Wang, ; Guangwen Wang,
| |
Collapse
|
45
|
Jogalekar MP, Rajendran RL, Khan F, Dmello C, Gangadaran P, Ahn BC. CAR T-Cell-Based gene therapy for cancers: new perspectives, challenges, and clinical developments. Front Immunol 2022; 13:925985. [PMID: 35936003 PMCID: PMC9355792 DOI: 10.3389/fimmu.2022.925985] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy is a progressive new pillar in immune cell therapy for cancer. It has yielded remarkable clinical responses in patients with B-cell leukemia or lymphoma. Unfortunately, many challenges remain to be addressed to overcome its ineffectiveness in the treatment of other hematological and solidtumor malignancies. The major hurdles of CAR T-cell therapy are the associated severe life-threatening toxicities such as cytokine release syndrome and limited anti-tumor efficacy. In this review, we briefly discuss cancer immunotherapy and the genetic engineering of T cells and, In detail, the current innovations in CAR T-cell strategies to improve efficacy in treating solid tumors and hematologic malignancies. Furthermore, we also discuss the current challenges in CAR T-cell therapy and new CAR T-cell-derived nanovesicle therapy. Finally, strategies to overcome the current clinical challenges associated with CAR T-cell therapy are included as well.
Collapse
Affiliation(s)
- Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
46
|
Zhang P, Zhang Y, Ji N. Challenges in the Treatment of Glioblastoma by Chimeric Antigen Receptor T-Cell Immunotherapy and Possible Solutions. Front Immunol 2022; 13:927132. [PMID: 35874698 PMCID: PMC9300859 DOI: 10.3389/fimmu.2022.927132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Glioblastoma (GBM), one of the most lethal brain cancers in adults, accounts for 48.6% of all malignant primary CNS tumors diagnosed each year. The 5-year survival rate of GBM patients remains less than 10% even after they receive the standard-of-care treatment, including maximal safe resection, adjuvant radiation, and chemotherapy with temozolomide. Therefore, new therapeutic modalities are urgently needed for this deadly cancer. The last decade has witnessed great advances in chimeric antigen receptor T (CAR-T) cell immunotherapy for the treatment of hematological malignancies. Up to now, the US FDA has approved six CAR-T cell products in treating hematopoietic cancers including B-cell acute lymphoblastic leukemia, lymphoma, and multiple myeloma. Meanwhile, the number of clinical trials on CAR-T cell has increased significantly, with more than 80% from China and the United States. With its achievements in liquid cancers, the clinical efficacy of CAR-T cell therapy has also been explored in a variety of solid malignancies that include GBMs. However, attempts to expand CAR-T cell immunotherapy in GBMs have not yet presented promising results in hematopoietic malignancies. Like other solid tumors, CAR-T cell therapies against GBM still face several challenges, such as tumor heterogeneity, tumor immunosuppressive microenvironment, and CAR-T cell persistence. Hence, developing strategies to overcome these challenges will be necessary to accelerate the transition of CAR-T cell immunotherapy against GBMs from bench to bedside.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
- *Correspondence: Nan Ji,
| |
Collapse
|
47
|
Lin YJ, Mashouf LA, Lim M. CAR T Cell Therapy in Primary Brain Tumors: Current Investigations and the Future. Front Immunol 2022; 13:817296. [PMID: 35265074 PMCID: PMC8899093 DOI: 10.3389/fimmu.2022.817296] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
Chimeric antigen receptor T cells (CAR T cells) are engineered cells expressing a chimeric antigen receptor (CAR) against a specific tumor antigen (TA) that allows for the identification and elimination of cancer cells. The remarkable clinical effect seen with CAR T cell therapies against hematological malignancies have attracted interest in developing such therapies for solid tumors, including brain tumors. Glioblastoma (GBM) is the most common primary brain tumor in adults and is associated with poor prognosis due to its highly aggressive nature. Pediatric brain cancers are similarly aggressive and thus are a major cause of pediatric cancer-related death. CAR T cell therapy represents a promising avenue for therapy against these malignancies. Several specific TAs, such as EGFR/EGFRvIII, IL13Rα2, B7-H3, and HER2, have been targeted in preclinical studies and clinical trials. Unfortunately, CAR T cells against brain tumors have showed limited efficacy due to TA heterogeneity, difficulty trafficking from blood to tumor sites, and the immunosuppressive tumor microenvironment. Here, we review current CAR T cell approaches in treating cancers, with particular focus on brain cancers. We also describe a novel technique of focused ultrasound controlling the activation of engineered CAR T cells to achieve the safer cell therapies. Finally, we summarize the development of combinational strategies to improve the efficacy and overcome historical limitations of CAR T cell therapy.
Collapse
Affiliation(s)
- Ya-Jui Lin
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Leila A Mashouf
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States.,Harvard Medical School, Boston, MA, United States
| | - Michael Lim
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
48
|
Dianat-Moghadam H, Mahari A, Salahlou R, Khalili M, Azizi M, Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res Ther 2022; 13:150. [PMID: 35395787 PMCID: PMC8994338 DOI: 10.1186/s13287-022-02829-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Exploration of tumor immunity leads to the development of immune checkpoint inhibitors and cell-based immunotherapies which improve the clinical outcomes in several tumor types. However, the poor clinical efficacy of these treatments observed for other tumors could be attributed to the inherent complex tumor microenvironment (TME), cellular heterogeneity, and stemness driven by cancer stem cells (CSCs). CSC-specific characteristics provide the bulk tumor surveillance and resistance to entire eradication upon conventional therapies. CSCs-immune cells crosstalk creates an immunosuppressive TME that reshapes the stemness in tumor cells, resulting in tumor formation and progression. Thus, identifying the immunological features of CSCs could introduce the therapeutic targets with powerful antitumor responses. In this review, we summarized the role of immune cells providing CSCs to evade tumor immunity, and then discussed the intrinsic mechanisms represented by CSCs to promote tumors' resistance to immunotherapies. Then, we outlined potent immunotherapeutic interventions followed by a perspective outlook on the use of nanomedicine-based drug delivery systems for controlled modulation of the immune system.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amir Mahari
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Reza Salahlou
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mehdi Azizi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Sadeghzadeh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Huang Q, Wang D, Yao G, Wang H. Impact of General Factors on Glioma Immunotherapy. J Clin Neurol 2022; 18:3-13. [PMID: 35021271 PMCID: PMC8762502 DOI: 10.3988/jcn.2022.18.1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/17/2022] Open
Abstract
Glioma remains the most common malignant tumor in the brain and is also the most difficult to treat. Immunotherapy achieving long-lasting tumor remission in multiple cancer types has received considerable attention due to its potential to improve the treatment outcomes of patients with glioma. However, clinical trials have not yet demonstrated major improvements in prognoses, which might be attributable to the extrinsic components and intrinsic mechanisms involved in the tumor microenvironment and immune system. It is particularly noteworthy that there is emerging evidence that current routine treatment modalities and the physical and psychological characteristics of patients have different impacts on the efficacy of glioma immunotherapy. This article addresses how these factors interact with the host immune system and tumor microenvironment, and highlights their potential roles in glioma immunotherapy, with the ultimate goal of developing better immunotherapy-based personalized medicine strategies.
Collapse
Affiliation(s)
- Qilin Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China
| | - Dongmei Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Guojie Yao
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People's Liberation Army, Wuhan, China.
| | - Hongxiang Wang
- Department of Neurosurgery, Changhai Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
50
|
Mahmoud AB, Ajina R, Aref S, Darwish M, Alsayb M, Taher M, AlSharif SA, Hashem AM, Alkayyal AA. Advances in immunotherapy for glioblastoma multiforme. Front Immunol 2022; 13:944452. [PMID: 36311781 PMCID: PMC9597698 DOI: 10.3389/fimmu.2022.944452] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor of the central nervous system and has a very poor prognosis. The current standard of care for patients with GBM involves surgical resection, radiotherapy, and chemotherapy. Unfortunately, conventional therapies have not resulted in significant improvements in the survival outcomes of patients with GBM; therefore, the overall mortality rate remains high. Immunotherapy is a type of cancer treatment that helps the immune system to fight cancer and has shown success in different types of aggressive cancers. Recently, healthcare providers have been actively investigating various immunotherapeutic approaches to treat GBM. We reviewed the most promising immunotherapy candidates for glioblastoma that have achieved encouraging results in clinical trials, focusing on immune checkpoint inhibitors, oncolytic viruses, nonreplicating viral vectors, and chimeric antigen receptor (CAR) immunotherapies.
Collapse
Affiliation(s)
- Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| | - Reham Ajina
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sarah Aref
- King Abdullah International Medical Research Centre, King Saud University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Manar Darwish
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - May Alsayb
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Mustafa Taher
- College of Applied Medical Sciences, Taibah University, Almadinah Almunwarah, Saudi Arabia
- Strategic Research and Innovation Laboratories, Taibah University, Almadinah Almunwarah, Saudi Arabia
| | - Shaker A. AlSharif
- King Fahad Hospital, Ministry of Health, Almadinah Almunwarah, Saudi Arabia
| | - Anwar M. Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center; King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Almohanad A. Alkayyal
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
- Immunology Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- *Correspondence: Ahmad Bakur Mahmoud, ; Almohanad A. Alkayyal,
| |
Collapse
|