1
|
Rghei AD, Yates JGE, Lopes JA, Zhan X, Guilleman MM, Pei Y, van Lieshout LP, Santry LA, Bridle BW, Karimi K, Thompson B, Susta L, Crowe JE, Wootton SK. Antibody-based protection against respiratory syncytial virus in mice and their offspring through vectored immunoprophylaxis. Gene Ther 2025; 32:38-49. [PMID: 36732618 DOI: 10.1038/s41434-023-00385-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) causes acute lower respiratory tract infections, with potential lower respiratory tract infections, which can be particularly problematic in infants and the elderly. There are no approved vaccines for RSV. The current standard of care for high-risk individuals is monthly administration of palivizumab, a humanized murine monoclonal antibody (mAb) targeting the RSV fusion protein. Adeno-associated virus (AAV)-mediated expression of mAbs has previously led to sustained expression of therapeutic concentrations of mAbs in several animal models, representing an alternative to repetitive passive administration. Intramuscular (IM) administration of AAV6.2FF expressing RSV antibodies, palivizumab or hRSV90, resulted in high concentrations of human (h)IgG1 mAbs in the serum and at various mucosal surfaces, while intranasal administration limited hIgG expression to the respiratory tract. IM administration of AAV6.2FF-hRSV90 or AAV6.2FF-palivizumab in a murine model provided sterilizing immunity against challenge with RSV A2. Evidence of maternal passive transfer of vectorized hRSV90 was detected in both murine and ovine models, with circulating mAbs providing sterilizing immunity in mouse progeny. Finally, addition of a "kill switch" comprised of LoxP sites flanking the mAb genes resulted in diminished serum hIgG after AAV-DJ-mediated delivery of Cre recombinase to the same muscle group that was originally transduced with the AAV-mAb vector. The ability of this AAV-mAb system to mediate robust, sustained mAb expression for maternal transfer to progeny in murine and ovine models emphasizes the potential of this platform for use as an alternative prophylactic vaccine for protection against neonatal infections, particularly in high-risk infants.
Collapse
Affiliation(s)
- Amira D Rghei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jacob G E Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Jordyn A Lopes
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Xuiaoyan Zhan
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, 37232-0417, USA
| | - Matthew M Guilleman
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Yanlong Pei
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Lisa A Santry
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Leonardo Susta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University, Nashville, TN, 37232-0417, USA
| | - Sarah K Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
2
|
Bhagat M, Kamal R, Sharma J, Kaur K, Sharma A, Singh TG, Bhatia R, Awasthi A. Gene Therapy: Towards a New Era of Medicine. AAPS PharmSciTech 2024; 26:17. [PMID: 39702810 DOI: 10.1208/s12249-024-03010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Over the past years, many significant advances have been made in the field of gene therapy and shown promising results in clinical trials conducted. Gene therapy aims at modifying or replacing a defective, inefficient, or nonfunctional gene with a healthy, functional gene by administration of genome material into the cell to cure genetic diseases. Various methods have been devised to do this by using several viral and non-viral vectors which are either administered by in vivo or ex vivo technique. Viral vectors are best suitable for this therapy due to their potential to invade cells and deliver their genetic material whereas non-viral vectors are less efficient than viral vectors but possess some advantages such as less immunogenic response and large gene carrying capacity. Recent advances in biotechnology such as CRISPR-Cas9 mediated genome engineering and Cancer treatment with Chimeric antigen receptor (CAR) T-cell therapy are addressed in this review. This review article also delves into some recent research studies, gene therapy trials, and its applications, laying out future hopes for gene therapy in the treatment of various diseases namely haemophilia, Muscular dystrophy, SCID, Sickle cell disease, Familial Hypercholesterolemia, Cystic Fibrosis. Additionally, it also includes various nanoformulations and clinical trial data related to gene therapy.
Collapse
Affiliation(s)
- Mokshit Bhagat
- Bachlor of Pharmacy, I.S.F College of Pharmacy, Moga, Punjab, India
| | - Raj Kamal
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, 147301, India
| | - Jyoti Sharma
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India
| | - Amit Sharma
- Department of Pharmaceutics, I.S. F College of Pharmacy, Moga, Punjab, India.
| | | | - Rohit Bhatia
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Awasthi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
3
|
Zhao L, Yang Z, Zheng M, Shi L, Gu M, Liu G, Miao F, Chang Y, Huang F, Tang N. Recombinant adeno-associated virus 8 vector in gene therapy: Opportunities and challenges. Genes Dis 2024; 11:283-293. [PMID: 37588223 PMCID: PMC10425794 DOI: 10.1016/j.gendis.2023.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/26/2022] [Accepted: 02/08/2023] [Indexed: 04/09/2023] Open
Abstract
In recent years, significant breakthroughs have been made in the field of gene therapy. Adeno-associated virus (AAV) is one of the most promising gene therapy vectors and a powerful tool for delivering the gene of interest. Among the AAV vectors, AAV serotype 8 (AAV8) has attracted much attention for its efficient and stable gene transfection into specific tissues. Currently, recombinant AAV8 has been widely used in gene therapy research on a variety of diseases, including genetic diseases, cancers, autoimmune diseases, and viral diseases. This paper reviewed the applications and challenges of using AAV8 as a vector for gene therapy, with the aim of providing a valuable resource for those pursuing the application of viral vectors in gene therapy.
Collapse
Affiliation(s)
- Liyuan Zhao
- Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230000, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Zixuan Yang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Minhui Zheng
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Lei Shi
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Mengyun Gu
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Gang Liu
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Feng Miao
- InnoStar Bio-tech Nantong Co., Ltd., Nantong, Jiangsu 226133, China
| | - Yan Chang
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Fanghua Huang
- Center for Drug Evaluation, National Medical Products Administration, Beijing 100022, China
| | - Naping Tang
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, Jiangsu 226133, China
- Shanghai Innostar Bio-Technology Co., Ltd, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
4
|
Arjomandnejad M, Dasgupta I, Flotte TR, Keeler AM. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023; 37:311-329. [PMID: 36862289 PMCID: PMC9979149 DOI: 10.1007/s40259-023-00585-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/03/2023]
Abstract
Recombinant adeno-associated viruses (AAVs) have emerged as promising gene delivery vehicles resulting in three US Food and Drug Administration (FDA) and one European Medicines Agency (EMA)-approved AAV-based gene therapies. Despite being a leading platform for therapeutic gene transfer in several clinical trials, host immune responses against the AAV vector and transgene have hampered their widespread application. Multiple factors, including vector design, dose, and route of administration, contribute to the overall immunogenicity of AAVs. The immune responses against the AAV capsid and transgene involve an initial innate sensing. The innate immune response subsequently triggers an adaptive immune response to elicit a robust and specific response against the AAV vector. AAV gene therapy clinical trials and preclinical studies provide important information about the immune-mediated toxicities associated with AAV, yet studies suggest preclinical models fail to precisely predict the outcome of gene delivery in humans. This review discusses the contribution of the innate and adaptive immune response against AAVs, highlighting the challenges and potential strategies to mitigate these responses, thereby enhancing the therapeutic potential of AAV gene therapy.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Ishani Dasgupta
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, 386 Plantation Street, Worcester, MA, 01605, USA.
- Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Shen W, Liu S, Ou L. rAAV immunogenicity, toxicity, and durability in 255 clinical trials: A meta-analysis. Front Immunol 2022; 13:1001263. [PMID: 36389770 PMCID: PMC9647052 DOI: 10.3389/fimmu.2022.1001263] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Recombinant Adeno-associated virus (rAAV) is one of the main delivery vectors for gene therapy. To assess immunogenicity, toxicity, and features of AAV gene therapy in clinical settings, a meta-analysis of 255 clinical trials was performed. A total of 7,289 patients are planned to be dosed. AAV2 was the most dominantly used serotype (29.8%, n=72), and 8.3% (n=20) of trials used engineered capsids. 38.7% (n=91) of trials employed neutralizing antibody assays for patient enrollment, while 15.3% (n=36) used ELISA-based total antibody assays. However, there was high variability in the eligibility criteria with cut-off tiers ranging from 1:1 to 1:1,600. To address potential immunogenicity, 46.3% (n=118) of trials applied immunosuppressants (prophylactic or reactive), while 32.7% (n=18) of CNS and 37.5% (n=24) of ocular-directed trials employed immunosuppressants, possibly due to the immune-privileged status of CNS and retina. There were a total of 11 patient deaths across 8 trials, and 18 out of 30 clinical holds were due to toxicity findings in clinical studies. 30.6% (n=78) of trials had treatment-emergent serious adverse events (TESAEs), with hepatotoxicity and thrombotic microangiopathy (systemic delivery) and neurotoxicity (CNS delivery) being the most prominent. Additionally, the durability of gene therapy may be impacted by two distinct decline mechanisms: 1) rapid decline presumably due to immune responses; or 2) gradual decline due to vector dilution. The durability varied significantly depending on disease indication, dose, serotypes, and patient individuals. Most CNS (90.0%) and muscle trials (73.3%) achieved durable transgene expression, while only 43.6% of ocular trials had sustained clinical outcomes. The rAAV production system can affect rAAV quality and thus immunogenicity and toxicity. Out of 186 trials that have disclosed production system information, 63.0% (n=126) of trials used the transient transfection of the HEK293/HEK293T system, while 18.0% (n=36) applied the baculovirus/Sf9 (rBac/Sf9) system. There were no significant differences in TESAEs and durability between AAV generated by rBac/Sf9 and HEK293/HEK293T systems. In summary, rAAV immunogenicity and toxicity poses significant challenges for clinical development of rAAV gene therapies, and it warrants collaborative efforts to standardize monitoring/measurement methods, design novel strategies to overcome immune responses, and openly share relevant information.
Collapse
Affiliation(s)
| | | | - Li Ou
- 3Genemagic Biosciences, Wallingford, PA, United States,4Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Li Ou,
| |
Collapse
|
6
|
Serotype-specific transduction of canine joint tissue explants and cultured monolayers by self-complementary adeno-associated viral vectors. Gene Ther 2022; 30:398-404. [PMID: 36261499 DOI: 10.1038/s41434-022-00366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
A formal screening of self-complementary adeno-associated virus (scAAV) vector serotypes in canine joint tissues has not been performed to date. Selecting appropriate serotypes is crucial for successful treatment due to their varying levels of tissue tropism. The objective of this study is to identify the most optimal scAAV vector serotype that maximizes transduction efficiencies in canine cell monolayer cultures (chondrocytes, synoviocytes, and mesenchymal stem cells) and tissue explant cultures (cartilage and synovium). Transduction efficiencies of scAAV serotypes 1, 2, 2.5, 3, 4, 5, 6, 8, and 9 were evaluated in each culture type in three different vector concentrations by encoding a green fluorescent protein. It was found that scAAV2 and 2.5 showed the overall highest transduction efficiency among serotypes with dose-response. Since possible immune response against conventional AAV2 was previously reported in dogs, the chimeric scAAV2.5 may be more suitable to use. Evaluation of the safety and efficacy of the scAAV2.5 vector with an appropriate therapeutic gene in vivo is indicated.
Collapse
|
7
|
Li X, Wei X, Lin J, Ou L. A versatile toolkit for overcoming AAV immunity. Front Immunol 2022; 13:991832. [PMID: 36119036 PMCID: PMC9479010 DOI: 10.3389/fimmu.2022.991832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus (AAV) is a promising delivery vehicle for in vivo gene therapy and has been widely used in >200 clinical trials globally. There are already several approved gene therapy products, e.g., Luxturna and Zolgensma, highlighting the remarkable potential of AAV delivery. In the past, AAV has been seen as a relatively non-immunogenic vector associated with low risk of toxicity. However, an increasing number of recent studies indicate that immune responses against AAV and transgene products could be the bottleneck of AAV gene therapy. In clinical studies, pre-existing antibodies against AAV capsids exclude many patients from receiving the treatment as there is high prevalence of antibodies among humans. Moreover, immune response could lead to loss of efficacy over time and severe toxicity, manifested as liver enzyme elevations, kidney injury, and thrombocytopenia, resulting in deaths of non-human primates and patients. Therefore, extensive efforts have been attempted to address these issues, including capsid engineering, plasmapheresis, IgG proteases, CpG depletion, empty capsid decoy, exosome encapsulation, capsid variant switch, induction of regulatory T cells, and immunosuppressants. This review will discuss these methods in detail and highlight important milestones along the way.
Collapse
Affiliation(s)
- Xuefeng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Shenzhen Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaoli Wei
- Guangzhou Dezheng Biotechnology Co., Ltd., Guangzhou, China
| | - Jinduan Lin
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital; State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Li Ou
- Genemagic Biosciences, Philadelphia, PA, United States
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Li Ou,
| |
Collapse
|
8
|
Gross DA, Tedesco N, Leborgne C, Ronzitti G. Overcoming the Challenges Imposed by Humoral Immunity to AAV Vectors to Achieve Safe and Efficient Gene Transfer in Seropositive Patients. Front Immunol 2022; 13:857276. [PMID: 35464422 PMCID: PMC9022790 DOI: 10.3389/fimmu.2022.857276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
One of the major goals of in vivo gene transfer is to achieve long-term expression of therapeutic transgenes in terminally differentiated cells. The extensive clinical experience and the recent approval of Luxturna® (Spark Therapeutics, now Roche) and Zolgensma® (AveXis, now Novartis) place vectors derived from adeno-associated viruses (AAV) among the best options for gene transfer in multiple tissues. Despite these successes, limitations remain to the application of this therapeutic modality in a wider population. AAV was originally identified as a promising virus to derive gene therapy vectors because, despite infecting humans, it was not associated with any evident disease. Thee large proportion of AAV infections in the human population is now revealing as a limitation because after exposure to wild-type AAV, anti-AAV antibodies develops and may neutralize the vectors derived from the virus. Injection of AAV in humans is generally well-tolerated although the immune system can activate after the recognition of AAV vectors capsid and genome. The formation of high-titer neutralizing antibodies to AAV after the first injection precludes vector re-administration. Thus, both pre-existing and post-treatment humoral responses to AAV vectors greatly limit a wider application of this gene transfer modality. Different methods were suggested to overcome this limitation. The extensive preclinical data available and the large clinical experience in the control of AAV vectors immunogenicity are key to clinical translation and to demonstrate the safety and efficacy of these methods and ultimately bring a curative treatment to patients.
Collapse
Affiliation(s)
- David-Alexandre Gross
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Novella Tedesco
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Christian Leborgne
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| | - Giuseppe Ronzitti
- Genethon, Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, Evry, France
| |
Collapse
|
9
|
Shao W, Sun J, Chen X, Dobbins A, Merricks EP, Samulski RJ, Nichols TC, Li C. Chimeric Mice Engrafted With Canine Hepatocytes Exhibits Similar AAV Transduction Efficiency to Hemophilia B Dog. Front Pharmacol 2022; 13:815317. [PMID: 35173619 PMCID: PMC8841897 DOI: 10.3389/fphar.2022.815317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated virus (AAV) mediated gene therapy has been successfully applied in clinical trials, including hemophilia. Novel AAV vectors have been developed with enhanced transduction and specific tissue tropism. Considering the difference in efficacy of AAV transduction between animal models and patients, the chimeric xenograft mouse model with human hepatocytes has unique advantages of studying AAV transduction efficiency in human hepatocytes. However, it is unclear whether the results in humanized mice can predict AAV transduction efficiency in human hepatocytes. To address this issue, we studied the AAV transduction efficacy in canine hepatocytes in both canine hepatocyte xenografted mice and real dogs. After administration of AAV vectors from different serotypes into canine hepatocyte xenograft mice, AAV8 induced the best canine hepatocyte transduction followed by AAV9, then AAV3, 7, 5 and 2. After administration of AAV/cFIX (cFIX-opt-R338L) vectors in hemophilia B dogs, consistent with the result in chimeric mice, AAV8 induced the highest cFIX protein expression and function, followed by AAV9 and then AAV2. These results suggest that mice xenografted with hepatocytes from different species could be used to predict the AAV liver transduction in real species and highlight this potential platform to explore novel AAV variants for future clinical applications.
Collapse
Affiliation(s)
- Wenwei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.,Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Junjiang Sun
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xiaojing Chen
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Amanda Dobbins
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Elizabeth P Merricks
- Department of Pathology and Laboratory Medicine and The Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Timothy C Nichols
- Department of Pathology and Laboratory Medicine and The Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
10
|
Arjomandnejad M, Sylvia K, Blackwood M, Nixon T, Tang Q, Muhuri M, Gruntman AM, Gao G, Flotte TR, Keeler AM. Modulating immune responses to AAV by expanded polyclonal T-regs and capsid specific chimeric antigen receptor T-regulatory cells. Mol Ther Methods Clin Dev 2021; 23:490-506. [PMID: 34853797 PMCID: PMC8605179 DOI: 10.1016/j.omtm.2021.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/13/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
Immune responses to adeno-associated virus (AAV) capsids limit the therapeutic potential of AAV gene therapy. Herein, we model clinical immune responses by generating AAV capsid-specific chimeric antigen receptor (AAV-CAR) T cells. We then modulate immune responses to AAV capsid with AAV-CAR regulatory T cells (Tregs). AAV-CAR Tregs in vitro display phenotypical Treg surface marker expression, and functional suppression of effector T cell proliferation and cytotoxicity. In mouse models, AAV-CAR Tregs mediated continued transgene expression from an immunogenic capsid, despite antibody responses, produced immunosuppressive cytokines, and decreased tissue inflammation. AAV-CAR Tregs are also able to bystander suppress immune responses to immunogenic transgenes similarly mediating continued transgene expression, producing immunosuppressive cytokines, and reducing tissue infiltration. Taken together, AAV-CAR T cells and AAV-CAR Tregs are directed and powerful immunosuppressive tools to model and modulate immune responses to AAV capsids and transgenes in the local environment.
Collapse
Affiliation(s)
- Motahareh Arjomandnejad
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Katelyn Sylvia
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Meghan Blackwood
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Thomas Nixon
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Qiushi Tang
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Manish Muhuri
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Alisha M Gruntman
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Clinical Sciences, Cummings School of Veterinary Medicine at Tufts University, Grafton, MA 01536, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Terence R Flotte
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Allison M Keeler
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Department of Pediatrics, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
11
|
Zhang F, Zong X, Zhou X, Sun S, Xiao X, Sun J. Naive haemophilia mice displayed different pattern of cytokine profiles of cytokine profiles changes might be associated with subclinical bleeding. Blood Coagul Fibrinolysis 2021; 32:584-590. [PMID: 34693916 DOI: 10.1097/mbc.0000000000001086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Subclinical bleeding is a haemorrhage event not clinically detected in haemophilia, and no reliable method is available for predicting subclinical bleeding. We investigated whether haemophilia mice have subclinical haemorrhage and evaluated potential biomarkers including multiple cytokine changes to predict subclinical haemorrhage. Plasma from naïve FVIII-/- and FIX-/- mice and their wild-type counterparts (FVIII WT and FIX WT, respectively) were measured for prothrombin fragment 1 + 2 (F1 + 2) and multiple cytokines. Haemophilia mice with induced hemarthrosis were used as positive clinical bleeding controls. Naive haemophilia mice that displayed higher levels than positive bleeding control were counted. Univariate and multivariate analyses of cytokines were performed. Compared with wild-type mice (FVIII WT 1.1-6.2 vs. FIX WT 2.7-6.7 pmol/l), F1 + 2 widely varied in both haemophilia mouse strains (FVIII-/- 3.7-25.7 vs. FIX-/- 2.7-15.7 pmol/l). Each cytokine varied widely in both naive haemophilia A and B mice, but not significantly, for most cytokines. In comparison to haemophilia mice with hemarthrosis bleeding challenge, naive FVIII-/- mice had elevated pro-inflammatory cytokines and FIX-/- mice had elevated anti-inflammatory cytokines. In addition, interleukin (IL)-4, followed by IL-1, IL-6, TNF-α and MIP-1α in FVIII-/- mice and MIP-1α, followed by IL-1, IL-10 in FVIII-/- mice exhibited significant differences potentially associated with potential subclinical bleeding. Naive haemophilia mice showed elevated pro-inflammatory cytokines with different patterns, represented by pro-inflammatory cytokine elevation in more naïve FVIII-/- mice and more anti-inflammatory cytokines in FIX-/- mice.
Collapse
Affiliation(s)
| | - Xiaoying Zong
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyue Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | | | - Xiao Xiao
- School of Biotechnology
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junjiang Sun
- Gene Therapy Center
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
12
|
Rapti K, Grimm D. Adeno-Associated Viruses (AAV) and Host Immunity - A Race Between the Hare and the Hedgehog. Front Immunol 2021; 12:753467. [PMID: 34777364 PMCID: PMC8586419 DOI: 10.3389/fimmu.2021.753467] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viruses (AAV) have emerged as the lead vector in clinical trials and form the basis for several approved gene therapies for human diseases, mainly owing to their ability to sustain robust and long-term in vivo transgene expression, their amenability to genetic engineering of cargo and capsid, as well as their moderate toxicity and immunogenicity. Still, recent reports of fatalities in a clinical trial for a neuromuscular disease, although linked to an exceptionally high vector dose, have raised new caution about the safety of recombinant AAVs. Moreover, concerns linger about the presence of pre-existing anti-AAV antibodies in the human population, which precludes a significant percentage of patients from receiving, and benefitting from, AAV gene therapies. These concerns are exacerbated by observations of cellular immune responses and other adverse events, including detrimental off-target transgene expression in dorsal root ganglia. Here, we provide an update on our knowledge of the immunological and molecular race between AAV (the “hedgehog”) and its human host (the “hare”), together with a compendium of state-of-the-art technologies which provide an advantage to AAV and which, thus, promise safer and more broadly applicable AAV gene therapies in the future.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.,BioQuant Center, BQ0030, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF) and German Center for Cardiovascular Research Deutsches Zentrum für Herz-Kreislauf-Erkrankungen (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Discussing investigational AAV gene therapy with hemophilia patients: A guide. Blood Rev 2021; 47:100759. [DOI: 10.1016/j.blre.2020.100759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 01/19/2023]
|
14
|
Gupta V, Lourenço SP, Hidalgo IJ. Development of Gene Therapy Vectors: Remaining Challenges. J Pharm Sci 2021; 110:1915-1920. [DOI: 10.1016/j.xphs.2020.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
|
15
|
Peters CW, Maguire CA, Hanlon KS. Delivering AAV to the Central Nervous and Sensory Systems. Trends Pharmacol Sci 2021; 42:461-474. [PMID: 33863599 DOI: 10.1016/j.tips.2021.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
As gene therapy enters mainstream medicine, it is more important than ever to have a grasp of exactly how to leverage it for maximum benefit. The development of new targeting strategies and tools makes treating patients with genetic diseases possible. Many Mendelian disorders are amenable to gene replacement or correction. These often affect post-mitotic tissues, meaning that a single stably expressing therapy can be applied. Recent years have seen the development of a large number of novel viral vectors for delivering specific therapies. These new vectors - predominately recombinant adeno-associated virus (AAV) variants - target nervous tissues with differing efficiencies. This review gives an overview of current gene therapies in the brain, ear, and eye, and describes the optimal approaches, depending on cell type and transgene. Overall, this work aims to serve as a primer for gene therapy in the central nervous and sensory systems.
Collapse
Affiliation(s)
- Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
16
|
Ilyinskii PO, Michaud AM, Roy CJ, Rizzo GL, Elkins SL, Capela T, Chowdhury AC, Leung SS, Kishimoto TK. Enhancement of liver-directed transgene expression at initial and repeat doses of AAV vectors admixed with ImmTOR nanoparticles. SCIENCE ADVANCES 2021; 7:7/9/eabd0321. [PMID: 33627416 PMCID: PMC7904260 DOI: 10.1126/sciadv.abd0321] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/12/2021] [Indexed: 05/04/2023]
Abstract
Systemic AAV (adeno-associated virus) gene therapy is a promising approach for the treatment of inborn errors of metabolism, but questions remain regarding its potency and durability. Tolerogenic ImmTOR nanoparticles encapsulating rapamycin have been shown to block the formation of neutralizing anti-capsid antibodies, thereby enabling vector re-administration. Here, we further demonstrate that ImmTOR admixed with AAV vectors also enhances hepatic transgene expression at the initial dose of AAV vector, independent of its effects on adaptive immunity. ImmTOR enhances AAV trafficking to the liver, resulting in increased hepatic vector copy numbers and transgene mRNA expression. Enhanced transgene expression occurs through a mechanism independent of the AAV receptor and cannot be replicated in vivo with free rapamycin or empty nanoparticles. The multipronged mechanism of ImmTOR action makes it an attractive candidate to enable more efficient transgene expression at first dose while simultaneously inhibiting adaptive responses against AAV to enable repeat dosing.
Collapse
|
17
|
Deng P, Halmai J, Waldo JJ, Fink KD. Cell-Based Delivery Approaches for DNA-Binding Domains to the Central Nervous System. Curr Neuropharmacol 2021; 19:2125-2140. [PMID: 33998992 PMCID: PMC9185769 DOI: 10.2174/1570159x19666210517144044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/16/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Advancements in programmable DNA-Binding Proteins (DBDs) that target the genome, such as zinc fingers, transcription activator-like effectors, and Cas9, have broadened drug target design beyond traditional protein substrates. Effective delivery methodologies remain a major barrier in targeting the central nervous system. Currently, adeno-associated virus is the most wellvalidated delivery system for the delivery of DBDs towards the central nervous with multiple, ongoing clinical trials. While effective in transducing neuronal cells, viral delivery systems for DBDs remain problematic due to inherent viral packaging limits or immune responses that hinder translational potential. Direct administration of DBDs or encapsulation in lipid nanoparticles may provide alternative means towards delivering gene therapies into the central nervous system. This review will evaluate the strengths and limitations of current DBD delivery strategies in vivo. Furthermore, this review will discuss the use of adult stem cells as a putative delivery vehicle for DBDs and the potential advantages that these systems have over previous methodologies.
Collapse
Affiliation(s)
- Peter Deng
- Department of Neurology, Stem Cell Program and Gene Therapy Center, UC Davis Medical Center, Sacramento, CA, USA
| | - Julian Halmai
- Department of Neurology, Stem Cell Program and Gene Therapy Center, UC Davis Medical Center, Sacramento, CA, USA
| | - Jennifer J. Waldo
- Department of Neurology, Stem Cell Program and Gene Therapy Center, UC Davis Medical Center, Sacramento, CA, USA
| | - Kyle D. Fink
- Department of Neurology, Stem Cell Program and Gene Therapy Center, UC Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
18
|
Zhou M, Hu Z, Zhang C, Wu L, Li Z, Liang D. Gene Therapy for Hemophilia A: Where We Stand. Curr Gene Ther 2020; 20:142-151. [PMID: 32767930 DOI: 10.2174/1566523220666200806110849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/25/2020] [Accepted: 07/13/2020] [Indexed: 01/19/2023]
Abstract
Hemophilia A (HA) is a hereditary hemorrhagic disease caused by a deficiency of coagulation factor VIII (FVIII) in blood plasma. Patients with HA usually suffer from spontaneous and recurrent bleeding in joints and muscles, or even intracerebral hemorrhage, which might lead to disability or death. Although the disease is currently manageable via delivery of plasma-derived or recombinant FVIII, this approach is costly, and neutralizing antibodies may be generated in a large portion of patients, which render the regimens ineffective and inaccessible. Given the monogenic nature of HA and that a slight increase in FVIII can remarkably alleviate the phenotypes, HA has been considered to be a suitable target disease for gene therapy. Consequently, the introduction of a functional F8 gene copy into the appropriate target cells via viral or nonviral delivery vectors, including gene correction through genome editing approaches, could ultimately provide an effective therapeutic method for HA patients. In this review, we discuss the recent progress of gene therapy for HA with viral and nonviral delivery vectors, including piggyBac, lentiviral and adeno-associated viral vectors, as well as new raising issues involving liver toxicity, pre-existing neutralizing antibodies of viral approach, and the selection of the target cell type for nonviral delivery.
Collapse
Affiliation(s)
- Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Chunhua Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Lingqian Wu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Zhuo Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
19
|
Lövgren KM, Larsen MS, Zintner SM, Small JC, Kjelgaard-Hansen M, Häger M, Petersen M, Wiinberg B, Margaritis P. FVIII activity following FVIII protein infusion or FVIII gene transfer predicts the bleeding risk in hemophilia A rats. J Thromb Haemost 2020; 18:1586-1597. [PMID: 32196903 PMCID: PMC7786582 DOI: 10.1111/jth.14804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Prophylactic replacement therapy in hemophilia A (HA) patients does not adequately prevent bleeds and arthropathic complications. A more refined understanding of the relationship between coagulation factor VIII (FVIII) levels and bleeding risk during protein prophylaxis, or with gene therapy, is needed to improve patient care. OBJECTIVES Investigate this relationship in the HA rat, a model exhibiting spontaneous bleeds and development of arthropathy similar to HA patients. METHODS Human B domain-deleted FVIII was delivered to HA rats via adeno-associated virus (AAV)-mediated gene transfer or multiple intravenous protein injections. RESULTS AND CONCLUSIONS After 12 weeks of observation, both approaches significantly reduced bleeds per animal and increased the proportion of bleed-free animals compared with controls (43% vs 0%, respectively [AAV]; 75% vs 8%, respectively [injection]). Both approaches resulted in an anti-FVIII inhibitory response in 20% to 37% of treated animals, similar to HA patients. Inhibitory antibodies were refractory to clinical improvement (reduction of bleeds) only in the AAV-based prophylaxis. An integrated model-based analysis of data on FVIII exposure and bleeding events was performed. This predicted the bleeding risk at any given circulating FVIII activity. Specifically, 4.8 or 10 IU/dL FVIII (0.048 and 0.1 IU/mL, respectively) were predicted to reduce bleeding risk by 90% or 95%, respectively, compared with untreated controls. Our data establish the utility of the HA rat model in FVIII prophylaxis studies and describe how FVIII activity affects bleeding risk in this setting. These enable further studies on FVIII prophylaxis focusing on disease complications for an optimized treatment of HA patients.
Collapse
Affiliation(s)
- Karin M. Lövgren
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | | | - Shannon M. Zintner
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Juliana C. Small
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | | | - Mattias Häger
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Maj Petersen
- Global Drug Discovery, Novo Nordisk A/S, Maaloev, Denmark
| | - Bo Wiinberg
- R&D Strategy, Novo Nordisk A/S, Bagsværd, Denmark
| | - Paris Margaritis
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, USA
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, U.S.A
- The University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, U.S.A
| |
Collapse
|
20
|
George LA, Ragni MV, Rasko JEJ, Raffini LJ, Samelson-Jones BJ, Ozelo M, Hazbon M, Runowski AR, Wellman JA, Wachtel K, Chen Y, Anguela XM, Kuranda K, Mingozzi F, High KA. Long-Term Follow-Up of the First in Human Intravascular Delivery of AAV for Gene Transfer: AAV2-hFIX16 for Severe Hemophilia B. Mol Ther 2020; 28:2073-2082. [PMID: 32559433 DOI: 10.1016/j.ymthe.2020.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are a leading platform for gene-based therapies for both monogenic and complex acquired disorders. The success of AAV gene transfer highlights the need to answer outstanding clinical questions of safety, durability, and the nature of the human immune response to AAV vectors. Here, we present longitudinal follow-up data of subjects who participated in the first trial of a systemically delivered AAV vector. Adult males (n = 7) with severe hemophilia B received an AAV2 vector at doses ranging from 8 × 1010 to 2 × 1012 vg/kg to target hepatocyte-specific expression of coagulation factor IX; a subset (n = 4) was followed for 12-15 years post-vector administration. No major safety concerns were observed. There was no evidence of sustained hepatic toxicity or development of hepatocellular carcinoma as assessed by liver transaminase values, serum α-fetoprotein, and liver ultrasound. Subjects demonstrated persistent, increased AAV neutralizing antibodies (NAbs) to the infused AAV serotype 2 (AAV2) as well as all other AAV serotypes tested (AAV5 and AAV8) for the duration of follow-up. These data represent the longest available longitudinal follow-up data of subjects who received intravascular AAV and support the preliminary safety of intravascular AAV administration at the doses tested in adults. Data demonstrate, for the first time, the persistence of high-titer, multi-serotype cross-reactive AAV NAbs for up to 15 years post- AAV vector administration. Our observations are broadly applicable to the development of AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Lindsey A George
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret V Ragni
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, and Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Leslie J Raffini
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin J Samelson-Jones
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margareth Ozelo
- Department of Internal Medicine, Faculty of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil; IHTC Hemophilia Unit Cláudio Luiz Pizzigatti Corrêa, INCT do Sangue Hemocentro UNICAMP, University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Hazbon
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexa R Runowski
- Division of Hematology and Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Katherine A High
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Spark Therapeutics, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Patel SR, Lundgren TS, Spencer HT, Doering CB. The Immune Response to the fVIII Gene Therapy in Preclinical Models. Front Immunol 2020; 11:494. [PMID: 32351497 PMCID: PMC7174743 DOI: 10.3389/fimmu.2020.00494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/04/2020] [Indexed: 12/14/2022] Open
Abstract
Neutralizing antibodies to factor VIII (fVIII), referred to as "inhibitors," remain the most challenging complication post-fVIII replacement therapy. Preclinical development of novel fVIII products involves studies incorporating hemophilia A (HA) and wild-type animal models. Though immunogenicity is a critical aspect of preclinical pharmacology studies, gene therapy studies tend to focus on fVIII expression levels without major consideration for immunogenicity. Therefore, little clarity exists on whether preclinical testing can be predictive of clinical immunogenicity risk. Despite this, but perhaps due to the potential for transformative benefits, clinical gene therapy trials have progressed rapidly. In more than two decades, no inhibitors have been observed. However, all trials are conducted in previously treated patients without a history of inhibitors. The current review thus focuses on our understanding of preclinical immunogenicity for HA gene therapy candidates and the potential indication for inhibitor treatment, with a focus on product- and platform-specific determinants, including fVIII transgene sequence composition and tissue/vector biodistribution. Currently, the two leading clinical gene therapy vectors are adeno-associated viral (AAV) and lentiviral (LV) vectors. For HA applications, AAV vectors are liver-tropic and employ synthetic, high-expressing, liver-specific promoters. Factors including vector serotype and biodistribution, transcriptional regulatory elements, transgene sequence, dosing, liver immunoprivilege, and host immune status may contribute to tipping the scale between immunogenicity and tolerance. Many of these factors can also be important in delivery of LV-fVIII gene therapy, especially when delivered intravenously for liver-directed fVIII expression. However, ex vivo LV-fVIII targeting and transplantation of hematopoietic stem and progenitor cells (HSPC) has been demonstrated to achieve durable and curative fVIII production without inhibitor development in preclinical models. A critical variable appears to be pre-transplantation conditioning regimens that suppress and/or ablate T cells. Additionally, we and others have demonstrated the potential of LV-fVIII HSPC and liver-directed AAV-fVIII gene therapy to eradicate pre-existing inhibitors in murine and canine models of HA, respectively. Future preclinical studies will be essential to elucidate immune mechanism(s) at play in the context of gene therapy for HA, as well as strategies for preventing adverse immune responses and promoting immune tolerance even in the setting of pre-existing inhibitors.
Collapse
Affiliation(s)
- Seema R. Patel
- Hemostasis and Thrombosis Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Taran S. Lundgren
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - H. Trent Spencer
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Christopher B. Doering
- Cell and Gene Therapy Program, Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| |
Collapse
|
22
|
Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21:255-272. [DOI: 10.1038/s41576-019-0205-4] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
|
23
|
Zengel J, Carette JE. Structural and cellular biology of adeno-associated virus attachment and entry. Adv Virus Res 2020; 106:39-84. [PMID: 32327148 DOI: 10.1016/bs.aivir.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adeno-associated virus (AAV) is a nonenveloped, ssDNA virus in the parvovirus family, which has become one of the leading candidate vectors for human gene therapy. AAV has been studied extensively to identify host cellular factors involved in infection, as well as to identify capsid variants that confer clinically favorable transduction profiles ex vivo and in vivo. Recent advances in technology have allowed for direct genetic approaches to be used to more comprehensively characterize host factors required for AAV infection and allowed for identification of a critical multi-serotype receptor, adeno-associated virus receptor (AAVR). In this chapter, we will discuss the interactions of AAV with its glycan and proteinaceous receptors and describe the host and viral components involved in AAV entry, which requires cellular attachment, endocytosis, trafficking to the trans-Golgi network and nuclear import. AAV serves as a paradigm for entry of nonenveloped viruses. Furthermore, we will discuss the potential of utilizing our increased understanding of virus-host interactions during AAV entry to develop better AAV-based therapeutics, with a focus on host factors and capsid interactions involved in in vivo tropism.
Collapse
|
24
|
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer death globally, mainly due to lack of effective treatments – a problem that gene therapy is poised to solve. Successful gene therapy requires safe and efficient delivery vectors, and recent advances in both viral and nonviral vectors have made an important impact on HCC gene therapy delivery. This review explores how adenoviral, retroviral and adeno-associated viral vectors have been modified to increase safety and delivery capacity, highlighting studies and clinical trials using these vectors for HCC gene therapy. Nanoparticles, liposomes, exosomes and virosomes are also featured in their roles as HCC gene delivery vectors. Finally, new discoveries in gene editing technology and their impacts on HCC gene therapy are discussed.
Collapse
|
25
|
Immune Response Mechanisms against AAV Vectors in Animal Models. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:198-208. [PMID: 31970198 PMCID: PMC6965504 DOI: 10.1016/j.omtm.2019.12.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.
Collapse
|
26
|
Batty P, Pasi KJ. Gene therapy trials for haemophilia: a step closer to a cure? EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1632704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Paul Batty
- The Royal London Hospital Haemophilia Centre, London School of Medicine and Dentistry, London, UK
| | - K John Pasi
- The Royal London Hospital Haemophilia Centre, London School of Medicine and Dentistry, London, UK
| |
Collapse
|
27
|
Miah KM, Hyde SC, Gill DR. Emerging gene therapies for cystic fibrosis. Expert Rev Respir Med 2019; 13:709-725. [PMID: 31215818 DOI: 10.1080/17476348.2019.1634547] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Introduction: Cystic fibrosis (CF) remains a life-threatening genetic disease, with few clinically effective treatment options. Gene therapy and gene editing strategies offer the potential for a one-time CF cure, irrespective of the CFTR mutation class. Areas covered: We review emerging gene therapies and gene delivery strategies for the treatment of CF particularly viral and non-viral approaches with potential to treat CF. Expert opinion: It was initially anticipated that the challenge of developing a gene therapy for CF lung disease would be met relatively easily. Following early proof-of-concept clinical studies, CF gene therapy has entered a new era with innovative vector designs, approaches to subvert the humoral immune system and increase gene delivery and gene correction efficiencies. Developments include integrating adenoviral vectors, rapamycin-loaded nanoparticles, and lung-tropic lentiviral vectors. The characterization of novel cell types in the lung epithelium, including pulmonary ionocytes, may also encourage cell type-specific targeting for CF correction. We anticipate preclinical studies to further validate these strategies, which should pave the way for clinical trials. We also expect gene editing efficiencies to improve to clinically translatable levels, given advancements in viral and non-viral vectors. Overall, gene delivery technologies look more convincing in producing an effective CF gene therapy.
Collapse
Affiliation(s)
- Kamran M Miah
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Stephen C Hyde
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| | - Deborah R Gill
- a Gene Medicine Group, Nuffield Division of Clinical Laboratory Science, Radcliffe Department of Medicine, University of Oxford , Oxford , UK
| |
Collapse
|
28
|
Batty P, Lillicrap D. Advances and challenges for hemophilia gene therapy. Hum Mol Genet 2019; 28:R95-R101. [DOI: 10.1093/hmg/ddz157] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022] Open
Abstract
Abstract
Hemophilia is an X-linked inherited bleeding disorder, resulting from defects in the F8 (hemophilia A) or F9 (hemophilia B) genes. Persons with hemophilia have bleeding episodes into the soft tissues and joints, which are treated with self-infusion of factor VIII or IX concentrates. Hemophilia provides an attractive target for gene therapy studies, due to the monogenic nature of these disorders and easily measurable endpoints (factor levels and bleed rates). All successful, pre-clinical and clinical studies to date have utilized recombinant adeno-associated viral (AAV) vectors for factor VIII or IX hepatocyte transduction. Recent clinical data have presented normalization of factor levels in some patients with improvements in bleed rate and quality of life. The main toxicity seen within these studies has been early transient elevation in liver enzymes, with variable effect on transgene expression. Although long-term data are awaited, durable expression has been seen within the hemophilia dog model with no late-toxicity or oncogenesis. There are a number of phase III studies currently recruiting; however, there may be some limitations in translating these data to clinical practice, due to inclusion/exclusion criteria. AAV-based gene therapy is one of a number of novel approaches for treatment of hemophilia with other gene therapy (in vivo and ex vivo) and non-replacement therapies progressing through clinical trials. Availability of these high-cost novel therapeutics will require evolution of both clinical and financial healthcare services to allow equitable personalization of care for persons with hemophilia.
Collapse
Affiliation(s)
- Paul Batty
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
29
|
Adeno-associated virus neutralising antibodies in type 1 diabetes mellitus. Gene Ther 2019; 26:250-263. [PMID: 30962537 DOI: 10.1038/s41434-019-0076-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022]
Abstract
Recombinant Adeno-associated viruses (AAVs) are an attractive vector for gene therapy delivery which may be blocked by AAV neutralising antibodies (NAbs). As Type 1 Diabetes (T1DM) is an endocrine disease of immunological origin, it is likely that NAb profiles are altered in the disease. In this study NAb to AAV2, AAV5, AAV6, and AAV8 in 72 subjects with T1DM and 45 non-diabetic patients were measured over a 4-year follow-up period. AAV2 NAb titres were significantly lower in non-diabetic subjects (P = 0.036). The T1DM group had more AAV8 NAb activity at baseline (P = 0.019), whilst after 4 years follow-up the T1DM group displayed developed increased AAV 5 (P = 0.03), 6 (P = 0.03) and 8 (P = 0.002) activity relative to the control group, however, overall AAV5 and 8 NAb levels were very low in patients <40. AAV NAb titre activity and prevalence generally appears higher in T1DM, however, low levels of AAV 5 and 8, particular in younger adult age groups at which T1DM can be targeted, could make these attractive vectors to target the disease.
Collapse
|