1
|
Zhang X, He J, Shao Y. Research progress and development potential of oncolytic vaccinia virus. Chin Med J (Engl) 2025; 138:777-791. [PMID: 40097373 PMCID: PMC11970828 DOI: 10.1097/cm9.0000000000003585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 03/19/2025] Open
Abstract
ABSTRACT Oncolytic virotherapy is a promising therapeutic approach treating tumors, where oncolytic viruses (OVs) can selectively infect and lyse tumor cells through replication, while also triggering long-lasting anti-tumor immune responses. Vaccinia virus (VV) has emerged as a leading candidate for use as an OV due to its broad cytophilicity and robust capacity to express exogenous genes. Consequently, oncolytic vaccinia virus (OVV) has entered clinical trials. This review provides an overview of the key strategies used in the development of OVV, summarizes the findings from clinical trials, and addresses the challenges that must be overcome in the advancement of OVV-based therapies. Furthermore, it explores potential future strategies for enhancing the development and clinical application of OVV, intending to improve tumor treatment outcomes. The review aims to facilitate the further development and clinical adoption of OVV, thereby advancing tumor therapies.
Collapse
Affiliation(s)
- Xinyu Zhang
- Changping Laboratory, Beijing 102206, China
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiangshan He
- Changping Laboratory, Beijing 102206, China
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yiming Shao
- Changping Laboratory, Beijing 102206, China
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| |
Collapse
|
2
|
Ayele K, Wakimoto H, Nauwynck HJ, Kaufman HL, Rabkin SD, Saha D. Understanding the interplay between oHSV and the host immune system: Implications for therapeutic oncolytic virus development. Mol Ther 2025; 33:1327-1343. [PMID: 39741405 PMCID: PMC11997513 DOI: 10.1016/j.ymthe.2024.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/05/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Oncolytic herpes simplex viruses (oHSV) preferentially replicate in cancer cells while inducing antitumor immunity, and thus, they are often referred to as in situ cancer vaccines. OHSV infection of tumors elicits diverse host immune responses comprising both innate and adaptive components. Although the innate and adaptive immune responses primarily target the tumor, they also contribute to antiviral immunity, limiting viral replication/oncolysis. OHSV-encoded proteins use various mechanisms to evade host antiviral pathways and immune recognition, favoring oHSV replication, oncolysis, and spread. In general, oHSV infection and replication within tumors results in a series of sequential events, such as oncolysis and release of tumor and viral antigens, dendritic cell-mediated antigen presentation, T cell priming and activation, T cell trafficking and infiltration to tumors, and T cell recognition of cancer cells, leading to tumor (and viral) clearance. These sequential events align with all steps of the cancer-immunity cycle. However, a comprehensive understanding of the interplay between oHSV and host immune responses is crucial to optimize oHSV-induced antitumor immunity and efficacy. Therefore, this review aims to elucidate oHSV's communication with innate and adaptive immune systems and use such interactions to improve oHSV's potential as a potent immunovirotherapeutic agent against cancer.
Collapse
Affiliation(s)
- Kalkidan Ayele
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, CA 95757, USA
| | - Hiroaki Wakimoto
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dipongkor Saha
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| |
Collapse
|
3
|
Otero-Mateo M, Estrany Jr F, Arcas-Márquez S, Moya-Borrego L, Castellano G, Castany M, Alemany R, Fillat C. KPC pancreatic cancer cells are a novel immunocompetent murine model supporting human adenovirus replication and tumor oncolysis. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200928. [PMID: 39877727 PMCID: PMC11773232 DOI: 10.1016/j.omton.2024.200928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025]
Abstract
Oncolytic adenoviral therapy is a promising approach for pancreatic cancer treatment. However, the limited capacity of murine cells to produce infectious viral progeny precludes the full evaluation of the virotherapy in a suitable immunocompetent mouse model. Here, we report that the murine KPC-I cell line, established from pancreatic tumors developed in LSL-K r as G12D ; LSL-T r p53 R172H ; Pdx-Cre mice, is susceptible to adenoviral replication and generates a progeny of infective virions similar to those from infected human A549 cells. A comparative study with the semipermissive murine CMT64.6 cells reveals that adenoviral infection of KPC-I cells substantially increases the release of infective particles, with a correlating enhanced susceptibility to adenovirus-induced autophagy. Remarkably, systemic delivery of the oncolytic adenovirus AdNuPARE1A in athymic mice bearing KPC-I tumors results in significant inhibition of tumor growth. Moreover, KPC-I tumors in immunocompetent mice with intratumoral administration of AdNuPARE1A or ICOVIR15kDelE3 display significant antitumoral effects, with evidence of adenoviral replication. Collectively, our data show that KPC-I cells are permissive to human oncolytic adenovirus replication, rendering KPC-I syngeneic tumors an interesting model to evaluate the multifaceted antitumor activities of oncolytic adenovirus.
Collapse
Affiliation(s)
- Marc Otero-Mateo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Francesc Estrany Jr
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Programa de Biomedicina. Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sabrina Arcas-Márquez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Laura Moya-Borrego
- Cancer Immunotherapy Group, Oncobell and iProCURE Programs, IDIBELL-Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Giancarlo Castellano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Miquel Castany
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, Oncobell and iProCURE Programs, IDIBELL-Institut Català d’Oncologia, 08908 L’Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut. Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
4
|
Stavrakaki E, Everts A, van den Hoogen BG, Lamfers MLM. The 16th International Oncolytic Virus Conference: Advancing oncolytic virotherapy by balancing anti-tumor and anti-viral immunity. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200950. [PMID: 40104169 PMCID: PMC11919397 DOI: 10.1016/j.omton.2025.200950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Affiliation(s)
- Eftychia Stavrakaki
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anne Everts
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Martine L M Lamfers
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Schock Vaiani J, Broekgaarden M, Coll JL, Sancey L, Busser B. In vivo vectorization and delivery systems for gene therapies and RNA-based therapeutics in oncology. NANOSCALE 2025; 17:5501-5525. [PMID: 39927415 DOI: 10.1039/d4nr05371k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Gene and RNA-based therapeutics represent a promising frontier in oncology, enabling targeted modulation of tumor-associated genes and proteins. This review explores the latest advances in payload vectorization and delivery systems developed for in vivo cancer treatments. We discuss viral and non-viral organic particles, including lipid based nanoparticles and polymeric structures, for the effective transport of plasmids, siRNA, and self-amplifying RNA therapeutics. Their physicochemical properties, strategies to overcome intracellular barriers, and innovations in cell-based carriers and engineered extracellular vesicles are highlighted. Moreover, we consider oncolytic viruses, novel viral capsid modifications, and approaches that refine tumor targeting and immunomodulation. Ongoing clinical trials and regulatory frameworks guide future directions and emphasize the need for safe, scalable production. The potential convergence of these systems with combination therapies paves the way toward personalized cancer medicine.
Collapse
Affiliation(s)
- Julie Schock Vaiani
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Mans Broekgaarden
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Jean-Luc Coll
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Lucie Sancey
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
| | - Benoit Busser
- Univ. Grenoble-Alpes (UGA), INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Allée des Alpes, 38000 Grenoble, France.
- Grenoble Alpes Univ. Hospital (CHUGA), 38043 Grenoble, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
6
|
Khurana S, Sharma S, Goyal PK. Tumor microenvironment as a target for developing anticancer hydrogels. Drug Dev Ind Pharm 2025; 51:157-168. [PMID: 39829011 DOI: 10.1080/03639045.2025.2455424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/28/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE It has been reported that cancer cells get protected by a complex and rich multicellular environment i.e. the tumor microenvironment (TME) consisting of varying immune cells, endothelial cells, dendritic cells, fibroblasts, etc. This manuscript is aimed at the characteristic features of TME considered as potential target(s) for developing smart anticancer hydrogels. SIGNIFICANCE The stimuli-specific drug delivery systems especially hydrogels that can respond to the characteristic features of TME are fabricated for treating cancer. For developing anticancer formulations, TME targeting can be considered an alternative way as it enhances the cytotoxic potential and reduces the unwanted effects. This manuscript shall be of quite interest to academicians, researchers, and clinicians engaged in oncology. METHODS The manuscript was prepared by using the data available in the public domain in online resources such as Google Scholar, PubMed, Science Direct, Scopus, Web of Science, Research Gate, etc. RESULTS Smart hydrogels, sensitive to some specific features of TME such as low pH, high concentration of glutathione, specific enzymes, etc., are promising anticancer formulations as these improve the efficacy and lower the side effects of chemotherapy. CONCLUSION The stimuli-responsive hydrogels have been gaining more attention for delivering cytotoxic drugs to the TME in response to specific stimuli. The stimuli-responsive hydrogels, comprising of cytotoxic drug(s) and specific polymers have some special features such as similarity with biological matrix, ability to respond to various internal as well as external stimuli, improved permeability, porosity, biocompatibility, resemblance with soft living tissues, etc.; and are considered as the promising anticancer candidates.
Collapse
Affiliation(s)
- Suman Khurana
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| | - Shrestha Sharma
- Amity Institute of Pharmacy, Amity University Haryana, Gurugram, India
| | - Parveen Kumar Goyal
- Department of Pharmacy, Panipat Institute of Engineering and Technology, Panipat, India
| |
Collapse
|
7
|
Borella F, Carosso M, Chiparo MP, Ferraioli D, Bertero L, Gallio N, Preti M, Cusato J, Valabrega G, Revelli A, Marozio L, Cosma S. Oncolytic Viruses in Ovarian Cancer: Where Do We Stand? A Narrative Review. Pathogens 2025; 14:140. [PMID: 40005517 PMCID: PMC11858389 DOI: 10.3390/pathogens14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Ovarian cancer (OC) remains the most lethal gynecologic malignancy with limited effective treatment options. Oncolytic viruses (OVs) have emerged as a promising therapeutic approach for cancer treatment, capable of selectively infecting and lysing cancer cells while stimulating anti-tumor immune responses. Preclinical studies have demonstrated significant tumor regression and prolonged survival in OC models using various OVs, such as herpes simplex. Early-phase clinical trials have shown a favorable safety profile, though the impact on patient survival has been modest. Current research focuses on combining OVs with other treatments like immune checkpoint inhibitors to enhance their efficacy. We provide a comprehensive overview of the current understanding and future directions for utilizing OVs in the management of OC.
Collapse
Affiliation(s)
- Fulvio Borella
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Marco Carosso
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Maria Pia Chiparo
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Domenico Ferraioli
- Department of Gynecology, Léon Bérard, Comprehensive Cancer Centre, 69008 Lyon, France;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Niccolò Gallio
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Mario Preti
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy;
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy;
| | - Alberto Revelli
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Luca Marozio
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Stefano Cosma
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| |
Collapse
|
8
|
Kim S, Jung BK, Kim J, Jeon JH, Kim M, Jang SH, Kim CS, Jang H. Anticancer effect of the oncolytic Newcastle disease virus harboring the PTEN gene on glioblastoma. Oncol Lett 2025; 29:6. [PMID: 39492938 PMCID: PMC11526322 DOI: 10.3892/ol.2024.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal types of human brain cancer and is characterized by rapid growth, an aggressive nature and a poor prognosis. GBM is highly heterogeneous, and often involves several genetic mutations and abnormalities. Genetic disorders or low expression of phosphatase and tensin homolog (PTEN) are associated with GBM occurrence, progression and poor prognosis of patients with GBM. However, effective delivery of PTEN for expression in GBM cells within the brain remains challenging. The aim of the present study was to develop a therapeutic strategy to restore PTEN expression in GBM cells by utilizing a recombinant Newcastle disease virus (rNDV) vector expressing the human PTEN gene (rNDV-PTEN). Methods included infection of U87-MG cells with rNDV-PTEN, followed by assessments of PTEN expression, and cell proliferation, migration and apoptosis. Additionally, an orthotopic GBM mouse model was used to evaluate the in vivo efficacy of rNDV-PTEN. Infection with recombinant rNDV-PTEN treatment increased PTEN protein expression in the cytoplasm of the U87-MG cells, reduced cell proliferation and migration, and induced apoptosis by inhibiting the AKT/mTOR signaling pathway. In the orthotopic GBM mouse model, rNDV-PTEN significantly reduced tumor size and improved survival rates. Magnetic resonance imaging and in vivo imaging analyses confirmed the targeted delivery and efficacy of rNDV-PTEN. These findings highlight the usefulness of rNDV-PTEN as a promising therapeutic agent for GBM, representing a potential advancement in treatment, especially for patients with PTEN deficiency.
Collapse
Affiliation(s)
- Seonhee Kim
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Bo-Kyoung Jung
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Jinju Kim
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Joo Hee Jeon
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| | - Minsoo Kim
- Department of Physiology and Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Sung Hoon Jang
- Graduate School of Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| | - Cuk-Seong Kim
- Department of Physiology and Medical Science, Chungnam National University College of Medicine, Daejeon 35015, Republic of Korea
| | - Hyun Jang
- Research and Development Division, Libentech Co., Ltd., Daejeon 34013, Republic of Korea
| |
Collapse
|
9
|
Monberg T, Kudling T, Albieri B, Pakola S, Ellebaek E, Donia M, Eefsen R, von Buchwald C, Kistler C, Santos J, Clubb J, Haybout L, Westergaard M, Quixabeira D, Jirovec E, Havunen R, Sorsa S, Cervera-Carrascon V, Hemminki A, Svane I. Durable complete response after combined treatment with tumor-infiltrating lymphocytes and oncolytic adenovirus (TILT-123) in a patient with metastatic mucosal melanoma. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 24:100726. [PMID: 39801682 PMCID: PMC11725143 DOI: 10.1016/j.iotech.2024.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Background Despite significant advancements in the treatment of malignant melanoma, metastatic mucosal melanoma remains a therapeutic challenge due to its complex pathogenesis, distinct pathological characteristics, and limited response to immunotherapy. Combining different immunotherapeutic approaches offers a potential strategy to address these challenges. Tumor-infiltrating lymphocyte (TIL) therapy and oncolytic virus therapy represent promising treatment modalities that may synergize with each other. Patient and methods We present a case of a 48-year-old woman with metastatic sinonasal mucosal melanoma who achieved a durable complete pathological response following treatment with multiple injections of the oncolytic virus TILT-123 (igrelimogene litadenorepvec) and a single infusion of TILs, without preconditioning chemotherapy or postconditioning interleukin-2. Results Immunohistochemical analysis and single-cell sequencing revealed interesting alterations in injected and noninjected tumors as well as in peripheral blood, during the treatment course, suggesting that TILT-123 facilitated TIL engraftment into the tumor, ultimately leading to a complete response. Conclusions This case underscores the potential of combined immunotherapeutic approaches as a promising strategy for patients with metastatic mucosal melanoma.
Collapse
Affiliation(s)
- T.J. Monberg
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - T. Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - B. Albieri
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - S. Pakola
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - E. Ellebaek
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - M. Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - R.L. Eefsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - C. von Buchwald
- Department of ORL, Head and Neck Surgery and Audiology, Copenhagen University Hospital, Rigshospitalet, Denmark
| | | | - J.M. Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - J. Clubb
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - L. Haybout
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - M.C.W. Westergaard
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - D.C.A. Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - E. Jirovec
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - R. Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - S. Sorsa
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - V. Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
| | - A. Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd, Helsinki
- Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - I.M. Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
10
|
Rezaei R, Boulton S, Ahmadi M, Petryk J, Da Silva M, Kooshki Zamani N, Singaravelu R, St-Laurent G, Daniel L, Sadeghipour A, Pelin A, Poutou J, Munoz Zuniga AI, Choy C, Gilchrist VH, Khalid Z, Austin B, Onsu KA, Marius R, Ameli Z, Mohammadi F, Mancinelli V, Wang E, Nik-Akhtar A, Alwithenani A, Panahi Arasi F, Ferguson SSG, Hobman TC, Alain T, Tai LH, Ilkow CS, Diallo JS, Bell JC, Azad T. Antibiotic-mediated selection of randomly mutagenized and cytokine-expressing oncolytic viruses. Nat Biomed Eng 2024:10.1038/s41551-024-01259-7. [PMID: 39609558 DOI: 10.1038/s41551-024-01259-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/05/2024] [Indexed: 11/30/2024]
Abstract
Optimization of oncolytic viruses for therapeutic applications requires the strategic removal or mutagenesis of virulence genes alongside the insertion of transgenes that enhance viral replication, spread and immunogenicity. However, the complexity of many viral genomes and the labour-intensive nature of methods for the generation and isolation of recombinant viruses have hindered the development of therapeutic oncolytic viruses. Here we report an iterative strategy that exploits the preferential susceptibility of viruses to certain antibiotics to accelerate the engineering of the genomes of oncolytic viruses for the insertion of immunomodulatory cytokine transgenes, and the identification of dispensable genes with regard to replication of the recombinant oncolytic viruses in tumour cells. We applied the strategy by leveraging insertional mutagenesis via the Sleeping Beauty transposon system, combined with long-read nanopore sequencing, to generate libraries of herpes simplex virus type 1 and vaccinia virus, identifying stable transgene insertion sites and gene deletions that enhance the safety and efficacy of the viruses.
Collapse
Affiliation(s)
- Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Mahsa Ahmadi
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Julia Petryk
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Miles Da Silva
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nika Kooshki Zamani
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabriel St-Laurent
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauren Daniel
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Arezoo Sadeghipour
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Adrian Pelin
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA
- J. David Gladstone Institutes, San Francisco, CA, USA
| | - Joanna Poutou
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Abril Ixchel Munoz Zuniga
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Clarence Choy
- Department of Biochemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victoria H Gilchrist
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Zumama Khalid
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Bradley Austin
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Ricardo Marius
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Zahra Ameli
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Fazel Mohammadi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Valeria Mancinelli
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Emily Wang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abolfazl Nik-Akhtar
- Ottawa Institute of Systems Biology and Centre for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Akram Alwithenani
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Fatemeh Panahi Arasi
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen S G Ferguson
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Neuroscience, Faculty of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Lee-Hwa Tai
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carolina S Ilkow
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Simon Diallo
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - John C Bell
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada.
| | - Taha Azad
- Department of Microbiology and Infectiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke Cancer Research Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada.
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Centre Intégré Universitaire de Santé et de Services Sociaux de l'Estrie-Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
11
|
Tsai CC, Wang CY, Chang HH, Chang PTS, Chang CH, Chu TY, Hsu PC, Kuo CY. Diagnostics and Therapy for Malignant Tumors. Biomedicines 2024; 12:2659. [PMID: 39767566 PMCID: PMC11726849 DOI: 10.3390/biomedicines12122659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Malignant tumors remain one of the most significant global health challenges and contribute to high mortality rates across various cancer types. The complex nature of these tumors requires multifaceted diagnostic and therapeutic approaches. This review explores current advancements in diagnostic methods, including molecular imaging, biomarkers, and liquid biopsies. It also delves into the evolution of therapeutic strategies, including surgery, chemotherapy, radiation therapy, and novel targeted therapies such as immunotherapy and gene therapy. Although significant progress has been made in the understanding of cancer biology, the future of oncology lies in the integration of precision medicine, improved diagnostic tools, and personalized therapeutic approaches that address tumor heterogeneity. This review aims to provide a comprehensive overview of the current state of cancer diagnostics and treatments while highlighting emerging trends and challenges that lie ahead.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Chun-Yu Wang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Hsu-Hung Chang
- Division of Nephrology, Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | | | - Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Tin Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-C.T.); (C.-H.C.); (T.Y.C.)
| |
Collapse
|
12
|
Chen XY, Liu Y, Zhu WB, Li SH, Wei S, Cai J, Lin Y, Liang JK, Yan GM, Guo L, Hu C. Arming oncolytic M1 virus with gasdermin E enhances antitumor efficacy in breast cancer. iScience 2024; 27:111148. [PMID: 39555415 PMCID: PMC11565026 DOI: 10.1016/j.isci.2024.111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/12/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Pyroptosis, driven by the N-terminal domain of gasdermin proteins (GSDM), promotes antitumor immunity by attracting lymphocytes to the tumor microenvironment (TME). However, current pyroptosis-inducing therapies like drug injections and phototherapy are limited to localized treatments, making them unsuitable for widespread or microscopic metastatic lesions. This study engineered oncolytic M1 viruses (rM1-mGSDME_FL and rM1-mGSDME_NT) to selectively deliver GSDME to tumor cells. These modified viruses enhanced tumor cell death in breast cancer models, suppressed tumor growth, extended survival in mice, and boosted immune cell infiltration, demonstrating significant anticancer potential through pyroptosis induction.
Collapse
Affiliation(s)
- Xiao-yu Chen
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Ying Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Wen-bo Zhu
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Shu-hao Li
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Song Wei
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| | - Jing Cai
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Yuan Lin
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital-Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Elderly Chronic Diseases, Ministry of Education, Guangzhou, China
| | - Jian-kai Liang
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Guang-mei Yan
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Li Guo
- Departments of Pharmacology, Sun Yat-sen University, No. 074, Zhongshan Second Road, Guangzhou 510080, China
| | - Cheng Hu
- Department of Urology, The Third Affiliated Hospital of Sun Yat-sen University, 600# Tianhe Road, Guangzhou, Guangdong 510630, China
| |
Collapse
|
13
|
Li X, Zhang Y, Mao Z, Zhao H, Cao H, Wang J, Liu W, Dai S, Yang Y, Huang Y, Wang H. Decorin-armed oncolytic adenovirus promotes natural killers (NKs) activation and infiltration to enhance NK therapy in CRC model. MOLECULAR BIOMEDICINE 2024; 5:48. [PMID: 39482550 PMCID: PMC11527862 DOI: 10.1186/s43556-024-00212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent malignant tumor of the gastrointestinal system, with the third and second highest incidence and mortality rates globally in 2020, respectively. Immunotherapy has developed rapidly in recent years. Natural killer (NK) cells have received increasing attention in the field of tumor immunotherapy due to their recognition and killing tumor cells without the limitations of major histocompatibility complexes. However, constraints within the tumor microenvironment that impede the infiltration and proliferation of NK cells result in poor efficacy of NK cell therapy for solid tumors. Oncolytic viral therapy is an immunogenic treatment with the potential to enhance anti-tumour immune responses and promote immune cell infiltration. In this study, we synergistically combine NK cells with an oncolytic adenovirus carrying Decorin (rAd.DCN) for the treatment of colorectal cancer (CRC) in a xenograft mouse model. By using Flow cytometry, real-time quantitative PCR and Calcein-AM release assay, we found that rAd.DCN could effectively promote proliferation, activation and degranulation of NK cells, up-regulate expression and secretion of NK cell killing activity-related factors, and enhance their killing activity. The efficacy is better than that of the blank control oncolytic virus rAd.Null. Combined treatment significantly inhibited tumor growth, increased the number of NK cells in peripheral blood, promoted the killing function of NK cells, and increased the expression levels of perforin and IFN-γ. At the same time, more NK cells were recruited to infiltrate tumor tissue. Our study established the feasibility of combination NK cells and oncolytic adenovirus application, thus expanding the scope of potentially curative treatments for NK cells in CRC.
Collapse
Affiliation(s)
- Xue Li
- College of Life Science, Anhui Medical University, Hefei, 230032, P.R. China
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yuning Zhang
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, 100071, China
| | - Zhuang Mao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Huiqiang Zhao
- Department of Healthcare, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China
| | - Hu Cao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jingyi Wang
- Beijing Jingda Biotechnology Co. Ltd, Beijing, 102629, China
| | - Wei Liu
- Beijing Jingda Biotechnology Co. Ltd, Beijing, 102629, China
| | - Shiyun Dai
- Beijing Jingda Biotechnology Co. Ltd, Beijing, 102629, China
| | - Yuefeng Yang
- Department of Experimental Medical Science, Ningbo No.2 Hospital, Ningbo, 315010, China
| | - Yuanyuan Huang
- Beijing Jingda Biotechnology Co. Ltd, Beijing, 102629, China.
| | - Hua Wang
- College of Life Science, Anhui Medical University, Hefei, 230032, P.R. China.
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
14
|
Zhao Y, Le TMD, Hong J, Jiao A, Yoon AR, Yun CO. Smart Accumulating Dual-Targeting Lipid Envelopes Equipping Oncolytic Adenovirus for Enhancing Cancer Gene Therapeutic Efficacy. ACS NANO 2024; 18:27869-27890. [PMID: 39356167 DOI: 10.1021/acsnano.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Systemic delivery of oncolytic adenovirus (oAd) for cancer gene therapy must overcome several limitations such as rapid clearance from the blood, nonspecific accumulation in the liver, and insufficient delivery to the tumor tissues. In the present report, a tumor microenvironment-triggered artificial lipid envelope composed of a pH-responsive sulfamethazine-based polymer (PUSSM)-conjugated phospholipid (DOPE-HZ-PUSSM) and another lipid decorated with epidermal growth factor receptor (EGFR) targeting peptide (GE11) (GE11-DOPE) was utilized to encapsulate replication-incompetent Ad (dAd) or oAd coexpressing short-hairpin RNA (shRNA) against Wnt5 (shWnt5) and decorin (dAd/LP-GE-PS or oAd/LP-GE-PS, respectively). In vitro studies demonstrated that dAd/LP-GE-PS transduced breast cancer cells in a pH-responsive and EGFR-specific manner, showing a higher level of transduction than naked Ad under a mildly acidic pH of 6.0 in EGFR-positive cell lines. In vivo biodistribution analyses revealed that systemic administration of oAd/LP-GE-PS leads to a significantly higher level of intratumoral virion accumulation compared to naked oAd, oAd encapsulated in a liposome without PUSSM or EGFR targeting peptide moiety (oAd/LP), or oAd encapsulated in a liposome with EGFR targeting peptide alone (oAd/LP-GE) in an EGFR overexpressing MDA-MB-468 breast tumor xenograft model, showing that both pH sensitivity and EGFR targeting ability were integral to effective systemic delivery of oAd. Further, systemic administration of all liposomal oAd formulations (oAd/LP, oAd/LP-GE, and oAd/LP-GE-PS) showed significantly attenuated hepatic accumulation of the virus compared to naked oAd. Collectively, our findings demonstrated that pH-sensitive and EGFR-targeted liposomal systemic delivery of oAd can be a promising strategy to address the conventional limitations of oAd to effectively treat EGFR-positive cancer in a safe manner.
Collapse
Affiliation(s)
- Yuebin Zhao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Thai Minh Duy Le
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jinwoo Hong
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| | - Ao Jiao
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, South Korea
- Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul 04763, South Korea
- GeneMedicine CO., Ltd., Seoul 04763, South Korea
| |
Collapse
|
15
|
Noh MH, Kang JM, Miller AA, Nguyen G, Huang M, Shim JS, Bueso-Perez AJ, Murphy SA, Rivera-Caraballo KA, Otani Y, Kim E, Yoo SH, Yan Y, Banasavadi-Siddegowda Y, Nakashima H, Chiocca EA, Kaur B, Zhao Z, Lee TJ, Yoo JY. Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy. Neuro Oncol 2024; 26:1602-1616. [PMID: 38853689 PMCID: PMC11376453 DOI: 10.1093/neuonc/noae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS Transcriptome analysis identified IGF2 as one of the top-secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%; P = .0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8 + cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSIONS This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.
Collapse
Affiliation(s)
- Min Hye Noh
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Pediatric Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Alexandra A Miller
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Grace Nguyen
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minxin Huang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ji Seon Shim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alberto J Bueso-Perez
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sara A Murphy
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kimberly A Rivera-Caraballo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eunju Kim
- Department of Food and Nutriton, Kongju National University, Yesan, Chungnam, South Korea
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yuanqing Yan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yeshavanth Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Maryland, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Maryland, USA
| | - Balveen Kaur
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tae Jin Lee
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ji Young Yoo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Zarychta J, Kowalczyk A, Marszołek A, Zawitkowska J, Lejman M. Strategies to overcome tumor microenvironment immunosuppressive effect on the functioning of CAR-T cells in high-grade glioma. Ther Adv Med Oncol 2024; 16:17588359241266140. [PMID: 39156126 PMCID: PMC11327996 DOI: 10.1177/17588359241266140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 08/20/2024] Open
Abstract
Despite significant progress in the treatment of some types of cancer, high-grade gliomas (HGGs) remain a significant clinical problem. In the case of glioblastoma (GBM), the most common solid tumor of the central nervous system in adults, the average survival time from diagnosis is only 15-18 months, despite the use of intensive multimodal therapy. Chimeric antigen receptor (CAR)-expressing T cells, which have already been approved by the Food and Drug Administration for use in the treatment of certain hematologic malignancies, are a new, promising therapeutic option. However, the efficacy of CAR-T cells in solid tumors is lower due to the immunosuppressive tumor microenvironment (TME). Reprogramming the immunosuppressive TME toward a pro-inflammatory phenotype therefore seems particularly important because it may allow for increasing the effectiveness of CAR-T cells in the therapy of solid tumors. The following literature review aims to present the results of preclinical studies showing the possibilities of improving the efficacy of CAR-T in the TME of GBM by reprogramming the TME toward a pro-inflammatory phenotype. It may be achievable thanks to the use of CAR-T in a synergistic therapy in combination with oncolytic viruses, radiotherapy, or epigenetic inhibitors, as well as by supporting CAR-T cells crossing of the blood-brain barrier, normalizing impaired angiogenesis in the TME, improving CAR-T effector functions by cytokine signaling or by blocking/knocking out T-cell inhibitors, and modulating the microRNA expression. The use of CAR-T cells modified in this way in synergistic therapy could lead to the longer survival of patients with HGG by inducing an endogenous anti-tumor response.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Adrian Kowalczyk
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Anna Marszołek
- Student Scientific Society of Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, A. Racławickie 1, Lublin 20-093, Poland
| |
Collapse
|
17
|
Kakish JE, Mehrani Y, Kodeeswaran A, Geronimo K, Clark ME, van Vloten JP, Karimi K, Mallard BA, Meng B, Bridle BW, Knapp JP. Investigating the effect of reduced temperatures on the efficacy of rhabdovirus-based viral vector platforms. J Gen Virol 2024; 105:002010. [PMID: 39172037 PMCID: PMC11340643 DOI: 10.1099/jgv.0.002010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/28/2024] [Indexed: 08/23/2024] Open
Abstract
Rhabdoviral vectors can induce lysis of cancer cells. While studied almost exclusively at 37 °C, viruses are subject to a range of temperatures in vivo, including temperatures ≤31 °C. Despite potential implications, the effect of temperatures <37 °C on the performance of rhabdoviral vectors is unknown. We investigated the effect of low anatomical temperatures on two rhabdoviruses, vesicular stomatitis virus (VSV) and Maraba virus (MG1). Using a metabolic resazurin assay, VSV- and MG1-mediated oncolysis was characterized in a panel of cell lines at 28, 31, 34 and 37 °C. The oncolytic ability of both viruses was hindered at 31 and 28 °C. Cold adaptation of both viruses was attempted as a mitigation strategy. Viruses were serially passaged at decreasing temperatures in an attempt to induce mutations. Unfortunately, the cold-adaptation strategies failed to potentiate the oncolytic activity of the viruses at temperatures <37 °C. Interestingly, we discovered that viral replication was unaffected at low temperatures despite the abrogation of oncolytic activity. In contrast, the proliferation of cancer cells was reduced at low temperatures. Equivalent oncolytic effects could be achieved if cells at low temperatures were treated with viruses for longer times. This suggests that rhabdovirus-mediated oncolysis could be compromised at low temperatures in vivo where therapeutic windows are limited.
Collapse
Affiliation(s)
- Julia E. Kakish
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Yeganeh Mehrani
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Arthane Kodeeswaran
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Katrina Geronimo
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Bonnie A. Mallard
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jason P. Knapp
- Department of Pathobiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
18
|
Pongcharoen S, Kaewsringam N, Somaparn P, Roytrakul S, Maneerat Y, Pintha K, Topanurak S. Immunopeptidomics in the cancer immunotherapy era. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:801-817. [PMID: 39280250 PMCID: PMC11390293 DOI: 10.37349/etat.2024.00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/06/2024] [Indexed: 09/18/2024] Open
Abstract
Cancer is the primary cause of death worldwide, and conventional treatments are painful, complicated, and have negative effects on healthy cells. However, cancer immunotherapy has emerged as a promising alternative. Principle of cancer immunotherapy is the re-activation of T-cell to combat the tumor that presents the peptide antigen on major histocompatibility complex (MHC). Those peptide antigens are identified with the set of omics technology, proteomics, genomics, and bioinformatics, which referred to immunopeptidomics. Indeed, immunopeptidomics can identify the neoantigens that are very useful for cancer immunotherapies. This review explored the use of immunopeptidomics for various immunotherapies, i.e., peptide-based vaccines, immune checkpoint inhibitors, oncolytic viruses, and chimeric antigen receptor T-cell. We also discussed how the diversity of neoantigens allows for the discovery of novel antigenic peptides while post-translationally modified peptides diversify the overall peptides binding to MHC or so-called MHC ligandome. The development of immunopeptidomics is keeping up-to-date and very active, particularly for clinical application. Immunopeptidomics is expected to be fast, accurate and reliable for the application for cancer immunotherapies.
Collapse
Affiliation(s)
- Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand
| | - Nongphanga Kaewsringam
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Poorichaya Somaparn
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang 12120, Pathum Thani, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Supachai Topanurak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Karadimas T, Huynh TH, Chose C, Zervoudakis G, Clampitt B, Lapp S, Joyce D, Letson GD, Metts J, Binitie O, Mullinax JE, Lazarides A. Oncolytic Viral Therapy in Osteosarcoma. Viruses 2024; 16:1139. [PMID: 39066301 PMCID: PMC11281467 DOI: 10.3390/v16071139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Primary bone malignancies, including osteosarcoma (OS), are rare but aggressive. Current OS treatment, involving surgical resection and chemotherapy, has improved survival for non-metastatic cases but remains ineffective for recurrent or metastatic OS. Oncolytic viral therapy (OVT) is a promising alternative, using naturally occurring or genetically modified viruses to selectively target and lyse cancer cells and induce a robust immune response against remaining OS cells. Various oncolytic viruses (OVs), such as adenovirus, herpes simplex virus, and measles virus, have demonstrated efficacy in preclinical OS models. Combining OVT with other therapeutics, such as chemotherapy or immunotherapy, may further improve outcomes. Despite these advances, challenges in reliability of preclinical models, safety, delivery, and immune response must be addressed to optimize OVT for clinical use. Future research should focus on refining delivery methods, exploring combination treatments, and clinical trials to ensure OVT's efficacy and safety for OS. Overall, OVT represents a novel approach with the potential to drastically improve survival outcomes for patients with OS.
Collapse
Affiliation(s)
- Thomas Karadimas
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Thien Huong Huynh
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Chloe Chose
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Guston Zervoudakis
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Bryan Clampitt
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - Sean Lapp
- Morsani College of Medicine, University of South Florida Health, Tampa, FL 33602, USA; (T.H.H.); (C.C.); (B.C.); (S.L.)
| | - David Joyce
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - George Douglas Letson
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Jonathan Metts
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Odion Binitie
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - John E. Mullinax
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| | - Alexander Lazarides
- Sarcoma Department, Moffitt Cancer Center, Tampa, FL 33612, USA; (G.Z.); (D.J.); (G.D.L.); (J.M.); (O.B.); (J.E.M.); (A.L.)
| |
Collapse
|
20
|
Yuan Z, Zhang Y, Wang X, Wang X, Ren S, He X, Su J, Zheng A, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Wang Z, Xiao Z. The investigation of oncolytic viruses in the field of cancer therapy. Front Oncol 2024; 14:1423143. [PMID: 39055561 PMCID: PMC11270537 DOI: 10.3389/fonc.2024.1423143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
Oncolytic viruses (OVs) have emerged as a potential strategy for tumor treatment due to their ability to selectively replicate in tumor cells, induce apoptosis, and stimulate immune responses. However, the therapeutic efficacy of single OVs is limited by the complexity and immunosuppressive nature of the tumor microenvironment (TME). To overcome these challenges, engineering OVs has become an important research direction. This review focuses on engineering methods and multi-modal combination therapies for OVs aimed at addressing delivery barriers, viral phagocytosis, and antiviral immunity in tumor therapy. The engineering approaches discussed include enhancing in vivo immune response, improving replication efficiency within the tumor cells, enhancing safety profiles, and improving targeting capabilities. In addition, this review describes the potential mechanisms of OVs combined with radiotherapy, chemotherapy, cell therapy and immune checkpoint inhibitors (ICIs), and summarizes the data of ongoing clinical trials. By continuously optimizing engineering strategies and combination therapy programs, we can achieve improved treatment outcomes and quality of life for cancer patients.
Collapse
Affiliation(s)
- Zijun Yuan
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anfu Zheng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research And Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Zechen Wang
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| | - Zhangang Xiao
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Department of Pharmacology, School of Pharmacy, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| |
Collapse
|
21
|
Shi X, Sun K, Li L, Xian J, Wang P, Jia F, Xu F. Oncolytic Activity of Sindbis Virus with the Help of GM-CSF in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:7195. [PMID: 39000311 PMCID: PMC11241666 DOI: 10.3390/ijms25137195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma is a refractory tumor with poor prognosis and high mortality. Many oncolytic viruses are currently being investigated for the treatment of hepatocellular carcinoma. Based on previous studies, we constructed a recombinant GM-CSF-carrying Sindbis virus, named SINV-GM-CSF, which contains a mutation (G to S) at amino acid 285 in the nsp1 protein of the viral vector. The potential of this mutated vector for liver cancer therapy was verified at the cellular level and in vivo, respectively, and the changes in the tumor microenvironment after treatment were also described. The results showed that the Sindbis virus could effectively infect hepatocellular carcinoma cell lines and induce cell death. Furthermore, the addition of GM-CSF enhanced the tumor-killing effect of the Sindbis virus and increased the number of immune cells in the intra-tumor microenvironment during the treatment. In particular, SINV-GM-CSF was able to efficiently kill tumors in a mouse tumor model of hepatocellular carcinoma by regulating the elevation of M1-type macrophages (which have a tumor-resistant ability) and the decrease in M2-type macrophages (which have a tumor-promoting capacity). Overall, SINV-GM-CSF is an attractive vector platform with clinical potential for use as a safe and effective oncolytic virus.
Collapse
Affiliation(s)
- Xiangwei Shi
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyixin Sun
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Li Li
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jingwen Xian
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Ping Wang
- Shenzhen Institute for Drug Control, Shenzhen 518057, China
| | - Fan Jia
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Guangdong Provincial Medical Products Administration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
22
|
Tran TQ, Grein J, Selman M, Annamalai L, Yearley JH, Blumenschein WM, Sadekova S, Chackerian AA, Phan U, Wong JC. Oncolytic virus V937 in combination with PD-1 blockade therapy to target immunologically quiescent liver and colorectal cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200807. [PMID: 38745749 PMCID: PMC11090910 DOI: 10.1016/j.omton.2024.200807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/16/2024]
Abstract
V937 is an investigational, genetically unmodified Kuykendall strain of coxsackievirus A21, which has been evaluated in the clinic for advanced solid tumor malignancies. V937 specifically infects and lyses tumor cells that overexpress intercellular adhesion molecule-1 (ICAM-1). Intratumoral V937 as a monotherapy and in combination with anti-PD-1 antibody pembrolizumab has shown clinical response in patients with metastatic melanoma, which overexpresses ICAM-1. Here, we investigate in preclinical studies the potential bidirectional cross-talk between hepatocellular carcinomas (HCC) or colorectal carcinomas (CRC) and immune cells when treated with V937 alone or in combination with pembrolizumab. We show that while V937 treatment of tumor cell lines or organoids or peripheral blood mononuclear cells (PBMCs) alone induced a minimal immunological response, V937 treatment of non-contact co-cultures of tumor cell lines or CRC organoids with PBMCs led to robust production of proinflammatory cytokines and immune cell activation. In addition, both recombinant interferon-gamma and pembrolizumab increased ICAM-1 on tumor cell lines or organoids and, in turn, amplified V937-mediated oncolysis and immunogenicity. These findings provide critical mechanistic insights on the cross-talk between V937-mediated oncolysis and immune responses, demonstrating the therapeutic potential of V937 in combination with PD-1 blockade to treat immunologically quiescent cancers.
Collapse
Affiliation(s)
- Thai Q. Tran
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | - Jeff Grein
- Quantitative Biosciences, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | - Mohammed Selman
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | | | - Jennifer H. Yearley
- Quantitative Biosciences, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | | | - Svetlana Sadekova
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | | | - Uyen Phan
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| | - Janica C. Wong
- Discovery Oncology, Merck & Co., Inc, South San Francisco, CA 94080, USA
| |
Collapse
|
23
|
Delaunay T, Son S, Park S, Kaur B, Ahn J, Barber GN. Exogenous non-coding dsDNA-dependent trans-activation of phagocytes augments anti-tumor immunity. Cell Rep Med 2024; 5:101528. [PMID: 38677283 PMCID: PMC11148645 DOI: 10.1016/j.xcrm.2024.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Stimulator of interferon genes (STING)-dependent signaling is requisite for effective anti-microbial and anti-tumor activity. STING signaling is commonly defective in cancer cells, which enables tumor cells to evade the immunosurveillance system. We evaluate here whether intrinsic STING signaling in such tumor cells could be reconstituted by creating recombinant herpes simplex viruses (rHSVs) that express components of the STING signaling pathway. We observe that rHSVs expressing STING and/or cGAS replicate inefficiently yet retain in vivo anti-tumor activity, independent of oncolytic activity requisite on the trans-activation of extrinsic STING signaling in phagocytes by engulfed microbial dsDNA species. Accordingly, the in vivo effects of virotherapy could be simulated by nanoparticles incorporating non-coding dsDNA species, which comparably elicit the trans-activation of phagocytes and augment the efficacy of established cancer treatments including checkpoint inhibition and radiation therapy. Our results help elucidate mechanisms of virotherapeutic anti-tumor activity as well as provide alternate strategies to treat cancer.
Collapse
Affiliation(s)
- Tiphaine Delaunay
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sehee Son
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Seongji Park
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Balveen Kaur
- Georgia Cancer Center, Augusta University Medical Center, Augusta, GA, USA
| | - Jeonghyun Ahn
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Glen N Barber
- Department of Cell Biology, Sylvester Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
24
|
Nelson A, McMullen N, Gebremeskel S, De Antueno R, Mackenzie D, Duncan R, Johnston B. Fusogenic vesicular stomatitis virus combined with natural killer T cell immunotherapy controls metastatic breast cancer. Breast Cancer Res 2024; 26:78. [PMID: 38750591 PMCID: PMC11094881 DOI: 10.1186/s13058-024-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Metastatic breast cancer is a leading cause of cancer death in woman. Current treatment options are often associated with adverse side effects and poor outcomes, demonstrating the need for effective new treatments. Immunotherapies can provide durable outcomes in many cancers; however, limited success has been achieved in metastatic triple negative breast cancer. We tested whether combining different immunotherapies can target metastatic triple negative breast cancer in pre-clinical models. METHODS Using primary and metastatic 4T1 triple negative mammary carcinoma models, we examined the therapeutic effects of oncolytic vesicular stomatitis virus (VSVΔM51) engineered to express reovirus-derived fusion associated small transmembrane proteins p14 (VSV-p14) or p15 (VSV-p15). These viruses were delivered alone or in combination with natural killer T (NKT) cell activation therapy mediated by adoptive transfer of α-galactosylceramide-loaded dendritic cells. RESULTS Treatment of primary 4T1 tumors with VSV-p14 or VSV-p15 alone increased immunogenic tumor cell death, attenuated tumor growth, and enhanced immune cell infiltration and activation compared to control oncolytic virus (VSV-GFP) treatments and untreated mice. When combined with NKT cell activation therapy, oncolytic VSV-p14 and VSV-p15 reduced metastatic lung burden to undetectable levels in all mice and generated immune memory as evidenced by enhanced in vitro recall responses (tumor killing and cytokine production) and impaired tumor growth upon rechallenge. CONCLUSION Combining NKT cell immunotherapy with enhanced oncolytic virotherapy increased anti-tumor immune targeting of lung metastasis and presents a promising treatment strategy for metastatic breast cancer.
Collapse
Affiliation(s)
- Adam Nelson
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
| | - Nichole McMullen
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Simon Gebremeskel
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
| | - Roberto De Antueno
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Duncan Mackenzie
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Roy Duncan
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada
- Department of Biochemistry and Molecular Biology, Dalhousie University, B3H 4R2, Halifax, NS, Canada
- Department of Pediatrics, Dalhousie University, B3H 4R2, Halifax, NS, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, B3H 4R2, Halifax, NS, Canada.
- Beatrice Hunter Cancer Research Institute, B3H 4R2, Halifax, NS, Canada.
- Department of Pathology, Dalhousie University, B3H 4R2, Halifax, NS, Canada.
| |
Collapse
|
25
|
Ambegoda P, Wei HC, Jang SRJ. The role of immune cells in resistance to oncolytic viral therapy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5900-5946. [PMID: 38872564 DOI: 10.3934/mbe.2024261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Resistance to treatment poses a major challenge for cancer therapy, and oncoviral treatment encounters the issue of viral resistance as well. In this investigation, we introduce deterministic differential equation models to explore the effect of resistance on oncolytic viral therapy. Specifically, we classify tumor cells into resistant, sensitive, or infected with respect to oncolytic viruses for our analysis. Immune cells can eliminate both tumor cells and viruses. Our research shows that the introduction of immune cells into the tumor-virus interaction prevents all tumor cells from becoming resistant in the absence of conversion from resistance to sensitivity, given that the proliferation rate of immune cells exceeds their death rate. The inclusion of immune cells leads to an additional virus-free equilibrium when the immune cell recruitment rate is sufficiently high. The total tumor burden at this virus-free equilibrium is smaller than that at the virus-free and immune-free equilibrium. Therefore, immune cells are capable of reducing the tumor load under the condition of sufficient immune strength. Numerical investigations reveal that the virus transmission rate and parameters related to the immune response significantly impact treatment outcomes. However, monotherapy alone is insufficient for eradicating tumor cells, necessitating the implementation of additional therapies. Further numerical simulation shows that combination therapy with chimeric antigen receptor (CAR T-cell) therapy can enhance the success of treatment.
Collapse
Affiliation(s)
- Prathibha Ambegoda
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, USA
| | - Hsiu-Chuan Wei
- Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan
| | - Sophia R-J Jang
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
26
|
Polychronopoulos PA, Bedoya-Reina OC, Johnsen JI. The Neuroblastoma Microenvironment, Heterogeneity and Immunotherapeutic Approaches. Cancers (Basel) 2024; 16:1863. [PMID: 38791942 PMCID: PMC11119056 DOI: 10.3390/cancers16101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Neuroblastoma is a peripheral nervous system tumor that almost exclusively occurs in young children. Although intensified treatment modalities have led to increased patient survival, the prognosis for patients with high-risk disease is still around 50%, signifying neuroblastoma as a leading cause of cancer-related deaths in children. Neuroblastoma is an embryonal tumor and is shaped by its origin from cells within the neural crest. Hence, neuroblastoma usually presents with a low mutational burden and is, in the majority of cases, driven by epigenetically deregulated transcription networks. The recent development of Omic techniques has given us detailed knowledge of neuroblastoma evolution, heterogeneity, and plasticity, as well as intra- and intercellular molecular communication networks within the neuroblastoma microenvironment. Here, we discuss the potential of these recent discoveries with emphasis on new treatment modalities, including immunotherapies which hold promise for better future treatment regimens.
Collapse
Affiliation(s)
- Panagiotis Alkinoos Polychronopoulos
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| | - Oscar C. Bedoya-Reina
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, 11883 Stockholm, Sweden; (P.A.P.); (O.C.B.-R.)
| |
Collapse
|
27
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
28
|
Bhatt DK, Daemen T. Molecular Circuits of Immune Sensing and Response to Oncolytic Virotherapy. Int J Mol Sci 2024; 25:4691. [PMID: 38731910 PMCID: PMC11083234 DOI: 10.3390/ijms25094691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Oncolytic virotherapy is a promising immunotherapy approach for cancer treatment that utilizes viruses to preferentially infect and eliminate cancer cells while stimulating the immune response. In this review, we synthesize the current literature on the molecular circuits of immune sensing and response to oncolytic virotherapy, focusing on viral DNA or RNA sensing by infected cells, cytokine and danger-associated-signal sensing by neighboring cells, and the subsequent downstream activation of immune pathways. These sequential sense-and-response mechanisms involve the triggering of molecular sensors by viruses or infected cells to activate transcription factors and related genes for a breadth of immune responses. We describe how the molecular signals induced in the tumor upon virotherapy can trigger diverse immune signaling pathways, activating both antigen-presenting-cell-based innate and T cell-based adaptive immune responses. Insights into these complex mechanisms provide valuable knowledge for enhancing oncolytic virotherapy strategies.
Collapse
Affiliation(s)
- Darshak K. Bhatt
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, HPC EB88, 9700 RB Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, University of Groningen, P.O. Box 30 001, HPC EB88, 9700 RB Groningen, The Netherlands
| |
Collapse
|
29
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
30
|
Stavrakaki E, van den Bossche WBL, Vogelezang LB, Teodosio C, Mustafa DM, van Dongen JJM, Dirven CMF, Balvers RK, Lamfers ML. An autologous ex vivo model for exploring patient-specific responses to viro-immunotherapy in glioblastoma. CELL REPORTS METHODS 2024; 4:100716. [PMID: 38430913 PMCID: PMC10985229 DOI: 10.1016/j.crmeth.2024.100716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024]
Abstract
Oncolytic virus (OV) clinical trials have demonstrated remarkable efficacy in subsets of patients with glioblastoma (GBM). However, the lack of tools to predict this response hinders the advancement of a more personalized application of OV therapy. In this study, we characterize an ex vivo co-culture system designed to examine the immune response to OV infection of patient-derived GBM neurospheres in the presence of autologous peripheral blood mononuclear cells (PBMCs). Co-culture conditions were optimized to retain viability and functionality of both tumor cells and PBMCs, effectively recapitulating the well-recognized immunosuppressive effects of GBM. Following OV infection, we observed elevated secretion of pro-inflammatory cytokines and chemokines, including interferon γ, tumor necrosis factor α, CXCL9, and CXCL10, and marked changes in immune cell activation markers. Importantly, OV treatment induced unique patient-specific immune responses. In summary, our co-culture platform presents an avenue for personalized screening of viro-immunotherapies in GBM, offering promise as a potential tool for future patient stratification in OV therapy.
Collapse
Affiliation(s)
- Eftychia Stavrakaki
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| | | | - Lisette B Vogelezang
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Cristina Teodosio
- Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jacques J M van Dongen
- Cancer Research Center (IBMCC; University of Salamanca - CSIC), Cytometry Service, NUCLEUS, Department of Medicine, University of Salamanca and Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rutger K Balvers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martine L Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
31
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
32
|
Chowaniec H, Ślubowska A, Mroczek M, Borowczyk M, Braszka M, Dworacki G, Dobosz P, Wichtowski M. New hopes for the breast cancer treatment: perspectives on the oncolytic virus therapy. Front Immunol 2024; 15:1375433. [PMID: 38576614 PMCID: PMC10991781 DOI: 10.3389/fimmu.2024.1375433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Oncolytic virus (OV) therapy has emerged as a promising frontier in cancer treatment, especially for solid tumours. While immunotherapies like immune checkpoint inhibitors and CAR-T cells have demonstrated impressive results, their limitations in inducing complete tumour regression have spurred researchers to explore new approaches targeting tumours resistant to current immunotherapies. OVs, both natural and genetically engineered, selectively replicate within cancer cells, inducing their lysis while sparing normal tissues. Recent advancements in clinical research and genetic engineering have enabled the development of targeted viruses that modify the tumour microenvironment, triggering anti-tumour immune responses and exhibiting synergistic effects with other cancer therapies. Several OVs have been studied for breast cancer treatment, including adenovirus, protoparvovirus, vaccinia virus, reovirus, and herpes simplex virus type I (HSV-1). These viruses have been modified or engineered to enhance their tumour-selective replication, reduce toxicity, and improve oncolytic properties.Newer generations of OVs, such as Oncoviron and Delta-24-RGD adenovirus, exhibit heightened replication selectivity and enhanced anticancer effects, particularly in breast cancer models. Clinical trials have explored the efficacy and safety of various OVs in treating different cancers, including melanoma, nasopharyngeal carcinoma, head and neck cancer, and gynecologic malignancies. Notably, Talimogene laherparepvec (T-VEC) and Oncorine have. been approved for advanced melanoma and nasopharyngeal carcinoma, respectively. However, adverse effects have been reported in some cases, including flu-like symptoms and rare instances of severe complications such as fistula formation. Although no OV has been approved specifically for breast cancer treatment, ongoing preclinical clinical trials focus on four groups of viruses. While mild adverse effects like low-grade fever and nausea have been observed, the effectiveness of OV monotherapy in breast cancer remains insufficient. Combination strategies integrating OVs with chemotherapy, radiotherapy, or immunotherapy, show promise in improving therapeutic outcomes. Oncolytic virus therapy holds substantial potential in breast cancer treatment, demonstrating safety in trials. Multi-approach strategies combining OVs with conventional therapies exhibit more promising therapeutic effects than monotherapy, signalling a hopeful future for OV-based breast cancer treatments.
Collapse
Affiliation(s)
- Hanna Chowaniec
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Antonina Ślubowska
- Department of Biostatistics and Research Methodology, Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszynski University of Warsaw, Warsaw, Poland
| | - Magdalena Mroczek
- Department of Neurology, University Hospital Basel, Univeristy of Basel, Basel, Switzerland
| | - Martyna Borowczyk
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Małgorzata Braszka
- Faculty of Medical Sciences, University College London Medical School, London, United Kingdom
| | - Grzegorz Dworacki
- Department of Immunology, Poznan University of Medical Sciences, Poznan, Poland
- Chair of Patomorphology and Clinical Immunology, Poznań University of Medical Sciences, Poznan, Poland
| | - Paula Dobosz
- University Centre of Cancer Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Wichtowski
- Surgical Oncology Clinic, Institute of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
33
|
Mirbahari SN, Da Silva M, Zúñiga AIM, Kooshki Zamani N, St-Laurent G, Totonchi M, Azad T. Recent progress in combination therapy of oncolytic vaccinia virus. Front Immunol 2024; 15:1272351. [PMID: 38558795 PMCID: PMC10979700 DOI: 10.3389/fimmu.2024.1272351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, oncolytic viruses have emerged as promising agents for treating various cancers. An oncolytic virus is a non-pathogenic virus that, due to genetic manipulation, tends to replicate in and cause lysis of cancerous cells while leaving healthy cells unaffected. Among these viruses, vaccinia virus is an attractive platform for use as an oncolytic platform due to its 190 Kb genome with a high capacity for encoding therapeutic payloads. Combining oncolytic VV therapy with other conventional cancer treatments has been shown to be synergistic and more effective than monotherapies. Additionally, OVV can be used as a vector to deliver therapeutic payloads, alone or in combination with other treatments, to increase overall efficacy. Here, we present a comprehensive analysis of preclinical and clinical studies that have evaluated the efficacy of oncolytic vaccinia viruses in cancer immunotherapy. We discuss the outcomes of these studies, including tumor regression rates, overall survival benefits, and long-term responses. Moreover, we provide insights into the challenges and limitations associated with oncolytic vaccinia virus- based therapies, including immune evasion mechanisms, potential toxicities, and the development of resistance.
Collapse
Affiliation(s)
- Seyedeh Nasim Mirbahari
- Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Miles Da Silva
- Department of Microbiology and Immunology, University of British Colombia, Vancouver, BC, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Abril Ixchel Muñoz Zúñiga
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Nika Kooshki Zamani
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Gabriel St-Laurent
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Taha Azad
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| |
Collapse
|
34
|
Kane G, Lusi C, Brassil M, Atukorale P. Engineering approaches for innate immune-mediated tumor microenvironment remodeling. IMMUNO-ONCOLOGY TECHNOLOGY 2024; 21:100406. [PMID: 38213392 PMCID: PMC10777078 DOI: 10.1016/j.iotech.2023.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Cancer immunotherapy offers transformative promise particularly for the treatment of lethal cancers, since a correctly trained immune system can comprehensively orchestrate tumor clearance with no need for continued therapeutic intervention. Historically, the majority of immunotherapies have been T cell-focused and have included immune checkpoint inhibitors, chimeric antigen receptor T cells, and T-cell vaccines. Unfortunately T-cell-focused therapies have failed to achieve optimal efficacy in most solid tumors largely because of a highly immunosuppressed 'cold' or immune-excluded tumor microenvironment (TME). Recently, a rapidly growing treatment paradigm has emerged that focuses on activation of tumor-resident innate antigen-presenting cells, such as dendritic cells and macrophages, which can drive a proinflammatory immune response to remodel the TME from 'cold' or immune-excluded to 'hot'. Early strategies for TME remodeling centered on free cytokines and agonists, but these approaches have faced significant hurdles in both delivery and efficacy. Systemic toxicity from off-target inflammation is a paramount concern in these therapies. To address this critical gap, engineering approaches have provided the opportunity to add 'built-in' capabilities to cytokines, agonists, and other therapeutic agents to mediate improved delivery and efficacy. Such capabilities have included protective encapsulation to shield them from degradation, targeting to direct them with high specificity to tumors, and co-delivery strategies to harness synergistic proinflammatory pathways. Here, we review innate immune-mediated TME remodeling engineering approaches that focus on cytokines, innate immune agonists, immunogenic viruses, and cell-based methods, highlighting emerging preclinical approaches and strategies that are either being tested in clinical trials or already Food and Drug Administration approved.
Collapse
Affiliation(s)
- G.I. Kane
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - C.F. Lusi
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - M.L. Brassil
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
| | - P.U. Atukorale
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst
- University of Massachusetts Cancer Center, Worcester
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, USA
| |
Collapse
|
35
|
Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H. A potential cure for tumor-associated immunosuppression by Toxoplasma gondii. Cancer Rep (Hoboken) 2024; 7:e1963. [PMID: 38109851 PMCID: PMC10850000 DOI: 10.1002/cnr2.1963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Recently, immunotherapy has become very hopeful for cancer therapy. Cancer treatment through immunotherapy has excellent specificity and less toxicity than conventional chemoradiotherapy. Pathogens have been used in cancer immunotherapy for a long time. The current study aims to evaluate the possibility of Toxoplasma gondii (T. gondii) as a probable treatment for cancers such as melanoma, breast, ovarian, lung, and pancreatic cancer. RECENT FINDINGS Nonreplicating type I uracil auxotrophic mutants of T. gondii can stimulate immune responses against tumors by reverse immunosuppression at the cellular level. T. gondii can be utilized to research T helper 1 (Th1) cell immunity in intracellular infections. Avirulent T. gondii uracil auxotroph vaccine can change the tumor's immunosuppression and improve the production of type 1 helper cell cytokines, i.e., Interferon-gamma (IFN-γ) and Interleukin-12 (IL-12) and activate tumor-related Cluster of Differentiation 8 (CD8+) T cells to identify and destroy cancer cells. The T. gondii profilin protein, along with T. gondii secreted proteins, have been found to exhibit promising properties in the treatment of various cancers. These proteins are being studied for their potential to inhibit tumor growth and enhance the effectiveness of cancer therapies. Their unique mechanisms of action make them valuable candidates for targeted interventions in ovarian cancer, breast cancer, pancreatic cancer, melanoma, and lung cancer treatments. CONCLUSION In summary, the study underscores the significant potential of harnessing T. gondii, including its diverse array of proteins and antigens, particularly in its avirulent form, as a groundbreaking approach in cancer immunotherapy.
Collapse
Affiliation(s)
- Narges Lotfalizadeh
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Soheil Sadr
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | - Mohammadhassan Lotfalizadeh
- Board Certificate Oral and Maxillofacial RadiologistNorth Khorasan University of Medical Sciences (NKUMS)BojnurdIran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary MedicineIslamic Azad University, Science and Research BranchTehranIran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
36
|
Santry LA, van Vloten JP, AuYeung AWK, Mould RC, Yates JGE, McAusland TM, Petrik JJ, Major PP, Bridle BW, Wootton SK. Recombinant Newcastle disease viruses expressing immunological checkpoint inhibitors induce a pro-inflammatory state and enhance tumor-specific immune responses in two murine models of cancer. Front Microbiol 2024; 15:1325558. [PMID: 38328418 PMCID: PMC10847535 DOI: 10.3389/fmicb.2024.1325558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
Introduction Tumor microenvironments are immunosuppressive due to progressive accumulation of mutations in cancer cells that can drive expression of a range of inhibitory ligands and cytokines, and recruitment of immunomodulatory cells, including myeloid-derived suppressor cells (MDSC), tumor-associated macrophages, and regulatory T cells (Tregs). Methods To reverse this immunosuppression, we engineered mesogenic Newcastle disease virus (NDV) to express immunological checkpoint inhibitors anti-cytotoxic T lymphocyte antigen-4 and soluble programmed death protein-1. Results Intratumoral administration of recombinant NDV (rNDV) to mice bearing intradermal B16-F10 melanomas or subcutaneous CT26LacZ colon carcinomas led to significant changes in the tumor-infiltrating lymphocyte profiles. Vectorizing immunological checkpoint inhibitors in NDV increased activation of intratumoral natural killer cells and cytotoxic T cells and decreased Tregs and MDSCs, suggesting induction of a pro-inflammatory state with greater infiltration of activated CD8+ T cells. These notable changes translated to higher ratios of activated effector/suppressor tumor-infiltrating lymphocytes in both cancer models, which is a promising prognostic marker. Whereas all rNDV-treated groups showed evidence of tumor regression and increased survival in the CT26LacZ and B16-F10, only treatment with NDV expressing immunological checkpoint blockades led to complete responses compared to tumors treated with NDV only. Discussion These data demonstrated that NDV expressing immunological checkpoint inhibitors could reverse the immunosuppressive state of tumor microenvironments and enhance tumor-specific T cell responses.
Collapse
Affiliation(s)
- Lisa A. Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob P. van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Amanda W. K. AuYeung
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Robert C. Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jacob G. E. Yates
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Thomas M. McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
37
|
Kamrani A, Nasiri H, Hassanzadeh A, Ahmadian Heris J, Mohammadinasab R, Sadeghvand S, Sadeghi M, Valedkarimi Z, Hosseinzadeh R, Shomali N, Akbari M. New immunotherapy approaches for colorectal cancer: focusing on CAR-T cell, BiTE, and oncolytic viruses. Cell Commun Signal 2024; 22:56. [PMID: 38243252 PMCID: PMC10799490 DOI: 10.1186/s12964-023-01430-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/21/2024] Open
Abstract
Colorectal cancer is one of the most common causes of mortality worldwide. There are several potential risk factors responsible for the initiation and progression of colorectal cancer, including age, family history, a history of inflammatory bowel disease, and lifestyle factors such as physical activity and diet. For decades, there has been a vast amount of study on treatment approaches for colorectal cancer, which has led to conventional therapies such as chemotherapy, surgery, etc. Considering the high prevalence and incidence rate, scholars believe there is an urgent need for an alternative, more efficacious treatment with fewer adverse effects than the abovementioned treatments. Immunotherapy has emerged as a potential treatment alternative in a few years and has become one of the fastest-evolving therapeutic methods. Immunotherapy works by activating or enhancing the immune system's power to identify and attack cancerous cells. This review summarizes the most crucial new immunotherapy methods under investigation for colorectal cancer treatment, including Immune checkpoint inhibitors, CAR-T cell therapy, BiTEs, Tumor-infiltrating lymphocytes, and Oncolytic virus therapy. Furthermore, this study discusses the application of combination therapy, precision medicine, biomarker discovery, overcoming resistance, and immune-related adverse effects. Video Abstract.
Collapse
Affiliation(s)
- Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Tabriz university of medical science, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
38
|
Borlongan MC, Saha D, Wang H. Tumor Microenvironment: A Niche for Cancer Stem Cell Immunotherapy. Stem Cell Rev Rep 2024; 20:3-24. [PMID: 37861969 DOI: 10.1007/s12015-023-10639-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Tumorigenic Cancer Stem Cells (CSCs), often called tumor-initiating cells (TICs), represent a unique subset of cells within the tumor milieu. They stand apart from the bulk of tumor cells due to their exceptional self-renewal, metastatic, and differentiation capabilities. Despite significant progress in classifying CSCs, these cells remain notably resilient to conventional radiotherapy and chemotherapy, contributing to cancer recurrence. In this review, our objective is to explore novel avenues of research that delve into the distinctive characteristics of CSCs within their surrounding tumor microenvironment (TME). We will start with an overview of the defining features of CSCs and then delve into their intricate interactions with cells from the lymphoid lineage, namely T cells, B cells, and natural killer (NK) cells. Furthermore, we will discuss their dynamic interplay with myeloid lineage cells, including macrophages, neutrophils, and myeloid-derived suppressor cells (MDSCs). Moreover, we will illuminate the crosstalk between CSCs and cells of mesenchymal origin, specifically fibroblasts, adipocytes, and endothelial cells. Subsequently, we will underscore the pivotal role of CSCs within the context of the tumor-associated extracellular matrix (ECM). Finally, we will highlight pre-clinical and clinical studies that target CSCs within the intricate landscape of the TME, including CAR-T therapy, oncolytic viruses, and CSC-vaccines, with the ultimate goal of uncovering novel avenues for CSC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Mia C Borlongan
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| | - Hongbin Wang
- College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
- Master Program of Pharmaceutical Sciences College of Graduate Studies, Department of Pharmaceutical and Biomedical Sciences College of Pharmacy, Department of Basic Science College of Medicine, California Northstate University, 9700 West Taron Drive, Elk Grove, CA, 95757, USA.
| |
Collapse
|
39
|
E VB, Ranganath Pai KS. Stem Cells and Tumor-Killing Virus to Target Brain Tumor: In Pursuit to Bring a Potential Delivery Vehicle for the Central Nervous System Tumors. Curr Drug Deliv 2024; 21:2-15. [PMID: 36825709 DOI: 10.2174/1567201820666230220101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/08/2022] [Accepted: 12/28/2022] [Indexed: 02/22/2023]
Abstract
To target brain cancer, various therapeutic options are present to fight against cancer cells. But the existing therapies are not showing a proper curation of cancer patients. Henceforth, activating the immune cells and targeting oncogenes/proteins might be an emerging therapeutic approach to target and destroy malignant brain tumor. Stem cells (SCs) are considered potential immunomodulators that trigger the highly suppressed immune system in the tumor microenvironment. Also, engineered SCs can repress the aberrantly expressed oncoproteins that cause tumor cell proliferation and growth. SCs have an excellent migration capability to reach the infected site and support the regeneration of damaged blood vessels and tissues. Likewise, oncolytic virotherapy (OVT) is a promising novel therapeutic molecule in which genetically modified viruses can selectively replicate and destroy cancer cells without harming healthy cells. Same as SCs, oncolytic viruses (OVs) tend to stimulate the host's innate and adaptive immune response to battle against the advanced brain tumor. In clinical studies, various OVs have shown good immunogenic responses with a high safety profile and tolerability against cancer patients with reduced morbidity and mortality rate. SCs act as an attractive cargo for OVs which helps to influence the tumor site and destroy the tumor volume. SCs protect the OVs from systemic degradation and promote therapeutic efficacy against cancer cells. SCs carried OVs might be a potential therapeutic way to bring an effective treatment option for brain tumors.
Collapse
Affiliation(s)
- Vignesh Balaji E
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
40
|
Nazarenko AS, Biryukova YK, Orlova EO, Trachuk KN, Ivanova AL, Belyakova AV, Pestov NB, Vorovitch MF, Ishmukhametov AA, Kolyasnikova NM. [Investigation of oncolytic potential of vaccine strains of yellow fever and tick-borne encephalitis viruses against glioblastoma and pancreatic carcinoma cell lines]. Vopr Virusol 2023; 68:536-548. [PMID: 38156569 DOI: 10.36233/0507-4088-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Indexed: 12/30/2023]
Abstract
INTRODUCTION Flaviviruses, possessing natural neurotropicity could be used in glioblastoma therapy using attenuated strains or as a delivery system for antitumor agents in an inactivated form. OBJECTIVE To investigate the sensitivity of glioblastoma and pancreatic carcinoma cell lines to vaccine strains of yellow fever and tick-borne encephalitis viruses. MATERIALS AND METHODS Cell lines: glioblastoma GL-6, T98G, LN-229, pancreatic carcinoma MIA RaCa-2 and human pancreatic ductal carcinoma PANC-1. Viral strains: 17D yellow fever virus (YF), Sofjin tick-borne encephalitis virus (TBEV). Virus concentration were determined by plaque assay and quantitative PCR. Determination of cell sensitivity to viruses by MTT assay. RESULTS 17D YF was effective only against pancreatic carcinoma tumor cells MIA Paca-2 and had a limited effect against PANC-1. In glioblastoma cell lines (LN229, GL6, T98G), virus had no oncolytic effect and the viral RNA concentration fell in the culture medium. Sofjin TBEV showed CPE50 against MIA Paca-2 and a very limited cytotoxic effect against PANC-1. However, it had no oncolytic effect against glioblastoma cell lines (LN229, T98G and GL6), although virus reproduction continued in these cultures. For the GL6 glioblastoma cell line, the viral RNA concentration at the level with the infection dose was determined within 13 days, despite medium replacement, while in the case of the LN229 cell line, the virus concentration increased from 1 × 109 to 1 × 1010 copies/ml. CONCLUSION Tumor behavior in organism is more complex and is determined by different microenvironmental factors and immune status. In the future, it is advisable to continue studying the antitumor oncolytic and immunomodulatory effects of viral strains 17D YF and Sofjin TBEV using in vivo models.
Collapse
Affiliation(s)
- A S Nazarenko
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - Y K Biryukova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - E O Orlova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - K N Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - A L Ivanova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - A V Belyakova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - N B Pestov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| | - M F Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Institute of Translational Medicine and Biotechnology
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University), Institute of Translational Medicine and Biotechnology
| | - N M Kolyasnikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
| |
Collapse
|
41
|
Hu D, Tian Y, Xu J, Xie D, Wang Y, Liu M, Wang Y, Yang L. Oncolytic viral therapy as promising immunotherapy against glioma. MEDCOMM – FUTURE MEDICINE 2023; 2. [DOI: 10.1002/mef2.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 03/19/2025]
Abstract
AbstractGlioma is a common primary central nervous system malignant tumor in clinical, traditional methods such as surgery and chemoradiotherapy are not effective in treatment. Therefore, more effective treatments need to be found. Oncolytic viruses (OVs) are a new type of immunotherapy that selectively infects and kills tumor cells instead of normal cells. OVs can mediate antitumor immune responses through a variety of mechanisms, and have the ability to activate antitumor immune responses, transform the tumor microenvironment from “cold” to “hot,” and enhance the efficacy of immune checkpoint inhibitors. Recently, a large number of preclinical and clinical studies have shown that OVs show great prospects in the treatment of gliomas. In this review, we summarize the current status of glioma therapies with a focus on OVs. First, this article introduces the current status of treatment of glioma and their respective shortcomings. Then, the important progress of OVs of in clinical trials of glioma is summarized. Finally, the urgent challenges of oncolytic virus treatment for glioma are sorted out, and related solutions are proposed. This review will help to further promote the use of OVs in the treatment of glioma.
Collapse
Affiliation(s)
- Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yaomei Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
- College of Bioengineering Sichuan University of Science & Engineering Zigong China
| | - Jie Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Daoyuan Xie
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Yuanda Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital Sichuan University Chengdu China
| |
Collapse
|
42
|
Wang Y, Liu S, Yan J, Baseer-Tariq S, Salla B, Ji L, Li M, Chi P, Deng L. Activating neutrophils by co-administration of immunogenic recombinant modified vaccinia virus Ankara and granulocyte colony-stimulating factor for the treatment of malignant peripheral nerve sheath tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569123. [PMID: 38076896 PMCID: PMC10705442 DOI: 10.1101/2023.11.29.569123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) is a rare, aggressive soft-tissue sarcoma with a poor prognosis and is insensitive to immune checkpoint blockade (ICB) therapy. Loss-of-function of the histone modifying polycomb repressive complex 2 (PRC2) components, EED or SUZ12, is one of the main mechanisms of malignant transformation. In a murine model of MPNST, PRC2-loss tumors have an "immune desert" phenotype and intratumoral (IT) delivery immunogenic modified vaccinia virus Ankara (MVA) sensitized the PRC2-loss tumors to ICB. Here we show that IT MQ833, a second-generation recombinant modified vaccinia virus Ankara virus, results in neutrophil recruitment and activation and neutrophil-dependent tumor killing in the MPNST model. MQ833 was engineered by deleting three viral immune evasion genes, E5R, E3L, and WR199, and expressing three transgenes, including the two membrane-bound Flt3L and OX40L, and IL-12 with an extracellular matrix anchoring signal. Furthermore, we explored strategies to enhance anti-tumor effects of MQ833 by co-administration of granulocyte colony-stimulating factor (G-CSF).
Collapse
|
43
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
44
|
Portillo AL, Monteiro JK, Rojas EA, Ritchie TM, Gillgrass A, Ashkar AA. Charting a killer course to the solid tumor: strategies to recruit and activate NK cells in the tumor microenvironment. Front Immunol 2023; 14:1286750. [PMID: 38022679 PMCID: PMC10663242 DOI: 10.3389/fimmu.2023.1286750] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The ability to expand and activate natural Killer (NK) cells ex vivo has dramatically changed the landscape in the development of novel adoptive cell therapies for treating cancer over the last decade. NK cells have become a key player for cancer immunotherapy due to their innate ability to kill malignant cells while not harming healthy cells, allowing their potential use as an "off-the-shelf" product. Furthermore, recent advancements in NK cell genetic engineering methods have enabled the efficient generation of chimeric antigen receptor (CAR)-expressing NK cells that can exert both CAR-dependent and antigen-independent killing. Clinically, CAR-NK cells have shown promising efficacy and safety for treating CD19-expressing hematologic malignancies. While the number of pre-clinical studies using CAR-NK cells continues to expand, it is evident that solid tumors pose a unique challenge to NK cell-based adoptive cell therapies. Major barriers for efficacy include low NK cell trafficking and infiltration into solid tumor sites, low persistence, and immunosuppression by the harsh solid tumor microenvironment (TME). In this review we discuss the barriers posed by the solid tumor that prevent immune cell trafficking and NK cell effector functions. We then discuss promising strategies to enhance NK cell infiltration into solid tumor sites and activation within the TME. This includes NK cell-intrinsic and -extrinsic mechanisms such as NK cell engineering to resist TME-mediated inhibition and use of tumor-targeted agents such as oncolytic viruses expressing chemoattracting and activating payloads. We then discuss opportunities and challenges for using combination therapies to extend NK cell therapies for the treatment of solid tumors.
Collapse
Affiliation(s)
- Ana L. Portillo
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Jonathan K. Monteiro
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Eduardo A. Rojas
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Tyrah M. Ritchie
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Ali A. Ashkar
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
45
|
Nazarenko AS, Vorovitch MF, Biryukova YK, Pestov NB, Orlova EA, Barlev NA, Kolyasnikova NM, Ishmukhametov AA. Flaviviruses in AntiTumor Therapy. Viruses 2023; 15:1973. [PMID: 37896752 PMCID: PMC10611215 DOI: 10.3390/v15101973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 10/29/2023] Open
Abstract
Oncolytic viruses offer a promising approach to tumor treatment. These viruses not only have a direct lytic effect on tumor cells but can also modify the tumor microenvironment and activate antitumor immunity. Due to their high pathogenicity, flaviviruses have often been overlooked as potential antitumor agents. However, with recent advancements in genetic engineering techniques, an extensive history with vaccine strains, and the development of new attenuated vaccine strains, there has been a renewed interest in the Flavivirus genus. Flaviviruses can be genetically modified to express transgenes at acceptable levels, and the stability of such constructs has been greatly improving over the years. The key advantages of flaviviruses include their reproduction cycle occurring entirely within the cytoplasm (avoiding genome integration) and their ability to cross the blood-brain barrier, facilitating the systemic delivery of oncolytics against brain tumors. So far, the direct lytic effects and immunomodulatory activities of many flaviviruses have been widely studied in experimental animal models across various types of tumors. In this review, we delve into the findings of these studies and contemplate the promising potential of flaviviruses in oncolytic therapies.
Collapse
Affiliation(s)
- Alina S. Nazarenko
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Mikhail F. Vorovitch
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Yulia K. Biryukova
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Nikolay B. Pestov
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Ekaterina A. Orlova
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Nickolai A. Barlev
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nadezhda M. Kolyasnikova
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
| | - Aydar A. Ishmukhametov
- Laboratory of Tick-Borne Encephalitis and Other Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
46
|
Houel A, Foloppe J, Dieu-Nosjean MC. Harnessing the power of oncolytic virotherapy and tertiary lymphoid structures to amplify antitumor immune responses in cancer patients. Semin Immunol 2023; 69:101796. [PMID: 37356421 DOI: 10.1016/j.smim.2023.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/14/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Tertiary lymphoid structures (TLS) are ectopic aggregates of immune cells that develop in non-lymphoid tissues under persistent inflammation. Since their presence has been associated with a better prognosis in cancer patients, modulating TLS formation is being part of new challenges in immunotherapy. Although mechanisms underlying TLS genesis are still not fully understood, different strategies have been developed in preclinical models to induce their formation and ultimately enhance antitumor responses. Herein, we will discuss a new approach that would consist in using oncolytic viruses (OV). These viruses have the unique feature to preferentially infect, replicate in and kill cancer cells. Their immunoadjuvant property, their use as a vector of therapeutic molecules and their selectivity for cancer cells, make them an attractive strategy to induce TLS in the tumor microenvironment. This review will examine the current knowledge about TLS neogenesis, approaches for inducing them, and relevance of using OV for this purpose, especially in combination with immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Ana Houel
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France; Transgene, Illkirch-Graffenstaden, France
| | | | - Marie-Caroline Dieu-Nosjean
- UMRS1135 Sorbonne Université, Paris, France; Inserm U1135, Paris, France; Team " Immune Microenvironment and Immunotherapy ", Centre of Immunology and Microbial Infections (Cimi), Faculté de Médecine Sorbonne Université, Paris, France.
| |
Collapse
|
47
|
Sadri M, Najafi A, Rahimi A, Behranvand N, Hossein Kazemi M, Khorramdelazad H, Falak R. Hypoxia effects on oncolytic virotherapy in Cancer: Friend or Foe? Int Immunopharmacol 2023; 122:110470. [PMID: 37433246 DOI: 10.1016/j.intimp.2023.110470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023]
Abstract
Researchers have tried to find novel strategies for cancer treatment in the past decades. Among the utilized methods, administering oncolytic viruses (OVs) alone or combined with other anticancer therapeutic approaches has had promising outcomes, especially in solid tumors. Infecting the tumor cells by these viruses can lead to direct lysis or induction of immune responses. However, the immunosuppressive tumor microenvironment (TME) is considered a significant challenge for oncolytic virotherapy in treating cancer. Based on OV type, hypoxic conditions in the TME can accelerate or repress virus replication. Therefore, genetic manipulation of OVs or other molecular modifications to reduce hypoxia can induce antitumor responses. Moreover, using OVs with tumor lysis capability in the hypoxic TME may be an attractive strategy to overcome the limitations of the therapy. This review summarizes the latest information available in the field of cancer virotherapy and discusses the dual effect of hypoxia on different types of OVs to optimize available related therapeutic methods.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Najafi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Behranvand
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Yang N, Wang Y, Liu S, Tariq SB, Luna JM, Mazo G, Tan A, Zhang T, Wang J, Yan W, Choi J, Rossi A, Xiang JZ, Rice CM, Merghoub T, Wolchok JD, Deng L. OX40L-expressing recombinant modified vaccinia virus Ankara induces potent antitumor immunity via reprogramming Tregs. J Exp Med 2023; 220:e20221166. [PMID: 37145142 PMCID: PMC10165539 DOI: 10.1084/jem.20221166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 03/05/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
Effective depletion of immune suppressive regulatory T cells (Tregs) in the tumor microenvironment without triggering systemic autoimmunity is an important strategy for cancer immunotherapy. Modified vaccinia virus Ankara (MVA) is a highly attenuated, non-replicative vaccinia virus with a long history of human use. Here, we report rational engineering of an immune-activating recombinant MVA (rMVA, MVA∆E5R-Flt3L-OX40L) with deletion of the vaccinia E5R gene (encoding an inhibitor of the DNA sensor cyclic GMP-AMP synthase, cGAS) and expression of two membrane-anchored transgenes, Flt3L and OX40L. Intratumoral (IT) delivery of rMVA (MVA∆E5R-Flt3L-OX40L) generates potent antitumor immunity, dependent on CD8+ T cells, the cGAS/STING-mediated cytosolic DNA-sensing pathway, and type I IFN signaling. Remarkably, IT rMVA (MVA∆E5R-Flt3L-OX40L) depletes OX40hi regulatory T cells via OX40L/OX40 interaction and IFNAR signaling. Single-cell RNA-seq analyses of tumors treated with rMVA showed the depletion of OX40hiCCR8hi Tregs and expansion of IFN-responsive Tregs. Taken together, our study provides a proof-of-concept for depleting and reprogramming intratumoral Tregs via an immune-activating rMVA.
Collapse
Affiliation(s)
- Ning Yang
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Wang
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shuaitong Liu
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanza Baseer Tariq
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph M. Luna
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gregory Mazo
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Tan
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Tuo Zhang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | | | - Wei Yan
- IMVAQ Therapeutics, Sammamish, WA, USA
| | - John Choi
- IMVAQ Therapeutics, Sammamish, WA, USA
| | - Anthony Rossi
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jenny Zhaoying Xiang
- Genomic Resources Core Facility, Weill Cornell Medical College, New York, NY, USA
| | - Charles M. Rice
- The Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Taha Merghoub
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Jedd D. Wolchok
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Liang Deng
- Department of Medicine, Dermatology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Dermatology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
49
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
50
|
Kingsak M, Meethong T, Jongkhumkrong J, Cai L, Wang Q. Therapeutic potential of oncolytic viruses in the era of precision oncology. BIOMATERIALS TRANSLATIONAL 2023; 4:67-84. [PMID: 38283919 PMCID: PMC10817786 DOI: 10.12336/biomatertransl.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 01/30/2024]
Abstract
Oncolytic virus (OV) therapy has been shown to be an effective targeted cancer therapy treatment in recent years, providing an avenue of treatment that poses no damage to surrounding healthy tissues. Not only do OVs cause direct oncolysis, but they also amplify both innate and adaptive immune responses generating long-term anti-tumour immunity. Genetically engineered OVs have become the common promising strategy to enhance anti-tumour immunity, safety, and efficacy as well as targeted delivery. The studies of various OVs have been accomplished through phase I-III clinical trial studies. In addition, the uses of carrier platforms of organic materials such as polymer chains, liposomes, hydrogels, and cell carriers have played a vital role in the potentially targeted delivery of OVs. The mechanism, rational design, recent clinical trials, applications, and the development of targeted delivery platforms of OVs will be discussed in this review.
Collapse
Affiliation(s)
- Monchupa Kingsak
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Thongpon Meethong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Jinnawat Jongkhumkrong
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, Lancaster, SC, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| |
Collapse
|