1
|
Dou L, You W, Chai Y, Shi H, Liu Q, Jiang Q, Li H. LncRNA H19 Promotes Angiogenesis in Mouse Pulmonary Artery Endothelial Cells by Regulating the HIF-1α/VEGF Signaling Pathway. Biochem Genet 2024:10.1007/s10528-024-10983-3. [PMID: 39633221 DOI: 10.1007/s10528-024-10983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a syndrome of acute respiratory failure characterized by systemic hypoxemia and elevated pulmonary arterial pressure, which leads to pathological changes in pulmonary vascular remodeling and endothelial cell function. Long non-coding RNA (lncRNA) H19 has been shown to be involved in the regulation of arterial endothelial cell function, but its regulatory role in PPHN is not fully understood. In the present study, mouse pulmonary artery endothelial cells (MPAECs) were cultured in a hypoxic conditions. Subsequently, the regulatory function of lncRNA H19 on MPAECs was explored by constructing adenoviruses knocking down and overexpressing lncRNA H19. The results revealed that the hypoxic conditions could induce the proliferation and migration of MPAECs, as well as the high expression of lncRNA H19 in MPAECs. Knockdown of lncRNA H19 expression in MPAECs reversed hypoxic environment-induced functional changes in endothelial cells, whereas overexpression of lncRNA H19 further enhanced the proliferation and migration of MPAECs. In addition, lncRNA H19 upregulated the hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway through sponge of miNA-20a-5p, which in turn promoted changes in endothelial cell function. LncRNA H19 may interfere with vascular remodeling in hypoxia-induced pulmonary hypertension by upregulating the expression of HIF-1α and VEGF in vascular endothelial cells.
Collapse
Affiliation(s)
- Lei Dou
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China.
| | - Wei You
- Orthopedics Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen, China
| | - Yannan Chai
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Huiju Shi
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Qing Liu
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Qiaoli Jiang
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Huiling Li
- Department of Neonatology, Southern University of Science and Technology Hospital, Shenzhen, China
| |
Collapse
|
2
|
Song J, Shao J, Yu S, Zhang H, Wang J. LncRNA MEG3 aggravates acute pulmonary embolism-induced pulmonary arterial hypertension by regulating miR-34a-3p/DUSP1 axis. Int J Biol Macromol 2024; 283:137755. [PMID: 39551320 DOI: 10.1016/j.ijbiomac.2024.137755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Acute pulmonary embolism (APE)-induced pulmonary artery hypertension (PAH) is a fatal disease. The miR-34-3p/DUSP1 has inhibitory effects on the thickening of the pulmonary arterial walls in APE rats and the proliferation of platelet-derived growth factor-BB (PDGF-BB)-induced human pulmonary arterial smooth muscle cells (hPASMCs). Herein, the lncRNAs regulating the miR-34a-3p/DUSP1 axis in APE and PAH are further explored in vitro and in vivo. MEG3 targeted miR-34a-3p. MEG3 overexpression potentiated the effects of PDGF-BB treatment on promoting the viability and proliferation of hPASMCs, as well as the mPAP level in APE rats. Also, overexpressed MEG3 strengthened PDGF-BB-induced upregulation of MEG3, NOR-1, PCNA and DUSP1, as well as downregulation of miR-34a-3p in hPASMCs and APE rats. However, shMEG3 generated opposite effects. MiR-34a-3p mimic reversed the effect of MEG3 overexpression, and DUSP1 overexpression neutralized the effect of MEG3 downregulation on PDGF-BB-induced hPASMCs and APE rats.MEG3 aggravates APE-induced PAH by regulating miR-34a-3p/DUSP1 axis, holding a great promise as a novel biomarker for PAH treatment.
Collapse
Affiliation(s)
- Jianfeng Song
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China
| | - Jinyan Shao
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China
| | - Shuili Yu
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China
| | - Heng Zhang
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China.
| | - Jiqin Wang
- Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China.
| |
Collapse
|
3
|
Zhang B, Wang E, Zhou S, Han R, Wu W, Sun G, Cao C, Wang R. RELA-mediated upregulation of LINC03047 promotes ferroptosis in silica-induced pulmonary fibrosis via SLC39A14. Free Radic Biol Med 2024; 223:250-262. [PMID: 39111583 DOI: 10.1016/j.freeradbiomed.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Long non-coding RNAs play a key role in silicosis, a fatal fibrotic lung disease, and there is an urgent need to develop new treatment targets. Long intergenic non-protein-coding RNA 3047 (LINC03047) is associated with cancer, but its role and mechanism in the progression of silicosis require further elucidation. This study investigated the function of LINC03047 in the epithelial-mesenchymal transition (EMT) during silicosis progression. LINC03047 expression was upregulated in SiO2-treated BEAS-2B and A549 cells, promoting SiO2-induced ferroptosis and subsequent EMT. Moreover, knockdown of LINC03047 significantly decreased the expression of solute carrier family 39 member 14 (SLC39A14), a ferrous iron transporter, and inhibition of SLC39A14 alleviated the ferroptosis and EMT caused by LINC03047 overexpression. We further investigated that NF-κB p65 (RELA) was critical for LINC03047 transcription in SiO2-treated BEAS-2B and A549 cells. In vivo experiments showed that SLC39A14 deficiency improved SiO2-induced lipid peroxidation and EMT. Collectively, our study reveals the function of the RELA/LINC03047/SLC39A14 axis in SiO2-induced ferroptosis and EMT, thereby contributing to the identification of novel drug targets for silicosis therapy.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Enze Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei Third Clinical College of Anhui Medical University, Hefei 230022, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenlong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
4
|
Chen B, Xia Y, Jiang Y, Sun Z, Zhang Y, Liu Y. Non-Coding RNA Networks in Pulmonary Arterial Hypertension. Pharmacology 2024; 110:110-121. [PMID: 39342938 DOI: 10.1159/000541060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Pulmonary artery hypertension (PAH) is a severe cardiovascular disease marked by a persistent increase in pulmonary artery resistance and pressure, leading to right ventricular strain, hypertrophy, and eventually right heart failure and death. Despite numerous available targeted therapies, the clinical needs for treating PAH remain unmet. Current treatments primarily aim to dilate pulmonary vessels rather than reverse pulmonary vascular remodeling, failing to offer a fundamental solution for PAH. Therefore, developing new therapies for this condition is urgently required. SUMMARY Recent research has highlighted the crucial role of non-coding RNAs (ncRNAs) in the occurrence and development of PAH. NcRNAs, such as long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), microRNAs (miRNAs), and PIWI-interacting RNAs (piRNAs), are a class of transcripts that do not translate proteins but affect various diseases at different levels, including chromatin modification, transcription regulation, post-translational processes. KEY MESSAGE The current study delves into recent advancements in understanding how lncRNAs, circRNAs, miRNAs, and piRNAs contribute to the pathogenesis of PAH. This review addresses the existing research challenges and explores the potential of ncRNAs as both biomarkers and therapeutic targets, suggesting that ncRNAs may serve as valuable indicators and treatment options for the disease.
Collapse
Affiliation(s)
- Bing Chen
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China,
| | - Yu Xia
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanjiao Jiang
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Zengxian Sun
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yanyan Zhang
- Department of Geriatrics, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| | - Yun Liu
- Department of Pharmacy, The Affiliated Lianyungang Hospital of Xuzhou Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pharmacy, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, China
| |
Collapse
|
5
|
Prawitt D, Eggermann T. Molecular mechanisms of human overgrowth and use of omics in its diagnostics: chances and challenges. Front Genet 2024; 15:1382371. [PMID: 38894719 PMCID: PMC11183334 DOI: 10.3389/fgene.2024.1382371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Overgrowth disorders comprise a group of entities with a variable phenotypic spectrum ranging from tall stature to isolated or lateralized overgrowth of body parts and or organs. Depending on the underlying physiological pathway affected by pathogenic genetic alterations, overgrowth syndromes are associated with a broad spectrum of neoplasia predisposition, (cardio) vascular and neurodevelopmental anomalies, and dysmorphisms. Pathologic overgrowth may be of prenatal or postnatal onset. It either results from an increased number of cells (intrinsic cellular hyperplasia), hypertrophy of the normal number of cells, an increase in interstitial spaces, or from a combination of all of these. The underlying molecular causes comprise a growing number of genetic alterations affecting skeletal growth and Growth-relevant signaling cascades as major effectors, and they can affect the whole body or parts of it (mosaicism). Furthermore, epigenetic modifications play a critical role in the manifestation of some overgrowth diseases. The diagnosis of overgrowth syndromes as the prerequisite of a personalized clinical management can be challenging, due to their clinical and molecular heterogeneity. Physicians should consider molecular genetic testing as a first diagnostic step in overgrowth syndromes. In particular, the urgent need for a precise diagnosis in tumor predisposition syndromes has to be taken into account as the basis for an early monitoring and therapy. With the (future) implementation of next-generation sequencing approaches and further omic technologies, clinical diagnoses can not only be verified, but they also confirm the clinical and molecular spectrum of overgrowth disorders, including unexpected findings and identification of atypical cases. However, the limitations of the applied assays have to be considered, for each of the disorders of interest, the spectrum of possible types of genomic variants has to be considered as they might require different methodological strategies. Additionally, the integration of artificial intelligence (AI) in diagnostic workflows significantly contribute to the phenotype-driven selection and interpretation of molecular and physiological data.
Collapse
Affiliation(s)
- Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, University Medical Center, Mainz, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine, Medical Faculty, RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
7
|
Gu P, Wu Y, Lu W. New Perspectives on the Role and Therapeutic Potential of Melatonin in Cardiovascular Diseases. Am J Cardiovasc Drugs 2024; 24:171-195. [PMID: 38436867 DOI: 10.1007/s40256-024-00631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/05/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. It is essential to develop novel interventions to prevent/delay CVDs by targeting their fundamental cellular and molecular processes. Melatonin is a small indole molecule acting both as a hormone of the pineal gland and as a local regulator molecule in various tissues. It has multiple features that may contribute to its cardiovascular protection. Moreover, melatonin enters all cells and subcellular compartments and crosses morphophysiological barriers. Additionally, this indoleamine also serves as a safe exogenous therapeutic agent. Increasing evidence has demonstrated the beneficial effects of melatonin in preventing and improving cardiovascular risk factors. Exogenous administration of melatonin, as a result of its antioxidant and anti-inflammatory properties, has been reported to decrease blood pressure, protect against atherosclerosis, attenuate molecular and cellular damage resulting from cardiac ischemia/reperfusion, and improve the prognosis of myocardial infarction and heart failure. This review aims to summarize the beneficial effects of melatonin against these conditions, the possible protective mechanisms of melatonin, and its potential clinical applicability in CVDs.
Collapse
Affiliation(s)
- Pengchen Gu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Yuxin Wu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China
| | - Weiwei Lu
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, Jiang Su Prov., China.
| |
Collapse
|
8
|
Qu J, Xue X, Wang Z, Ma Z, Jia K, Li F, Zhang Y, Wu R, Zhou F, Zhao P, Li X. Si-Wu-Tang attenuates liver fibrosis via regulating lncRNA H19-dependent pathways involving cytoskeleton remodeling and ECM deposition. Chin J Nat Med 2024; 22:31-46. [PMID: 38278557 DOI: 10.1016/s1875-5364(24)60560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Indexed: 01/28/2024]
Abstract
Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoyong Xue
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Zhi Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kexin Jia
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yinhao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Piwen Zhao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
9
|
Han R, Guan Y, Tang M, Li M, Zhang B, Fei G, Zhou S, Wang R. High Expression of PSRC1 Predicts Poor Prognosis in Lung Adenocarcinoma. J Cancer 2023; 14:3321-3334. [PMID: 37928428 PMCID: PMC10622992 DOI: 10.7150/jca.88635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/06/2023] [Indexed: 11/07/2023] Open
Abstract
Background: The incidence of lung cancer is increasing annually, but the mechanism of its occurrence and development requires further study. This study aimed to investigate the biological function and prognostic value of proline- and serine-rich coiled-coil 1 (PSRC1) in lung cancer. Methods: We used data from The Cancer Genome Atlas (TCGA) to analyze the association between clinical features and PSRC1 expression in non-small cell carcinoma. The relationship between PSRC1 expression and prognosis in lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) was analyzed using Kaplan-Meier curves. The function of PSRC1 was identified using enrichment analysis, and the relationship between PSRC1 expression and immune cell infiltration was studied. In addition, the expression of PSRC1 in 150 patients with non-small cell carcinoma was detected using immunohistochemistry, and its clinical significance was analyzed. Results: It was found that the expression level of PSRC1 was higher in LUAD and LUSC tumor tissues than in normal tissues, and the results were confirmed by immunohistochemistry in 150 patients. TCGA data showed that high PSRC1 expression in LUAD was associated with poorer overall survival (p = 0.003) and progression-free interval (p = 0.012). Multivariable analysis showed that PSRC1 was an independent risk factor for LUAD. Functional enrichment analysis showed that PSRC1 is related to tumor development. Conclusion: High PSRC1 expression is significantly associated with LUAD survival and may be a promising prognostic biomarker.
Collapse
Affiliation(s)
- Rui Han
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Youhong Guan
- Department of infectious disease, Hefei second people's hospital, Hefei 230001, China
| | - Min Tang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Min Li
- Department of oncology, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Binbin Zhang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Guanghe Fei
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Sijing Zhou
- Department of Occupational Disease, Hefei third clinical college of Anhui Medical University, Hefei 230022, China
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| |
Collapse
|
10
|
Chai L, Wang Q, Wang Y, Li D, Zhang Q, Chen Y, Liu J, Chen H, Qiu Y, Shen N, Wang J, Xie X, Li M. Downregulation of PDCD4 through STAT3/ATF6/autophagy mediates MIF-induced PASMCs proliferation/migration and vascular remodeling. Eur J Pharmacol 2023; 956:175968. [PMID: 37549728 DOI: 10.1016/j.ejphar.2023.175968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/08/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
To address the molecular mechanisms underlying macrophage migration inhibitory factor (MIF) induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration and vascular remodeling in pulmonary hypertension (PH), primary cultured rat PASMCs and monocrotaline (MCT)-induced rats with PH were applied in the present study. The results showed that MIF increased signal transducer and activator of transcription 3 (STAT3) phosphorylation, and then stimulated activating transcription factor 6 (ATF6) activation, subsequently triggered autophagy activation, which further led to programmed cell death factor 4 (PDCD4) lysosomal degradation, and eventually promoted PASMCs proliferation/migration. In lung tissues of MCT rats, MIF protein expression was elevated, phosphorylation of STAT3 and activation of ATF6 were increased, activation of autophagy was evident, and reduction of PDCD4 was observed. Intervention with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP), ATF6 blocker melatonin or autophagy inhibitor chloroquine, confirmed the in vitro interaction among MIF, STAT3, ATF6, autophagy and PDCD4 in MCT induced rats with PH. Targeting MIF/STAT3/ATF6/autophagy/PDCD4 axis effectively prevented the development of PH by suppressing PASMCs proliferation and vascular remodeling. In conclusions, we demonstrate that MIF activates the STAT3/ATF6/autophagy cascade and then degrades PDCD4 leading to PASMCs proliferation/migration and pulmonary vascular remodeling, suggesting that intervention this axis might have potential value in management of PH.
Collapse
Affiliation(s)
- Limin Chai
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qingting Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yan Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Danyang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qianqian Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuqian Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jin Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Huan Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuanjie Qiu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Nirui Shen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jian Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xinming Xie
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Manxiang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi'an JiaoTong, University, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
11
|
Wang D, Luo MY, Tian Y, Zhang J, Liang N, Li NP, Gong SX, Wang AP. Critical miRNAs in regulating pulmonary hypertension: A focus on Signaling pathways and therapeutic Targets. Anal Biochem 2023:115228. [PMID: 37393975 DOI: 10.1016/j.ab.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/04/2023]
Abstract
Pulmonary hypertension (PH) is complex disease as a result of obstructive pulmonary arterial remodeling, which in turn results in elevated pulmonary arterial pressure (PAP) and subsequent right ventricular heart failure, eventually leading to premature death. However, there is still a lack of a diagnostic blood-based biomarker and therapeutic target for PH. Because of the difficulty of diagnosis, new and more easily accessible prevention and treatment strategy are being explored. New target and diagnosis biomarkers should also allow for early diagnosis. In biology, miRNAs are short endogenous RNA molecules that are not coding. It is known that miRNAs can regulate gene expression and affect a variety of biological processes. Besides, miRNAs have been proven to be a crucial factor in PH pathogenesis. miRNAs have various effects on pulmonary vascular remodeling and are expressed differentially in various pulmonary vascular cells. Nowadays, it has been shown to be critical in the functions of different miRNAs in the pathogenesis of PH. Therefore, clarifying the mechanism of miRNAs regulating pulmonary vascular remodeling is of great importance to explore new therapeutic targets of PH and improve the survival qualify and time of patients. This review is focused on the role, mechanism, and potential therapeutic targets of miRNAs in PH and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
- Di Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Meng-Yi Luo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Ying Tian
- Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Jing Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China
| | - Na Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Nan-Ping Li
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Ai-Ping Wang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, PR China; Institute of Clinical Research, Department of Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, PR China.
| |
Collapse
|
12
|
Luo H, Zhao L, Ou Z, Li T, Liu Y, Yu Z. Novel lncRNA LNC_000113 Drives the Activation of Pulmonary Adventitial Fibroblasts through Modulating PTEN/Akt/FoxO1 Pathway. J Cardiovasc Dev Dis 2023; 10:262. [PMID: 37367427 DOI: 10.3390/jcdd10060262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The activation of pulmonary adventitial fibroblasts (PAFs) is one of the key components of pulmonary arterial remodelling in pulmonary arterial hypertension (PAH). Emerging evidence indicates that lncRNAs may play fibrotic roles in a range of diseases. In this present study, we identified a novel lncRNA, LNC_000113, in pulmonary adventitial fibroblasts (PAFs) and characterised its role in the Galectin-3-induced activation of PAFs in rats. Galectin-3 led to elevated expression of lncRNA LNC_000113 in PAFs. The expression of this lncRNA was primarily PAF enriched. A progressive increase in lncRNA LNC_000113 expression was observed in rats with monocrotaline (MCT)-induced PAH rats. Knockdown of lncRNA LNC_000113 cancelled the Galectin-3's fibroproliferative effect on PAFs and prevented the transition of fibroblasts to myofibroblasts. The loss-of-function study demonstrated that lncRNA LNC_000113 activated PAFs through the PTEN/Akt/FoxO1 pathway. These results propose lncRNA LNC_000113 drives the activation of PAFs and promotes fibroblast phenotypic alterations.
Collapse
Affiliation(s)
- Hui Luo
- Department of Cardiology, The First Hospital of Changsha (Xiangya Medical College Affiliated Changsha Hospital of Central South University), Changsha 410005, China
| | - Lin Zhao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ziwei Ou
- Department of Cardiovascular Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Tangzhiming Li
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Yanghong Liu
- Reproductive Medicine Centre, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
13
|
Xia X, Huang L, Zhou S, Han R, Li P, Wang E, Xia W, Fei G, Zeng D, Wang R. Hypoxia-induced long non-coding RNA plasmacytoma variant translocation 1 upregulation aggravates pulmonary arterial smooth muscle cell proliferation by regulating autophagy via miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways. Int J Cardiol 2023; 370:368-377. [PMID: 36174828 DOI: 10.1016/j.ijcard.2022.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND The lncRNA PVT1 reportedly functions as a competing endogenous RNA (ceRNA) of miR-186 and miR-26b in different tissue types. In this study, we investigated the possible involvement of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways in the pathogenesis of hypoxia-induced PAH. METHODS Expression of PVT1, miR-186, miR-26b, and Srf and Ctgf mRNAs were evaluated by real-time polymerase chain reaction. Protein expression of SRF, CTGF, LC3B-I, LC3B-II, and Beclin-I was evaluated using western blotting. The regulatory relationship between the lncRNA, miRNAs, and target mRNAs was explored using luciferase assays. Immunohistochemistry was used to evaluate the expression of SRF and CTGF in situ. MTT assay was performed to assess the proliferation of PASMCs. RESULTS Exposure to hypoxia markedly altered the expression of PVT1, Srf, Ctgf, miR-186, and miR-26b in a rat model. MiR-186 binding sites in the sequences of Srf mRNA and PVT1 were confirmed by luciferase assays, indicating that miR-186 may interact with both PVT1 and Srf mRNA. Additionally, miR-26b binding sites were identified in the sequences of Ctgf mRNA and PVT1, suggesting that miR-26b may interact with both PVT1 and Ctgf mRNA. In line with this, we found that overexpression of PVT1 reduced expression of miR-26b and miR-186 but activated expression of Srf, Ctgf, LC3B-II, and Beclin-I. CONCLUSIONS Upregulation of PVT1 by exposure to hypoxia promoted the expression of CTGF, leading to deregulation of autophagy and abnormal proliferation of PASMCs. Dysregulation of the miR-186/Srf/Ctgf and miR-26b/Ctgf signaling pathways may be involved in the pathogenesis of hypoxia-induced PASMCs.
Collapse
Affiliation(s)
- Xingyuan Xia
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Ling Huang
- Department of Infectious Diseases, Hefei second people's hospital, Hefei 230001, China
| | - Sijing Zhou
- Department of Occupational Diseases, Hefei third clinical college of Anhui Medical University, Hefei 230022, China
| | - Rui Han
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Pulin Li
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Enze Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Wanli Xia
- Department of thoracic surgery, the first affiliated hospital of Anhui medical university, Hefei 230022, China
| | - Guanghe Fei
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China.
| | - Daxiong Zeng
- Department of pulmonary and critical care medicine, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou 215006, China.
| | - Ran Wang
- Department of respiratory and critical care medicine, the first affiliated hospital of Anhui medical university, Hefei 230022, China.
| |
Collapse
|
14
|
Bernardi N, Bianconi E, Vecchi A, Ameri P. Noncoding RNAs in Pulmonary Arterial Hypertension. Heart Fail Clin 2023; 19:137-152. [DOI: 10.1016/j.hfc.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Xie J, Hu Y, Sun D, Liu C, Li Z, Zhu J. Targeting non-coding RNA H19: A potential therapeutic approach in pulmonary diseases. Front Pharmacol 2022; 13:978151. [PMID: 36188624 PMCID: PMC9523668 DOI: 10.3389/fphar.2022.978151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNA is still one of the most popular fields in biology research. In recent years, people paid more attention to the roles of H19 in lung diseases, which expressed abnormally in various pathological process. Therefore, this review focus on the regulatory role of H19 in asthma, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis (IPF), lung injury, pneumonia, lung cancer, etc. And the potential therapeutic agents and molecular treatments of H19 are collected. The aim is to demonstrate its underlying mechanism in pulmonary diseases and to guide the basic research targeting H19 into clinical drug translation.
Collapse
Affiliation(s)
- Jinghui Xie
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuedi Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Dengdi Sun
- The Key Laboratory of Intelligent Computing and Signal Processing (ICSP), Ministry of Education, School of Artificial Intelligence, Anhui University, Hefei, China
| | - Changan Liu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zegeng Li
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Department of Respiratory Medicine, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Jie Zhu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Institute of Traditional Chinese Medicine Prevention and Control on Respiratory Disease, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Ghafouri-Fard S, Shirvani-Farsani Z, Hussen BM, Taheri M, Samsami M. The key roles of non-coding RNAs in the pathophysiology of hypertension. Eur J Pharmacol 2022; 931:175220. [PMID: 35995213 DOI: 10.1016/j.ejphar.2022.175220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
Hypertension is a multifactorial condition in which several genetic and environmental elements contribute. Recent investigations have revealed contribution of non-coding region of the transcriptome in this trait. CDKN2B-AS1, AK098656, MEG3, H19, PAXIP1-AS1, TUG1, GAS5, CASC2 and CPS1-IT are among long non-coding RNAs participating in the pathophysiology of hypertension. Several miRNAs have also been found to be implicated in this disorder. miR-296, miR-637, miR-296, miR-637, hsa-miR-361-5p, miR-122-5p, miR-199a-3p, miR-208a-3p, miR-423-5p, miR-223-5p and miR-140-5p are among dysregulated miRNAs in this condition whose application as diagnostic biomarkers for hypertension has been evaluated. Finally, hsa-circ-0005870, hsa_circ_0037911 and hsa_circ_0014243 are examples of dysregulated circular RNAs in hypertensive patients. In the current review, we describe the role of these non-coding RNAs in the pathophysiology of hypertension.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Shirvani-Farsani
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq; Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
The multifaceted actions of the lncRNA H19 in cardiovascular biology and diseases. Clin Sci (Lond) 2022; 136:1157-1178. [PMID: 35946958 PMCID: PMC9366862 DOI: 10.1042/cs20210994] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the leading cause of death and debility worldwide. Various molecular mechanisms have been studied to better understand the development and progression of cardiovascular pathologies with hope to eradicate these diseases. With the advancement of the sequencing technology, it is revealed that the majority of our genome is non-coding. A growing body of literature demonstrates the critical role of long non-coding RNAs (lncRNAs) as epigenetic regulators of gene expression. LncRNAs can regulate cellular biological processes through various distinct molecular mechanisms. The abundance of lncRNAs in the cardiovascular system indicates their significance in cardiovascular physiology and pathology. LncRNA H19, in particular, is a highly evolutionarily conserved lncRNA that is enriched in cardiac and vascular tissue, underlining its importance in maintaining homeostasis of the cardiovascular system. In this review, we discuss the versatile function of H19 in various types of cardiovascular diseases. We highlight the current literature on H19 in the cardiovascular system and demonstrate how dysregulation of H19 induces the development of cardiovascular pathophysiology.
Collapse
|
18
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
19
|
Li X, Zhang Y, Su L, Cai L, Zhang C, Zhang J, Sun J, Chai M, Cai M, Wu Q, Zhang C, Yan X, Wang L, Huang X. FGF21 alleviates pulmonary hypertension by inhibiting mTORC1/EIF4EBP1 pathway via H19. J Cell Mol Med 2022; 26:3005-3021. [PMID: 35437883 PMCID: PMC9097832 DOI: 10.1111/jcmm.17318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Long non‐coding RNAs (lncRNAs) play a significant role in pulmonary hypertension (PH). Our preliminary data showed that hypoxia‐induced PH is attenuated by fibroblast growth factor 21 (FGF21) administration. Therefore, we further investigated the regulatory role of long non‐coding RNAs in PH treated with FGF21. RNA sequencing analysis and real‐time PCR identified a significantly up‐regulation of the H19 after FGF21 administration. Moreover, gain‐ and loss‐of‐function assays demonstrated that FGF21 suppressed hypoxia‐induced proliferation of pulmonary artery smooth muscle cells partially through upregulation of H19. In addition, FGF21 deficiency markedly exacerbated hypoxia‐induced increases of pulmonary artery pressure and pulmonary vascular remodelling. In addition, AAV‐mediated H19 overexpression reversed the malignant phenotype of FGF21 knockout mice under hypoxia expose. Further investigation uncovered that H19 also acted as an orchestra conductor that inhibited the function of mechanistic target of rapamycin complex 1 (mTORC1) by disrupting the interaction of mTORC1 with eukaryotic translation initiation factor 4E–binding protein 1 (EIF4EBP1). Our work highlights the important role of H19 in PH treated with FGF21 and suggests a mechanism involving mTORC1/EIF4EBP1 inhibition, which may provide a fundamental for clinical application of FGF21 in PH.
Collapse
Affiliation(s)
- Xiuchun Li
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Yaxin Zhang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Lihuang Su
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Luqiong Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Chi Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Jianhao Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, P.R. China
| | - Junwei Sun
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Mengyu Chai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Mengsi Cai
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Qian Wu
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Chi Zhang
- Chinese-American Research Institute for Diabetic Complications at Department of Pharmacy, Wenzhou Medical University, Wenzhou, P.R. China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications at Department of Pharmacy, Wenzhou Medical University, Wenzhou, P.R. China
| | - Liangxing Wang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| | - Xiaoying Huang
- Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, P.R. China
| |
Collapse
|
20
|
Rajabi S, Najafipour H, Sheikholeslami M, Jafarinejad-Farsangi S, Beik A, Askaripour M, Karam ZM. Perillyl alcohol and quercetin modulate the expression of non-coding RNAs MIAT, H19, miR-29a, and miR-33a in pulmonary artery hypertension in rats. Noncoding RNA Res 2022; 7:27-33. [PMID: 35155877 PMCID: PMC8818487 DOI: 10.1016/j.ncrna.2022.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Non-coding RNAs, including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play critical roles in the pathogenesis and progression of pulmonary artery hypertension (PAH). LncRNA H19, myocardial infarction-associated transcript (MIAT), miR-29a, and miR-33a have been suggested as potential targets for treating arterial hypertension. We explored the expression pattern of non-coding RNAs H19, MIAT, miR-29a, and miR-33a in monocrotaline (MCT)-induced PAH rats. Moreover, we investigated whether perillyl alcohol (PA) and quercetin (QS), two plant derivatives with beneficial effects on PAH-induced abnormalities, act through regulating the expression of these non-coding RNAs. Methods Male Wistar rats (n = 30) were divided into five groups. MCT (60 mg/kg) was injected subcutaneously to induce PAH. PA (50 mg/kg daily) and QS (30 mg/kg daily) were administered three weeks after induction of PAH. H&E staining and qRT-PCR were performed to assess arteriole wall thickness and gene expression, respectively. Results Right ventricular systolic pressure (RVSP) and right ventricular hypertrophy (RVH) increased in MCT and MCT + Veh. groups compared to the control group (in both P < 0.001). QS and PA decreased RVSP and RVH significantly. Wall thickness and fibrosis score in the MCT group (score 3) increased compared to the control group (score 0). PA and QS ameliorated wall thickness and fibrosis to score 1 (mild). Also, the expression of miR-29a and miR-33a decreased in the PAH group (in both, P < 0.001). Treatment with PA and QS decreased the expression of H19 (P < 0.001) and MIAT (P < 0.01) and increased the expression of miR-29a (P < 0.01) and miR-33a significantly (P < 0.05 for QS and P < 0.001 for PA). Conclusions The beneficial effects of PA and QS on PAH-induced abnormalities were exerted through returning the dysregulated expression of H19, MIAT, miR-29a, and miR-33a to normal levels in rats with MTC-induced PAH. This study emphasized the therapeutic potential of PA and QS in PAH. However, more detailed investigations are needed to clarify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Soodeh Rajabi
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran
| | - Mozhgan Sheikholeslami
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author. Physiology Research Center, Kerman University of Medical Sciences, Jehad Blvd, Ebn Sina Avenue, Kerman, 76198-13159, Iran.
| | - Ahmad Beik
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Askaripour
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Zahra Miri Karam
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Xu Z, Zhang F, Xu H, Yang F, Zhou G, Tong M, Li Y, Yang S. Melatonin affects hypoxia-inducible factor 1α and ameliorates delayed brain injury following subarachnoid hemorrhage via H19/miR-675/HIF1A/TLR4. Bioengineered 2022; 13:4235-4247. [PMID: 35170388 PMCID: PMC8974079 DOI: 10.1080/21655979.2022.2027175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the molecular mechanism of how melatonin (MT) interferes with hypoxia-inducible factor 1α (HIF1A) and toll-like receptor 4 (TLR4) expression, which is implicated in the management of delayed brain injury (DBI) after subarachnoid hemorrhage (SAH). Luciferase assay, real-time PCR, Western-blot analysis and immunohistochemistry (IHC) assays were utilized to explore the interaction among H19, miR-675, HIF1A and TLR4, and to evaluate the effect of MT on the expression of above transcripts in different groups. MT enhanced H19 expression by promoting the transcription efficiency of H19 promoter, and HIF1A was identified as a target of miR-675. HIF1A enhanced TLR4 expression via promoting the transcription efficiency of TLR4 promoter. Furthermore, administration of MT up-regulated miR-675 but suppressed the expressions of HIF1A and TLR4. Treatment with MT alleviated neurobehavioral deficits and apoptosis induced by SAH. According to the result of IHC, HIF1A and TLR4 protein levels in the SAH group were much higher than those in the SAH+MT group. Therefore, the administration of MT increased the levels of H19 and miR-675 which have been inhibited by SAH. In a similar way, treatment with MT decreased the levels of HIF1A and TLR4 which have been enhanced by SAH. MT could down-regulate the expression of HIF1A and TLR4 via the H19/miR-675/HIF1A/TLR4 signaling pathway, while TLR4 is crucial to the release of pro-inflammatory cytokines. Therefore, the treatment with MT could ameliorate post-SAH DBI.Running title: Melatonin ameliorates post-SAH DBI via H19/miR-675/HIF1A/TLR4 signaling pathways
Collapse
Affiliation(s)
- Zhijian Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fengduo Zhang
- Department of Emergency, Chinese People's Army 971 Hospital, Qingdao, Shandong, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Fan Yang
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Gezhi Zhou
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Minfeng Tong
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yaqing Li
- Department of Neurosurgery, Qingdao Fuwai Cardiovascular Hospital, Qingdao, Shandong, China
| | - Song Yang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.,Department of Neurosurgery, Jiaozhou Branch, Shanghai East Hospital, School of Medicine, Tongji University, Qingdao, Shandong, China
| |
Collapse
|
22
|
Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A. Antitumor and Protective Effects of Melatonin: The Potential Roles of MicroRNAs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1328:463-471. [PMID: 34981497 DOI: 10.1007/978-3-030-73234-9_31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous short noncoding RNAs with approximately 22 nucleotides. The primary function of miRNAs is the negative regulation of target gene expression via mRNA degradation or translation inhibition. During recent years, much attention has been made toward miRNAs' role in different disorders; particularly cancer and compounds with modulatory effects on miRNAs are of interest. Melatonin is one of these compounds which is secreted by the pineal gland. Also, melatonin is present in the leaves, fruits, and seeds of plants. Melatonin has several valuable biological activities such as antioxidant, anti-inflammation, antitumor, and antiaging activities. This important agent is extensively used to treat different disorders such as cancer and neurodegenerative and cardiovascular diseases. This review aims to describe the modulatory effect of melatonin on miRNAs as novel targets.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Shushtar, Khuzestan, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland, Hull, UK
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
23
|
Zhang B, Xu A, Wu D, Xia W, Li P, Wang E, Han R, Sun P, Zhou S, Wang R. ARL14 as a Prognostic Biomarker in Non-Small Cell Lung Cancer. J Inflamm Res 2021; 14:6557-6574. [PMID: 34916816 PMCID: PMC8667197 DOI: 10.2147/jir.s340119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. The mechanisms underlying NSCLC initiation and progression require further investigation. The purpose of this study was to investigate the role of ADP ribosylation factor-like GTPase 14 (ARL14) related to the progression of NSCLC. Patients and Methods We analyzed the correlation between clinical characteristics and ARL14 expression using data from The Cancer Genome Atlas (TCGA). Kaplan–Meier analysis was conducted to evaluate the prognostic value of ARL14 in NSCLC. Functions of ARL14 were identified by enrichment analysis. The relationship between ARL14 expression and immune cell infiltration was also studied. Furthermore, ARL14 expression was examined using immunohistochemistry, and its clinical significance was analyzed in 120 patients with NSCLC. Results Our study revealed that the expression level of ARL14 in patients with NSCLC was higher than that in normal tissues. Using TCGA data, higher ARL14 expression in lung adenocarcinoma was associated with residual tumor (P = 0.017), while it was associated with age (P = 0.003) and N stage (P = 0.009) in lung squamous cell carcinoma. Similar results were obtained from 120 patients with NSCLC. High ARL14 expression was associated with poor overall survival and progression-free survival in NSCLC. Multivariate analysis revealed that ARL14 was an independent risk factor for patients with NSCLC. Functional enrichment analysis indicated that ARL14 was related to the occurrence and development of tumors. Conclusion Increased ARL14 expression was considerably correlated with poor survival in NSCLC, and it might be a promising prognostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People's Hospital, Hefei, Anhui Province, People's Republic of China
| | - Dong Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Wanli Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Enze Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Peng Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Sijing Zhou
- Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Hefei Prevention and Treatment Center for Occupational Diseases, Hefei, Anhui Province, People's Republic of China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
24
|
Wang Y, Sun X, Sun X. The Functions of LncRNA H19 in the Heart. Heart Lung Circ 2021; 31:341-349. [PMID: 34840062 DOI: 10.1016/j.hlc.2021.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
Cardiovascular diseases (CVDs) are major causes of morbidity and mortality worldwide. Great effort has been put into exploring early diagnostic biomarkers and innovative therapeutic strategies for preventing CVD progression over the last two decades. Long non-coding RNAs (lncRNAs) have been identified as novel regulators in cardiac development and cardiac pathogenesis. For example, lncRNA H19 (H19), also known as a fetal gene abundant in adult heart and skeletal muscles and evolutionarily conserved in humans and mice, has a regulatory role in aortic aneurysm, myocardial hypertrophy, extracellular matrix reconstitution, and coronary artery diseases. Yet, the exact function of H19 in the heart remains unknown. This review summarises the functions of H19 in the heart and discusses the challenges and possible strategies of H19 research for cardiovascular disease.
Collapse
Affiliation(s)
- Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaojing Sun
- Department of Geriatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Department of Geriatric Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
25
|
Sun L, Xu A, Li M, Xia X, Li P, Han R, Fei G, Zhou S, Wang R. Effect of Methylation Status of lncRNA-MALAT1 and MicroRNA-146a on Pulmonary Function and Expression Level of COX2 in Patients With Chronic Obstructive Pulmonary Disease. Front Cell Dev Biol 2021; 9:667624. [PMID: 34604205 PMCID: PMC8479795 DOI: 10.3389/fcell.2021.667624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the role of methylation of MALAT1 and miR-146a in the pathogenesis of chronic obstructive pulmonary disease (COPD). COPD patients were grouped according to their methylation status of MALAT1 and miR-146a promoters, and we found that forced vital capacity, volume that has been exhaled at the end of the first second of forced expiration, and diffusion capacity for carbon monoxide were the highest in the MALAT1 HYPO + miR-146a HYPER group and lowest in the MALAT1 HYPER + miR-146a HYPO group, and COPD patients with hypermethylated MALAT1 showed lower expression of MALAT1 than that in the COPD patients with hypomethylated MALAT1. Meanwhile, miR-146a was the most significantly upregulated in the MALAT1 HYPER + miR-146a HYPO group and the most significantly downregulated in the MALAT1 HYPO + miR-146a HYPER group. Both prostaglandin E1 and cyclooxygenase 2 (COX2) expression were the highest in the MALAT1 HYPO + miR-146a HYPER group and the lowest in the MALAT1 HYPER + miR-146a HYPO group. In conclusion, our results established a MALAT1/miR-146a/COX2 signaling axis. The overexpression of MALAT1 could increase the expression of COX2 by inhibiting the expression of miR-146a, thus affecting the pulmonary function of COPD patients.
Collapse
Affiliation(s)
- Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People's Hospital, Hefei, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingyuan Xia
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pulin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Han
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sijing Zhou
- Hefei Third Clinical College of Anhui Medical University, Hefei, China.,Hefei Prevention and Treatment Center for Occupational Diseases, Hefei, China
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Bär C, Chatterjee S, Falcão Pires I, Rodrigues P, Sluijter JPG, Boon RA, Nevado RM, Andrés V, Sansonetti M, de Windt L, Ciccarelli M, Hamdani N, Heymans S, Figuinha Videira R, Tocchetti CG, Giacca M, Zacchigna S, Engelhardt S, Dimmeler S, Madonna R, Thum T. Non-coding RNAs: update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. Cardiovasc Res 2021; 116:1805-1819. [PMID: 32638021 DOI: 10.1093/cvr/cvaa195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023] Open
Abstract
Vast parts of mammalian genomes are actively transcribed, predominantly giving rise to non-coding RNA (ncRNA) transcripts including microRNAs, long ncRNAs, and circular RNAs among others. Contrary to previous opinions that most of these RNAs are non-functional molecules, they are now recognized as critical regulators of many physiological and pathological processes including those of the cardiovascular system. The discovery of functional ncRNAs has opened up new research avenues aiming at understanding ncRNA-related disease mechanisms as well as exploiting them as novel therapeutics in cardiovascular therapy. In this review, we give an update on the current progress in ncRNA research, particularly focusing on cardiovascular physiological and disease processes, which are under current investigation at the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart. This includes a range of topics such as extracellular vesicle-mediated communication, neurohormonal regulation, inflammation, cardiac remodelling, cardio-oncology as well as cardiac development and regeneration, collectively highlighting the wide-spread involvement and importance of ncRNAs in the cardiovascular system.
Collapse
Affiliation(s)
- Christian Bär
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Shambhabi Chatterjee
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Inês Falcão Pires
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands.,Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Partner site Rhein/Main, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Marida Sansonetti
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Leon de Windt
- Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Italy
| | - Nazha Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, University Hospital Maastricht, The Netherlands.,Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, The Netherlands
| | - Raquel Figuinha Videira
- Cardiovascular Research and Development Center, Faculty of Medicine, University of Porto, Porto, Portugal.,Department of Molecular Genetics, Faculty of Science and Engineering, Maastricht University, Maastricht, The Netherlands.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,School of Cardiovascular Medicine & Sciences, King's College London, London, UK.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medicine, Surgery and Health Sciences, University of Trieste, Italy
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Str. 29, Munich 80802, Germany.,DZHK (German Center for Cardiovascular Research), Partner site Munich Heart Alliance, Biedersteiner Str. 29, Munich 80802, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Germany.,German Center for Cardiovascular Research (DZHK), Frankfurt, Germany.,Cardio-Pulmonary Institute (CPI), Frankfurt, Germany
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School, Houston, TX, USA
| | - Thomas Thum
- Institute for Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
27
|
Role of Long Non-Coding RNAs in Pulmonary Arterial Hypertension. Cells 2021; 10:cells10081892. [PMID: 34440661 PMCID: PMC8394897 DOI: 10.3390/cells10081892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating condition of the pulmonary circulatory system that occurs in patients of all ages and if untreated, eventually leads to right heart failure and death. Despite existing medical treatment options that improve survival and quality of life, the disease remains incurable. Thus, there is an urgent need to develop novel therapies to treat this disease. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play critical roles in pulmonary vascular remodeling and PAH. LncRNAs are implicated in pulmonary arterial endothelial dysfunction by modulating endothelial cell proliferation, angiogenesis, endothelial mesenchymal transition, and metabolism. LncRNAs are also involved in inducing different pulmonary arterial vascular smooth muscle cell phenotypes, such as cell proliferation, apoptosis, migration, regulation of the phenotypic switching, and cell cycle. LncRNAs are essential regulators of gene expression that affect various diseases at the chromatin, transcriptional, post-translational, and even post-translational levels. Here, we focus on the role of LncRNAs and their molecular mechanisms in the pathogenesis of PAH. We also discuss the current research challenge and potential biomarker and therapeutic potentials of lncRNAs in PAH.
Collapse
|
28
|
Li ZK, Gao LF, Zhu XA, Xiang DK. LncRNA HOXA-AS3 Promotes the Progression of Pulmonary Arterial Hypertension through Mediation of miR-675-3p/PDE5A Axis. Biochem Genet 2021; 59:1158-1172. [PMID: 33687636 DOI: 10.1007/s10528-021-10053-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Pulmonary arterial hypertension (PAH) seriously threatens the elder people. Long non-coding RNAs (lncRNAs) are involved in multiple diseases. However, the study of the lncRNAs in the occurrence of PAH is just beginning. For this, we sought to explore the biological function of lncRNA HOXA cluster antisense RNA 3 (HOXA-AS3) in PAH. Hypoxia (HYP) was used to mimic in vitro model of PAH. Gene and protein expressions in cells were detected by q-PCR and Western blotting, respectively. In addition, cell proliferation and viability were tested by CCK-8 and MTT assay. Cell apoptosis was measured by flow cytometry. Wound healing was used to detect cell migration. Furthermore, the connection of HOXA-AS3, miR-675-3p, and phosphodiesterase 5A (PDE5A) was verified by dual-luciferase report assay. HOXA-AS3 and PDE5A were upregulated in human pulmonary artery smooth muscle cells (HPASMCs) in the presence of HYP, while miR-675-3p was downregulated. Moreover, knockdown of HOXA-AS3 suppressed the growth and migration of HPASMCs, but induced the apoptosis. Overexpression of miR-675-3p achieved the same effect. MiR-675-3p inhibitor or overexpression of PDE5A notably reversed the inhibitory effect of HOXA-AS3 knockdown on PAH. Finally, HOXA-AS3 could sponge miR-675-3p, and PDE5A was directly targeted by miR-675-3p. HOXA-AS3 increased the development of PAH via regulation of miR-675-3p/PDE5 axis, which could be the potential biomarker for treatment of PAH.
Collapse
Affiliation(s)
- Zhong-Kui Li
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Lu-Fang Gao
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Xi-An Zhu
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China
| | - Dao-Kang Xiang
- Department of Cardiovascular Surgery, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, 550002, Guizhou Province, People's Republic of China.
| |
Collapse
|
29
|
Zhao CC, Guo H, Wang Y, Li JH. Comprehensive upstream and downstream regulatory analyses identify miR-675-3p as a potential prognostic biomarker in melanoma. Hum Cell 2021; 34:654-666. [PMID: 33400243 PMCID: PMC7900067 DOI: 10.1007/s13577-020-00473-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022]
Abstract
This study assessed miR-675-3p-related regulatory mechanisms in melanoma and the clinical relevance of such regulatory activities. We downloaded miRNA mature strand expression RNA-Seq, phenotypic, and DNA methylation data pertaining to the TCGA Melanoma cohort. Differentially expressed miRNAs (DEMs) between metastatic and primary melanoma patient tissues were then identified, and miR-675-3p expression in melanoma patient peripheral blood was confirmed using the GSE20994 GEO dataset, while its expression in melanoma cell lines was evaluated via qRT-RCR. The clinical and prognostic implications of miR-675-3p in melanoma were assessed, and miR-675-3p target genes were identified using bioinformatics tools. Functional roles of this miRNA were explored via Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. We identified 3 and 22 miRNAs that were up- and downregulated, respectively, in metastatic melanoma samples relative to primary melanoma samples. Upregulation of miR-675-3p was associated with poorer overall patient survival, tumor histologic grade, and Clark's level. Consistently, miR-675-3p was also overexpressed in the peripheral blood of melanoma patients relative to healthy controls, and in melanoma cell lines relative to control cells. Gene regulatory networks indicated that 32 transcription factors control miR-675-3p expression, and that it, in turn, regulates 10 target genes. KEGG analyses indicated that these genes were associated with cell cycle, transcriptional misregulation in cancer, TGF-beta signaling, and HIF-1 signaling pathways. Gain-of-function assays revealed that miR-675-3p could promote cell proliferation via accelerating cell cycle progression. Western blotting results indicated that miR-675-3p could active TGF-beta and HIF-1 signaling. Through upstream and downstream analyses of miR-675-3p-related regulatory activity, we confirmed that this miRNA participates in key melanoma-related processes and offers value as a prognostic biomarker in melanoma patients.
Collapse
Affiliation(s)
- Cai-Chou Zhao
- Department of Dermatology, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping Distinct, Shenyang, 110001, Liaoning, China
| | - Hao Guo
- Department of Dermatology, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping Distinct, Shenyang, 110001, Liaoning, China
| | - Ying Wang
- Department of Dermatology, Shengjing Hospital of China Medical University, Heping District, Shenyang, 110004, Liaoning, China
| | - Jiu-Hong Li
- Department of Dermatology, No. 1 Hospital of China Medical University, 155 North Nanjing Street, Heping Distinct, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
30
|
Lu J, Luo Y, Mei S, Fang Y, Zhang J, Chen S. The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review. Curr Neuropharmacol 2020; 19:3-23. [PMID: 32359338 PMCID: PMC7903498 DOI: 10.2174/1570159x18666200503024700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/06/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.
Collapse
Affiliation(s)
- Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| |
Collapse
|
31
|
Sun W, Tang Y, Tai YY, Handen A, Zhao J, Speyer G, Al Aaraj Y, Watson A, Romanelli ME, Sembrat J, Rojas M, Simon MA, Zhang Y, Lee J, Xiong Z, Dutta P, Vasamsetti SB, McNamara D, McVerry B, McTiernan CF, Sciurba FC, Kim S, Smith KA, Mazurek JA, Han Y, Vaidya A, Nouraie SM, Kelly NJ, Chan SY. SCUBE1 Controls BMPR2-Relevant Pulmonary Endothelial Function: Implications for Diagnostic Marker Development in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1073-1092. [PMID: 33294740 PMCID: PMC7691287 DOI: 10.1016/j.jacbts.2020.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
Utilizing publicly available ribonucleic acid sequencing data, we identified SCUBE1 as a BMPR2-related gene differentially expressed between induced pluripotent stem cell-endothelial cells derived from pulmonary arterial hypertension (PAH) patients carrying pathogenic BMPR2 mutations and control patients without mutations. Endothelial SCUBE1 expression was decreased by known triggers of PAH, and its down-regulation recapitulated known BMPR2-associated endothelial pathophenotypes in vitro. Meanwhile, SCUBE1 concentrations were reduced in plasma obtained from PAH rodent models and patients with PAH, whereas plasma concentrations were tightly correlated with hemodynamic markers of disease severity. Taken together, these data implicate SCUBE1 as a novel contributor to PAH pathogenesis with potential therapeutic, diagnostic, and prognostic applications.
Collapse
Key Words
- BMP, bone morphogenetic protein
- BMPR2
- EC, endothelial cell
- PAEC, pulmonary arterial endothelial cell
- PAH, pulmonary arterial hypertension
- PAP, pulmonary artery pressure
- PCWP, pulmonary capillary wedge pressure
- PH, pulmonary hypertension
- PVR, pulmonary vascular resistance
- RV, right ventricle
- SCUBE1
- WSPH, World Symposium on Pulmonary Hypertension
- endothelium
- iPSC-EC, induced pluripotent stem cell-endothelial cell
- mPAP, mean pulmonary artery pressure
- pulmonary hypertension
Collapse
Affiliation(s)
- Wei Sun
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ying Tang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yi-Yin Tai
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adam Handen
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jingsi Zhao
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Gil Speyer
- Research Computing, Arizona State University, Tempe, Arizona, USA
| | - Yassmin Al Aaraj
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Annie Watson
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Makenna E Romanelli
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Mauricio Rojas
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Marc A Simon
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Janet Lee
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Partha Dutta
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sathish Badu Vasamsetti
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Dennis McNamara
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bryan McVerry
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Charles F McTiernan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Frank C Sciurba
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Seungchan Kim
- Center for Computational Systems Biology, Department of Electrical and Computer Engineering, Roy G. Perry College of Engineering, Prairie View A and M University, Prairie View, Texas, USA
| | - Kerri Akaya Smith
- Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy A Mazurek
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchi Han
- Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anjali Vaidya
- Cardiovascular Division, Temple University Health Systems, Philadelphia, Pennsylvania, USA
| | - Seyed Mehdi Nouraie
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Neil J Kelly
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Stephen Y Chan
- Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology and Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Qin Y, Yan G, Qiao Y, Wang D, Luo E, Hou J, Tang C. Emerging role of long non-coding RNAs in pulmonary hypertension and their molecular mechanisms (Review). Exp Ther Med 2020; 20:164. [PMID: 33093902 PMCID: PMC7571311 DOI: 10.3892/etm.2020.9293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a life-threatening cardiopulmonary condition caused by several pathogenic factors. All types of PH are characterized by the excessive proliferation of pulmonary artery endothelial cells and pulmonary artery smooth muscle cells, apoptosis resistance, pulmonary vascular remodeling, sustained elevated pulmonary arterial pressure, right heart failure and even death. Over the past decade, next generation sequencing, particularly RNA-sequencing, has identified some long non-coding RNAs (lncRNAs) that may act as regulators of cell differentiation, proliferation and apoptosis. Studies have shown that lncRNAs are closely associated with the development of several diseases, including cardiovascular diseases. In addition, a number of studies have reported that lncRNAs, including maternally expressed gene 3, metastasis-associated lung adenocarcinoma transcript 1, taurine upregulated 1 and cancer susceptibility candidate 2, serve important roles in the pathogenesis of PH. Despite the development of novel drug treatments, the mortality rate of PH remains high with no evident downward trend. Therefore, certain lncRNAs may be considered as therapeutic targets for the treatment of incurable PH. The present review summarizes the latest research on lncRNAs and PH, aiming to briefly describe PH-associated lncRNAs and their mechanisms of action.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Erfei Luo
- Department of Cardiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Jiantong Hou
- Department of Cardiology, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
33
|
Zhu K, Zhou S, Xu A, Sun L, Li M, Jiang H, Zhang B, Zeng D, Fei G, Wang R. Microbiota Imbalance Contributes to COPD Deterioration by Enhancing IL-17a Production via miR-122 and miR-30a. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:520-529. [PMID: 33230454 PMCID: PMC7558803 DOI: 10.1016/j.omtn.2020.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/17/2020] [Indexed: 01/04/2023]
Abstract
The changes of microbiota in lungs could change interleukin-17a (IL-17a) expression by altering microRNAs (miRNAs) profile, thus contributing to the pathogenesis of chronic obstructive pulmonary disease (COPD). In this study, we aimed to study molecular mechanisms’ underlying effect of microbiota imbalance on COPD deterioration. Real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) were performed to analyze expression of miRNAs and IL-17a mRNA. ELISA was used to evaluate abundance of IL-17a in plasma, peripheral blood monocyte, and sputum of COPD mice and patients. Luciferase assay was performed to explore underlying molecular mechanisms. The expression of miR-122, miR-30a, and miR-99b were remarkably decreased in COPD mice, while the expression of IL-17a was notably increased in plasma, peripheral blood monocytes, and lung tissues of COPD mice. The levels of Lactobacillus/Moraxella and IL-17a expression were significantly enhanced in sputum of exacerbated COPD patients, along with notably decreased expression of miR-122 and miR-30a. Luciferase assay confirmed that miR-122 and miR-30a played an inhibitory role in IL-17a expression. We identified miR-122 and miR-30a as differentially expressed miRNAs in sputum and plasma of COPD patients in exacerbation-month12 group. Furthermore, downregulated miR-122 and miR-30a expression associated with microbiota imbalance may contribute to COPD deterioration by enhancing IL-17a production.
Collapse
Affiliation(s)
- Ke Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, Hefei 230022, China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People’s Hospital, Hefei 230001, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huihui Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Daxiong Zeng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Corresponding author: Daxiong Zeng, PhD, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Guanghe Fei
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Corresponding author: Guanghe Fei, PhD, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Corresponding author: Ran Wang, PhD, Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
34
|
Chen C, Liu M, Tang Y, Sun H, Lin X, Liang P, Jiang B. LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleolin protein. J Cell Physiol 2020; 235:5985-5994. [PMID: 31975412 DOI: 10.1002/jcp.29524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/09/2020] [Indexed: 12/12/2022]
Abstract
Myocardial ischemic preconditioning (IP) is defined as a brief period of myocardial ischemia/reperfusion (I/R) that significantly reduces injury during the subsequent exposure to long-term I/R. However, the underlying mechanisms of myocardial IP are yet to be elucidated. This study investigated the expression and roles of long noncoding RNA (lncRNA) H19 in myocardial IP in vitro and in vivo. LncRNA H19 expression levels were analyzed by quantitative reverse-transcription polymerase chain reaction, cell viability was determined by the Cell Counting Kit-8 assay, apoptosis was evaluated based on the caspase 3 activity, and RNA immunoprecipitation was performed to examine the interaction between lncRNA H19 and nucleolin. The results of this study showed that lncRNA H19 expression was significantly upregulated in mouse hearts subjected to myocardial IP, in rat H9C2 cells exposed to H2 O2 preconditioning (H2 O2 -PC), and in neonatal rat cardiomyocytes subjected to hypoxia preconditioning. H19 knockdown abrogated the H2 O2 -PC-mediated protection in cardiomyocytes evidenced by the decreased cell viability and increased caspase-3 activity. Conversely, H19 overexpression enhanced the protective role of H2 O2 -PC in cardiomyocytes. In addition, H19 overexpression increased the expression of nucleolin, whereas H19 ablation abrogated H2 O2 -PC-induced upregulation of nucleolin in cardiomyocytes. Furthermore, H19 overexpression increased the stabilization of nucleolin; an interaction between H19 and nucleolin was identified using the RNA-protein interaction studies. Furthermore, nucleolin small interfering RNA relieved the protective role of lncRNA H19. These findings demonstrated that the lncRNA H19 is involved in myocardial IP via increasing the stability of nucleolin protein and lncRNA H19 may represent a potential therapeutic target for the treatment of the myocardial injury.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Meidong Liu
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Sun
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
35
|
Melatonin as a protective agent in cardiac ischemia-reperfusion injury: Vision/Illusion? Eur J Pharmacol 2020; 885:173506. [PMID: 32858050 DOI: 10.1016/j.ejphar.2020.173506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Melatonin, an emphatic endogenous molecule exerts protective effects either via activation of G-protein coupled receptors (Melatonin receptors, MTR 1-3), tumor necrosis factor receptor (TNFR), toll like receptors (TLRS), nuclear receptors (NRS) or by directly scavenging the free radicals. MTRs are extensively expressed in the heart as well as in the coronary vasculature. Accumulating evidences have indicated the existence of a strong correlation between reduction in the circulating level of melatonin and precipitation of heart attack. Apparently, melatonin exhibits cardioprotective effects via modulating inextricably interlinked pathways including modulation of mitochondrial metabolism, mitochondrial permeability transition pore formation, nitric oxide release, autophagy, generation of inflammatory cytokines, regulation of calcium transporters, reactive oxygen species, glycosaminoglycans, collagen accumulation, and regulation of apoptosis. Convincingly, this review shall describe the various signaling pathways involved in salvaging the heart against ischemia-reperfusion injury.
Collapse
|
36
|
Chitimus DM, Popescu MR, Voiculescu SE, Panaitescu AM, Pavel B, Zagrean L, Zagrean AM. Melatonin's Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020; 10:biom10091211. [PMID: 32825327 PMCID: PMC7563541 DOI: 10.3390/biom10091211] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
There is a growing consensus that the antioxidant and anti-inflammatory properties of melatonin are of great importance in preserving the body functions and homeostasis, with great impact in the peripartum period and adult life. Melatonin promotes adaptation through allostasis and stands out as an endogenous, dietary, and therapeutic molecule with important health benefits. The anti-inflammatory and antioxidant effects of melatonin are intertwined and are exerted throughout pregnancy and later during development and aging. Melatonin supplementation during pregnancy can reduce ischemia-induced oxidative damage in the fetal brain, increase offspring survival in inflammatory states, and reduce blood pressure in the adult offspring. In adulthood, disturbances in melatonin production negatively impact the progression of cardiovascular risk factors and promote cardiovascular and neurodegenerative diseases. The most studied cardiovascular effects of melatonin are linked to hypertension and myocardial ischemia/reperfusion injury, while the most promising ones are linked to regaining control of metabolic syndrome components. In addition, there might be an emerging role for melatonin as an adjuvant in treating coronavirus disease 2019 (COVID 19). The present review summarizes and comments on important data regarding the roles exerted by melatonin in homeostasis and oxidative stress and inflammation related pathologies.
Collapse
Affiliation(s)
- Diana Maria Chitimus
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Mihaela Roxana Popescu
- Department of Cardiology, “Carol Davila” University of Medicine and Pharmacy, Elias University Hospital, 010164 Bucharest, Romania;
| | - Suzana Elena Voiculescu
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, Filantropia Clinical Hospital, 010164 Bucharest, Romania;
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, 010164 Bucharest, Romania; (D.M.C.); (S.E.V.); (B.P.); (L.Z.)
- Correspondence:
| |
Collapse
|
37
|
Overexpressed lncRNA AC068039.4 Contributes to Proliferation and Cell Cycle Progression of Pulmonary Artery Smooth Muscle Cells Via Sponging miR-26a-5p/TRPC6 in Hypoxic Pulmonary Arterial Hypertension. Shock 2020; 55:244-255. [PMID: 33026218 DOI: 10.1097/shk.0000000000001606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a devastating and incurable disease characterized by pulmonary vascular remodeling, resulting in right heart failure and even death. Accumulated evidence has confirmed long coding RNAs (lncRNAs) are involved in hypoxia-induced pulmonary vascular remodeling in HPH. The exact mechanism of lncRNA in hypoxic pulmonary hypertension remains unclear. METHODS Microarray analysis was applied to investigate the profiles of lncRNA expression in pulmonary artery smooth muscle cells (PASMCs) cultured under hypoxia and normoxia condition. qRT-PCR was performed for the expression of lncRNAs, miRNA, and mRNAs, western blot analysis was employed for the detection of the expression of proteins. CCK-8 and transwell chamber assay were applied for the assessment of PASMC proliferation and migration, respectively. Besides, flow cytometry was performed for assessments of cell cycle progression. The binding between AC068039.4 and miR-26a-5p, miR-26a-5p, and TRPC6 3'UTR was detected by dual luciferase reporter assay. RESULTS A total of 1,211 lncRNAs (698 up-regulated and 513 down-regulated) were differently expressed in hypoxia-induced PASMCs. Consistent with microarray analysis, quantitative PCR verified that AC068039.4 was obviously up-regulated in hypoxia-induced PASMCs. Knocking down AC068039.4 alleviated proliferation and migration of PASMCs and regulated cell cycle progression through inhibiting cells entering the G0/G1 cell cycle phase. Further experiment indicated AC068039.4 promoted hypoxic PASMCs proliferation via sponging miR-26-5p. In addition, transient receptor potential canonical 6 (TRPC6) was confirmed to be a target gene of miR-26a-5p. CONCLUSION In conclusion, downregulation of lncRNA AC068039.4 inhibited pulmonary vascular remodeling through AC068039.4/miR-26a-5p/TRPC6 axis, providing new therapeutic insights for the treatment of HPH.
Collapse
|
38
|
Cai Z, Klein T, Geenen LW, Tu L, Tian S, van den Bosch AE, de Rijke YB, Reiss IKM, Boersma E, Duncker DJ, Boomars KA, Guignabert C, Merkus D. Lower Plasma Melatonin Levels Predict Worse Long-Term Survival in Pulmonary Arterial Hypertension. J Clin Med 2020; 9:jcm9051248. [PMID: 32344923 PMCID: PMC7287676 DOI: 10.3390/jcm9051248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous melatonin has been reported to be beneficial in the treatment of pulmonary hypertension (PH) in animal models. Multiple mechanisms are involved, with melatonin exerting anti-oxidant and anti-inflammatory effects, as well as inducing vasodilation and cardio-protection. However, endogenous levels of melatonin in treatment-naïve patients with PH and their clinical significance are still unknown. Plasma levels of endogenous melatonin were measured by liquid chromatography-tandem mass spectrometry in PH patients (n = 64, 43 pulmonary arterial hypertension (PAH) and 21 chronic thromboembolic PH (CTEPH)) and healthy controls (n = 111). Melatonin levels were higher in PH, PAH, and CTEPH patients when compared with controls (Median 118.7 (IQR 108.2–139.9), 118.9 (109.3–147.7), 118.3 (106.8–130.1) versus 108.0 (102.3–115.2) pM, respectively, p all <0.001). The mortality was 26% (11/43) in the PAH subgroup during a long-term follow-up of 42 (IQR: 32–58) months. Kaplan–Meier analysis showed that, in the PAH subgroup, patients with melatonin levels in the 1st quartile (<109.3 pM) had a worse survival than those in quartile 2–4 (Mean survival times were 46 (95% CI: 30–65) versus 68 (58–77) months, Log-rank, p = 0.026) with an increased hazard ratio of 3.5 (95% CI: 1.1–11.6, p = 0.038). Endogenous melatonin was increased in treatment-naïve patients with PH, and lower levels of melatonin were associated with worse long-term survival in patient with PAH.
Collapse
Affiliation(s)
- Zongye Cai
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Theo Klein
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, 3000 CB Rotterdam, The Netherlands; (T.K.); (Y.B.d.R.)
| | - Laurie W. Geenen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Ly Tu
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, 92350 Paris, France; (L.T.); (C.G.)
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, 94270 Paris, France
| | - Siyu Tian
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Annemien E. van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Yolanda B. de Rijke
- Department of Clinical Chemistry, Erasmus MC, University Medical Center Rotterdam, 3000 CB Rotterdam, The Netherlands; (T.K.); (Y.B.d.R.)
| | - Irwin K. M. Reiss
- Department of Pediatrics/Neonatology, Sophia Children’s Hospital, Erasmus MC, University Medical Center Rotterdam, 3000 CB Rotterdam, The Netherlands;
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
- Department of Clinical Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Dirk J. Duncker
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
| | - Karin A. Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands;
| | - Christophe Guignabert
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, 92350 Paris, France; (L.T.); (C.G.)
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, 94270 Paris, France
| | - Daphne Merkus
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (Z.C.); (L.W.G.); (S.T.); (A.E.v.d.B.); (E.B.); (D.J.D.)
- Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
- Correspondence: ; Tel.: +31-10-7030955
| |
Collapse
|
39
|
Shen XF, Cheng Y, Dong QR, Zheng MQ. MicroRNA-675-3p regulates IL-1β-stimulated human chondrocyte apoptosis and cartilage degradation by targeting GNG5. Biochem Biophys Res Commun 2020; 527:458-465. [PMID: 32336544 DOI: 10.1016/j.bbrc.2020.04.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/12/2020] [Indexed: 12/18/2022]
Abstract
Growing evidence has indicated that microRNAs (miRNAs) are modulators of osteoarthritis (OA) development and progression. In this study, we first evaluated the anti-apoptosis and chondroprotective effects of microRNA-675-3p (miR-675-3p) on interleukin-1β (IL-1β)-stimulated human chondrocytes. The overexpression of miR-675-3p inhibited apoptosis and cartilage matrix degradation and promoted cell proliferation in human chondrocytes. Target gene prediction and luciferase reporter assays suggested that G-protein subunit γ 5 (GNG5) may be the target gene of miR-675-3p. The overexpression of miR-675-3p inhibited IL-1β-stimulated chondrocyte apoptosis, and this effect was reversed by the overexpression of GNG5. Finally, we used bioinformatic tools and biological methods to show that the long noncoding RNA X-inactive specific transcript (lncRNA XIST) could bind to miR-675-3p, which affects the expression of GNG5 mRNA. Our findings may substantiate miR-675-3p as a new treatment for OA.
Collapse
Affiliation(s)
- Xiao-Fei Shen
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China
| | - Yi Cheng
- Department of Orthopedics, Yan Cheng City No.1 People's Hospital, Yan Cheng, 224005, PR China
| | - Qi-Rong Dong
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, PR China.
| | - Min-Qian Zheng
- Department of Orthopedics, Yan Cheng City No.1 People's Hospital, Yan Cheng, 224005, PR China
| |
Collapse
|
40
|
Zhou Y, Zhang Y. Inhibition of LncRNAH19 has the effect of anti-tumour and enhancing sensitivity to Gefitinib and Chemotherapy in Non-small-cell lung cancer in vivo. J Cell Mol Med 2020; 24:5811-5816. [PMID: 32281297 PMCID: PMC7214165 DOI: 10.1111/jcmm.15245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/19/2020] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is one of the most common malignant diseases, which ranked first in both men and women malignancies worldwide. The survival rate of non-small-cell lung cancer (NSCLC) has been limited with distant metastasis and shortage of effective chemotherapeutics in recent years. Thus, novel therapeutic strategies for NSCLC are urgently explored. Here, we showed that inhibition of H19 effectively inhibited the progression of NSCLC. Moreover, down-regulation of H19 treatment significantly enhanced the levels of PTEN and PDCD4, while suppressed the expressions of NFIB in NSCLC. Furthermore, down-regulation of H19 combined with Gefitinib treatment significantly increased the levels of PTEN and PDCD4, while decreased the expression levels of NFIB. Moreover, the results showed that Gefitinib treatment significantly reduced the shH19-mediated miR-21 expression levels. Our results showed that down-regulation of H19 combined with Gefitinib administration significantly improved the effect of shH19 treatment alone on the progression of NSCLC, which was involved in the activation of PTEN signalling pathway in NSCLC in vivo. Therefore, these findings might indicate a novel molecular mechanism, which could provide a new potential combination of therapeutic method in NSCLC.
Collapse
Affiliation(s)
- Yaodong Zhou
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital affiliated to Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
41
|
Long noncoding RNAs as novel players in the pathogenesis of hypertension. Hypertens Res 2020; 43:597-608. [PMID: 32020084 DOI: 10.1038/s41440-020-0408-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/12/2020] [Accepted: 01/12/2020] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) are non-(protein)-coding RNAs longer than ~200 nucleotides and have been reported to be involved in multiple human diseases by regulating gene expression. A growing body of evidence has demonstrated that lncRNAs are also widely implicated in mechanisms of hypertension, including regulation of the proliferation, migration, and apoptosis of VSMCs; the production of iNOS and NO; and the angiogenic function of endothelial cells. Several lncRNAs were also differentially expressed in the renal and cardiac tissues of hypertensive rats and even in placental samples from preeclampsia patients. In particular, several circulating lncRNAs have been identified as novel biomarkers of hypertension. In this review, we summarize the current studies of lncRNAs in the pathogenesis of hypertension in order to aid in better understanding the molecular mechanism of hypertension and provide a basis to explore new therapeutic targets.
Collapse
|
42
|
H19 Increases IL-17A/IL-23 Releases via Regulating VDR by Interacting with miR675-5p/miR22-5p in Ankylosing Spondylitis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 19:393-404. [PMID: 31887550 PMCID: PMC6938967 DOI: 10.1016/j.omtn.2019.11.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/03/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023]
Abstract
Long non-coding RNA (lncRNA) H19 is associated with inflammatory diseases, but the molecular mechanism of H19 in the inflammatory process of ankylosing spondylitis (AS) is unclear. Here, we investigated the role of H19 and its downstream molecules in the inflammation of AS by microarray analysis, qRT-PCR, western blot, and dual-luciferase reporter assay. H19 small interfering RNA (siRNA) (Si-H19) and adenovirus (AD-H19) were used to decrease and increase H19 expression, respectively. 42 annotated lncRNAs were identified, and H19 was overexpressed. H19, vitamin D receptor (VDR), and transforming growth factor β (TGF-β) can bind to microRNA22-5p (miR22-5p) and miR675-5p. Si-H19 significantly downregulated miR22-5p and upregulated miR675-5p expression; Si-H19 decreased the protein and mRNA expression of VDR and decreased the cytokine and mRNA levels of interleukin-17A (IL-17A) and IL-23. These results were verified by AD-H19. In addition, miR22-5p and miR675-5p inhibitors increased the protein and mRNA expression of VDR and increased the cytokine and mRNA levels of IL-17A and IL-23. These results were also confirmed by miRNA mimics. Furthermore, H19 directly interfered with miR22-5p and miR675-5p expression, whereas the two miRNAs directly inhibited VDR expression. Overall, the H19-miR22-5p/miR675-5p-VDR-IL-17A/IL-23 signaling pathways have important roles in the pathogenesis of AS.
Collapse
|
43
|
|
44
|
Zhou S, Zhu K, Du Y, Jiang H, Li M, Wu P, Xu A, Ding X, Sun L, Cao C, Sun G, Wang R. Estrogen administration reduces the risk of pulmonary arterial hypertension by modulating the miR-133a signaling pathways in rats. Gene Ther 2019; 27:113-126. [PMID: 31562386 DOI: 10.1038/s41434-019-0103-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 12/25/2022]
Abstract
We aimed to investigate how estrogen (ES) is implicated in the pathogenesis of pulmonary arterial hypertension (PAH) potentially by reducing the extent of vascular remodeling in females. HE assay, Western Blot, IHC, and real-time PCR were carried out to observe the role of ES in regulating miR-133a expression and the levels of MYOSLID, SRF, CTGF, and vascular remodeling in rats. In addition, MTT assay and flow cytometry were utilized to observe how ES affects cell proliferation and cell cycle in PAH. Moreover, luciferase assays were carried out to clarity the regulatory relationship between miR-133a and its downstream targets. ES administration relieved the deregulation of miR-133a, MYOSLID, SRF, and CTGF in PAH rats. In addition, ES also reduced the thickening of blood vessels in PAH rats. ES could activate miR-133a promoter and arrest the cells in the G0/G1 cycle, thus dose-dependently suppressing the proliferation of cells. In addition, the presence of ES, MYOSLID siRNA, or miR-133a precursor all altered the expression of MYOSLID, SP1, SRF, and CTGF, thus establishing a molecular signaling pathway among these factors. Furthermore, miR-133a could bind to SP1, MYOSLID, SRF, and CTGF to reduce their expression. Moreover, SRF was proved to function as an activator of miR-133a promoter. Two feedback loops were established in this study: a negative feedback loop between SRF and miR-133a, and a positive loop among miR-133a/SRF/MLK1/MYOSLID. ES treatment upregulates miR-133a expression and reduces the incidence of PAH and vascular remodeling.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, 230022, Hefei, China
| | - Ke Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Yongsheng Du
- Department of General Medicine, Hefei Second People's Hospital, Changjiang East Road, 230022, Hefei, China
| | - Huihui Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Peipei Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Aiqun Xu
- Department of General Medicine, Hefei Second People's Hospital, Changjiang East Road, 230022, Hefei, China
| | - Xing Ding
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
| | - Chao Cao
- Department of Respiratory Medicine, Ningbo First Hospital, 315000, Ningbo, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
| |
Collapse
|
45
|
Zhou S, Jiang H, Li M, Wu P, Sun L, Liu Y, Zhu K, Zhang B, Sun G, Cao C, Wang R. Circular RNA hsa_circ_0016070 Is Associated with Pulmonary Arterial Hypertension by Promoting PASMC Proliferation. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 18:275-284. [PMID: 31593832 PMCID: PMC6796681 DOI: 10.1016/j.omtn.2019.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/13/2019] [Accepted: 08/29/2019] [Indexed: 12/21/2022]
Abstract
Noncoding RNAs play an important role in the pathogenesis of pulmonary arterial hypertension (PAH). In this study, we investigated the roles of hsa_circ_0016070, miR-942, and CCND1 in PAH. circRNA microarray was used to search circRNAs involved in PAH, whereas real-time PCR and western blot analysis were performed to detect miR-942 and CCND1 expression in different groups. In addition, the effect of miR-942 on CCND1 expression, as well as the effect of hsa_circ_0016070 on the expression of miR-942 and CCND1, was also studied using real-time PCR and western blot analysis. Moreover, MTT assay and flow cytometry were used to detect the effect of hsa _circ_0016070 on cell proliferation and cell cycle. According to the results of circRNA microarray analysis, hsa _circ_0016070 was identified to be associated with the risk of PAH in chronic obstructive pulmonary disease (COPD) patients. The miR-942 level in the COPD(+) PAH(+) group was much lower than that in the COPD(+) PAH(−) group, while the CCND1 level in the COPD(+) PAH(+) group was much higher. CCND1 was identified as a candidate target gene of miR-942, and the luciferase assay showed that the luciferase activity of wild-type CCND1 3′ UTR was inhibited by miR-942 mimics. In addition, hsa _circ_0016070 reduced miR-942 expression and enhanced CCND1 expression. Furthermore, hsa _circ_0016070 evidently increased cell viability and decreased the number of cells arrested in the G1/G0 phase. In summary, the results of this study suggested that hsa_circ_0016070 was associated with vascular remodeling in PAH by promoting the proliferation of pulmonary artery smooth muscle cells (PASMCs) via the miR-942/CCND1. Accordingly, has_circ_0016070 might be used as a novel biomarker in the diagnosis and treatment of PAH.
Collapse
Affiliation(s)
- Sijing Zhou
- Hefei Prevention and Treatment Center for Occupational Diseases, Hefei 230022, China
| | - Huihui Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Min Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Peipei Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yi Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ke Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Binbin Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Gengyun Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| | - Chao Cao
- Department of Respiratory Medicine, Ningbo First Hospital, Ningbo 315000, China.
| | - Ran Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
46
|
Yi X, Liu J, Wu P, Gong Y, Xu X, Li W. The key microRNA on lipid droplet formation during adipogenesis from human mesenchymal stem cells. J Cell Physiol 2019; 235:328-338. [PMID: 31210354 DOI: 10.1002/jcp.28972] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Xia Yi
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Jianyun Liu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ping Wu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Ying Gong
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Xiaoyuan Xu
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| | - Weidong Li
- Jiangxi Provincial Key Laboratory of Systems Biomedicine Jiujiang University Jiujiang China
| |
Collapse
|
47
|
Replication of GWAS Loci Revealed an Increased Risk of BET1L and H19 Polymorphisms with Intracranial Aneurysm. DISEASE MARKERS 2019; 2019:9490639. [PMID: 31275455 PMCID: PMC6589239 DOI: 10.1155/2019/9490639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/25/2019] [Accepted: 05/05/2019] [Indexed: 02/05/2023]
Abstract
A genome-wide association study (GWAS) identified that BET1L rs2280543 at chromosome 11p15.5 was a susceptibility loci of intracranial aneurysm (IA). Long noncoding RNA H19, located in this region, was reported to play a crucial role in the formation of IA. In this study, we aimed to examine whether BET1L rs2280543 and potentially functional polymorphisms in H19 influence the risk of IA. A hospital-based case-control study was performed involving 542 IA patients and 588 age- and gender-matched controls. The BET1L rs2280543 and H19 polymorphisms were genotyped using the TaqMan assay. The BET1L rs2280543 CT, CT/TT genotypes, and T allele were associated with an increased risk of IA (CT vs. CC, adjusted OR = 1.43, 95% CI: 1.08-1.90, P = 0.01; CT/TT vs. CC, adjusted OR = 1.48, 95% CI: 1.12-1.94, P = 0.005; and T vs. C, adjusted OR = 1.44, 95% CI: 1.13-1.83, P = 0.003). Similarly, the H19 rs217727 TT genotype and T allele were associated with an increased risk of IA (TT vs. CC, adjusted OR = 1.90, 95% CI: 1.35-2.67, P < 0.001; T vs. C, adjusted OR = 1.38, 95% CI: 1.16-1.64, P < 0.001). Combined analyses revealed that the rs2280543 CC-rs217727 CT/TT, rs2280543 CT/TT-rs2735971 GG, and rs217727 CT/TT-rs2735971 GG genotypes were related to the risk of IA. Interaction analysis showed that the 3-loci model of rs2280543-rs217727-rs2839698 contributed to an increased risk of IA. These findings suggest that the GWAS-discovered risk loci BET1L rs2280543 may increase IA susceptibility by interacting with lncRNA H19.
Collapse
|
48
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
49
|
miR675 Accelerates Malignant Transformation of Mesenchymal Stem Cells by Blocking DNA Mismatch Repair. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 14:171-183. [PMID: 30594073 PMCID: PMC6307386 DOI: 10.1016/j.omtn.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/18/2022]
Abstract
miR675 is highly expressed in several human tumor tissues and positively regulates cell progression. Herein, we demonstrate that miR675 promotes malignant transformation of human mesenchymal stem cells. Mechanistically, we reveal that miR675 enhances the expression of the polyubiquitin-binding protein p62. Intriguingly, P62 competes with SETD2 to bind histone H3 and then significantly reduces SETD2-binding capacity to substrate histone H3, triggering drastically the reduction of three methylation on histone H3 36th lysine (H3K36me3). Thereby, the H3K36me3-hMSH6-SKP2 triplex complex is significantly decreased. Notably, the ternary complex’s occupancy capacity on chromosome is absolutely reduced, preventing it from DNA damage repair. By virtue of the reductive degradation ability of SKP2 for aging histone H3.3 bound to mismatch DNA, the aging histone H3.3 repair is delayed. Therefore, the mismatch DNA escapes from repair, triggering the abnormal expression of several cell cycle-related genes and causing the malignant transformation of mesenchymal stem cells. These observations strongly suggest understanding the novel functions of miR675 will help in the development of novel therapeutic approaches in a broad range of cancer types.
Collapse
|